1
|
Nomura S, Shimojima Y, Kishida D, Ichikawa T, Matsushima A, Sekijima Y. Low serum complements in idiopathic inflammatory myositis: clinical features and impact on the prognosis. Immunol Med 2024:1-9. [PMID: 38932558 DOI: 10.1080/25785826.2024.2370083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the clinical features and prognostic relevance of decreased serum complement levels in patients with idiopathic inflammatory myositis (IIM). The clinical information of IIM patients with less than normal serum complement levels (L-Com) and that of those with normal serum complement levels (N-Com) was compared. In patients with interstitial lung disease (ILD), regression analyses were used to investigate the implication of L-Com in their PaO2/FiO2 (P/F) ratio. Prognostic outcomes of ILD were evaluated using the log-rank test. Of 94 IIM patients, 26 with L-Com (median age, 56.0 years) and 68 with N-Com (56.5 years) were included. The prevalence of women was significantly higher in patients with L-Com (92.3%) than in those with N-Com (67.6%). ILD was observed in 17 (65.4%) patients with L-Com and in 46 (67.6%) with N-Com. Among patients with ILD, the P/F ratio was significantly lower in those with L-Com than in those with N-Com. Serum C3 levels were correlated with decreased P/F ratio. Inferior prognosis of ILD was significantly demonstrated in patients with L-Com, especially in those positive for anti-melanoma differentiation-associated protein 5 antibody. L-Com may be implicated in reduced arterial oxygen levels and a poorer prognosis in patients with IIM-related ILD.
Collapse
Affiliation(s)
- Shun Nomura
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Yasuhiro Shimojima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Dai Kishida
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takanori Ichikawa
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Akira Matsushima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
2
|
Mistegård CE, Troldborg A, Loft AG, Thiel S, Spiller L, Protopopov M, Rios Rodriguez V, Muche B, Rademacher J, Weber AK, Lüders S, Sieper J, Poddubnyy D, Proft F. Exploring complement biomarkers in suspected axial spondyloarthritis. RMD Open 2024; 10:e004127. [PMID: 38749532 PMCID: PMC11328660 DOI: 10.1136/rmdopen-2024-004127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/14/2024] [Indexed: 08/18/2024] Open
Abstract
OBJECTIVES To investigate lectin pathway proteins (LPPs) as biomarkers for axial spondyloarthritis (axSpA) in a cross-sectional cohort with a suspicion of axSpA, comprising newly diagnosed axSpA and chronic low back pain (cLBP) individuals. METHODS Serum samples from 515 participants within the OptiRef cohort, including 151 axSpA patients and 364 cLBP patients, were measured using immunoassays for LPPs (mannan-binding lectin (MBL), collectin liver-1 (CL-L1), M-ficolin, H-ficolin and L-ficolin, MBL-associated serine proteases (MASP)-1, -2 and -3, MBL-associated proteins (MAp19 and MAp44) and the complement activation product C3dg). RESULTS Serum levels of L-ficolin, MASP-2 and C3dg were elevated in axSpA patients, whereas levels of MASP-3 and CL-L1 were decreased, and this remained significant for C3dg and MASP-3 after adjustment for C reactive protein (CRP). A univariate regression analysis showed serum levels of CL-L1, MASP-2, MASP-3 and C3dg to predict the diagnosis of axSpA, and MASP-3 and C3dg remained significant in a multivariate logistic regression analysis. Assessment of the diagnostic potential showed that a combination of human leukocyte antigen B27 (HLA-B27) and measurements of L-ficolin, MASP-3 and C3dg increased the diagnostic specificity for axSpA, however, with a concomitant loss of sensitivity. CONCLUSIONS Serum levels of complement activation, that is, C3dg, and MASP-3 differed significantly between axSpA and cLBP patients after adjustment for CRP. Although combining HLA-B27 with measurements of L-ficolin, MASP-3 and C3dg increased the diagnostic specificity for axSpA, this seems unjustified due to the concomitant loss of sensitivity. However, both C3dg and MASP-3 were associated with axSpA diagnosis in multivariate logistic regression, suggesting an involvement of complement in the inflammatory processes and possibly pathogenesis in axSpA.
Collapse
Affiliation(s)
- Clara Elbæk Mistegård
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Troldborg
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Gitte Loft
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Laura Spiller
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Mikhail Protopopov
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Valeria Rios Rodriguez
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Burkhard Muche
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Judith Rademacher
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health, BIH, Berlin, Germany
| | - Anne-Katrin Weber
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Susanne Lüders
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Joachim Sieper
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Fabian Proft
- Department of Gastroenterology, Infectiology and Rheumatology (Including Nutrition Medicine), Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
3
|
Lindelöf L, Rantapää-Dahlqvist S, Lundtoft C, Sandling JK, Leonard D, Sayadi A, Rönnblom L, Enocsson H, Sjöwall C, Jönsen A, Bengtsson AA, Hong MG, Diaz-Gallo LM, Bianchi M, Kozyrev SV, Lindblad-Toh K, Nilsson Ekdahl K, Nilsson B, Gunnarsson I, Svenungsson E, Eriksson O. A survey of ficolin-3 activity in Systemic Lupus Erythematosus reveals a link to hematological disease manifestations and autoantibody profile. J Autoimmun 2024; 143:103166. [PMID: 38219652 DOI: 10.1016/j.jaut.2023.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
The complement system plays a central role in the pathogenesis of Systemic Lupus Erythematosus (SLE), but most studies have focused on the classical pathway. Ficolin-3 is the main initiator of the lectin pathway of complement in humans, but its role in systemic autoimmune disease has not been conclusively determined. Here, we combined biochemical and genetic approaches to assess the contribution of ficolin-3 to SLE risk and disease manifestations. Ficolin-3 activity was measured by a functional assay in serum or plasma samples from Swedish SLE patients (n = 786) and controls matched for age and sex (n = 566). Genetic variants in an extended 300 kb genomic region spanning the FCN3 locus were analyzed for their association with ficolin-3 activity and SLE manifestations in a Swedish multicenter cohort (n = 985). Patients with ficolin-3 activity in the highest tertile showed a strong enrichment in an SLE cluster defined by anti-Sm/DNA/nucleosome antibodies (OR 3.0, p < 0.001) and had increased rates of hematological disease (OR 1.4, p = 0.078) and lymphopenia (OR = 1.6, p = 0.039). Genetic variants associated with low ficolin-3 activity mapped to an extended haplotype in high linkage disequilibrium upstream of the FCN3 gene. Patients carrying the lead genetic variant associated with low ficolin-3 activity had a lower frequency of hematological disease (OR 0.67, p = 0.018) and lymphopenia (OR 0.63, p = 0.031) and fewer autoantibodies (p = 0.0019). Loss-of-function variants in the FCN3 gene were not associated with SLE, but four (0.5 %) SLE patients developed acquired ficolin-3 deficiency where ficolin-3 activity in serum was depleted following diagnosis of SLE. Taken together, our results provide genetic and biochemical evidence that implicate the lectin pathway in hematological SLE manifestations. We also identify lectin pathway activation through ficolin-3 as a factor that contributes to the autoantibody response in SLE.
Collapse
Affiliation(s)
- Linnea Lindelöf
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Christian Lundtoft
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Helena Enocsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mun-Gwan Hong
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lina-Marcela Diaz-Gallo
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sergey V Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
5
|
Larsen ML, Troldborg A, Toonen EJM, Hurler L, Prohaszka Z, Cervenak L, Gudmann Hansen A, Thiel S. Differentiating between activation via the lectin or the classical complement pathway in patients with systemic lupus erythematosus. Clin Exp Immunol 2023; 214:18-25. [PMID: 37407023 PMCID: PMC10711355 DOI: 10.1093/cei/uxad070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023] Open
Abstract
Complement activation is a hallmark of systemic lupus erythematosus (SLE) and can proceed through the classical (CP), lectin (LP), or alternative pathway (AP). When managing SLE patients, pathway-specific complement activation is rarely monitored as clinical assays are unavailable. In this study, we aim to differentiate between CP- or LP-mediated complement activation in SLE patients by quantifying pathway-specific protein complexes, namely C1s/C1-inhibitor (C1-INH) (CP-specific activation) and MASP-1/C1-INH (LP-specific activation). Levels for both complexes were assessed in 156 SLE patients and 50 controls using two newly developed ELISAs. We investigated whether pathway-specific complement activation was associated with disease activity and lupus nephritis (LN). Disease activity stratification was performed using SLEDAI scores assessed at inclusion. C1s/C1-INH concentrations were significantly increased in active SLE patients (SLEDAI ≥6) when compared with SLE patients with low disease activity (SLEDAI <6, P < 0.01) and correlated with SLEDAI score (r = .29, P < 0.01). In active LN, MASP-1/C1-INH plasma concentrations were significantly increased compared with nonactive LN (P = 0.02). No differences in MASP-1/C1-INH plasma concentrations were observed between active SLE patients and patients with low disease activity (P = 0.11) nor did we observe a significant correlation with disease activity (r = 0.12, P = 0.15). Our data suggest that the CP and the LP are activated in SLE. The CP is activated in active SLE disease, whereas activation of the LP might be more specific to disease manifestations like LN. Our results warrant further research into specific complement pathway activation in SLE patients to potentially improve specific-targeted and tailored-treatment approaches.
Collapse
Affiliation(s)
- Mads Lamm Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zoltan Prohaszka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Hosseinzadeh S, Afshari S, Molaei S, Rezaei N, Dadkhah M. The role of genetics and gender specific differences in neurodegenerative disorders: Insights from molecular and immune landscape. J Neuroimmunol 2023; 384:578206. [PMID: 37813041 DOI: 10.1016/j.jneuroim.2023.578206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Neurodegenerative disorders (NDDs) are the most common neurological disorders with high prevalence and have significant socioeconomic implications. Understanding the underlying cellular and molecular mechanisms associated with the immune system can be effective in disease etiology, leading to more effective therapeutic approaches for both females and males. The central nervous system (CNS) actively participates in immune responses, both within and outside the CNS. Immune system activation is a common feature in NDDs. Gender-specific factors play a significant role in the prevalence, progression, and manifestation of NDDs. Neuroinflammation, in both inflammatory neurological and neurodegenerative conditions, is defined by the triggering of microglia and astrocyte cell activation. This results in the secretion of pro-inflammatory cytokines and chemokines. Numerous studies have documented the role of neuroinflammation in neurological diseases, highlighting the involvement of immune signaling pathways in disease development. Converging evidence support immune system involvement during neurodegeneration in NDDs. In this review, we summarize emerging evidence that reveals gender-dependent differences in immune responses related to NDDs. Also, we highlight sex differences in immune responses and discuss how these sex-specific influences can increase the risk of NDDs. Understanding the role of gender-specific factors can aid in developing targeted therapeutic strategies and improving patient outcomes. Ultimately, the better understanding of these mechanisms contributed to sex-dependent immune response in NDDs, can be critically usful in targeting of immune signaling cascades in such disorders. In this regard, sex-related immune responses in NDDs may be promising and effective targets in therapeutic strategies.
Collapse
Affiliation(s)
- Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, School of Medicine, Ardabil University of Medical Sciences, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
7
|
Dudler T, Yaseen S, Cummings WJ. Development and characterization of narsoplimab, a selective MASP-2 inhibitor, for the treatment of lectin-pathway-mediated disorders. Front Immunol 2023; 14:1297352. [PMID: 38022610 PMCID: PMC10663225 DOI: 10.3389/fimmu.2023.1297352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Overactivation of the lectin pathway of complement plays a pathogenic role in a broad range of immune-mediated and inflammatory disorders; mannan-binding lectin-associated serine protease-2 (MASP-2) is the key effector enzyme of the lectin pathway. We developed a fully human monoclonal antibody, narsoplimab, to bind to MASP-2 and specifically inhibit lectin pathway activation. Herein, we describe the preclinical characterization of narsoplimab that supports its evaluation in clinical trials. Methods and results ELISA binding studies demonstrated that narsoplimab interacted with both zymogen and enzymatically active forms of human MASP-2 with high affinity (KD 0.062 and 0.089 nM, respectively) and a selectivity ratio of >5,000-fold relative to closely related serine proteases C1r, C1s, MASP-1, and MASP-3. Interaction studies using surface plasmon resonance and ELISA demonstrated approximately 100-fold greater binding affinity for intact narsoplimab compared to a monovalent antigen binding fragment, suggesting an important contribution of functional bivalency to high-affinity binding. In functional assays conducted in dilute serum under pathway-specific assay conditions, narsoplimab selectively inhibited lectin pathway-dependent activation of C5b-9 with high potency (IC50 ~ 1 nM) but had no observable effect on classical pathway or alternative pathway activity at concentrations up to 500 nM. In functional assays conducted in 90% serum, narsoplimab inhibited lectin pathway activation in human serum with high potency (IC50 ~ 3.4 nM) whereas its potency in cynomolgus monkey serum was approximately 10-fold lower (IC50 ~ 33 nM). Following single dose intravenous administration to cynomolgus monkeys, narsoplimab exposure increased in an approximately dose-proportional manner. Clear dose-dependent pharmacodynamic responses were observed at doses >1.5 mg/kg, as evidenced by a reduction in lectin pathway activity assessed ex vivo that increased in magnitude and duration with increasing dose. Analysis of pharmacokinetic and pharmacodynamic data revealed a well-defined concentration-effect relationship with an ex vivo EC50 value of approximately 6.1 μg/mL, which was comparable to the in vitro functional potency (IC50 33 nM; ~ 5 μg/mL). Discussion Based on these results, narsoplimab has been evaluated in clinical trials for the treatment of conditions associated with inappropriate lectin pathway activation, such as hematopoietic stem cell transplantation-associated thrombotic microangiopathy.
