1
|
Khairallah M, Abroug N, Smit D, Chee SP, Nabi W, Yeh S, Smith JR, Ksiaa I, Cunningham E. Systemic and Ocular Manifestations of Arboviral Infections: A Review. Ocul Immunol Inflamm 2024; 32:2190-2208. [PMID: 38441549 DOI: 10.1080/09273948.2024.2320724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE To provide an overview of pre-selected emerging arboviruses (arthropod-borne viruses) that cause ocular inflammation in humans. METHODS A comprehensive review of the literature published between 1997 and 2023 was conducted in PubMed database. We describe current insights into epidemiology, systemic and ocular manifestations, diagnosis, treatment, and prognosis of arboviral diseases including West Nile fever, Dengue fever, Chikungunya, Rift Valley fever, Zika, and Yellow fever. RESULTS Arboviruses refer to a group of ribonucleic acid viruses transmitted to humans by the bite of hematophagous arthropods, mainly mosquitoes. They mostly circulate in tropical and subtropical zones and pose important public health challenges worldwide because of rising incidence, expanding geographic range, and occurrence of prominent outbreaks as a result of climate change, travel, and globalization. The clinical signs associated with infection from these arboviruses are often inapparent, mild, or non-specific, but they may include serious, potentially disabling or life-threatening complications. A wide spectrum of ophthalmic manifestations has been described including conjunctival involvement, anterior uveitis, intermediate uveitis, various forms of posterior uveitis, maculopathy, optic neuropathy, and other neuro-ophthalmic manifestations. Diagnosis of arboviral diseases is confirmed with either real time polymerase chain reaction or serology. Management involves supportive care as there are currently no specific antiviral drug options. Corticosteroids are often used for the treatment of associated ocular inflammation. Most patients have a good visual prognosis, but there may be permanent visual impairment due to ocular structural complications in some. Community-based integrated mosquito management programs and personal protection measures against mosquito bites are the best ways to prevent human infection and disease. CONCLUSION Emerging arboviral diseases should be considered in the differential diagnosis of ocular inflammatory conditions in patients living in or returning from endemic regions. Early clinical consideration followed by confirmatory testing can limit or prevent unnecessary treatments for non-arboviral causes of ocular inflammation. Prevention of these infections is crucial.
Collapse
Affiliation(s)
- Moncef Khairallah
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Nesrine Abroug
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Derrick Smit
- Division of Ophthalmology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Soon-Phaik Chee
- Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Eye & Retina Surgeons, Singapore, Singapore
| | - Wijden Nabi
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Steven Yeh
- Department of Ophthalmology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Imen Ksiaa
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Emmett Cunningham
- The Department of Ophthalmology, California Pacific Medical Center, San Francisco, California, USA
- The Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- The Francis I. Proctor Foundation, UCSF School of Medicine, San Francisco, California, USA
| |
Collapse
|
2
|
Feng Y, Garcia R, Rojas-Carabali W, Cifuentes-González C, Putera I, Li J, La Distia Nora R, Mahendradas P, Gupta V, de-la-Torre A, Agrawal R. Viral Anterior Uveitis: A Practical and Comprehensive Review of Diagnosis and Treatment. Ocul Immunol Inflamm 2024; 32:1804-1818. [PMID: 37862684 DOI: 10.1080/09273948.2023.2271077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Anterior uveitis is the most common type of uveitis worldwide. The etiologies of anterior uveitis can be divided into infectious and non-infectious (idiopathic, autoimmune, autoinflammatory, trauma, and others). The viral pathogens most commonly associated with infectious anterior uveitis include Herpes Simplex Virus, Varicella-Zoster Virus, Cytomegalovirus, and Rubella Virus. Other emerging causes of viral anterior uveitis are West Nile Virus, Human-Immunodeficiency Virus, Epstein-Barr Virus, Parechovirus, Dengue Virus, Chikungunya Virus, and Human Herpesvirus type 6,7, and 8. Early recognition allows prompt management and mitigates its potential ocular complications. This article provides an updated literature review of the epidemiology, clinical manifestations, diagnostic tools, and treatment options for viral anterior uveitis.
Collapse
Affiliation(s)
- Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Eye Center, Peking University Third Hospital, Beijing, China
| | - Ruby Garcia
- Reno School of Medicine, University of Nevada, Reno, Nebraska, USA
| | - William Rojas-Carabali
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Carlos Cifuentes-González
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Ikhwanuliman Putera
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jingyi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Eye Center, Peking University Third Hospital, Beijing, China
| | - Rina La Distia Nora
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | | | - Vishali Gupta
- Advanced Eye Centre, Post- Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Alejandra de-la-Torre
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Rupesh Agrawal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
- Singapore Eye Research Institute, The Academia, Singapore, Singapore
- Department of Ophthalmology and Visual Sciences, Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
3
|
Blyden K, Thomas J, Emami-Naeini P, Fashina T, Conrady CD, Albini TA, Carag J, Yeh S. Emerging Infectious Diseases and the Eye: Ophthalmic Manifestations, Pathogenesis, and One Health Perspectives. Int Ophthalmol Clin 2024; 64:39-54. [PMID: 39480207 PMCID: PMC11512616 DOI: 10.1097/iio.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infectious diseases may lead to ocular complications including uveitis, an ocular inflammatory condition with potentially sight-threatening sequelae, and conjunctivitis, inflammation of the conjunctiva. Emerging infectious pathogens with known ocular findings include Ebola virus, Zika virus, Avian influenza virus, Nipah virus, severe acute respiratory syndrome coronaviruses, and Dengue virus. Re-emerging pathogens with ocular findings include Toxoplasma gondii and Plasmodium species that lead to malaria. The concept of One Health involves a collaborative and interdisciplinary approach to achieve optimal health outcomes by combining human, animal, and environmental health factors. This approach examines the interconnected and often complex human-pathogen-intermediate host interactions in infectious diseases that may also result in ocular disease, including uveitis and conjunctivitis. Through a comprehensive review of the literature, we review the ophthalmic findings of emerging infectious diseases, pathogenesis, and One Health perspectives that provide further insight into the disease state. While eye care providers and vision researchers may often focus on key local aspects of disease process and management, additional perspective on host-pathogen-reservoir life cycles and transmission considerations, including environmental factors, may offer greater insight to improve outcomes for affected individuals and stakeholders.
Collapse
Affiliation(s)
- K’Mani Blyden
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Joanne Thomas
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Parisa Emami-Naeini
- Department of Ophthalmology, University of California, Davis, Sacramento, CA
| | - Tolulope Fashina
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher D. Conrady
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Steven Yeh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
4
|
Mahendradas P, Patil A, Kawali A, Rathinam SR. Systemic and Ophthalmic Manifestations of Chikungunya Fever. Ocul Immunol Inflamm 2024; 32:1796-1803. [PMID: 37773977 DOI: 10.1080/09273948.2023.2260464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Chikungunya is a re-emerging viral infection across the globe. The purpose of this article is to review the systemic and ophthalmic manifestations associated with chikungunya fever. METHOD A review of literature was conducted using online databases. RESULTS In this report, we have reviewed the presently available literature on uveitis caused by chikungunya and highlighted the current knowledge of its clinical manifestations, imaging features, laboratory diagnostics, and the available therapeutic modalities from the systemic and ophthalmic standpoint. CONCLUSIONS Ocular involvement in chikungunya infection may occur at the time of systemic manifestations or it may occur as a delayed presentation many weeks after the fever. Treatment relies on a supportive therapy for systemic illness. Treatment of ocular manifestation depends on the type of manifestations and usually includes a combination of topical and oral steroids.
