1
|
Huynh DT, Nolfi E, Medfai L, van Ulsen P, Jong WSP, Sijts AJAM, Luirink J. Intranasal delivery of Salmonella OMVs decorated with Chlamydia trachomatis antigens induces specific local and systemic immune responses. Hum Vaccin Immunother 2024; 20:2330768. [PMID: 38517203 PMCID: PMC10962599 DOI: 10.1080/21645515.2024.2330768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens. In this proof-of-concept study, we evaluated the immunogenicity of Salmonella OMVs decorated with C. trachomatis MOMP-derived CTH522 or HtrA antigens in mice. Following a prime-boost intranasal vaccination approach, two OMV-based C. trachomatis vaccines elicited significant humoral responses specific to the antigens in both systemic and vaginal compartments. Furthermore, we demonstrated strong antigen-specific IFN-γ and IL17a responses in splenocytes and cervical lymph node cells of vaccinated mice, indicating CD4+ Th1 and Th17 biased immune responses. Notably, the OMV-CTH522 vaccine also induced the production of spleen-derived CD8+ T cells expressing IFN-γ. In conclusion, these results highlight the potential of OMV-based C. trachomatis vaccines for successful use in future challenge studies and demonstrate the suitability of our modular OMV platform for intranasal vaccine applications.
Collapse
Affiliation(s)
- Dung T. Huynh
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emanuele Nolfi
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lobna Medfai
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter van Ulsen
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Alice J. A. M. Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joen Luirink
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Zarzecka U, Skorko-Glonek J. Intricate Structure-Function Relationships: The Case of the HtrA Family Proteins from Gram-Negative Bacteria. Int J Mol Sci 2024; 25:13182. [PMID: 39684892 DOI: 10.3390/ijms252313182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Proteolytic enzymes play key roles in living organisms. Because of their potentially destructive action of degrading other proteins, their activity must be very tightly controlled. The evolutionarily conserved proteins of the HtrA family are an excellent example illustrating strategies for regulating enzymatic activity, enabling protease activation in response to an appropriate signal, and protecting against uncontrolled proteolysis. Because HtrA homologs play key roles in the virulence of many Gram-negative bacterial pathogens, they are subject to intense investigation as potential therapeutic targets. Model HtrA proteins from bacterium Escherichia coli are allosteric proteins with reasonably well-studied properties. Binding of appropriate ligands induces very large structural changes in these enzymes, including changes in the organization of the oligomer, which leads to the acquisition of the active conformation. Properly coordinated events occurring during the process of HtrA activation ensure proper functioning of HtrA and, consequently, ensure fitness of bacteria. The aim of this review is to present the current state of knowledge on the structure and function of the exemplary HtrA family proteins from Gram-negative bacteria, including human pathogens. Special emphasis is paid to strategies for regulating the activity of these enzymes.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Kumari P, Yadav S, Sarkar S, Satheeshkumar PK. Cleavage of cell junction proteins as a host invasion strategy in leptospirosis. Appl Microbiol Biotechnol 2024; 108:119. [PMID: 38204132 PMCID: PMC10781872 DOI: 10.1007/s00253-023-12945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extracellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/therapeutic aspects of leptospirosis will also be discussed. KEY POINTS: • The review focussed on the cell junction cleavage proteins in bacterial pathogenesis • Cell junction disruptors from Leptospira genome are identified using bioinformatics • The review provides insights into the therapeutic/diagnostic interventions possible.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suhani Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sresha Sarkar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Liu J, Zhang Z, Pu W, Pan X, Li P, Bai Q, Liang S, Li C, Yu Y, Yao H, Ma J. A multi-epitope subunit vaccine providing broad cross-protection against diverse serotypes of Streptococcus suis. NPJ Vaccines 2024; 9:216. [PMID: 39543108 PMCID: PMC11564553 DOI: 10.1038/s41541-024-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Streptococcus suis infection represents a major challenge in pig farming and public health due to its zoonotic potential and diverse serotypes, while existing vaccines lack effective cross-protection. This study employed reverse vaccinology and immunoinformatics to identify 8 conserved proteins across 11 prevalent serotypes of S. suis. 16 candidate epitopes were selected to design three multi-epitope antigens against S. suis (designated as MEASs), which fused with a dendritic cell-targeting peptide to improve antigen presentation in host. Purified MEASs displayed favorable cross-reactogenicity against 29 serotype-specific antiserums. Robust humoral and cellular immune responses can be induced by MEAS 1 and MEAS 3 in a mouse model, which provided substantial protection against virulent strains from two different serotypes. In particular, their immune serums exhibited positive opsonization effects within bloodstream and macrophage phagocytosis. Taken together, we identified two promising MEASs with excellent cross-protection, offering potential in preventing S. suis infections in a mouse model.