Collapse
Affiliation(s)
- Thomas Dudler
- Discovery, Omeros Corporation, Seattle, WA, United States
| | | | | |
Collapse
|
8
|
Isayeva G, Potlukova E, Rumora K, Lopez Ayala P, Kurun A, Leibfarth JP, Schäfer I, Michel E, Pesen K, Zellweger MJ, Trendelenburg M, Hejlesen TK, Hansen AG, Thiel S, Mueller C. Diagnostic and prognostic value of H-ficolin for functionally relevant coronary artery disease. Clin Chim Acta 2023; 551:117582. [PMID: 37802208 DOI: 10.1016/j.cca.2023.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND We aimed to test the diagnostic and prognostic ability of H-ficolin, an initiator of the lectin pathway of the complement system, for functionally relevant coronary artery disease (fCAD), and explore its determinants. METHODS The presence of fCAD was adjudicated using myocardial perfusion imaging single-photon emission tomography and coronary angiography. H-ficolin levels were measured by a sandwich-type immunoassay at rest, peak stress-test, and 2 h after stress-test. Cardiovascular death and non-fatal myocardial infarction were assessed during 5-year follow-up. RESULTS Among 1,571 patients (32.3 % women), fCAD was detected in 462 patients (29.4 %). H-ficolin concentration at rest was 18.6 (15.3-21.8) µg/ml in patients with fCAD versus 17.8 (15.4-21.5) µg/ml, p = 0.33, in patients without fCAD, resulting in an AUC of 0.53 (95 %CI 0.48-0.56). During follow-up, 107 patients (6.8 %) had non-fatal myocardial infarction and 99 patients (6.3 %) experienced cardiovascular death. In Cox regression analysis, H-ficolin was not a predictor of events in the overall cohort. Subgroup analysis suggested a potential link between H-ficolin and non-fatal myocardial infarction in patients without fCAD (adjusted HR 1.03, 95 % CI 1.02-1.15, p = 0.005). H-ficolin concentration showed a weak positive correlation with systolic (r = 0.069, p < 0.001) and diastolic blood pressure (r = 0.111, p < 0.001). CONCLUSION H-ficolin concentration did not have diagnostic and/or prognostic value in patients referred for fCAD work-up.
Collapse
Affiliation(s)
- Ganna Isayeva
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| | - Eliska Potlukova
- Department of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | - Klara Rumora
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Pedro Lopez Ayala
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Atakan Kurun
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Jan-Philipp Leibfarth
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Ibrahim Schäfer
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Evita Michel
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Kaan Pesen
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Michael J Zellweger
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Marten Trendelenburg
- Department of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| |
Collapse
|
9
|
Ryø LB, Haslund D, Rovsing AB, Pihl R, Sanrattana W, de Maat S, Palarasah Y, Maas C, Thiel S, Mikkelsen JG. Restriction of C1-inhibitor activity in hereditary angioedema by dominant-negative effects of disease-associated SERPING1 gene variants. J Allergy Clin Immunol 2023; 152:1218-1236.e9. [PMID: 37301409 DOI: 10.1016/j.jaci.2023.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Patients with hereditary angioedema experience recurrent, sometimes life-threatening, attacks of edema. It is a rare genetic disorder characterized by genetic and clinical heterogenicity. Most cases are caused by genetic variants in the SERPING1 gene leading to plasma deficiency of the encoded protein C1 inhibitor (C1INH). More than 500 different hereditary angioedema-causing variants have been identified in the SERPING1 gene, but the disease mechanisms by which they result in pathologically low C1INH plasma levels remain largely unknown. OBJECTIVES The aim was to describe trans-inhibitory effects of full-length or near full-length C1INH encoded by 28 disease-associated SERPING1 variants. METHODS HeLa cells were transfected with expression constructs encoding the studied SERPING1 variants. Extensive and comparative studies of C1INH expression, secretion, functionality, and intracellular localization were carried out. RESULTS Our findings characterized functional properties of a subset of SERPING1 variants allowing the examined variants to be subdivided into 5 different clusters, each containing variants sharing specific molecular characteristics. For all variants except 2, we found that coexpression of mutant and normal C1INH negatively affected the overall capacity to target proteases. Strikingly, for a subset of variants, intracellular formation of C1INH foci was detectable only in heterozygous configurations enabling simultaneous expression of normal and mutant C1INH. CONCLUSIONS We provide a functional classification of SERPING1 gene variants suggesting that different SERPING1 variants drive the pathogenicity through different and in some cases overlapping molecular disease mechanisms. For a subset of gene variants, our data define some types of hereditary angioedema with C1INH deficiency as serpinopathies driven by dominant-negative disease mechanisms.
Collapse
Affiliation(s)
| | - Didde Haslund
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Rasmus Pihl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Wariya Sanrattana
- CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Steven de Maat
- CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark; Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
| | - Coen Maas
- CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
10
|
Vils SR, Troldborg A, Hvas AM, Thiel S. Platelets and the Lectin Pathway of Complement Activation in Patients with Systemic Lupus Erythematosus or Antiphospholipid Syndrome. TH OPEN 2023; 7:e155-e167. [PMID: 37333022 PMCID: PMC10270747 DOI: 10.1055/a-2087-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Background Patients with systemic lupus erythematosus (SLE) have an increased risk of thrombosis even when they do not have antiphospholipid syndrome (APS). Interactions between complement activation and activated platelets have been suggested in SLE and APS and could play a role in the increased thrombosis risk. Objectives To explore factors potentially related to the prothrombotic pathophysiology in patients with SLE, primary APS, and healthy controls, by investigating lectin pathway proteins (LPPs), complement activation, platelet aggregation, and platelet activation. Methods This cross-sectional cohort study included 20 SLE patients, 17 primary APS, and 39 healthy controls. Flow cytometry and light transmission aggregometry were used to assess platelet activation and aggregation. Using time-resolved immunofluorometric assays, the plasma concentrations of 11 LPPs and C3dg, reflecting complement activation, were measured. Results H-ficolin plasma concentrations were higher in SLE and APS patients than in controls ( p = 0.01 and p = 0.03). M-ficolin was lower in SLE than in APS ( p = 0.01) and controls ( p = 0.03). MAp19 was higher in APS patients than in SLE patients ( p = 0.01) and controls ( p < 0.001). In APS patients, MASP-2 and C3dg correlated negatively with platelet activation. Platelet-bound fibrinogen after agonist stimulation and C3dg concentrations correlated negatively with platelet activation. Conclusion We observed significant differences between SLE and APS patients regarding complement proteins and platelet activation. Particularly the negative correlations between MASP-2 and C3dg with platelet activation only observed in APS patients suggest that interactions between complement activation and platelets differ in SLE and APS.
Collapse
Affiliation(s)
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Faculty of Health, Aarhus University, Aarhus, Denmark
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Mayilyan KR, Krarup A, Soghoyan AF, Jensenius JC, Sim RB. l-ficolin-MASP arm of the complement system in schizophrenia. Immunobiology 2023; 228:152349. [PMID: 36805857 DOI: 10.1016/j.imbio.2023.152349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
The abnormal neurodevelopment secondary to in utero adversities, such as hypoxia, malnutrition and maternal infections, underlies schizophrenia (SZ) etiology. As the genes of MBL-associated serine proteases (MASP) of the complement lectin pathway, MASP1 and MASP2, are expressed in the developing cortex and are functionally important for neuronal migration, we hypothesize that the malfunction ofl-ficolin-MASP arm may also be involved in schizophrenia pathophysiology as it was shown for MBL-MASP complexes. We investigated serum l-ficolin and plasma MASP-2 levels, the activity of l-ficolin-bound MASP-2, as well as an array of the complement-related variables in chronic schizophrenic patients in the acute phase of the disease and controls without physical or mental diagnoses. The median concentration of l-ficolin in Armenian controls was 3.66 μg/ml and similar to those reported for other Caucasian populations. SZ-cases had ∼40 % increase in serum l-ficolin (median 5.08 μg/ml; P < 0.0024). In the pooled sample, l-ficolin level was higher in males than in females (P < 0.0031), but this gender dichotomy was not affecting the variable association with schizophrenia (P < 0.016). Remarkably, MASP-2 plasma concentration showed gender-dependent significant variability in the group of patients but not in controls. When adjusted for gender and gender*diagnosis interaction, a significantly high MASP-2 level in female patients versus female controls was observed (median: 362 ng/ml versus 260 ng/ml, respectively; P < 0.0020). A significant increase in l-ficolin-bound MASP-2 activity was also observed in schizophrenia (on the median, cases vs controls: 7.60 vs 6.50 RU; P < 0.021). Correlation analyses of the levels of l-ficolin and MASP-2, l-ficolin-(MASP-2) activity and the demographic data did not show any significant association with the age of individuals, family history, age at onset and duration of the illness, and smoking. Noteworthy, the levels of l-ficolin and MASP-2 in circulation were significantly associated with the type of schizophrenia (paranoid SZ-cases had much higher l-ficolin (P < 0.0035) and lower MASP-2 levels than the other types combined (P < 0.049)). Correlations were also found between: (i) the classical pathway functional activity and l-ficolin level (rs = 0.19, P < 0.010); (ii) the alternative pathway functional activity and MASP-2 level (rs = 0.26, P < 0.00035); (iii) the activity of l-ficolin-bound MASP2 and the downstream C2 component haemolytic activity (rs = -0.19, P < 0.017); and (iv) l-ficolin and the upstream C-reactive protein (CRP) serum concentrations (r = 0.28, P < 0.018). Overall, the results showed l-ficolin-related lectin pathway alterations in schizophrenia pathophysiology. It is likely that in addition to the MBL-MASP component over-activity reported previously, the alterations of the lectin pathway in schizophrenia also involve variations of l-ficolin-(MASP-2) on protein concentration and activity levels.
Collapse
Affiliation(s)
- Karine R Mayilyan
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom; Institute of Molecular Biology, Armenian National Academy of Sciences, Yerevan, Armenia; Department of Therapeutics, Faculty of General Medicine, University of Traditional Medicine, Yerevan, Armenia.
| | - Anders Krarup
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Armen F Soghoyan
- Yerevan State Medical University, Health Ministry of Armenia, Yerevan, Armenia; Psychosocial Recovery Center, Yerevan, Armenia
| | | | - Robert B Sim
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| |
Collapse
|
12
|
Larsen JB, Pihl R, Aggerbeck MA, Larsen KM, Hvas CL, Johnsen N, Christensen MG, Praetorius H, Hvas AM, Thiel S. Inter-α-inhibitor heavy chain H4 and sepsis-related coagulation disturbances: Another link between innate immunity and coagulation. Res Pract Thromb Haemost 2023; 7:100078. [PMID: 36876284 PMCID: PMC9974438 DOI: 10.1016/j.rpth.2023.100078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/15/2022] [Accepted: 01/08/2023] [Indexed: 02/10/2023] Open
Abstract
Background The protease inhibitor inter-α-inhibitor heavy chain H4 (ITIH4) has been described as an acute-phase reactant and could potentially aid in sepsis monitoring and prognostication. Objectives To investigate ITIH4 plasma levels in sepsis patients compared with healthy controls and to examine the association between ITIH4 and acute-phase response markers, blood coagulation, and organ dysfunction in sepsis. Methods We performed a post hoc study to a prospective cohort study. Patients with septic shock (n = 39) were enrolled upon intensive care unit admission. ITIH4 was analyzed using an in-house immunoassay. Standard coagulation parameters, thrombin generation, fibrin formation and lysis, C-reactive protein, organ dysfunction markers, Sequential Organ Failure Assessment score, and disseminated intravascular coagulation (DIC) score were registered. ITIH4 levels were also investigated in a murine Escherichia coli sepsis model. Results ITIH4 did not display acute-phase behavior as mean ITIH4 levels were not increased in patients with septic shock or in E. coli-infected mice. However, ITIH4 exhibited large interindividual variation in patients with septic shock compared with healthy controls. Low ITIH4 was associated with sepsis-related coagulopathy, including a high DIC score (mean ITIH4: DIC, 203 μg/mL vs non-DIC, 267 μg/mL, P = .01), low antithrombin (r = 0.70, P < .0001) and decreased thrombin generation (mean ITIH4: first peak thrombin tertile, 210 μg/mL vs third peak thrombin tertile, 303 μg/mL, P = .01). ITIH4 showed moderate correlation with arterial blood lactate (ρ = -0.50, P < .001) but only weak correlations with C-reactive protein, alanine transaminase, bilirubin, and Sequential Organ Failure Assessment score (all, ρ < 0.26, P > .05). Conclusion ITIH4 is associated with sepsis-related coagulopathy but is not an acute-phase reactant during septic shock.