Collapse
Affiliation(s)
| | - Aditya Patil
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, India
| | - Ankush Kawali
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, India
| | | |
Collapse
|
5
|
Guzman MG, Martinez E. Central and Peripheral Nervous System Manifestations Associated with Dengue Illness. Viruses 2024; 16:1367. [PMID: 39339843 PMCID: PMC11435791 DOI: 10.3390/v16091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Dengue illness, caused by the dengue viruses, continues to be a major global health concern, with increasing incidence and the emergence of severe manifestations such as neurological complications. An overview of the current understanding of dengue epidemiology, clinical manifestations, and research priorities is presented here. Dengue transmission has escalated in recent years, exacerbated by factors such as vector expansion, climate change, and socioeconomic challenges. The clinical spectrum of dengue ranges from mild febrile illness to severe manifestations, including hemorrhagic fever and neurological complications. Neurological manifestations of dengue, once considered rare, are now increasingly reported, encompassing encephalitis, myelitis, and Guillain-Barré Syndrome, among others. Diagnosis primarily relies on laboratory methods such as RT/PCR, NS1 antigen detection, and serological assays. Despite advancements in understanding the dengue pathogenesis, there remains a critical need for effective vaccines, antiviral drugs, improved surveillance methods, predictive models for disease severity, and long-term studies on post-Dengue sequelae. Integrated programs and holistic approaches to dengue control are essential for mitigating its impact. Addressing these research priorities will be pivotal in combating dengue and reducing its global burden.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine "Pedro Kouri", WHO/PAHO Collaborating Center for the Study of Dengue and Its Control, Autopista Novia del Mediodia, km 6 1/2, La Lisa 17100, Cuba
| | - Eric Martinez
- Institute of Tropical Medicine "Pedro Kouri", WHO/PAHO Collaborating Center for the Study of Dengue and Its Control, Autopista Novia del Mediodia, km 6 1/2, La Lisa 17100, Cuba
| |
Collapse
|
6
|
Green AL, Cowell EC, Carr LM, Hemsley K, Sherratt E, Collins-Praino LE, Carr JM. Application of diceCT to Study the Development of the Zika Virus-Infected Mouse Brain. Viruses 2024; 16:1330. [PMID: 39205304 PMCID: PMC11358961 DOI: 10.3390/v16081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Zika virus (ZIKV) impacts the developing brain. Here, a technique was applied to define, in 3D, developmental changes in the brains of ZIKV-infected mice. Postnatal day 1 mice were uninfected or ZIKV-infected, then analysed by iodine staining and micro-CT scanning (diffusible iodine contrast-enhanced micro-CT; diceCT) at 3-, 6-, and 10-days post-infection (dpi). Multiple brain regions were visualised using diceCT: the olfactory bulb, cerebrum, hippocampus, midbrain, interbrain, and cerebellum, along with the lens and retina of the eye. Brain regions were computationally segmented and quantitated, with increased brain volumes and developmental time in uninfected mice. Conversely, in ZIKV-infected mice, no quantitative differences were seen at 3 or 6 dpi when there were no clinical signs, but qualitatively, diverse visual defects were identified at 6-10 dpi. By 10 dpi, ZIKV-infected mice had significantly lower body weight and reduced volume of brain regions compared to 10 dpi-uninfected or 6 dpi ZIKV-infected mice. Nissl and immunofluorescent Iba1 staining on post-diceCT tissue were successful, but RNA extraction was not. Thus, diceCT shows utility for detecting both 3D qualitative and quantitative changes in the developing brain of ZIKV-infected mice, with the benefit, post-diceCT, of retaining the ability to apply traditional histology and immunofluorescent analysis to tissue.
Collapse
Affiliation(s)
- Amy L. Green
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| | - Evangeline C. Cowell
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| | - Laura M. Carr
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (L.M.C.); (L.E.C.-P.)
| | - Kim Hemsley
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lyndsey E. Collins-Praino
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (L.M.C.); (L.E.C.-P.)
| | - Jillian M. Carr
- College of Medicine and Public Health, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia; (A.L.G.); (E.C.C.); (K.H.)
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5001, Australia
| |
Collapse
|
7
|
Wang Y, Chen J, Yang Z, Wang X, Zhang Y, Chen M, Ming Z, Zhang K, Zhang D, Zheng L. Advances in Nucleic Acid Assays for Infectious Disease: The Role of Microfluidic Technology. Molecules 2024; 29:2417. [PMID: 38893293 PMCID: PMC11173870 DOI: 10.3390/molecules29112417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Within the fields of infectious disease diagnostics, microfluidic-based integrated technology systems have become a vital technology in enhancing the rapidity, accuracy, and portability of pathogen detection. These systems synergize microfluidic techniques with advanced molecular biology methods, including reverse transcription polymerase chain reaction (RT-PCR), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR), have been successfully used to identify a diverse array of pathogens, including COVID-19, Ebola, Zika, and dengue fever. This review outlines the advances in pathogen detection, attributing them to the integration of microfluidic technology with traditional molecular biology methods and smartphone- and paper-based diagnostic assays. The cutting-edge diagnostic technologies are of critical importance for disease prevention and epidemic surveillance. Looking ahead, research is expected to focus on increasing detection sensitivity, streamlining testing processes, reducing costs, and enhancing the capability for remote data sharing. These improvements aim to achieve broader coverage and quicker response mechanisms, thereby constructing a more robust defense for global public health security.
Collapse
Affiliation(s)
- Yiran Wang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingwei Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuanyu Wang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zizhen Ming
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaihuan Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
8
|
Ngathaweesuk Y, Hendrikse J, Groot-Mijnes JDFD, de Boer JH, Hettinga YM. Causes of infectious pediatric uveitis: A review. Surv Ophthalmol 2024; 69:483-494. [PMID: 38182040 DOI: 10.1016/j.survophthal.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Infectious pediatric uveitis is a rare disease that can cause severe ocular damage if not detected rapidly and treated properly. Additionally, early identification of an infection can protect the child from life-threatening systemic infection. Infectious uveitis can be congenital or acquired and may manifest as a primary ocular infection or as a reactivation. Nevertheless, publications on infectious paediatric uveitis are usually limited to a small number of patients or a case report. So far, most studies on uveitis in children have focused primarily on noninfectious uveitis, and a systematic study on infectious uveitis is lacking. In this review, we summarize the literature on infectious uveitis in pediatric populations and report on the epidemiology, pathophysiology, clinical signs, diagnostic tests, and treatment. We will describe the different possible pathogens causing uveitis in childhood by microbiological group (i.e. parasites, viruses, bacteria, and fungi). We aim to contribute to early diagnosis and management of infectious pediatric uveitis, which in turn might improve not only visual outcome, but also the general health outcome.
Collapse
Affiliation(s)
- Yaninsiri Ngathaweesuk
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Ophthalmology, Phramongkutklao Hospital, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Jytte Hendrikse
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, the Netherlands.
| | - Jolanda Dorothea Francisca de Groot-Mijnes
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Joke Helena de Boer
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
9
|
Wang HC, Lin CC, Chang CH, Tsai JJ. Case report: dengue fever associated acute macular neuroretinopathy. Front Med (Lausanne) 2024; 11:1379429. [PMID: 38585152 PMCID: PMC10995331 DOI: 10.3389/fmed.2024.1379429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Dengue fever (DF), which is caused by the dengue virus (DENV) and transmitted through Aedes mosquitoes, is well recognized for its systemic manifestations, with its ocular involvement gaining recent attention. We present a case of a 41-year-old Taiwanese female who developed acute macular neuroretinopathy (AMN) following a DF diagnosis related to DENV-1, emphasizing the need for awareness of this complication. The patient, with a history of completely resolved optic neuritis (ON) and comorbidities, experienced blurred vision on day 10 after the onset of DF. The ophthalmic examination revealed macular edema, ellipsoid zone (EZ) infiltration, and choriocapillaris involvement. Despite pulse therapy with corticosteroids, visual disturbances persisted, highlighting the challenge of managing ocular complications. Ocular manifestations in DF include hemorrhages, inflammation, and vascular complications. DF-associated AMN, a rare presentation, poses challenges in diagnosis and treatment response evaluation. While most patients recover spontaneously, some face persistent visual impairment, especially with AMN. Our case emphasizes the importance of recognizing ocular complications in DF, necessitating a multidisciplinary approach for optimal management and further research to delineate treatment strategies and outcomes.
Collapse
Affiliation(s)
- How-Chen Wang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Ching Lin
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Hsin Chang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jih-Jin Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Cowell E, Jaber H, Kris LP, Fitzgerald MG, Sanders VM, Norbury AJ, Eyre NS, Carr JM. Vav proteins do not influence dengue virus replication but are associated with induction of phospho-ERK, IL-6, and viperin mRNA following DENV infection in vitro. Microbiol Spectr 2024; 12:e0239123. [PMID: 38054722 PMCID: PMC10782993 DOI: 10.1128/spectrum.02391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Dengue disease is characterized by an inflammatory-mediated immunopathology, with elevated levels of circulating factors including TNF-α and IL-6. If the damaging inflammatory pathways could be blocked without loss of antiviral responses or exacerbating viral replication, then this would be of potential therapeutic benefit. The study here has investigated the Vav guanine exchange factors as a potential alternative signaling pathway that may drive dengue virus (DENV)-induced inflammatory responses, with a focus on Vav1 and 2. While Vav proteins were positively associated with mRNA for inflammatory cytokines, blocking Vav signaling didn't affect DENV replication but prevented DENV-induction of p-ERK and enhanced IL-6 (inflammatory) and viperin (antiviral) mRNA. These initial data suggest that Vav proteins could be a target that does not compromise control of viral replication and should be investigated further for broader impact on host inflammatory responses, in settings such as antibody-dependent enhancement of infection and in different cell types.