Collapse
Affiliation(s)
- Julie Brogaard Larsen
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Pihl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mathies Appel Aggerbeck
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Michael Larsen
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Christine Lodberg Hvas
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Nanna Johnsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Laursen TL, Bossen L, Pihl R, Troldborg A, Sandahl TD, Hansen AG, Folserass T, Vesterhus M, Grønbæk H, Thiel S. Highly Increased Levels of Inter-α-inhibitor Heavy Chain 4 (ITIH4) in Autoimmune Cholestatic Liver Diseases. J Clin Transl Hepatol 2022; 10:796-802. [PMID: 36304505 PMCID: PMC9547247 DOI: 10.14218/jcth.2021.00515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/26/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS There is an unmet need for new biomarkers to improve diagnostics and prognostics in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Inter-α-inhibitor heavy chain 4 (ITIH4) is an abundant, liver-produced protein, and its synthesis may be altered in liver diseases. We investigated whether ITIH4 plasma concentrations were affected in PBC and PSC patients. METHODS We developed an immunoassay specific for ITIH4 and determined ITIH4 plasma concentrations in 66 PBC, 126 PSC, 92 autoimmune hepatitis (AIH), 67 chronic hepatitis C (CHC), 33 alcoholic hepatitis (AH) patients and 138 healthy controls (HCs). Hepatic ITIH4 expression was investigated by immunohistochemistry in PBC. RESULTS The mean plasma concentration of ITIH4 was almost doubled in PBC [409 µg/mL (95% CI: 388-431)] and 35% higher in PSC [308 µg/mL, (95% CI: 296-319)] compared with HCs [226 µg/mL (95% CI: 221-231); p<0.001]. In PBC patients, ITIH4 correlated with IgM (rho=0.49, p<0.001). Responders to ursodeoxycholic acid treatment (UDCA) had lower levels of ITIH4 than incomplete responders [395 µg/mL (95% CI: 364-425)] vs. 460 µg/mL (95% CI: 421-498); p=0.02]. Four weeks of UDCA treatment had no effect (p=0.19). Increased ITIH4 immunohistochemical staining was seen in a liver biopsy from a PBC patient. ITIH4 levels in AIH [224 µg/mL (95% CI: 208-241)] and HCs were similar (p=0.8). ITIH4 levels were lower in AH [199 µg/mL (95% CI: 175-223)] and CHC [202 µg/mL (192-212)] patients than in HCs (p<0.05). CONCLUSIONS The plasma concentration of ITIH4 was highly elevated in patients with PBC and PSC, suggesting that ITIH4 should be further investigated as a biomarker in cholestatic liver disease.
Collapse
Affiliation(s)
- Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Correspondence to: Tea Lund Laursen, Department of Hepatology and Gastroenterology, Aarhus University Hospital, 99 Palle Juul-Jensens Boulevard, DK-8200 Aarhus N, Denmark. ORCID: https://orcid.org/0000-0003-2494-0526. Tel: +45-23715703, Fax: +45-78462860, E-mail: ,
| | - Lars Bossen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Rasmus Pihl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Trine Folserass
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Mette Vesterhus
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Mistegaard CE, Jensen L, Christiansen M, Bjerre M, Jensen JMB, Thiel S. Low levels of the innate immune system proteins MASP-2 and MAp44 in patients with common variable immunodeficiency. Scand J Immunol 2022; 96:e13196. [PMID: 35673952 PMCID: PMC9542173 DOI: 10.1111/sji.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Patients with common variable immunodeficiency (CVID) display low antibody levels and associated symptoms, including an increased risk of infections. The causes of CVID are uncertain and likely heterogeneous. The complement system protects against pathogens and plays essential roles in homeostasis and development. The influence of the complement system in CVID is not established. We investigated CVID patients and healthy individuals for plasma levels of the complement proteins: MASP-1, MASP-2, MASP-3, MAp19 and MAp44. We also tested other patients with symptoms similar to the CVID patients. CVID patients had lower average MASP-2 and MAp44 levels than healthy individuals (P < 0.01); the MASP-2 level was 0.73-fold lower, and the MAp44 level was 0.87-fold lower. This was not observed in the other patient cohorts studied. Our findings in this exploratory study provide new insights into CVID and introduce a complement perspective for future investigations into the underlying mechanisms of the disease.
Collapse
Affiliation(s)
- Clara Elbaek Mistegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mette Christiansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Bjerre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Jens Magnus Bernth Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Nørgaard-Pedersen C, Rom LH, Steffensen R, Kesmodel US, Christiansen OB. Plasma level of mannose-binding lectin is associated with the risk of recurrent pregnancy loss but not pregnancy outcome after the diagnosis. Hum Reprod Open 2022; 2022:hoac024. [PMID: 35747402 PMCID: PMC9211012 DOI: 10.1093/hropen/hoac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Indexed: 12/08/2022] Open
Abstract
STUDY QUESTION Are low or high plasma mannose-binding lectin (p-MBL) levels associated with recurrent pregnancy loss (RPL) and the reproductive and perinatal outcomes before and after RPL? SUMMARY ANSWER The prevalence of low p-MBL levels was significantly higher in RPL patients, while high levels were significantly less prevalent. No association was found between p-MBL level and reproductive and perinatal outcomes before and after RPL. WHAT IS KNOWN ALREADY Mannose-binding lectin (MBL) is an important component in the innate immune system. Low p-MBL levels have been associated with RPL, while the correlation with high levels has been poorly studied. Adverse perinatal outcomes are generally more frequent among RPL patients, but reports concerning the association between maternal p-MBL levels and perinatal outcomes, including birth weight (BW) and gestational age (GA), are conflicting. STUDY DESIGN, SIZE, DURATION This study was a combined cross-sectional and cohort study of 267 RPL patients admitted to the RPL Center of Western Denmark between January 2016 and March 2020. RPL patients were followed until birth of a liveborn child or until end of follow-up, March 2021. A sample of 185 healthy female blood donors of reproductive age was used as a MBL reference group. PARTICIPANTS/MATERIALS, SETTING, METHODS All RPL patients had ≥3 consecutive pregnancy losses, a regular menstrual cycle and no known significant chromosomal or uterine malformations. At the first consultation, routine blood samples including p-MBL measurement and detailed obstetrical and perinatal information were collected. p-MBL levels in RPL patients were compared to the MBL reference group. A logistic regression analysis adjusted for relevant confounders assessed the association between low p-MBL levels and an unsuccessful reproductive outcome in RPL patients in first pregnancy after admission. Perinatal outcomes before and after RPL were compared between RPL subgroups according to low (≤500 µg/l), intermediate (501–3000 µg/l) and high (>3000 µg/l) p-MBL levels. MAIN RESULTS AND THE ROLE OF CHANCE Significantly more RPL patients had low p-MBL levels (prevalence proportion ratio (PPR): 1.79, 95% CI: 1.34–2.38) and fewer had high p-MBL levels (PPR: 0.56, 95% CI: 0.40–0.79) compared to the reference group, while the prevalence of intermediate p-MBL level was not different between the groups (PPR: 0.86, 95% CI: 0.69–1.08). In the prospective study, low p-MBL level was not a significant risk factor for a pregnancy loss in the first pregnancy after admission after adjustment for age, BMI and smoking. Neither before nor after the RPL diagnosis were maternal p-MBL levels significantly associated with BW or GA. LIMITATIONS, REASONS FOR CAUTION Only 161 (60.3%) patients had given birth after RPL during the follow-up period, which limited the possibility to detect clear associations between p-MBL levels and perinatal outcomes after RPL. WIDER IMPLICATIONS OF THE FINDINGS In agreement with several previous studies, low p-MBL levels are strongly associated with RPL, while this study for the first time documents that high levels may play a protective role, which suggests a causal relationship. We suggest that larger prospective studies evaluate the association between p-MBL levels and RPL prognosis. STUDY FUNDING/COMPETING INTEREST(S) No external funding was received. We acknowledge the Department of Obstetrics and Gynaecology at Aalborg University Hospital for financial support. U.S.K. has reported personal fees from Merck, consulting fees from IBSA Nordic, and a grant from Gedeon Richter, Merck and IBSA Nordic outside of the submitted work. TRIAL REGISTRATION NUMBER ID from clinicaltrials.gov is NCT04017754.
Collapse
Affiliation(s)
- C Nørgaard-Pedersen
- Aalborg University Hospital Centre for Recurrent Pregnancy loss of Western Denmark, Department of Obstetrics and Gynaecology, , Reberbansgade 15, 9000, Aalborg, Denmark
- Søndre Skovvej 15 , Aalborg, 9000, Denmark
| | - L H Rom
- Aalborg University Hospital Centre for Recurrent Pregnancy loss of Western Denmark, Department of Obstetrics and Gynaecology, , Reberbansgade 15, 9000, Aalborg, Denmark
| | - R Steffensen
- Aalborg University Hospital Department of Clinical Immunology, , Urbansgade 32, Aalborg, 9000, Denmark
| | - U S Kesmodel
- Aalborg University Hospital Centre for Recurrent Pregnancy loss of Western Denmark, Department of Obstetrics and Gynaecology, , Reberbansgade 15, 9000, Aalborg, Denmark
- Søndre Skovvej 15 , Aalborg, 9000, Denmark
| | - O B Christiansen
- Aalborg University Hospital Centre for Recurrent Pregnancy loss of Western Denmark, Department of Obstetrics and Gynaecology, , Reberbansgade 15, 9000, Aalborg, Denmark
- Søndre Skovvej 15 , Aalborg, 9000, Denmark
| |
Collapse
|
16
|
Henriksen ML, Nielsen C, Pedersen D, Andersen GR, Thiel S, Palarasah Y, Hansen SWK. Quantification of the pro-form of human complement component factor D (adipsin). J Immunol Methods 2022; 507:113295. [DOI: 10.1016/j.jim.2022.113295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
|
17
|
Boreggio M, Rosini E, Gambarotti C, Pollegioni L, Fasoli E. Unveiling the Bio-corona Fingerprinting of Potential Anticancer Carbon Nanotubes Coupled with D-Amino Acid Oxidase. Mol Biotechnol 2022; 64:1164-1176. [PMID: 35467257 PMCID: PMC9411096 DOI: 10.1007/s12033-022-00488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2022] [Indexed: 11/27/2022]
Abstract
The oxidation therapy, based on the controlled production of Reactive Oxygen Species directly into the tumor site, was introduced as alternative antitumor approach. For this purpose, d-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis, an enzyme able to efficiently catalyze the production of hydrogen peroxide from d-amino acids, was adsorbed onto multi-walled carbon nanotubes (MWCNTs), previously functionalized with polylactic-co-glycolic acid (PLGA) or polyethylene glycol (PEG) at different degrees to reduce their toxicity, to be targeted directly into the tumor. In vitro activity and cytotoxicity assays demonstrated that DAAO-functionalized nanotubes (f-MWCNTs) produced H2O2 and induced toxic effects to selected tumor cell lines. After incubation in human plasma, the protein corona was investigated by SDS-PAGE and mass spectrometry analysis. The enzyme nanocarriers generally seemed to favor their biocompatibility, promoting the interaction with dysopsonins. Despite this, PLGA or high degree of PEGylation promoted the adsorption of immunoglobulins with a possible activation of immune response and this effect was probably due to PLGA hydrophobicity and dimensions and to the production of specific antibodies against PEG. In conclusion, the PEGylated MWCNTs at low degree seemed the most biocompatible nanocarrier for adsorbed DAAO, preserving its anticancer activity and forming a bio-corona able to reduce both defensive responses and blood clearance.
Collapse
Affiliation(s)
- Marta Boreggio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varèse, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varèse, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
18
|
Olszowski T, Milona M, Janiszewska-Olszowska J, Safranow K, Uzar I, Walczak A, Sikora M, Chlubek D, Adler G. FCN1 polymorphisms are not the markers of dental caries susceptibility in Polish children: A case-control study. Oral Dis 2022; 28:771-776. [PMID: 33600013 DOI: 10.1111/odi.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine the association of four FCN1 SNPs: -542G>A (rs10120023), -144C>A (rs10117466), +6658C>T (rs148649884), and +7895A>G (rs150625869) with dental caries in Polish children. SUBJECTS AND METHODS The study group consisted of 261 15-year-old Polish teenagers: 82 children with "higher" caries experience (having Decayed Missing Filled Teeth, DMFT >5) and 179 children with "lower" caries experience (having DMFT ≤5). Moreover, in additional comparison, a group of 229 children with caries experience (DMFT ≥1) was compared to a caries-free (DMFT =0) group of 32 children. Extraction of genomic DNA was performed from buccal swabs, and genotyping was performed by Real-Time PCR. RESULTS FCN1 SNPs +6658C>T and +7895A>G appeared to be monomorphic in our sample. The genotype, allele, or haplotype distributions in FCN1 SNPs -542G>A and -144C>A in children with "higher" caries experience did not differ significantly from those in "lower" caries experience group. Similar results with no significant differences were demonstrated for subjects with DMFT ≥1 compared to subjects with DMFT =0. CONCLUSION FCN1 SNPs are not the markers of dental caries susceptibility in Polish children.
Collapse
Affiliation(s)
- Tomasz Olszowski
- Department of Hygiene and Epidemiology, Pomeranian Medical University, Szczecin, Poland
| | - Marta Milona
- Department of Hygiene and Epidemiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Izabela Uzar
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, Szczecin, Poland
| | - Alicja Walczak
- Department of Hygiene and Epidemiology, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Sikora
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Kielce, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Grażyna Adler
- Department of Studies in Antropogenetics and Biogerontology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
19
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Solid Tumour Cancers. Cancers (Basel) 2022; 14:cancers14061543. [PMID: 35326694 PMCID: PMC8946279 DOI: 10.3390/cancers14061543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
The complement system is an important branch of the humoral innate immune response that can be activated via three distinct pathways (classical, alternative, lectin), contributing to keeping/restoring homeostasis. It can also interact with cellular innate immunity and with components of acquired immunity. Cross-talk between the complement system and other enzyme-dependent cascades makes it a more influential defence system, but on the other hand, over- or chronic activation can be harmful. This short review is focused on the dual role of the lectin pathway of complement activation in human solid tumour cancers, including those of the female reproductive system, lung, and alimentary tract, with emphasis on the aforementioned cross-talk.
Collapse
|
20
|
Świerzko AS, Jarych D, Gajek G, Chojnacka K, Kobiela P, Kufelnicka-Babout M, Michalski M, Sobczuk K, Szala-Poździej A, Matsushita M, Mazela J, Domżalska-Popadiuk I, Kilpatrick DC, Kalinka J, Sekine H, Cedzyński M. Polymorphisms of the FCN2 Gene 3'UTR Region and Their Clinical Associations in Preterm Newborns. Front Immunol 2021; 12:741140. [PMID: 34777352 PMCID: PMC8581395 DOI: 10.3389/fimmu.2021.741140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
Ficolin-2 is regarded as an important innate immunity factor endowed with both lectin (carbohydrate recognition) qualities and ability to induce complement activation. The aim of this study was to investigate the association of the FCN2 3'-untranslated region (3'UTR) polymorphisms with ficolin-2 expression and perinatal complications in preterm neonates. The sequencing analysis allowed us to identify six 3'UTR polymorphisms with minor allele frequency (MAF) >1%: rs4521835, rs73664188, rs11103564, rs11103565, rs6537958 and rs6537959. Except for rs4521835, all adhered to Hardy-Weinberg expectations. Moreover, rs6537958 and rs6537959 were shown to be in perfect linkage disequilibrium (LD) with nine other genetic polymorphisms: rs7040372, rs7046516, rs747422, rs7847431, rs6537957, rs6537960, rs6537962, rs11462298 and rs7860507 together stretched on a distance of 1242 bp and very high LD with rs11103565. The 3'UTR region was shown to bind nuclear extract proteins. The polymorphisms at rs4521835 and rs73664188 were found to influence serum ficolin-2 concentration significantly. All polymorphisms identified create (together with exon 8 polymorphism, rs7851696) two haplotype blocks. Among 49 diplotypes (D1-D49) created from rs7851696 (G>T), rs4521835 (T>G), rs73664188 (T>C), rs11103564 (T>C), rs11103565 (G>A) and rs6537959 (T>A), twenty two occurred with frequency >1%. Two diplotypes: D13 (GTTTGT/GGTCGT) and D10 (GTTTGT/GGTCGA), were significantly more frequent among preterm neonates with early onset of infection and pneumonia, compared with newborns with no infectious complications (OR 2.69 and 2.81, respectively; both p<0.05). The minor (C) allele at rs73664188 was associated with an increased risk of very low (≤1500 g) birthweight (OR=1.95, p=0.042) but was associated with the opposite effect at rs11103564 (OR=0.11, p=0.005).
Collapse
Affiliation(s)
- Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Dariusz Jarych
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Karolina Chojnacka
- Department of Newborns’ Infectious Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Paulina Kobiela
- Department of Neonatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maja Kufelnicka-Babout
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Katarzyna Sobczuk
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Jan Mazela
- Department of Newborns’ Infectious Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | | | - David C. Kilpatrick
- Scottish National Blood Transfusion Service, National Science Laboratory, Edinburgh, Scotland, United Kingdom
| | - Jarosław Kalinka
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
21
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The effect of sex on the mouse lens transcriptome. Exp Eye Res 2021; 209:108676. [PMID: 34146586 DOI: 10.1016/j.exer.2021.108676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The transcriptome of mammalian tissues differs between males and females, and these differences can change across the lifespan, likely regulating known sexual dimorphisms in disease prevalence and severity. Cataract, the most prevalent disease of the ocular lens, occurs at similar rates in young individuals, but its incidence is elevated in older women compared to men of the same age. However, the influence of sex on the lens transcriptome was unknown. RNAseq based transcriptomic profiling of young adult C57BL/6J mouse lens epithelial and fiber cells revealed that few genes are differentially expressed between the sexes. In contrast, lens cells from aged (24 month old) male and female C57BL/6J mice differentially expressed many genes, including several whose expression is lens preferred. Like cataracts, posterior capsular opacification (PCO), a major sequela of cataract surgery, may also be more prevalent in women. Lens epithelial cells isolated from mouse eyes 24 h after lens fiber cell removal exhibited numerous transcriptomic differences between the sexes, including genes implicated in complement cascades and extracellular matrix regulation, and these differences are much more pronounced in aged mice than in young mice. These results provide an unbiased basis for future studies on how sex affects the lens response to aging, cataract development, and cataract surgery.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
22
|
Bumiller-Bini V, de Freitas Oliveira-Toré C, Carvalho TM, Kretzschmar GC, Gonçalves LB, Alencar NDM, Gasparetto MA, Beltrame MH, Winter Boldt AB. MASPs at the crossroad between the complement and the coagulation cascades - the case for COVID-19. Genet Mol Biol 2021; 44:e20200199. [PMID: 33729332 PMCID: PMC7982787 DOI: 10.1590/1678-4685-gmb-2020-0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Components of the complement system and atypical parameters of coagulation were reported in COVID-19 patients, as well as the exacerbation of the inflammation and coagulation activity. Mannose binding lectin (MBL)- associated serine proteases (MASPs) play an important role in viral recognition and subsequent activation of the lectin pathway of the complement system and blood coagulation, connecting both processes. Genetic variants of MASP1 and MASP2 genes are further associated with different levels and functional efficiency of their encoded proteins, modulating susceptibility and severity to diseases. Our review highlights the possible role of MASPs in SARS-COV-2 binding and activation of the lectin pathway and blood coagulation cascades, as well as their associations with comorbidities of COVID-19. MASP-1 and/or MASP-2 present an increased expression in patients with COVID-19 risk factors: diabetes, arterial hypertension and cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and cerebrovascular disease. Based also on the positive results of COVID-19 patients with anti-MASP-2 antibody, we propose the use of MASPs as a possible biomarker of the progression of COVID-19 and the investigation of new treatment strategies taking into consideration the dual role of MASPs, including MASP inhibitors as promising therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Valéria Bumiller-Bini
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
| | - Camila de Freitas Oliveira-Toré
- Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Medicina Interna e Ciências da Saúde, Laboratório de Imunopatologia Molecular, Curitiba, PR, Brazil
| | - Tamyres Mingorance Carvalho
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
- Universidade Federal do Paraná, Departamento de Genética, Laboratório de Citogenética Humana e Oncogenética, Curitiba, PR, Brazil
| | - Gabriela Canalli Kretzschmar
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
| | - Letícia Boslooper Gonçalves
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Imunogenética e Histocompatibilidade (LIGH), Curitiba, PR, Brazil
| | - Nina de Moura Alencar
- Fundação Oswaldo Cruz (Fiocruz), Instituto Carlos Chagas, Programa de Pós-Graduação em Biociências e Biotecnologia, Laboratório de Virologia Molecular, Curitiba, PR, Brazil
| | - Miguel Angelo Gasparetto
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
| | - Marcia Holsbach Beltrame
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
| | - Angelica Beate Winter Boldt
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
| |
Collapse
|
23
|
Galindo-Izquierdo M, Pablos Alvarez JL. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021; 10:cells10010148. [PMID: 33451011 PMCID: PMC7828564 DOI: 10.3390/cells10010148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The complement system (CS) includes more than 50 proteins and its main function is to recognize and protect against foreign or damaged molecular components. Other homeostatic functions of CS are the elimination of apoptotic debris, neurological development, and the control of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will review the main rheumatologic autoimmune processes in which complement plays a pathogenic role and its potential relevance as a therapeutic target.
Collapse
|
24
|
Pihl R, Jensen RK, Poulsen EC, Jensen L, Hansen AG, Thøgersen IB, Dobó J, Gál P, Andersen GR, Enghild JJ, Thiel S. ITIH4 acts as a protease inhibitor by a novel inhibitory mechanism. SCIENCE ADVANCES 2021; 7:7/2/eaba7381. [PMID: 33523981 PMCID: PMC7793589 DOI: 10.1126/sciadv.aba7381] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 11/16/2020] [Indexed: 05/02/2023]
Abstract
Inter-α-inhibitor heavy chain 4 (ITIH4) is a poorly characterized plasma protein that is proteolytically processed in multiple pathological conditions. However, no biological function of ITIH4 has been identified. Here, we show that ITIH4 is cleaved by several human proteases within a protease-susceptible region, enabling ITIH4 to function as a protease inhibitor. This is exemplified by its inhibition of mannan-binding lectin-associated serine protease-1 (MASP-1), MASP-2, and plasma kallikrein, which are key proteases for intravascular host defense. Mechanistically, ITIH4 acts as bait that, upon cleavage, forms a noncovalent, inhibitory complex with the executing protease that depends on the ITIH4 von Willebrand factor A domain. ITIH4 inhibits the MASPs by sterically preventing larger protein substrates from accessing their active sites, which remain accessible and fully functional toward small substrates. Thus, we demonstrate that ITIH4 functions as a protease inhibitor by a previously undescribed inhibitory mechanism.