Collapse
Affiliation(s)
- Evangeline Cowell
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Hawraa Jaber
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Luke P. Kris
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Madeleine G. Fitzgerald
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Valeria M. Sanders
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Aidan J. Norbury
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas S. Eyre
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Jillian M. Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Ahmad F, Deshmukh N, Webel A, Johnson S, Suleiman A, Mohan RR, Fraunfelder F, Singh PK. Viral infections and pathogenesis of glaucoma: a comprehensive review. Clin Microbiol Rev 2023; 36:e0005723. [PMID: 37966199 PMCID: PMC10870729 DOI: 10.1128/cmr.00057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, caused by the gradual degeneration of retinal ganglion cells and their axons. While glaucoma is primarily considered a genetic and age-related disease, some inflammatory conditions, such as uveitis and viral-induced anterior segment inflammation, cause secondary or uveitic glaucoma. Viruses are predominant ocular pathogens and can impose both acute and chronic pathological insults to the human eye. Many viruses, including herpes simplex virus, varicella-zoster virus, cytomegalovirus, rubella virus, dengue virus, chikungunya virus, Ebola virus, and, more recently, Zika virus (ZIKV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have been associated with sequela of either primary or secondary glaucoma. Epidemiological and clinical studies suggest the association between these viruses and subsequent glaucoma development. Despite this, the ocular manifestation and sequela of viral infections are not well understood. In fact, the association of viruses with glaucoma is considered relatively uncommon in part due to underreporting and/or lack of long-term follow-up studies. In recent years, literature on the pathological spectrum of emerging viral infections, such as ZIKV and SARS-CoV-2, has strengthened this proposition and renewed research activity in this area. Clinical studies from endemic regions as well as laboratory and preclinical investigations demonstrate a strong link between an infectious trigger and development of glaucomatous pathology. In this article, we review the current understanding of the field with a particular focus on viruses and their association with the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nikhil Deshmukh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Aaron Webel
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Sandra Johnson
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Ayman Suleiman
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Rajiv R. Mohan
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Frederick Fraunfelder
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Pawan Kumar Singh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
12
|
de Oliveira JL, Nogueira IA, Amaral JK, Campos LR, Mendonça MMM, Ricarte MDB, Cavalcanti LPDG, Schoen RT. Extra-articular Manifestations of Chikungunya. Rev Soc Bras Med Trop 2023; 56:0341. [PMID: 38088664 PMCID: PMC10706034 DOI: 10.1590/0037-8682-0341-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Chikungunya fever (CHIK) is a neglected tropical disease associated with chronic arthritis. CHIK is usually a self-limiting condition; however, extra-articular manifestations present as atypical illness in a minority of patients. These atypical features may mimic other conditions and potentially distract physicians from the true diagnosis. This review analyzes the evidence of many unusual extra-articular manifestations reported in cases of CHIK. Depending on the affected system, these unusual manifestations include encephalitis, myocarditis, acute interstitial nephritis, cutaneous manifestations, acute anterior uveitis, abdominal pain, and depression. In addition, coinfections and comorbidities may cause atypical illness and obscure the diagnosis. Further studies are required to clarify the pathophysiology and natural history of CHIK, as it remains a burdening condition. Exploring its atypical symptoms may be the missing scientific piece of this puzzle.
Collapse
Affiliation(s)
- Jobson Lopes de Oliveira
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Medicina Clínica, Fortaleza, CE, Brasil
- Centro Universitário Christus, Faculdade de Medicina, Fortaleza, CE, Brasil
| | - Igor Albuquerque Nogueira
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Medicina Clínica, Fortaleza, CE, Brasil
| | - J. Kennedy Amaral
- Instituto de Medicina Diagnóstica do Cariri, Juazeiro do Norte, CE, Brasil
| | | | | | | | - Luciano Pamplona de Góes Cavalcanti
- Centro Universitário Christus, Faculdade de Medicina, Fortaleza, CE, Brasil
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Saúde Comunitária, Fortaleza, CE, Brasil
| | - Robert T. Schoen
- Yale University School of Medicine, Section of Rheumatology, New Haven, CT, USA
| |
Collapse
|
13
|
Brango-Vanegas J, Leite ML, de Oliveira KBS, da Cunha NB, Franco OL. From exploring cancer and virus targets to discovering active peptides through mRNA display. Pharmacol Ther 2023; 252:108559. [PMID: 37952905 DOI: 10.1016/j.pharmthera.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
During carcinogenesis, neoplastic cells accumulate mutations in genes important for cellular homeostasis, producing defective proteins. Viral infections occur when viral capsid proteins bind to the host cell receptor, allowing the virus to enter the cells. In both cases, proteins play important roles in cancer development and viral infection, so these targets can be exploited to develop alternative treatments. mRNA display technology is a very powerful tool for the development of peptides capable of acting on specific targets in neoplastic cells or on viral capsid proteins. mRNA display technology allows the selection and evolution of peptides with desired functional properties from libraries of many nucleic acid variants. Among other advantages of this technology, the use of flexizymes allows the production of peptides with unnatural amino acid residues, which can enhance the activity of these molecules. From target immobilization, peptides with greater specificity for the targets of interest are generated during the selection rounds. Herein, we will explore the use of mRNA display technology for the development of active peptides after successive rounds of selection, using proteins present in neoplastic cells and viral particles as targets.
Collapse
Affiliation(s)
- José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Nicolau Brito da Cunha
- Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| |
Collapse
|
14
|
Parveen S, Riaz Z, Saeed S, Ishaque U, Sultana M, Faiz Z, Shafqat Z, Shabbir S, Ashraf S, Marium A. Dengue hemorrhagic fever: a growing global menace. JOURNAL OF WATER AND HEALTH 2023; 21:1632-1650. [PMID: 38017595 PMCID: wh_2023_114 DOI: 10.2166/wh.2023.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Dengue virus is an arthropod-borne virus, transmitted by Aedes aegypti among humans. In this review, we discussed the epidemiology of dengue hemorrhagic fever (DHF) as well as the disease's natural history, cycles of transmission, clinical diagnosis, aetiology, prevention, therapy, and management. A systematic literature search was done by databases such as PubMed and Google Scholar using search terms, 'dengue fever', 'symptoms and causes of dengue fever', 'dengue virus transmission', and 'strategies to control dengue'. We reviewed relevant literature to identify hazards related to DHF and the most recent recommendations for its management and prevention. Clinical signs and symptoms of dengue infection range from mild dengue fever (DF) to potentially lethal conditions like DHF or dengue shock syndrome (DSS). Acute-onset high fever, muscle and joint pain, myalgia, a rash on the skin, hemorrhagic episodes, and circulatory shock are among the most common symptoms. An early diagnosis is vital to lower mortality. As dengue virus infections are self-limiting, but in tropical and subtropical areas, dengue infection has become a public health concern. Hence, developing and executing long-term control policies that can reduce the global burden of DHF is a major issue for public health specialists everywhere.
Collapse
Affiliation(s)
- Shakeela Parveen
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan E-mail:
| | - Zainab Riaz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Saba Saeed
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Urwah Ishaque
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Mehwish Sultana
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Zunaira Faiz
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Zainab Shafqat
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Saman Shabbir
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Sana Ashraf
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Amna Marium
- Department of Zoology, The Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| |
Collapse
|
15
|
Xie Cen A, Ng AWW, Rojas-Carabali W, Cifuentes-González C, de-la-Torre A, Mahendradas P, Agrawal R. Dengue Uveitis - A Major Review. Ocul Immunol Inflamm 2023; 31:1440-1453. [PMID: 37315302 DOI: 10.1080/09273948.2023.2220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Dengue fever is a significant global public health concern with increasing incidence over the past two decades. The symptoms range from mild to severe, including fever, headache, rash, and joint pain. Ocular complications are prevalent among hospitalized patients, estimated to be between 10% and 40.3%, with varying incidences based on the serotype and severity of dengue. These complications can be hemorrhagic or inflammatory and typically occur after the onset of fever. Modern diagnostic tools such as Optical Coherence Tomography (OCT) and Fundus Fluorescein Angiography (FFA) have enabled physicians to better understand the extent of ocular involvement and guide treatment. This article provides an updated overview of the various manifestations of dengue uveitis, including their diagnosis and treatment.