Collapse
Affiliation(s)
- Rasmus Pihl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rasmus K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Emil C Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Medjeral-Thomas NR, Troldborg A, Hansen AG, Gisby J, Clarke CL, Prendecki M, McAdoo SP, Sandhu E, Lightstone L, Thomas DC, Willicombe M, Botto M, Peters JE, Pickering MC, Thiel S. Plasma Lectin Pathway Complement Proteins in Patients With COVID-19 and Renal Disease. Front Immunol 2021; 12:671052. [PMID: 33995410 PMCID: PMC8118695 DOI: 10.3389/fimmu.2021.671052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
We do not understand why non-white ethnicity and chronic kidney disease increase susceptibility to COVID-19. The lectin pathway of complement activation is a key contributor to innate immunity and inflammation. Concentrations of plasma lectin pathway proteins influence pathway activity and vary with ethnicity. We measured circulating lectin proteins in a multi-ethnic cohort of chronic kidney disease patients with and without COVID19 infection to determine if lectin pathway activation was contributing to COVID19 severity. We measured 11 lectin proteins in serial samples from a cohort of 33 patients with chronic kidney impairment and COVID19. Controls were single plasma samples from 32 patients on dialysis and 32 healthy individuals. We demonstrated multiple associations between recognition molecules and associated proteases of the lectin pathway and COVID-19, including COVID-19 severity. Some of these associations were unique to patients of Asian and White ethnicity. Our novel findings demonstrate that COVID19 infection alters the concentration of plasma lectin proteins and some of these changes were linked to ethnicity. This suggests a role for the lectin pathway in the host response to COVID-19 and suggest that variability within this pathway may contribute to ethnicity-associated differences in susceptibility to severe COVID-19.
Collapse
Affiliation(s)
- Nicholas R. Medjeral-Thomas
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Nicholas R. Medjeral-Thomas,
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jack Gisby
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Candice L. Clarke
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Maria Prendecki
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Stephen P. McAdoo
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Eleanor Sandhu
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Liz Lightstone
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - David C. Thomas
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Michelle Willicombe
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
- Renal and Transplant Centre, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Marina Botto
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - James E. Peters
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Tereshchenko SY, Smolnikova MV. Polymorphism of the mannose-binding lectin gene in the Arctic indigenous populations of the Russian Federation. Vavilovskii Zhurnal Genet Selektsii 2020; 24:868-875. [PMID: 35088000 PMCID: PMC8764514 DOI: 10.18699/vj20.685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Маннозосвязывающий лектин (mannose-binding lectin, MBL) – паттерн-распознающий острофазовый белок, относящийся к системе врожденного иммунитета и активно участвующий в элиминации широкого круга патогенных микроорганизмов посредством активации лектинового пути системы комплемента.
Значительная часть человеческой популяции имеет врожденно низкий уровень продукции и/или низкую
функциональную активность MBL вследствие носительства различных вариантов гена MBL2, что может модифицировать течение самых разнообразных инфекционных заболеваний. Частота генотипов и гаплотипов
полиморфизмов в гене MBL2 имеет значительные популяционные различия. К настоящему времени данные
относительно распределения генотипов гена MBL2 в коренных популяциях территорий Арктической зоны Российской Федерации отсутствуют. Цель исследования – изучение частоты и этнической специфики распределения аллельных вариантов полиморфизмов гена MBL2 rs11003125, rs7096206, rs7095891, rs5030737, rs1800450 и
rs1800451 и их гаплотипов в популяциях Таймырского Долгано-Ненецкого района Красноярского края (ненцы, долганы-нганасаны, русские). В настоящем исследовании нами впервые получены данные о частотах генотипов и гаплотипов гена MBL2 у коренных народностей, проживающих на территориях Арктической зоны
Российской Федерации. Частота встречаемости гаплотипа HYPA, ассоциированного с высокой концентрацией
MBL, составила 35.4 % для русских новорожденных Восточной Сибири, что соответствует частотам европейских популяций (27–33 %). У новорожденных арктических популяций частота гаплотипа HYPA была статистически значимо выше, чем у русских, и составила 64 % для ненцев и 56 % для долган-нганасан, что приближается к
значениям частот, выявленных для эскимосов и североамериканских индейцев (64–81 %). Популяции ненцев и
долган-нганасан демонстрируют существенно более низкие частоты MBL-дефицитных гаплотипов в сравнении
с европеоидами Восточной Сибири (3.9, 6.4 и 21.3 % соответственно). Мы предполагаем, что изолированные
арктические популяции исторически позже столкнулись с некоторыми внутриклеточными инфекциями (туберкулезом, лепрой) и, в отличие от европеоидных популяций, сохранили сформированную на ранних этапах
эволюции человека высокую активность лектинового пути активации комплемента.
Collapse
Affiliation(s)
- S. Yu. Tereshchenko
- Scientific Research Institute of Medical Problems of the North, Federal Research Center ”Krasnoyarsk Science Center“ of the Siberian Branch of the Russian Academy of Sciences
| | - M. V. Smolnikova
- Scientific Research Institute of Medical Problems of the North, Federal Research Center ”Krasnoyarsk Science Center“ of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
27
|
Bro-Jeppesen J, Jeppesen AN, Haugaard S, Troldborg A, Hassager C, Kjaergaard J, Kirkegaard H, Wanscher M, Hvas AM, Thiel S. The complement lectin pathway protein MAp19 and out-of-hospital cardiac arrest: Insights from two randomized clinical trials. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2020; 9:S145-S152. [DOI: 10.1177/2048872619870031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aim:
Activation of the complement system is known to be a potent inducer of systemic inflammation, which is an important component of post-cardiac arrest syndrome. Mannan-binding-lectin associated protein of 19 kDa (MAp19) is suggested to be a regulatory component of the lectin pathway of complement activation. The aims of this study were to describe serial levels of MAp19 protein in comatose survivors of out-of-hospital cardiac arrest (OHCA), to evaluate the effect of two different regimes of targeted temperature management and to investigate the possible association between levels of MAp19 and mortality.
Methods:
In this post-hoc study, we analysed data from two large randomized controlled studies: ‘Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest’ (TTM) and ‘Targeted temperature management for 48 versus 24 h and neurological outcome after out-of-hospital cardiac arrest’ (TTH). We measured serial levels of MAp19 in 240 patients within 72 h after OHCA and in 82 healthy controls. The effect of targeted temperature management on MAp19 levels was analysed according to temperature allocation in main trials.
Results:
MAp19 levels were significantly lower in OHCA patients within 48 h after OHCA (p-values <0.001) compared with healthy controls. A target temperature at 33°C compared with 36°C for 24 h was associated with significantly lower levels of MAp19 (–57 ng/mL (95% confidence interval (CI): –97 to −16 mg/mL), p=0.006). Target temperature at 33°C for 48 h compared with 24 h was not associated with a difference in MAp19 levels (–31 ng/mL (95% CI: –120 to 60 mg/mL), p=0.57). Low MAp19 levels at admission were associated with higher 30-day mortality (12% vs. 38%, plog-rank =0.0008), also in adjusted analysis (two-fold higher, hazard ratio =0.48 (95% CI: 0.31 to 0.75), p=0.001). Analysis of MAp19 levels at 24–72 h showed they were not associated with 30-day mortality.
Conclusion:
Survivors after OHCA have lower levels of MAp19 protein compared with healthy controls. A targeted temperature management at 33°C compared with 36°C was associated with significantly lower MAp19 levels, whereas target temperature at 33°C for 48 h compared with 24 h did not influence MAp19 protein levels. Low MAp19 levels at admission were independently associated with increased mortality.
Collapse
Affiliation(s)
- John Bro-Jeppesen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Anni Nørgaard Jeppesen
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Denmark
| | - Simon Haugaard
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | | | - Christian Hassager
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Hans Kirkegaard
- Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Denmark
- Research Centre for Emergency Medicine and Emergency Department, Aarhus University and Aarhus University Hospital, Denmark
| | - Michael Wanscher
- Department of Cardiothoracic Anaesthesia 4142, The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark
| |
Collapse
|
28
|
Świerzko AS, Cedzyński M. The Influence of the Lectin Pathway of Complement Activation on Infections of the Respiratory System. Front Immunol 2020; 11:585243. [PMID: 33193407 PMCID: PMC7609860 DOI: 10.3389/fimmu.2020.585243] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Lung diseases are among the leading causes of morbidity and mortality. Complement activation may prevent a variety of respiratory infections, but on the other hand, could exacerbate tissue damage or contribute to adverse side effects. In this review, the associations of factors specific for complement activation via the lectin pathway (LP) with infections of the respiratory system, from birth to adulthood, are discussed. The most extensive data concern mannose-binding lectin (MBL) which together with other collectins (collectin-10, collectin-11) and the ficolins (ficolin-1, ficolin-2, ficolin-3) belong to pattern-recognition molecules (PRM) specific for the LP. Those PRM form complexes with MBL-associated serine proteases (MASP-1, MASP-2, MASP-3) and related non-enzymatic factors (MAp19, MAp44). Beside diseases affecting humanity for centuries like tuberculosis or neonatal pneumonia, some recently published data concerning COVID-19 are summarized.
Collapse
Affiliation(s)
- Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
29
|
Jacobson S, Larsson P, Åberg AM, Johansson G, Winsö O, Söderberg S. Levels of mannose-binding lectin (MBL) associates with sepsis-related in-hospital mortality in women. J Inflamm (Lond) 2020; 17:28. [PMID: 32817747 PMCID: PMC7425558 DOI: 10.1186/s12950-020-00257-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background Mannose-binding lectin (MBL) mediates the innate immune response either through direct opsonisation of microorganisms or through activation of the complement system. There are conflicting data whether MBL deficiency leads to increased susceptibility to infections or not. The aim of this study was to determine if low levels of mannose-binding lectin (MBL) predict sepsis development, sepsis severity and outcome from severe sepsis or septic shock. Method Patients aged 18 years or more with documented sepsis within 24 h after admission to the intensive care unit were included if they had participated in a health survey and donated blood samples prior to the sepsis event. A subset of these patients had stored plasma also from the acute phase. Two matched referents free of known sepsis were selected for each case. Plasma levels MBL were determined in stored samples from health surveys (baseline) and from ICU admission (acute phase). The association between MBL and sepsis, sepsis severity and in-hospital mortality were determined with 1300 ng/mL as cut-off for low levels. Results We identified 148 patients (61.5% women) with a first-time sepsis event 6.5 years (median with IQR 7.7) after participation in a health survey, of which 122 also had samples from the acute septic phase. Both high MBL levels in the acute phase (odds ratio [95% confidence interval]) (2.84 [1.20-6.26]), and an increase in MBL levels from baseline to the acute phase (3.76 [1.21-11.72]) were associated with increased risk for in-hospital death in women, but not in men (0.47 [0.11-2.06]). Baseline MBL levels did not predict future sepsis, sepsis severity or in-hospital mortality. Conclusions An increase from baseline to the acute phase as well as high levels in the acute phase associated with an unfavourable outcome in women.
Collapse
Affiliation(s)
- Sofie Jacobson
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Peter Larsson
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna-Maja Åberg
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Göran Johansson
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Ola Winsö
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
30
|
Mannose-binding lectin gene polymorphisms in the East Siberia and Russian Arctic populations. Immunogenetics 2020; 72:347-354. [PMID: 32813045 DOI: 10.1007/s00251-020-01175-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023]
Abstract
Mannose-binding lectin (MBL) encoded by MBL2 gene is a protein with the ability to form carbohydrate complexes with microbial wall promoting their subsequent elimination. Genetically determined levels of MBL can modify the risk and clinical characteristics of many infectious diseases. The frequency of MBL2 genotypes exhibits significant population differences. The data on the distribution of MBL2 genotypes among the aborigines of the Russian Arctic territories have not yet been published. A total of 880 specimens of dried blood spots of the newborns were genotyped. The newborns represented four populations: Nenets, Dolgan-Nganasans, Mixed aboriginal population, and Russians (Caucasians, Krasnoyarsk). Six polymorphisms of the MBL2 gene were studied: rs11003125, rs7096206, rs7095891, rs5030737, rs1800450, and rs1800451. The frequency of the combined rare O allele (composed of the coding region variants rs5030737, rs1800450, and rs1800451) in the homozygous state was significantly higher in Russians: 10% vs 2% in Nenets and 1% in Dolgan-Nganosans (p < 0.001 for Russians vs other populations). The frequency of the high-producing haplotype (HYPA) was 35.4% in the Russian newborns, in keeping with European populations (27-33%); 64% for Nenets and 56% for Dolgan-Nganasans, similar to the estimates obtained for Eskimos and North Amerinds (64-81%). Our study results are in line with the hypothesis that human evolution has been moving in the direction of accumulation of the genotypes associated with low activity of the lectin complement activation pathway because of the prevalence of some intracellular infections such as tuberculosis, whereby low MBL activity may have a protective effect.
Collapse
|
31
|
Anker-Møller T, Hvas AM, Sunde N, Thiel S, Troldborg A. Proteins of the Lectin Pathway of complement activation at the site of injury in subarachnoid hemorrhage compared with peripheral blood. Brain Behav 2020; 10:e01728. [PMID: 32564512 PMCID: PMC7428501 DOI: 10.1002/brb3.1728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND A subarachnoid hemorrhage (SAH) is a debilitating stroke. Activation of the lectin pathway (LP) of the complement system in SAH patients could worsen the prognosis; however, conflicting results have been reported. This potentially reflects that pathological changes at the site of injury are not reflected in peripheral blood. AIMS OF THE STUDY To measure the concentration of LP proteins in blood from the site of brain injury compared with peripheral blood in SAH patients, and to determine the concentration of LP proteins in cerebrospinal fluid (CSF). METHODS We included 11 SAH patients undergoing aneurysm clipping or external ventricular drainage. Blood was collected from the site of injury and from a peripheral artery and/or CSF simultaneously. LP proteins were measured using time-resolved immunofluorometric assays. RESULTS In all patients, the cerebral blood concentration of mannan-binding lectin, collectin liver-1 and collectin kidney-1, and mannan-associated serine proteases 1 and 2 were lower than in peripheral blood. The LP proteins were almost undetectable in CSF. CONCLUSION Lectin pathway protein concentrations measured in peripheral blood do not always reflect changes at the site of injury. For some proteins, more information could be obtained in blood from the site of injury when investigating pathogenic mechanisms.
Collapse
Affiliation(s)
- Thorkil Anker-Møller
- Thrombosis & Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Thrombosis & Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Sunde
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Gajek G, Świerzko AS, Cedzyński M. Association of Polymorphisms of MASP1/3, COLEC10, and COLEC11 Genes with 3MC Syndrome. Int J Mol Sci 2020; 21:ijms21155483. [PMID: 32751929 PMCID: PMC7432537 DOI: 10.3390/ijms21155483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
The Malpuech, Michels, Mingarelli, Carnevale (3MC) syndrome is a rare, autosomal recessive genetic- disorder associated with mutations in the MASP1/3, COLEC1,1 or COLEC10 genes. The number of 3MC patients with known mutations in these three genes reported so far remains very small. To date, 16 mutations in MASP-1/3, 12 mutations in COLEC11 and three in COLEC10 associated with 3MC syndrome have been identified. Their products play an essential role as factors involved in the activation of complement via the lectin or alternative (MASP-3) pathways. Recent data indicate that mannose-binding lectin-associated serine protease-1 (MASP-1), MASP-3, collectin kidney-1 (collectin-11) (CL-K1), and collectin liver-1 (collectin-10) (CL-L1) also participate in the correct migration of neural crest cells (NCC) during embryogenesis. This is supported by relationships between MASP1/3, COLEC10, and COLEC11 gene mutations and the incidence of 3MC syndrome, associated with craniofacial abnormalities such as radioulnar synostosis high-arched eyebrows, cleft lip/palate, hearing loss, and ptosis.
Collapse
|
33
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel) 2020; 12:E1792. [PMID: 32635486 PMCID: PMC7408476 DOI: 10.3390/cancers12071792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Łódź, Poland;
| | | |
Collapse
|
34
|
Sokołowska A, Świerzko AS, Gajek G, Gołos A, Michalski M, Nowicki M, Szala-Poździej A, Wolska-Washer A, Brzezińska O, Wierzbowska A, Jamroziak K, Kowalski ML, Thiel S, Matsushita M, Jensenius JC, Cedzyński M. Associations of ficolins and mannose-binding lectin with acute myeloid leukaemia in adults. Sci Rep 2020; 10:10561. [PMID: 32601370 PMCID: PMC7324623 DOI: 10.1038/s41598-020-67516-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
We investigated clinical associations of ficolins and mannose-binding lectin (MBL) in 157 patients suffering from acute myeloid leukaemia (AML). Concentrations of ficolin-1, ficolin-2, ficolin-3 and MBL (before chemotherapy) in serum were determined as were selected polymorphisms of the corresponding genes (FCN1, FCN2, FCN3 and MBL2). The control group (C) consisted of 267 healthy unrelated individuals. Median level of ficolin-1 in patients was lower (p < 0.000001) while median levels of ficolin-2, ficolin-3 and MBL were higher (p < 0.000001, p < 0.000001 and p = 0.0016, respectively) compared with controls. These findings were generally associated with AML itself, however the highest MBL levels predicted higher risk of severe hospital infections (accompanied with bacteremia and/or fungaemia) (p = 0.012) while the lowest ficolin-1 concentrations tended to be associated with prolonged (> 7 days) fever (p = 0.026). Genotyping indicated an association of G/G homozygosity (corresponding to FCN1 gene - 542 G > A polymorphism) with malignancy [p = 0.004, OR = 2.95, 95% CI (1.41-6.16)]. Based on ROC analysis, ficolin-1, -2 and -3 may be considered candidate supplementary biomarkers of AML. Their high potential to differentiate between patients from non-malignant controls but also from persons suffering from other haematological cancers (multiple myeloma and lymphoma) was demonstrated.
Collapse
Affiliation(s)
- Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Copernicus Memorial Hospital in Łódź Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513, Lodz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
- Department of Rheumatology, Medical University of Łódź, Pieniny 30, 92-003, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Jens C Jensenius
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland.
| |
Collapse
|
35
|
Holt CB, Hoffmann-Petersen IT, Hansen TK, Parving HH, Thiel S, Hovind P, Tarnow L, Rossing P, Østergaard JA. Association between severe diabetic retinopathy and lectin pathway proteins - an 18-year follow-up study with newly diagnosed type 1 diabetes patients. Immunobiology 2020; 225:151939. [PMID: 32381273 DOI: 10.1016/j.imbio.2020.151939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/18/2022]
Affiliation(s)
- C B Holt
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Aarhus University, Aarhus, Denmark.
| | | | - T K Hansen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - H-H Parving
- Department of Medical Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - S Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - P Hovind
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - L Tarnow
- Steno Diabetes Center, Sjaelland, Denmark
| | - P Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; University of Copenhagen, Copenhagen, Denmark
| | - J A Østergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Frederiksen K, Krag AE, Larsen JB, Kiil BJ, Thiel S, Hvas AM. Remote ischemic preconditioning does not influence lectin pathway protein levels in head and neck cancer patients undergoing surgery. PLoS One 2020; 15:e0230411. [PMID: 32267878 PMCID: PMC7141620 DOI: 10.1371/journal.pone.0230411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer patients who undergo tumor removal, and reconstructive surgery by transfer of a free tissue flap, are at high risk of surgical site infection and ischemia-reperfusion injury. Complement activation through the lectin pathway (LP) may contribute to ischemia-reperfusion injury. Remote ischemic preconditioning (RIPC) is a recent experimental treatment targeting ischemia-reperfusion injury. The study aims were to investigate LP protein plasma levels in head and neck cancer patients compared with healthy individuals, to explore whether RIPC affects LP protein levels in head and neck cancer surgery, and finally to examine the association between postoperative LP protein levels and the risk of surgical site infection. METHODS Head and neck cancer patients (n = 60) undergoing tumor resection and reconstructive surgery were randomized 1:1 to RIPC or sham intervention administered intraoperatively. Blood samples were obtained preoperatively, 6 hours after RIPC/sham, and on the first postoperative day. LP protein plasma levels were measured utilizing time-resolved immunofluorometric assays. RESULTS H-ficolin and M-ficolin levels were significantly increased in cancer patients compared with healthy individuals (both P ≤ 0.02). Conversely, mannan-binding lectin (MBL)-associated serine protease (MASP)-1, MASP-3, collectin liver-1 (CL-L1), and MBL-associated protein of 44 kilodalton (MAp44) levels were decreased in cancer patients compared with healthy individuals (all P ≤ 0.04). A significant reduction in all LP protein levels was observed after surgery (all P < 0.001); however, RIPC did not affect LP protein levels. No difference was demonstrated in postoperative LP protein levels between patients who developed surgical site infection and patients who did not (all P > 0.13). CONCLUSIONS The LP was altered in head and neck cancer patients. LP protein levels were reduced after surgery, but intraoperative RIPC did not influence the LP. Postoperative LP protein levels were not associated with surgical site infection.
Collapse
Affiliation(s)
- Kristine Frederiksen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas Engel Krag
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Birgitte Jul Kiil
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Weinschutz Mendes H, Boldt ABW, von Rosen Seeling Stahlke E, Jensenius JC, Thiel S, Messias-Reason IJT. Adding MASP1 to the lectin pathway-Leprosy association puzzle: Hints from gene polymorphisms and protein levels. PLoS Negl Trop Dis 2020; 14:e0007534. [PMID: 32240160 PMCID: PMC7162614 DOI: 10.1371/journal.pntd.0007534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/16/2020] [Accepted: 02/21/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Deposition of complement factors on Mycobacterium leprae may enhance phagocytosis. Such deposition may occur through the lectin pathway of complement. Three proteins of the lectin pathway are produced from the gene MASP1: Mannan-binding lectin-associated serine protease 1 (MASP-1) and MASP-3 and mannan-binding lectin-associated protein of 44 kDa (MAp44). Despite their obvious importance, the roles played by these proteins have never been investigated in leprosy disease. METHODOLOGY We haplotyped five MASP1 polymorphisms by multiplex sequence-specific PCR (intronic rs7609662*G>A and rs13064994*C>T, exon 12 3'-untranslated rs72549262*C>G, rs1109452*C>T and rs850314*G>A) and measured MASP-1, MASP-3 and MAp44 serum levels in 196 leprosy patients (60%, lepromatous) and 193 controls. PRINCIPAL FINDINGS Lower MASP-3 and MAp44 levels were observed in patients, compared with controls (P = 0.0002 and P<0.0001, respectively) and in lepromatous, compared with non-lepromatous patients (P = 0.008 and P = 0.002, respectively). Higher MASP-3 levels were present in controls carrying variants/haplotypes associated with leprosy resistance (rs13064994*T, rs1109452_rs850314*CG within GT_CCG and rs850314*A: OR = 0.5-0.6, Pcorr = 0.01-0.04). Controls with rs1109452*T, included in susceptibility haplotypes (GT_GTG/GT_CTG: OR = 2.0, Pcorr = 0.03), had higher MASP-1 and lower MASP-3 levels (P≤0.009). Those with GC_CCG, presented increasing susceptibility (OR = 1.7, Pcorr = 0.006) and higher MAp44 levels (P = 0.015). MASP-3 expression decreased in patients, compared with controls carrying rs1109452_rs850314*CA or CG (P≤0.02), which may rely on exon 12 CpG methylation and/or miR-2861/miR-3181 mRNA binding. CONCLUSION Polymorphisms regulating MASP-3/MAp44 availability in serum modulate leprosy susceptibility, underlining the importance of lectin pathway regulation against pathogens that exploit phagocytosis to parasitize host macrophages.
Collapse
Affiliation(s)
- Hellen Weinschutz Mendes
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Angelica Beate Winter Boldt
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Iara J. Taborda Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
38
|
Takasumi M, Omori T, Machida T, Ishida Y, Hayashi M, Suzuki T, Homma Y, Endo Y, Takahashi M, Ohira H, Fujita T, Sekine H. A novel complement inhibitor sMAP-FH targeting both the lectin and alternative complement pathways. FASEB J 2020; 34:6598-6612. [PMID: 32219899 DOI: 10.1096/fj.201902475r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 03/08/2020] [Indexed: 02/02/2023]
Abstract
Inhibition of the complement activation has emerged as an option for treatment of a range of diseases. Activation of the lectin and alternative pathways (LP and AP, respectively) contribute to the deterioration of conditions in certain diseases such as ischemia-reperfusion injuries and age-related macular degeneration (AMD). In the current study, we generated dual complement inhibitors of the pathways MAp44-FH and sMAP-FH by fusing full-length MAp44 or small mannose-binding lectin-associated protein (sMAP), LP regulators, with the N-terminal five short consensus repeat (SCR) domains of complement factor H (SCR1/5-FH), an AP regulator. The murine forms of both fusion proteins formed a complex with endogenous mannose-binding lectin (MBL) or ficolin A in the circulation when administered in mice intraperitoneally. Multiple complement activation assays revealed that sMAP-FH had significantly higher inhibitory effects on activation of the LP and AP in vivo as well as in vitro compared to MAp44-FH. Human form of sMAP-FH also showed dual inhibitory effects on LP and AP activation in human sera. Our results indicate that the novel fusion protein sMAP-FH inhibits both the LP and AP activation in mice and in human sera, and could be an effective therapeutic agent for diseases in which both the LP and AP activation are significantly involved.