Collapse
Affiliation(s)
- Amy Xie Cen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Aaron Wei Wen Ng
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - William Rojas-Carabali
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Advanced Ophthalmic Imaging Laboratory, Department of Ophthalmology, New York University School of Medicine, New York, New York, USA
| | - Carlos Cifuentes-González
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | | | - Rupesh Agrawal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
- Duke-NUS Medical School, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Eye Research Institute, Singapore
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
16
|
Oliver GF, Ashander LM, Dawson AC, Ma Y, Carr JM, Williams KA, Smith JR. Dengue Virus Infection of Human Retinal Müller Glial Cells. Viruses 2023; 15:1410. [PMID: 37515098 PMCID: PMC10385653 DOI: 10.3390/v15071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
Retinopathy is a recently recognized complication of dengue, affecting up to 10% of hospitalized patients. Research on the pathogenesis has focused largely on effects of dengue virus (DENV) at the blood-retinal barrier. Involvement of retinal Müller glial cells has received little attention, although this cell population contributes to the pathology of other intraocular infections. The goal of our work was to establish the susceptibility of Müller cells to infection with DENV and to identify characteristics of the cellular antiviral, inflammatory, and immunomodulatory responses to DENV infection in vitro. Primary human Müller cell isolates and the MIO-M1 human Müller cell line were infected with the laboratory-adapted Mon601 strain and DENV serotype 1 and 2 field isolates, and cell-DENV interactions were investigated by immunolabelling and quantitative real-time polymerase chain reaction. Müller cells were susceptible to DENV infection, but experiments involving primary cell isolates indicated inter-individual variation. Viral infection induced an inflammatory response (including tumour necrosis factor-α, interleukin [IL]-1β, and IL-6) and an immunomodulatory response (including programmed death-ligand [PD-L]1 and PD-L2). The type I interferon response was muted in the Müller cell line compared to primary cell isolates. The highest infectivity and cell responses were observed in the laboratory-adapted strain, and overall, infectivity and cell responses were stronger in DENV2 strains. This work demonstrates that Müller cells mount an antiviral and immune response to DENV infection, and that this response varies across cell isolates and DENV strain. The research provides a direction for future efforts to understand the role of human retinal Müller glial cells in dengue retinopathy.
Collapse
Affiliation(s)
- Genevieve F Oliver
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Abby C Dawson
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Yuefang Ma
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Jillian M Carr
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Keryn A Williams
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
17
|
Pinheiro KMP, Guinati BGS, Moreira NS, Coltro WKT. Low-Cost Microfluidic Systems for Detection of Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:117-138. [PMID: 37068747 DOI: 10.1146/annurev-anchem-091522-024759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.
Collapse
Affiliation(s)
| | | | - Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, Brazil
| |
Collapse
|
18
|
Cowell E, Kris LP, Bracho-Granado G, Jaber H, Smith JR, Carr JM. Zika virus infection of retinal cells and the developing mouse eye induces host responses that contrasts to the brain and dengue virus infection. J Neurovirol 2023; 29:187-202. [PMID: 37022660 DOI: 10.1007/s13365-023-01123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Zika virus (ZIKV) infection causes ocular and neurological pathologies with ZIKV-induction of developmental abnormalities following in utero infection a major concern. The study here has compared ZIKV and the related dengue virus (DENV) infection in the eye and brain. In vitro, both ZIKV and DENV could infect cell lines representing the retinal pigmented epithelium, endothelial cells, and Mueller cells, with distinct innate responses in each cell type. In a 1-day old mouse challenge model, both ZIKV and DENV infected the brain and eye by day 6 post-infection (pi). ZIKV was present at comparable levels in both tissues, with RNA increasing with time post-infection. DENV infected the brain, but RNA was detected in the eye of less than half of the mice challenged. NanoString analysis demonstrated comparable host responses in the brain for both viruses, including induction of mRNA for myosin light chain-2 (Mly2), and numerous antiviral and inflammatory genes. Notably, mRNA for multiple complement proteins were induced, but C2 and C4a were uniquely induced by ZIKV but not DENV. Consistent with the viral infection in the eye, DENV induced few responses while ZIKV induced substantial inflammatory and antiviral responses. Compared to the brain, ZIKV in the eye did not induce mRNAs such as C3, downregulated Retnla, and upregulated CSF-1. Morphologically, the ZIKV-infected retina demonstrated reduced formation of specific retinal layers. Thus, although ZIKV and DENV can both infect the eye and brain, there are distinct differences in host cell and tissue inflammatory responses that may be relevant to ZIKV replication and disease.
Collapse
Affiliation(s)
- E Cowell
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - L P Kris
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - G Bracho-Granado
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - H Jaber
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - J R Smith
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - J M Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Room 5D-316, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, South Australia, 5042, Australia.
| |
Collapse
|
19
|
Lucena-Neto FD, Falcão LFM, Moraes ECDS, David JPF, Vieira-Junior ADS, Silva CC, de Sousa JR, Duarte MIS, Vasconcelos PFDC, Quaresma JAS. Dengue fever ophthalmic manifestations: A review and update. Rev Med Virol 2023; 33:e2422. [PMID: 36658757 DOI: 10.1002/rmv.2422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
Dengue fever, the most common arbovirus disease, affects an estimated 390 million people annually. Dengue virus (DENV) is an RNA virus of the Flaviviridae family with four different serotypes. Dengue haemorrhagic fever is the deadliest form of dengue infection and is characterised by thrombocytopaenia, hypotension, and the possibility of multi-system organ failure. The mechanism hypothesised for DENV viral replication is intrinsic antibody-dependent enhancement, which refers to Fcγ receptor-mediated viral amplification. This hypothesis suggests that the internalisation of DENV through the Fcγ receptor inhibits antiviral genes by suppressing type-1 interferon-mediated antiviral responses. DENV NS1 antibodies can promote the release of various inflammatory mediators in the nuclear transcription factor pathway (NF-κB-dependent), including monocyte chemoattractant protein (MCP)-1, interleukin (IL)-6, and IL-8. As a result, MCP-1 increases ICAM-1 expression and facilitates leukocyte transmigration. In addition, anti-DENV NS1 antibodies induce endothelial cell apoptosis via a nitric oxide-regulated pathway. A chain reaction involving pre-existing DENV heterotypic antibodies and innate immune cells causes dysfunction in complement system activity and contributes to the action of autoantibodies and anti-endothelial cells, resulting in endothelial cell dysfunction, blood-retinal barrier breakdown, haemorrhage, and plasma leakage. A spectrum of ocular diseases associated with DENV infection, ranging from haemorrhagic to inflammatory manifestations, has been reported in the literature. Although rare, ophthalmic manifestations can occur in both the anterior and posterior segments and are usually associated with thrombocytopenia. The most common ocular complication is haemorrhage. However, ophthalmic complications, such as anterior uveitis and vasculitis, suggest an immune-mediated pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Juarez Antônio Simões Quaresma
- State University of Pará, Belém, Pará, Brazil.,Federal University of Pará, Belém, Pará, Brazil.,School of Medicine, São Paulo University, São Paulo, São Paulo, Brazil.,Virology Section, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| |
Collapse
|
20
|
Khatun S, Putta CL, Hak A, Rengan AK. Immunomodulatory nanosystems: An emerging strategy to combat viral infections. BIOMATERIALS AND BIOSYSTEMS 2023; 9:100073. [PMID: 36967725 PMCID: PMC10036237 DOI: 10.1016/j.bbiosy.2023.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The viral infection spreads with the assistance of a host. Traditional antiviral therapies cannot provide long-term immunity against emerging and drug-resistant viral infections. Immunotherapy has evolved as an efficient approach for disease prevention and treatment, which include cancer, infections, inflammatory, and immune disorders. Immunomodulatory nanosystems can dramatically enhance therapeutic outcomes by combating many therapeutic challenges, such as poor immune stimulation and off-target adverse effects. Recently, immunomodulatory nanosystems have emerged as a potent antiviral strategy to intercept viral infections effectively. This review introduces major viral infections with their primary symptoms, route of transmission & targeted organ, and different stages of the viral life cycle with respective traditional blockers. The IMNs have an exceptional capacity for precisely modulating the immune system for therapeutic applications. The nano sized immunomodulatory systems permit the immune cells to interact with infectious agents enhancing lymphatic drainage and endocytosis by the over-reactive immune cells in the infected areas. Immune cells that can be modulated upon viral infection via various immunomodulatory nanosystems have been discussed. Advancement in theranostics can yield an accurate diagnosis, adequate treatment, and real-time screening of viral infections. Nanosystem-based drug delivery can continue to thrive in diagnosing, treating, and preventing viral infections. The curative medicine for remerging and drug-resistant viruses remains challenging, though certain systems have expanded our perception and initiated a new research domain in antiviral treatments.