Collapse
Affiliation(s)
- Mika Takasumi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Tomoko Omori
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yumi Ishida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Manabu Hayashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Toshiyuki Suzuki
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima-City, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| |
Collapse
|
39
|
Holers VM, Borodovsky A, Scheinman RI, Ho N, Ramirez JR, Dobó J, Gál P, Lindenberger J, Hansen AG, Desai D, Pihl R, Thiel S, Banda NK. Key Components of the Complement Lectin Pathway Are Not Only Required for the Development of Inflammatory Arthritis but Also Regulate the Transcription of Factor D. Front Immunol 2020; 11:201. [PMID: 32153567 PMCID: PMC7046807 DOI: 10.3389/fimmu.2020.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Besides driving lectin pathway (LP) activation, the mannan-binding lectin (MBL)-associated serine proteases (MASPs) also play a key role in regulating the alternative pathway (AP). We evaluated the effects of N-acetylgalactosamine (GalNAc)-conjugated MASP-1 and MASP-2 duplexes in vitro and in mice with and without arthritis to examine whether knockdown of MASP-1 and MASP-2 expression affects the development of arthritis. GalNAc-siRNAs for MASP-1 and MASP-2 demonstrated robust silencing of MASP-1 or MASP-2 at pM concentrations in vitro. To evaluate the impact of silencing in arthritic mice, we used the collagen antibody-induced arthritis (CAIA) mouse model of RA. Mice were injected a 10 mg/kg dose of GalNAc-siRNAs 3x s.q. prior to the induction of CAIA. Liver gene expression was examined using qRT-PCR, and protein levels were confirmed in the circulation by sandwich immunoassays and Western blot. At day 10, CAIA mice separately treated with MASP-1 and MASP-2 duplexes had a specific reduction in expression of liver MASP-1 (70–95%, p < 0.05) and MASP-2 (90%, p < 0.05) mRNA, respectively. MASP-1-siRNA treatment resulted in a 95% reduction in levels of MASP-1 protein in circulation with no effect on MASP-2 levels and clinical disease activity (CDA). In mice injected with MASP-2 duplex, there was a significant (p < 0.05) 90% decrease in ex vivo C4b deposition on mannan, with nearly complete elimination of MASP-2 in the circulation. MASP-2 silencing initially significantly decreased CDA by 60% but subsequently changed to a 40% decrease vs. control. Unexpectedly, GalNAc-siRNA-mediated knockdown of MASP-1 and MASP-2 revealed a marked effect of these proteins on the transcription of FD under normal physiological conditions, whereas LPS-induced inflammatory conditions reversed this effect on FD levels. LPS is recognized by Toll-like receptor 4 (TLR4), we found MBL not only binds to TLR4 an interaction with a Kd of 907 nM but also upregulated FD expression in differentiated adipocytes. We show that MASP-2 knockdown impairs the development of RA and that the interrelationship between proteins of the LP and the AP may extend to the transcriptional modulation of the FD gene.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Robert I Scheinman
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nhu Ho
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joseline Ramos Ramirez
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - József Dobó
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Péter Gál
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Jared Lindenberger
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Annette G Hansen
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Dhruv Desai
- Alnylam Pharmaceutical Inc., Boston, MA, United States
| | - Rasmus Pihl
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
40
|
Świerzko AS, Michalski M, Sokołowska A, Nowicki M, Szala-Poździej A, Eppa Ł, Mitrus I, Szmigielska-Kapłon A, Sobczyk-Kruszelnicka M, Michalak K, Gołos A, Wierzbowska A, Giebel S, Jamroziak K, Kowalski ML, Brzezińska O, Thiel S, Matsushita M, Jensenius JC, Gajek G, Cedzyński M. Associations of Ficolins With Hematological Malignancies in Patients Receiving High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantations. Front Immunol 2020; 10:3097. [PMID: 32047495 PMCID: PMC6997528 DOI: 10.3389/fimmu.2019.03097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
A prospective study of 312 patients [194 with multiple myeloma (MM) and 118 with lymphomas (LYMPH)] receiving high-dose chemotherapy and autologous hematopoietic stem cell transplantation (auto-HSCT) was conducted. Ficolins are innate immune defense factors, able to distinguish between "self" "abnormal self," and "non-self" and contribute to the elimination of the last two by direct opsonization and/or initiation of complement activation via the lectin pathway. Concentrations of ficolin-1, ficolin-2, and ficolin-3 in serially taken serum samples were determined as were the polymorphisms of the corresponding (FCN1, FCN2, and FCN3) genes. Serum samples were collected before conditioning chemotherapy, before HSCT, and once weekly post-HSCT (four to five samples in total); some patients were also sampled at 1 and/or 3 months post-transplantation. The control group (C) consisted of 267 healthy unrelated individuals. Median ficolin-1 and ficolin-2 (but not ficolin-3) levels in MM patients' sera taken before chemotherapy were lower (and correspondingly frequencies of the lowest concentrations were higher) compared with controls. That appeared to be associated with the malignant disease itself rather than with post-HSCT complications (febrile neutropenia, infections accompanied, or not with bacteremia). Higher frequencies of the FCN1 genotype G/A-C/C-G/G (corresponding to polymorphisms at positions -542, -144, and +6658, respectively) and FCN2 gene heterozygosity for the -857 C>A polymorphism were found among patients diagnosed with MM compared with the C group. Furthermore, FCN2 G/G homozygosity (-557 A>G) was found more frequently and heterozygosity G/T at +6424 less frequently among LYMPH patients than among the healthy subjects. Heterozygosity for +1637delC mutation of the FCN3 gene was more common among patients diagnosed with lymphomas who experienced hospital infections. Although no evidence for an association of low ficolin-1 or ficolin-2 with infections during neutropenia following chemotherapy before HSCT was found, we observed a possible protective effect of ficolins during follow-up.
Collapse
Affiliation(s)
- Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital, Łódz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Łukasz Eppa
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Iwona Mitrus
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Michalak
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
- Department of Rheumatology, Medical University of Łódz, Łódz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | | | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| |
Collapse
|
41
|
Troldborg A, Thiel S, Mistegaard CE, Hansen A, Korsholm T, Stengaard‐Pedersen K, Loft AG. Plasma levels of H- and L-ficolin are increased in axial spondyloarthritis: improvement of disease identification. Clin Exp Immunol 2020; 199:79-87. [PMID: 31518441 PMCID: PMC6904737 DOI: 10.1111/cei.13374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 12/15/2022] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that primarily affects the axial skeleton. A predominance of innate versus adaptive immune responses have been reported in axSpA, indicating a prominent autoinflammatory component of the disease. Little is known about the lectin pathway proteins (LPPs) of the complement system in relation to axSpA. We have investigated LPPs in patients with axSpA and control individuals. Plasma samples were obtained from a cross-sectional cohort of 120 patients with a clinical diagnosis of axSpA and from 144 age- and gender-matched controls. The plasma concentrations of 11 LPPs were measured, using sandwich-type time-resolved immunofluorometric assays in patients and controls, and related to clinical diagnosis and disease activity. Three LPPs [H-ficolin (ficolin-3), L-ficolin (ficolin-2) and collectin liver 1 (CL-L1)] were significantly higher in axSpA patients than in controls (P < 0·0001) and one LPP, collectin kidney 1 (CL-K1), was significantly lower (P < 0·0001). Further, combining H- or L-ficolin concentrations above the 75th percentile of the respective H- or L-ficolin concentration measured in controls with human leucocyte antigen (HLA)-B27 positivity yielded axSpA diagnostic specificities of 99/99% and positive likelihood ratios of 68/62, respectively. H-ficolin and L-ficolin plasma concentrations were found to be elevated in axSpA patients regardless of time since diagnosis. H-ficolin and L-ficolin may represent diagnostic biomarkers for patients with axSpA and should be further evaluated. Our results showed no association between disease activity and the measured LPP concentrations. This result might be due to the cross-sectional design, and should be further investigated.
Collapse
Affiliation(s)
- A. Troldborg
- Department of RheumatologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhusDenmark
| | - S. Thiel
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - C. E. Mistegaard
- Department of RheumatologyAarhus University HospitalAarhusDenmark
| | - A. Hansen
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | | | | | - A. G. Loft
- Department of RheumatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhusDenmark
| |
Collapse
|
42
|
Kobayashi T, Kuronuma K, Saito A, Ikeda K, Ariki S, Saitou A, Otsuka M, Chiba H, Takahashi S, Takahashi M, Takahashi H. Insufficient serum L-ficolin is associated with disease presence and extent of pulmonary Mycobacterium avium complex disease. Respir Res 2019; 20:224. [PMID: 31638993 PMCID: PMC6805425 DOI: 10.1186/s12931-019-1185-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The incidence of infectious disease caused by nontuberculous mycobacteria is increasing worldwide. Pulmonary Mycobacterium avium complex (MAC) disease is difficult to treat with chemotherapy, and its mechanism of infection, infection route, disease onset, and severity remain unknown. Ficolins are oligomeric defense lectins. L-ficolin plays an important role in innate immunity. This study's aim was to identify L-ficolin's role in patients with pulmonary MAC disease. METHODS Between April 2011 and September 2017, 61 Japanese patients with pulmonary MAC disease were seen at our hospital. A control group, comprising 30 healthy individuals, without respiratory disease were enrolled in our study. The relationship between serum L-ficolin levels and disease severity was assessed, and L-ficolin's antibacterial role was examined. RESULTS Serum L-ficolin levels were significantly lower in patients with pulmonary MAC disease than in healthy subjects (1.69 ± 1.27 μg/ml vs. 3.96 ± 1.42 μg/ml; p < 0.001). The cut-off value, based on receiver operating characteristic (ROC) analysis results, was 2.48 μg/ml (area under the curve (AUC) 0.90, sensitivity and specificity 83.6 and 86.7%, respectively). Serum L-ficolin levels were significantly lower in the patients with nodular bronchiectatic type disease compared with the patients with fibrocavitary type disease and were lower in the high-resolution computed tomography high-scoring group compared with low-scoring group. An in vitro analysis showed that purified recombinant L-ficolin bound to M. avium and its major cell wall component, lipoarabinomannan, in a concentration-dependent manner. In addition, recombinant L-ficolin suppressed M. avium growth in a concentration-dependent manner. CONCLUSIONS Insufficient serum L-ficolin is associated with disease progression in pulmonary MAC disease, and the level of serum L-ficolin is a possible biomarker. TRIAL REGISTRATION This study is registered with UMIN ( UMIN000022392 ).
Collapse
Affiliation(s)
- Tomofumi Kobayashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kimiyuki Ikeda
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Atsushi Saitou
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Mitsuo Otsuka
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
43
|
Glerup M, Thiel S, Rypdal V, Arnstad ED, Ekelund M, Peltoniemi S, Aalto K, Rygg M, Nielsen S, Fasth A, Berntson L, Nordal E, Herlin T. Complement lectin pathway protein levels reflect disease activity in juvenile idiopathic arthritis: a longitudinal study of the Nordic JIA cohort. Pediatr Rheumatol Online J 2019; 17:63. [PMID: 31500626 PMCID: PMC6734250 DOI: 10.1186/s12969-019-0367-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine the serum levels of the lectin pathway proteins early in the disease course and 17 years after disease onset and to correlate the protein levels to markers of disease activity in participants from a population-based Nordic juvenile idiopathic arthritis (JIA) cohort. Additionally, to assess the predictive value of lectin pathway proteins with respect to remission status. METHODS A population-based cohort study of consecutive cases of JIA with a disease onset from 1997 to 2000 from defined geographical areas of Finland, Sweden, Norway and Denmark with 17 years of follow-up was performed. Clinical characteristics were registered and H-ficolin, M-ficolin, MASP-1, MASP-3, MBL and CL-K1 levels in serum were analyzed. RESULTS In total, 293 patients with JIA were included (mean age 23.7 ± 4.4 years; mean follow-up 17.2 ± 1.7 years). Concentrations of the lectin protein levels in serum were higher at baseline compared to the levels 17 years after disease onset (p ≤ 0.006, n = 164). At baseline, the highest level of M-ficolin was observed in systemic JIA. Further, high M-ficolin levels at baseline and at 17-year follow-up were correlated to high levels of ESR. In contrast, high MASP-1 and MASP-3 tended to correlate to low ESR. CL-K1 showed a negative correlation to JADAS71 at baseline. None of the protein levels had prognostic abilities for remission status 17 years after disease onset. CONCLUSION We hypothesize that increased serum M-ficolin levels are associated with higher disease activity in JIA and further, the results indicate that MASP-1, MASP-3 and CL-K1 are markers of inflammation.
Collapse
Affiliation(s)
- Mia Glerup
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Veronika Rypdal
- Department of Pediatrics, University Hospital of North Norway, and Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ellen Dalen Arnstad
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Maria Ekelund
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatrics, Ryhov County Hospital, Jonkoping, Sweden
| | - Suvi Peltoniemi
- New Children’s Hospital, Pediatric Research Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Kristiina Aalto
- New Children’s Hospital, Pediatric Research Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Marite Rygg
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, St. Olavs Hospital, Trondheim, Norway
| | - Susan Nielsen
- Department of Pediatrics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Berntson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Ellen Nordal
- Department of Pediatrics, University Hospital of North Norway, and Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Troels Herlin
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - for the Nordic Study Group of Pediatric Rheumatology (NoSPeR)
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics, University Hospital of North Norway, and Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatrics, Ryhov County Hospital, Jonkoping, Sweden
- New Children’s Hospital, Pediatric Research Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, St. Olavs Hospital, Trondheim, Norway
- Department of Pediatrics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Jørgensen CM, Jensen L, Christiansen M, Bjerre M, Jensen JMB, Thiel S. Pattern Recognition Molecules of the Lectin Pathway-Screening of Patients with Suspected Immunodeficiency. J Clin Immunol 2019; 39:668-677. [PMID: 31377972 DOI: 10.1007/s10875-019-00675-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/22/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE To compare plasma concentrations of all lectin pathway (LP) pattern recognition molecules (PRMs) in patients referred for laboratory evaluation due to recurrent infections with healthy individuals. METHODS Patients were divided into categories according to referral: recurrent airway infections (RAI), recurrent abscesses, common variable immunodeficiency (CVID), lung transplantation candidates (LTX), and 'other causes'. LP PRMs (mannose-binding lectin (MBL), collectin liver 1 (CL-L1), H-ficolin, L-ficolin, M-ficolin) and C-reactive protein (CRP) were determined in 332 patients and 150 healthy blood donors using time-resolved immunofluorometric assays. RESULTS None of the LP PRMs was found in lower concentration in the patient categories; however, several PRMs were detected in higher concentrations. M-ficolin was found in higher concentrations in all patient categories. Patients suffering from RAI had higher concentrations of CL-L1 and H-ficolin. Patients suffering from abscesses exhibited higher concentrations of MBL and CL-L1, whereas LTX had higher concentrations of MBL. Patients with other causes of referral had higher concentrations of MBL and CL-L1. Prevalence of combined deficiencies of PRMs in patient categories and controls did not differ. CRP was used as a marker of ongoing inflammation and was significantly higher among all patient categories. Furthermore, CRP was found to correlate with both M-ficolin and L-ficolin. CONCLUSION The results suggest that neither single nor combined deficiencies of LP PRMs are more frequent among patients referred for an immunological evaluation than in healthy individuals. Future studies are needed and should focus on deficiencies of LP PRMs combined with deficiencies in other parts of the immune system.
Collapse
Affiliation(s)
- Clara Mistegård Jørgensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark. .,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.
| | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark
| | - Mette Christiansen
- Department of Clinical Medicine - Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Bjerre
- Department of Clinical Medicine - Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Jens Magnus Bernth Jensen
- Department of Clinical Medicine - Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus, Denmark
| |
Collapse
|
45
|
Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: Sweeping up immune threats. Mol Immunol 2019; 112:291-304. [DOI: 10.1016/j.molimm.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
46
|
Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The Human Platelet as an Innate Immune Cell: Interactions Between Activated Platelets and the Complement System. Front Immunol 2019; 10:1590. [PMID: 31354729 PMCID: PMC6635567 DOI: 10.3389/fimmu.2019.01590] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets play an essential role in maintaining homeostasis in the circulatory system after an injury by forming a platelet thrombus, but they also occupy a central node in the intravascular innate immune system. This concept is supported by their extensive interactions with immune cells and the cascade systems of the blood. In this review we discuss the close relationship between platelets and the complement system and the role of these interactions during thromboinflammation. Platelets are protected from complement-mediated damage by soluble and membrane-expressed complement regulators, but they bind several complement components on their surfaces and trigger complement activation in the fluid phase. Furthermore, localized complement activation may enhance the procoagulant responses of platelets through the generation of procoagulant microparticles by insertion of sublytic amounts of C5b9 into the platelet membrane. We also highlight the role of post-translational protein modifications in regulating the complement system and the critical role of platelets in driving these reactions. In particular, modification of disulfide bonds by thiol isomerases and protein phosphorylation by extracellular kinases have emerged as important mechanisms to fine-tune complement activity in the platelet microenvironment. Lastly, we describe disorders with perturbed complement activation where part of the clinical presentation includes uncontrolled platelet activation that results in thrombocytopenia, and illustrate how complement-targeting drugs are alleviating the prothrombotic phenotype in these patients. Based on these clinical observations, we discuss the role of limited complement activation in enhancing platelet activation and consider how these drugs may provide opportunities for further dissecting the complex interactions between complement and platelets.
Collapse
Affiliation(s)
- Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
47
|
Zhou H, Hara H, Cooper DK. The complex functioning of the complement system in xenotransplantation. Xenotransplantation 2019; 26:e12517. [PMID: 31033064 PMCID: PMC6717021 DOI: 10.1111/xen.12517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
The role of complement in xenotransplantation is well-known and is a topic that has been reviewed previously. However, our understanding of the immense complexity of its interaction with other constituents of the innate immune response and of the coagulation, adaptive immune, and inflammatory responses to a xenograft is steadily increasing. In addition, the complement system plays a function in metabolism and homeostasis. New reviews at intervals are therefore clearly warranted. The pathways of complement activation, the function of the complement system, and the interaction between complement and coagulation, inflammation, and the adaptive immune system in relation to xenotransplantation are reviewed. Through several different mechanisms, complement activation is a major factor in contributing to xenograft failure. In the organ-source pig, the detrimental influence of the complement system is seen during organ harvest and preservation, for example, in ischemia-reperfusion injury. In the recipient, the effect of complement can be seen through its interaction with the immune, coagulation, and inflammatory responses. Genetic-engineering and other therapeutic methods by which the xenograft can be protected from the effects of complement activation are discussed. The review provides an updated source of reference to this increasingly complex subject.
Collapse
Affiliation(s)
- Hongmin Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
48
|
Tereshchenko SY, Smolnikova MV. Congenitally impaired pattern-recognition receptors in pathogenesis of pediatric invasive and recurrent pneumococcal infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-2-229-238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here we review currently available data showing that innate immune signs predisposing to recurrent and invasive pneumococcal infections were identified in children. Streptococcus pneumoniae (pneumococcus) belongs to Grampositive bacteria being the major cause of morbidity and mortality in infants, especially in developing countries and in communities with low socioeconomic status. Due to the lack of anti-pneumococcal vaccination, the significant proportion of pneumococcus carriers develop non-invasive (pneumonia, otitis media, sinusitis) and severe invasive (bacteremia/septicemia, meningitis) pneumococcal infection. A great deal of diverse factors related to pneumococcus biological features (virulence factors) as well individualized host-specific immunity are implicated in efficient bacterial penetration across the mucous membranes. The TLR signaling system plays a crucial role in the human nonspecific defense upon the first encounter with the pathogen. Various TLRs comprise the first pattern recognition receptor fami ly ever described which sense ligands derived from the outer bacterial wall. The complement system is the ancient innate immunity component mainly involved in intravascular elimination of bacterial agents. In addition, the complement proteins serve as a bridge between innate and adaptive immunity, ensuring optimal conditions for B- and T-cell maturation and differentiation. Because pneumococcus secretes the IgA protease, a local protective effects related to IgA antibodies might not be so prominent. Therefore, B-cell immunodeficiency and impaired complement system hold a lead place among congenital causes resulting in severe and recurrent pneumococcal infections in children. Thus, based on available data, we concluded that impaired B-cell function, the complement components deficiency as well as receptor-recognition receptors (TLR-2, -9, -4, MYD88 adapter protein, TLR cascade enzymes: IRAK4, NEMO, NOD-like receptors: NOD2, NLRP3; C-type lectins: MBL, Dextin-2, and, possibly, ficoline) play the most important role among congenital immunodeficiencies predisposing to invasive and recurrent pneumococcal infections play the most important role among congenital immunodeficiencies predisposing to invasive and recurrent pneumococcal infections, and should be used as a rationale for immunological surveillance and organizing immunogenetics screening in these patients.
Collapse
|
49
|
Larsen JB, Andersen AS, Hvas CL, Thiel S, Lassen MR, Hvas AM, Hansen AT. Lectin pathway proteins of the complement system in normotensive pregnancy and pre-eclampsia. Am J Reprod Immunol 2019; 81:e13092. [PMID: 30672631 DOI: 10.1111/aji.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/27/2022] Open
Abstract
PROBLEM The lectin pathway of the complement system may be involved in the pathogenesis of pre-eclampsia. We aimed to investigate changes in serum concentrations of a broad range of lectin pathway proteins during normal pregnancy and their association with pre-eclampsia, placental infarctions and intrauterine growth restriction (IUGR). METHOD OF STUDY We included 51 women with normotensive pregnancies and 54 women with pregnancies complicated by pre-eclampsia. Blood samples were obtained at gestational weeks 16, 33, 37, and after delivery for the normotensive pregnant women and before and after delivery for women with pre-eclampsia. Mannose-binding lectin (MBL), H- and M-ficolin, collectin liver-1 (CL-L1), MBL-associated serine protease (MASP)-1, MASP-2 and MASP-3 and MBL-associated proteins of 19 (MAp19) and 44 (MAp44) kDa were analysed. Clinical information was obtained from medical records. The placentae were examined by two experienced perinatal pathologists. RESULTS Lectin pathway protein concentrations generally increased during normal pregnancy and decreased after delivery in both normotensive pregnant women and women with pre-eclampsia. Exceptions were MASP-3 which increased after delivery in both groups (P < 0.0001) and H-ficolin which increased after delivery in pre-eclampsia (P < 0.0001). H-ficolin (P < 0.0001), M-ficolin (P = 0.005) and MASP-3 (P = 0.03) concentrations were lower in women with pre-eclampsia than in normotensive pregnant women. Low MASP-3 concentrations were associated with placental infarction (P = 0.03) and IUGR (P = 0.04). Low H-ficolin concentrations were associated with IUGR (P < 0.01). CONCLUSION In general, lectin pathway protein serum concentrations increased during normal pregnancy. H-ficolin and MASP-3 may be involved in the pathophysiology of pre-eclampsia and IUGR and could be potential future pre-eclampsia biomarkers.
Collapse
Affiliation(s)
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anette Tarp Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
50
|
Michalski M, Pągowska-Klimek I, Thiel S, Świerzko AS, Hansen AG, Jensenius JC, Cedzyński M. Factors involved in initiation and regulation of complement lectin pathway influence postoperative outcome after pediatric cardiac surgery involving cardiopulmonary bypass. Sci Rep 2019; 9:2930. [PMID: 30814659 PMCID: PMC6393526 DOI: 10.1038/s41598-019-39742-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/01/2019] [Indexed: 11/10/2022] Open
Abstract
Congenital heart disease (CHD) often requires surgical intervention, and is sometimes associated with life-threatening post-operative complications. We have investigated some factors of the innate immune system involved in the initiation or regulation of complement lectin pathway activation (MASP-1, MASP-2 MASP-3, MAp19, MAp44, ficolin-3) and related them to complications and prognosis in 190 pediatric patients undergoing CHD repair with the use of cardiopulmonary bypass (CPB). Patients with MAp44 levels ≤1.81 µg/ml more frequently experienced low cardiac output syndrome (LCOS), renal insufficiency, systemic inflammatory response syndrome (SIRS) and multiorgan dysfunction (MODS). Low MASP-3 (≤5.18 µg/ml) and high MASP-1 (≥11.7 µg/ml) levels were often associated with fatal outcome. Low ficolin-3 concentrations (≤10.1 µg/ml) were more common among patients experiencing SIRS and MODS than in those without complications. However, patients suffering from SIRS and MODS with low ficolin-3 had a much better prognosis (91% survival vs. 37% among other patients; p = 0.007). A discriminating value of 12.7 µg/ml ficolin-3 yielded 8% vs. 60% mortality (p = 0.001). Our data extend the knowledge concerning involvement of proteins of the lectin pathway in development of post-CPB complications. The potential prognostic value of low preoperative MAp44 and high preoperative ficolin-3 seems promising and warrants independent confirmation.
Collapse
Affiliation(s)
- Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Izabela Pągowska-Klimek
- Department of Pediatric Anesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | | | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|