Collapse
|
21
|
Arslanoglu Aydin E, Ozdel S, Cakar Ozdal P, Bagrul İ, Baglan E, Tuncez S, Bulbul M. Changing face of non-infectious pediatric uveitis in the pre-pandemic and pandemic periods: a comparison study. Postgrad Med 2023; 135:418-423. [PMID: 36851832 DOI: 10.1080/00325481.2023.2184092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
OBJECTIVE Our aim in this study was to reveal the clinical features of pediatric uveitis in the pandemic period and to compare it with the pre-pandemic era. METHODS This retrospective study included 187 children diagnosed with uveitis between the 11th of March 2017 and the 11th of March 2022. The patients were divided into two groups based on the date of diagnosis as follows; Group 1: Patients diagnosed in the pre-pandemic period (11th March 2017-11th March 2020); Group 2: Patients diagnosed in the pandemic period (12th March 2020-11th March 2022). Demographic data, characteristics of uveitis, underlying diseases, systemic treatment modalities, and complications were compared between the two groups. RESULTS A total of 187 (pre-pandemic 71, and pandemic 114) pediatric uveitis patients were recruited to the study. Fifty one percent (51%) of the patients were female. The number of patients diagnosed with uveitis increased approximately twice during the pandemic period compared to the pre-pandemic period. The frequency of anterior uveitis was found to be significantly higher in the pandemic period than in the pre-pandemic period (p = 0.037). It was mostly presented as symptomatic uveitis. There was a decrease in the diagnosis of JIA-related uveitis. ANA positivity increased in the pandemic period (p = 0.029). The response to treatment was better and the complication rate decreased in the pandemic period. CONCLUSION The present study involved a large number of pediatric patients with uveitis. There are some differences in the characteristics of pediatric uveitis cases comparing the pandemic period and the pre-pandemic period. This increased frequency and changing clinical features of pediatric uveitis seems to be a result of COVID-19 infection.
Collapse
Affiliation(s)
- Elif Arslanoglu Aydin
- Department of Pediatric Rheumatology, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Semanur Ozdel
- Department of Pediatric Rheumatology, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Pinar Cakar Ozdal
- Service of Uveitis and Retinal Diseases, Ankara Ulucanlar Eye Research Hospital, Ankara, Turkey
| | - İlknur Bagrul
- Department of Pediatric Rheumatology, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Esra Baglan
- Department of Pediatric Rheumatology, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Serife Tuncez
- Department of Pediatric Rheumatology, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Mehmet Bulbul
- Department of Pediatric Nephrology and Rheumatology, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
22
|
Ince B, Sezgintürk MK. Lateral flow assays for viruses diagnosis: Up-to-date technology and future prospects. Trends Analyt Chem 2022; 157:116725. [PMID: 35815063 PMCID: PMC9252863 DOI: 10.1016/j.trac.2022.116725] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Bacteria, viruses, and parasites are harmful microorganisms that cause infectious diseases. Early detection of diseases is critical to prevent disease transmission and provide epidemic preparedness, as these can cause widespread deaths and public health crises, particularly in resource-limited countries. Lateral flow assay (LFA) systems are simple-to-use, disposable, inexpensive diagnostic devices to test biomarkers in blood and urine samples. Thus, LFA has recently received significant attention, especially during the pandemic. Here, first of all, the design principles and working mechanisms of existing LFA methods are examined. Then, current LFA implementation strategies are presented for communicable disease diagnoses, including COVID-19, zika and dengue, HIV, hepatitis, influenza, malaria, and other pathogens. Furthermore, this review focuses on an overview of current problems and accessible solutions in detecting infectious agents and diseases by LFA, focusing on increasing sensitivity with various detection methods. In addition, future trends in LFA-based diagnostics are envisioned.
Collapse
Affiliation(s)
- Bahar Ince
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
23
|
Alhabbab RY. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. MICROMACHINES 2022; 13:1901. [PMID: 36363922 PMCID: PMC9694796 DOI: 10.3390/mi13111901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 05/28/2023]
Abstract
Abundant immunological assays currently exist for detecting pathogens and identifying infected individuals, making detection of diseases at early stages integral to preventing their spread, together with the consequent emergence of global health crises. Lateral flow immunoassay (LFIA) is a test characterized by simplicity, low cost, and quick results. Furthermore, LFIA testing does not need well-trained individuals or laboratory settings. Therefore, it has been serving as an attractive tool that has been extensively used during the ongoing COVID-19 pandemic. Here, the LFIA strip's available formats, reporter systems, components, and preparation are discussed. Moreover, this review provides an overview of the current LFIAs in detecting infectious viral antigens and humoral responses to viral infections.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Ocular Manifestations of Chikungunya Infection: A Systematic Review. Pathogens 2022; 11:pathogens11040412. [PMID: 35456087 PMCID: PMC9028588 DOI: 10.3390/pathogens11040412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
The Chikungunya virus (CHIKV) can cause long lasting symptoms and manifestations. However, there is little information on which ocular ones are most frequent following infection. We performed a systematic review (registered in the International Prospective Register of Systematic Reviews; no CRD42020171928) to establish the most frequent ocular manifestations of CHIKV infection and their associations with gender and age. Articles published until September 2020 were selected from PubMed, Scielo, Cochrane and Scopus databases. Only studies with CHIKV-infected patients and eye alterations were included. Reviews, descriptive studies, or those not investigating the human ocular manifestations of CHIKV, those with patients with other diseases and infections, abstracts and studies without relevant data were excluded. Twenty-five studies were selected for inclusion. Their risk of bias was evaluated by a modified Newcastle-Ottawa scale. The most frequent ocular symptoms of CHIKV infection included ocular pain, inflammation and reduced visual acuity, whilst conjunctivitis and optic neuritis were the most common manifestations of the disease. These occurred mostly in individuals of 42 ± 9.5 years of age and woman. The few available reports on CHIKV-induced eye manifestations highlight the need for further research in the field to gather more substantial evidence linking CHIKV infection, the eye and age/gender. Nonetheless, the data emphasizes that ocular alterations are meaningful occurrences of CHIKV infection which can substantially affect quality of life.
Collapse
|
25
|
Weng SC, Zhou YX, Shiao SH. A flavivirus-inducible gene expression system that modulates broad-spectrum antiviral activity against dengue and Zika viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103723. [PMID: 35074522 DOI: 10.1016/j.ibmb.2022.103723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 05/26/2023]
Abstract
Incidence of dengue virus (DENV) and Zika virus (ZIKV), two mosquito-borne flaviviruses, is increasing in large parts of the world. Vaccination and medication for these diseases are unsatisfactory. Here, we developed a novel antiviral approach, using a virus-inducible gene expression system, to block virus replication and transmission. Constructs containing the smallest replication units of dengue virus serotype 2 (DENV2) with negative-stranded DENV2 artificial genomes and genes of interest were established in an Aedes aegypti cell line, resulting in expression of target genes after DENV2 infection. Green fluorescent protein (GFP) assays confirmed the system was virus-inducible. When we used one of two apoptosis-related genes, A. aegypti michelob_x (AaMx) and inhibitor of apoptosis (IAP)-antagonist michelob_x-like protein (AaIMP) instead of GFP, the production of viral RNA and proteins were inhibited for all five viruses tested (DENV1-4 and ZIKV), and effector caspase activity was induced. The system thus inhibited the production of infectious virus particles in vitro, and in mosquitoes it did so after DENV2 infection. This is a novel broad-spectrum antiviral approach using a flavivirus-inducible gene-expression system, which could lead to new avenues for mosquito-borne disease control.
Collapse
Affiliation(s)
- Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Xian Zhou
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
26
|
Vav Proteins in Development of the Brain: A Potential Relationship to the Pathogenesis of Congenital Zika Syndrome? Viruses 2022; 14:v14020386. [PMID: 35215978 PMCID: PMC8874935 DOI: 10.3390/v14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/07/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can result in a significant impact on the brain and eye of the developing fetus, termed congenital zika syndrome (CZS). At a morphological level, the main serious presentations of CZS are microcephaly and retinal scarring. At a cellular level, many cell types of the brain may be involved, but primarily neuronal progenitor cells (NPC) and developing neurons. Vav proteins have guanine exchange activity in converting GDP to GTP on proteins such as Rac1, Cdc42 and RhoA to stimulate intracellular signaling pathways. These signaling pathways are known to play important roles in maintaining the polarity and self-renewal of NPC pools by coordinating the formation of adherens junctions with cytoskeletal rearrangements. In developing neurons, these same pathways are adopted to control the formation and growth of neurites and mediate axonal guidance and targeting in the brain and retina. This review describes the role of Vavs in these processes and highlights the points of potential ZIKV interaction, such as (i) the binding and entry of ZIKV in cells via TAM receptors, which may activate Vav/Rac/RhoA signaling; (ii) the functional convergence of ZIKV NS2A with Vav in modulating adherens junctions; (iii) ZIKV NS4A/4B protein effects on PI3K/AKT in a regulatory loop via PPI3 to influence Vav/Rac1 signaling in neurite outgrowth; and (iv) the induction of SOCS1 and USP9X following ZIKV infection to regulate Vav protein degradation or activation, respectively, and impact Vav/Rac/RhoA signaling in NPC and neurons. Experiments to define these interactions will further our understanding of the molecular basis of CZS and potentially other developmental disorders stemming from in utero infections. Additionally, Vav/Rac/RhoA signaling pathways may present tractable targets for therapeutic intervention or molecular rationale for disease severity in CZS.
Collapse
|
27
|
Shivpuri A, Turtsevich I, Solebo AL, Compeyrot-Lacassagne S. Pediatric uveitis: Role of the pediatrician. Front Pediatr 2022; 10:874711. [PMID: 35979409 PMCID: PMC9376387 DOI: 10.3389/fped.2022.874711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
The challenges of childhood uveitis lie in the varied spectrum of its clinical presentation, the often asymptomatic nature of disease, and the evolving nature of the phenotype alongside normal physiological development. These issues can lead to delayed diagnosis which can cause significant morbidity and severe visual impairment. The most common ocular complications include cataracts, band keratopathy, glaucoma, and macular oedema, and the various associated systemic disorders can also result in extra-ophthalmic morbidity. Pediatricians have an important role to play. Their awareness of the various presentations and etiologies of uveitis in children afford the opportunity of prompt diagnosis before complications arise. Juvenile Idiopathic Arthritis (JIA) is one of the most common associated disorders seen in childhood uveitis, but there is a need to recognize other causes. In this review, different causes of uveitis are explored, including infections, autoimmune and autoinflammatory disease. As treatment is often informed by etiology, pediatricians can ensure early ophthalmological referral for children with inflammatory disease at risk of uveitis and can support management decisions for children with uveitis and possible underling multi-system inflammatory disease, thus reducing the risk of the development of irreversible sequelae.
Collapse
Affiliation(s)
- Abhay Shivpuri
- Rheumatology Department, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Inga Turtsevich
- Rheumatology Department, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Ameenat Lola Solebo
- Rheumatology Department, Great Ormond Street Hospital for Children, London, United Kingdom.,Biomedical Research Centre, Great Ormond Street Hospital for Children, London, United Kingdom.,University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sandrine Compeyrot-Lacassagne
- Rheumatology Department, Great Ormond Street Hospital for Children, London, United Kingdom.,Biomedical Research Centre, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
28
|
Kandi V, Suvvari TK, Vadakedath S, Godishala V. Microbes, Clinical trials, Drug Discovery, and Vaccine Development: The Current Perspectives. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Because of the frequent emergence of novel microbial species and the re-emergence of genetic variants of hitherto known microbes, the global healthcare system, and human health has been thrown into jeopardy. Also, certain microbes that possess the ability to develop multi-drug resistance (MDR) have limited the treatment options in cases of serious infections, and increased hospital and treatment costs, and associated morbidity and mortality. The recent discovery of the novel Coronavirus (n-CoV), the Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) that is causing the CoV Disease-19 (COVID-19) has resulted in severe morbidity and mortality throughout the world affecting normal human lives. The major concern with the current pandemic is the non-availability of specific drugs and an incomplete understanding of the pathobiology of the virus. It is therefore important for pharmaceutical establishments to envisage the discovery of therapeutic interventions and potential vaccines against the novel and MDR microbes. Therefore, this review is attempted to update and explore the current perspectives in microbes, clinical research, drug discovery, and vaccine development to effectively combat the emerging novel and re-emerging genetic variants of microbes.
Collapse
|
29
|
Girol AP, de Freitas Zanon C, Caruso ÍP, de Souza Costa S, Souza HR, Cornélio ML, Oliani SM. Annexin A1 Mimetic Peptide and Piperlongumine: Anti-Inflammatory Profiles in Endotoxin-Induced Uveitis. Cells 2021; 10:3170. [PMID: 34831393 PMCID: PMC8625584 DOI: 10.3390/cells10113170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Uveitis is one of the main causes of blindness worldwide, and therapeutic alternatives are worthy of study. We investigated the effects of piperlongumine (PL) and/or annexin A1 (AnxA1) mimetic peptide Ac2-26 on endotoxin-induced uveitis (EIU). Rats were inoculated with lipopolysaccharide (LPS) and intraperitoneally treated with Ac2-26 (200 µg), PL (200 and 400 µg), or Ac2-26 + PL after 15 min. Then, 24 h after LPS inoculation, leukocytes in aqueous humor, mononuclear cells, AnxA1, formyl peptide receptor (fpr)1, fpr2, and cyclooxygenase (COX)-2 were evaluated in the ocular tissues, along with inflammatory mediators in the blood and macerated supernatant. Decreased leukocyte influx, levels of inflammatory mediators, and COX-2 expression confirmed the anti-inflammatory actions of the peptide and pointed to the protective effects of PL at higher dosage. However, when PL and Ac2-26 were administered in combination, the inflammatory potential was lost. AnxA1 expression was elevated among groups treated with PL or Ac2-26 + PL but reduced after treatment with Ac2-26. Fpr2 expression was increased only in untreated EIU and Ac2-26 groups. The interaction between Ac2-26 and PL negatively affected the anti-inflammatory action of Ac2-26 or PL. We emphasize that the anti-inflammatory effects of PL can be used as a therapeutic strategy to protect against uveitis.
Collapse
Affiliation(s)
- Ana Paula Girol
- Department of Physical and Morphological Sciences, University Center Padre Albino (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.P.G.); (S.d.S.C.); (H.R.S.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Post Graduate Program in Structural and Functional Biology, Escola Paulista de Medicina (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil
| | - Caroline de Freitas Zanon
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Ícaro Putinhon Caruso
- Department of Phisics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (Í.P.C.); (M.L.C.)
| | - Sara de Souza Costa
- Department of Physical and Morphological Sciences, University Center Padre Albino (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.P.G.); (S.d.S.C.); (H.R.S.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Helena Ribeiro Souza
- Department of Physical and Morphological Sciences, University Center Padre Albino (UNIFIPA), Catanduva 15809-144, SP, Brazil; (A.P.G.); (S.d.S.C.); (H.R.S.)
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Marinônio Lopes Cornélio
- Department of Phisics, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil; (Í.P.C.); (M.L.C.)
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University, (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
- Post Graduate Program in Structural and Functional Biology, Escola Paulista de Medicina (UNIFESP-EPM), Federal University of São Paulo, São Paulo 04023-062, SP, Brazil
- Advanced Research Center in Medicine (CEPAM), União das Faculdades dos Grandes Lagos (Unilago), São José do Rio Preto 15030-070, SP, Brazil
| |
Collapse
|
30
|
Smith JR. Having impact. Clin Exp Ophthalmol 2021; 49:537-539. [PMID: 34351694 DOI: 10.1111/ceo.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justine R Smith
- Flinders College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Al-Halhouli A, Albagdady A, Alawadi J, Abeeleh MA. Monitoring Symptoms of Infectious Diseases: Perspectives for Printed Wearable Sensors. MICROMACHINES 2021; 12:620. [PMID: 34072174 PMCID: PMC8229808 DOI: 10.3390/mi12060620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Infectious diseases possess a serious threat to the world's population, economies, and healthcare systems. In this review, we cover the infectious diseases that are most likely to cause a pandemic according to the WHO (World Health Organization). The list includes COVID-19, Crimean-Congo Hemorrhagic Fever (CCHF), Ebola Virus Disease (EBOV), Marburg Virus Disease (MARV), Lassa Hemorrhagic Fever (LHF), Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), Nipah Virus diseases (NiV), and Rift Valley fever (RVF). This review also investigates research trends in infectious diseases by analyzing published research history on each disease from 2000-2020 in PubMed. A comprehensive review of sensor printing methods including flexographic printing, gravure printing, inkjet printing, and screen printing is conducted to provide guidelines for the best method depending on the printing scale, resolution, design modification ability, and other requirements. Printed sensors for respiratory rate, heart rate, oxygen saturation, body temperature, and blood pressure are reviewed for the possibility of being used for disease symptom monitoring. Printed wearable sensors are of great potential for continuous monitoring of vital signs in patients and the quarantined as tools for epidemiological screening.
Collapse
Affiliation(s)
- Ala’aldeen Al-Halhouli
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
- Faculty of Engineering, Middle East University, Amman 11831, Jordan
| | - Ahmed Albagdady
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
| | - Ja’far Alawadi
- NanoLab/Mechatronics Engineering Department, School of Applied Technical Sciences, German Jordanian University (GJU), Amman 11180, Jordan; (A.A.); (J.A.)
| | - Mahmoud Abu Abeeleh
- Department of Surgery, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan;
| |
Collapse
|
32
|
Touhami S, Leclercq M, Stanescu-Segall D, Touitou V, Bodaghi B. Differential Diagnosis of Vitritis in Adult Patients. Ocul Immunol Inflamm 2021; 29:786-795. [PMID: 34003716 DOI: 10.1080/09273948.2021.1898001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The term "vitritis" refers to the presence of a cellular infiltration of the vitreous body, usually in the context of an intraocular inflammation, but not exclusively. Intermediate uveitis is the most prominent cause of vitritis, including infectious and auto-immune/auto-inflammatory etiologies. Corticosteroids and immunosuppressive therapies should not be started before ruling out the infectious causes of vitritis, especially in immunosuppressed individuals. Other situations can mimic intermediate uveitis such as amyloidosis and ocular tumors. Primary intraocular lymphoma should always be suspected in case of vitreous infiltrations in individuals aged over 50 years.
Collapse
Affiliation(s)
- Sarah Touhami
- Department of Ophthalmology, Reference Center in Rare Diseases, DHU Sight Restore, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Mathilde Leclercq
- Department of Ophthalmology, Reference Center in Rare Diseases, DHU Sight Restore, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Dinu Stanescu-Segall
- Department of Ophthalmology, Reference Center in Rare Diseases, DHU Sight Restore, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France.,Centre Nord Exploration Ophtalmologique, Lille, France
| | - Valérie Touitou
- Department of Ophthalmology, Reference Center in Rare Diseases, DHU Sight Restore, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Bahram Bodaghi
- Department of Ophthalmology, Reference Center in Rare Diseases, DHU Sight Restore, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
33
|
Singh S, Sawant OB, Mian SI, Kumar A. Povidone-Iodine Attenuates Viral Replication in Ocular Cells: Implications for Ocular Transmission of RNA Viruses. Biomolecules 2021; 11:753. [PMID: 34069869 PMCID: PMC8157382 DOI: 10.3390/biom11050753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Several RNA viruses, including SARS-CoV-2, can infect or use the eye as an entry portal to cause ocular or systemic diseases. Povidone-Iodine (PVP-I) is routinely used during ocular surgeries and eye banking as a cost-effective disinfectant due to its broad-spectrum antimicrobial activity, including against viruses. However, whether PVP-I can exert antiviral activities in virus-infected cells remains elusive. In this study, using Zika (ZIKV) and Chikungunya (CHIKV) virus infection of human corneal and retinal pigment epithelial cells, we report antiviral mechanisms of PVP-I. Our data showed that PVP-I, even at the lowest concentration (0.01%), drastically reduced viral replication in corneal and retinal cells without causing cellular toxicity. Antiviral effects of PVP-I against ZIKV and CHIKV were mediated by direct viral inactivation, thus attenuating the ability of the virus to infect host cells. Moreover, one-minute PVP-I exposure of infected ocular cells drastically reduced viral replication and the production of infectious progeny virions. Furthermore, viral-induced (CHIKV) expression of inflammatory genes (TNF-α, IL-6, IL-8, and IL1β) were markedly reduced in PVP-I treated corneal epithelial cells. Together, our results demonstrate potent antiviral effects of PVP-I against ZIKV and CHIKV infection of ocular cells. Thus, a low dose of PVP-I can be used during tissue harvesting for corneal transplants to prevent potential transmission of RNA viruses via infected cells.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Onkar B. Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH 44103, USA;
| | - Shahzad I. Mian
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
34
|
Ryan FJ, Carr JM, Furtado JM, Ma Y, Ashander LM, Simões M, Oliver GF, Granado GB, Dawson AC, Michael MZ, Appukuttan B, Lynn DJ, Smith JR. Zika Virus Infection of Human Iris Pigment Epithelial Cells. Front Immunol 2021; 12:644153. [PMID: 33968035 PMCID: PMC8100333 DOI: 10.3389/fimmu.2021.644153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
During recent Zika epidemics, adults infected with Zika virus (ZIKV) have developed organ-specific inflammatory complications. The most serious Zika-associated inflammatory eye disease is uveitis, which is commonly anterior in type, affecting both eyes and responding to corticosteroid eye drops. Mechanisms of Zika-associated anterior uveitis are unknown, but ZIKV has been identified in the aqueous humor of affected individuals. The iris pigment epithelium is a target cell population in viral anterior uveitis, and it acts to maintain immune privilege within the anterior eye. Interactions between ZIKV and human iris pigment epithelial cells were investigated with infectivity assays and RNA-sequencing. Primary cell isolates were prepared from eyes of 20 cadaveric donors, and infected for 24 hours with PRVABC59 strain ZIKV or incubated uninfected as control. Cytoimmunofluorescence, RT-qPCR on total cellular RNA, and focus-forming assays of culture supernatant showed cell isolates were permissive to infection, and supported replication and release of infectious ZIKV. To explore molecular responses of cell isolates to ZIKV infection at the whole transcriptome level, RNA was sequenced on the Illumina NextSeq 500 platform, and results were aligned to the human GRCh38 genome. Multidimensional scaling showed clear separation between transcriptomes of infected and uninfected cell isolates. Differential expression analysis indicated a vigorous molecular response of the cell to ZIKV: 7,935 genes were differentially expressed between ZIKV-infected and uninfected cells (FDR < 0.05), and 99% of 613 genes that changed at least two-fold were up-regulated. Reactome and KEGG pathway and Gene Ontology enrichment analyses indicated strong activation of viral recognition and defense, in addition to biosynthesis processes. A CHAT network included 6275 molecular nodes and 24 contextual hubs in the cell response to ZIKV infection. Receptor-interacting serine/threonine kinase 1 (RIPK1) was the most significantly connected contextual hub. Correlation of gene expression with read counts assigned to the ZIKV genome identified a negative correlation between interferon signaling and viral load across isolates. This work represents the first investigation of mechanisms of Zika-associated anterior uveitis using an in vitro human cell model. The results suggest the iris pigment epithelium mounts a molecular response that limits intraocular pathology in most individuals.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Jillian M Carr
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - João M Furtado
- Ophthalmology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yuefang Ma
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Liam M Ashander
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Milena Simões
- Ophthalmology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Genevieve F Oliver
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - G Bracho Granado
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Abby C Dawson
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Michael Z Michael
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Binoy Appukuttan
- Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia.,Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| | - Justine R Smith
- Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, Australia.,Flinders University College of Medicine and Public Health, Bedford Park, SA, Australia
| |
Collapse
|
35
|
Venkatesh A, Patel R, Goyal S, Rajaratnam T, Sharma A, Hossain P. Ocular manifestations of emerging viral diseases. Eye (Lond) 2021; 35:1117-1139. [PMID: 33514902 PMCID: PMC7844788 DOI: 10.1038/s41433-020-01376-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging infectious diseases (EIDs) are an increasing threat to public health on a global scale. In recent times, the most prominent outbreaks have constituted RNA viruses, spreading via droplets (COVID-19 and Influenza A H1N1), directly between humans (Ebola and Marburg), via arthropod vectors (Dengue, Zika, West Nile, Chikungunya, Crimean Congo) and zoonotically (Lassa fever, Nipah, Rift Valley fever, Hantaviruses). However, specific approved antiviral therapies and vaccine availability are scarce, and public health measures remain critical. Patients can present with a spectrum of ocular manifestations. Emerging infectious diseases should therefore be considered in the differential diagnosis of ocular inflammatory conditions in patients inhabiting or returning from endemic territories, and more general vigilance is advisable in the context of a global pandemic. Eye specialists are in a position to facilitate swift diagnosis, improve clinical outcomes, and contribute to wider public health efforts during outbreaks. This article reviews those emerging viral diseases associated with reports of ocular manifestations and summarizes details pertinent to practicing eye specialists.
Collapse
Affiliation(s)
- Ashwin Venkatesh
- grid.5335.00000000121885934School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ravi Patel
- grid.439257.e0000 0000 8726 5837Moorfields Eye Hospital, London, UK
| | - Simran Goyal
- grid.5335.00000000121885934School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Timothy Rajaratnam
- grid.5335.00000000121885934School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anant Sharma
- grid.439257.e0000 0000 8726 5837Moorfields Eye Hospital, London, UK
| | - Parwez Hossain
- grid.430506.4Eye Unit, University Hospitals Southampton NHS Foundation Trust, Southampton, UK ,grid.5491.90000 0004 1936 9297Clinical Experimental Sciences, Faculty of Medicine, Univeristy of Southampton, Southampton, UK
| |
Collapse
|
36
|
Radosavljevic A, Agarwal M, Chee SP, Zierhut M. Epidemiology of Viral Induced Anterior Uveitis. Ocul Immunol Inflamm 2021; 30:297-309. [PMID: 33617392 DOI: 10.1080/09273948.2020.1853177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: Viral agents are the most common cause of infectious anterior uveitis worldwide. The purpose of this review is to analyze the frequency, gender and racial differences of viral anterior uveitis (VAU) in various populations.Methods: Systematized literature review of epidemiological reports of VAU cited in PubMed, EMBASE and the Cochrane Library database published until June 30th, 2020.Results: A total of 12 clinical studies on epidemiology of definite VAU and 36 clinical studies of presumed VAU were identified. Members of Herpesviridae family represent the most common causes of VAU. Other less frequently reported causes, such as rubella and endemic viruses (HTLV-1, Chikungunya, Dengue, Ebola, Zika virus) were also analyzed.Conclusion: HSV, VZV are prevalent worldwide. CMV is more frequent in Asia, and rubella in the West. However, due to globalization and air travel, HTLV-1, Chikungunya, Dengue and Ebola may become important causes of VAU across the world.
Collapse
Affiliation(s)
| | - Mamta Agarwal
- Uveitis & Cornea Services, Sankara Nethralaya, Chennai, India
| | - Soon Phaik Chee
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Duke-NUS Medical School, Singapore
| | - Manfred Zierhut
- Centre for Ophthalmology, University Tubingen, Tubingen, Germany
| |
Collapse
|
37
|
Brandão‐de‐Resende C, Diniz‐Filho A, Almeida Brito F, Vasconcelos‐Santos DV. SARS‐CoV‐2 and COVID‐19 for the ophthalmologist. Clin Exp Ophthalmol 2020; 49:70-80. [DOI: 10.1111/ceo.13877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Camilo Brandão‐de‐Resende
- Hospital São Geraldo Hospital das Clínicas da Universidade Federal de Minas Gerais Belo Horizonte Brazil
- Departamento de Oftalmologia e Otorrinolaringologia Faculdade de Medicina da Universidade Federal de Minas Gerais Belo Horizonte Brazil
- Programa de Pós‐Graduação em Ciências da Saúde, Infectologia e Medicina Tropical Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Alberto Diniz‐Filho
- Hospital São Geraldo Hospital das Clínicas da Universidade Federal de Minas Gerais Belo Horizonte Brazil
- Departamento de Oftalmologia e Otorrinolaringologia Faculdade de Medicina da Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Fabiano Almeida Brito
- Departamento de Propedêutica Complementar Faculdade de Medicina da Universidade Federal de Minas Gerais Belo Horizonte Brazil
- Assessoria Científica Instituto Hermes Pardini Belo Horizonte Brazil
| | - Daniel Vitor Vasconcelos‐Santos
- Hospital São Geraldo Hospital das Clínicas da Universidade Federal de Minas Gerais Belo Horizonte Brazil
- Departamento de Oftalmologia e Otorrinolaringologia Faculdade de Medicina da Universidade Federal de Minas Gerais Belo Horizonte Brazil
- Programa de Pós‐Graduação em Ciências da Saúde, Infectologia e Medicina Tropical Universidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
38
|
Brandão-de-Resende C, Diniz-Filho A, Vasconcelos-Santos DV. Seeking clarity on retinal findings in patients with COVID-19. Lancet 2020; 396:e37. [PMID: 32950099 PMCID: PMC7498233 DOI: 10.1016/s0140-6736(20)31918-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Camilo Brandão-de-Resende
- Uveitis Unit, Hospital São Geraldo-Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil; Glaucoma Unit, Hospital São Geraldo-Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil; Departamento de Oftalmologia e Otorrinolaringologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Programa de Pós-Graduação em Ciências da Saúde Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alberto Diniz-Filho
- Glaucoma Unit, Hospital São Geraldo-Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil; Departamento de Oftalmologia e Otorrinolaringologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel V Vasconcelos-Santos
- Uveitis Unit, Hospital São Geraldo-Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil; Departamento de Oftalmologia e Otorrinolaringologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Programa de Pós-Graduação em Ciências da Saúde Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
39
|
Smith JR. Vision in 2020 for
Clinical and Experimental Ophthalmology. Clin Exp Ophthalmol 2020; 48:285-286. [DOI: 10.1111/ceo.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Singh S, Singh PK, Suhail H, Arumugaswami V, Pellett PE, Giri S, Kumar A. AMP-Activated Protein Kinase Restricts Zika Virus Replication in Endothelial Cells by Potentiating Innate Antiviral Responses and Inhibiting Glycolysis. THE JOURNAL OF IMMUNOLOGY 2020; 204:1810-1824. [PMID: 32086387 DOI: 10.4049/jimmunol.1901310] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
Abstract
Viruses are known to perturb host cellular metabolism to enable their replication and spread. However, little is known about the interactions between Zika virus (ZIKV) infection and host metabolism. Using primary human retinal vascular endothelial cells and an established human endothelial cell line, we investigated the role of AMP-activated protein kinase (AMPK), a master regulator of energy metabolism, in response to ZIKV challenge. ZIKV infection caused a time-dependent reduction in the active phosphorylated state of AMPK and of its downstream target acetyl-CoA carboxylase. Pharmacological activation of AMPK using 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), metformin, and a specific AMPKα activator (GSK621) attenuated ZIKV replication. This activity was reversed by an AMPK inhibitor (compound C). Lentivirus-mediated knockdown of AMPK and the use of AMPKα-/- mouse embryonic fibroblasts provided further evidence that AMPK has an antiviral effect on ZIKV replication. Consistent with its antiviral effect, AMPK activation potentiated the expression of genes with antiviral properties (e.g., IFNs, OAS2, ISG15, and MX1) and inhibited inflammatory mediators (e.g., TNF-α and CCL5). Bioenergetic analysis showed that ZIKV infection evokes a glycolytic response, as evidenced by elevated extracellular acidification rate and increased expression of key glycolytic genes (GLUT1, HK2, TPI, and MCT4); activation of AMPK by AICAR treatment reduced this response. Consistent with this, 2-deoxyglucose, an inhibitor of glycolysis, augmented AMPK activity and attenuated ZIKV replication. Thus, our study demonstrates that the anti-ZIKV effect of AMPK signaling in endothelial cells is mediated by reduction of viral-induced glycolysis and enhanced innate antiviral responses.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201
| | - Pawan Kumar Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201
| | - Hamid Suhail
- Department of Neurology, Henry Ford Health Systems, Detroit, MI 48202
| | | | - Philip E Pellett
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health Systems, Detroit, MI 48202
| | - Ashok Kumar
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201; .,Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW There are an increasing number of publications related to dengue ophthalmic manifestations and multimodality imaging related to dengue. This review summarizes the current literature, describe ocular manifestations, current using of ocular imaging/investigations, and management of ocular dengue. RECENT FINDINGS Ocular manifestations of dengue can be present in many stages of dengue fever including after the resolution of systemic disease. Most cases of ocular dengue will exhibit an improvement in vision spontaneously over time. Multimodal imaging such as optical coherence tomography, optical coherence tomography angiography, near-infrared imaging, and microperimetry plays an important role in the diagnosis, follow-up, quantitative measure, and help to understand the disease progression. SUMMARY Dengue fever can lead to a variety of ocular manifestations. The mechanisms underlying dengue-related ocular complications remain unclear. Immune-mediated mechanisms and direct viral invasion are thought to play an important role. Ophthalmologists should carefully assess patients with dengue-related ophthalmic disease because some patients may have poor visual acuity and exhibit refractoriness to treatment. Treatment with systemic corticosteroids may benefit those patients with poor presenting visual acuity, progressive ocular symptoms, and lesions involving the optic nerve and/or threatening the macula.
Collapse
|
42
|
Khieu C, Kongyai N, Pathanapitoon K, Van Der Eijk AA, Rothova A. Causes of Hypertensive Anterior Uveitis in Thailand. Ocul Immunol Inflamm 2019; 28:559-565. [DOI: 10.1080/09273948.2019.1678651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chansathya Khieu
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Natedao Kongyai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kessara Pathanapitoon
- Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Aniki Rothova
- Department of Ophthalmology, Erasmus Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Fernández-Rivas G, Diaz-Aljaro P, Ávila M, Ruiz-Bilbao S. An unusual presentation of uveitis in a HIV-infected late presenter patient. Enferm Infecc Microbiol Clin 2019; 38:135-137. [PMID: 31500878 DOI: 10.1016/j.eimc.2019.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Gema Fernández-Rivas
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Hospital Universitari Germans Trias i Pujol, "Department of Genetics and Microbiology", Universitat Autònoma de Barcelona, Badalona, Spain.
| | - Pablo Diaz-Aljaro
- Ophthalmology Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marta Ávila
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Susana Ruiz-Bilbao
- Ophthalmology Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|