Collapse
Affiliation(s)
- Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Zhen Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Wanxia Pu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Song Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Caiying Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Yong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
5
|
Colomer-Winter C, Yong AMH, Chong KKL, Veleba M, Choo PY, Gao IH, Matysik A, Ho FK, Chen SL, Kline KA. The HtrA chaperone monitors sortase-assembled pilus biogenesis in Enterococcus faecalis. PLoS Genet 2024; 20:e1011071. [PMID: 39102428 PMCID: PMC11326707 DOI: 10.1371/journal.pgen.1011071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/15/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Sortase-assembled pili contribute to virulence in many Gram-positive bacteria. In Enterococcus faecalis, the endocarditis and biofilm-associated pilus (Ebp) is polymerized on the membrane by sortase C (SrtC) and attached to the cell wall by sortase A (SrtA). In the absence of SrtA, polymerized pili remain anchored to the membrane (i.e. off-pathway). Here we show that the high temperature requirement A (HtrA) bifunctional chaperone/protease of E. faecalis is a quality control system that clears aberrant off-pathway pili from the cell membrane. In the absence of HtrA and SrtA, accumulation of membrane-bound pili leads to cell envelope stress and partially induces the regulon of the ceftriaxone resistance-associated CroRS two-component system, which in turn causes hyper-piliation and cell morphology alterations. Inactivation of croR in the OG1RF ΔsrtAΔhtrA background partially restores the observed defects of the ΔsrtAΔhtrA strain, supporting a role for CroRS in the response to membrane perturbations. Moreover, absence of SrtA and HtrA decreases basal resistance of E. faecalis against cephalosporins and daptomycin. The link between HtrA, pilus biogenesis and the CroRS two-component system provides new insights into the E. faecalis response to endogenous membrane perturbations.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Adeline M. H. Yong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Iris Hanxing Gao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Swaine L. Chen
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Genome #02–01, Singapore, Singapore
| | - Kimberly A. Kline
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Bloch S, Hager-Mair FF, Bacher J, Tomek MB, Janesch B, Andrukhov O, Schäffer C. Investigating the role of a Tannerella forsythia HtrA protease in host protein degradation and inflammatory response. FRONTIERS IN ORAL HEALTH 2024; 5:1425937. [PMID: 39035711 PMCID: PMC11257890 DOI: 10.3389/froh.2024.1425937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Degradation of host proteins by bacterial proteases leads to the subversion of the host response and disruption of oral epithelial integrity, which is considered an essential factor in the progression of periodontitis. High-temperature requirement A (HtrA) protease, which is critical for bacterial survival and environmental adaptation, is found in several oral bacteria, including the periodontal pathogen Tannerella forsythia. This study investigated the proteolytic activity of HtrA from T. forsythia and its ability to modulate the host response. Methods HtrA of T. forsythia was identified bioinformatically and produced as a recombinant protein. T. forsythia mutants with depleted and restored HtrA production were constructed. The effect of T. forsythia wild-type, mutants and recombinant HtrA on the degradation of casein and E-cadherin was tested in vitro. Additionally, the responses of human gingival fibroblasts and U937 macrophages to the different HtrA-stimuli were investigated and compared to those triggered by the HtrA-deficient mutant. Results T. forsythia wild-type producing HtrA as well as the recombinant enzyme exhibited proteolytic activity towards casein and E-cadherin. No cytotoxic effect of either the wild-type, T. forsythia mutants or rHtrA on the viability of host cells was found. In hGFB and U937 macrophages, both T. forsythia species induced an inflammatory response of similar magnitude, as indicated by gene and protein expression of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor α and monocyte chemoattractant protein (MCP)-1. Recombinant HtrA had no significant effect on the inflammatory response in hGFBs, whereas in U937 macrophages, it induced a transient inflammatory response at the early stage of infection. Conclusion HtrA of T. forsythia exhibit proteolytic activity towards the host adhesion molecule E-cadherin and has the potential to influence the host response. Its role in the progression of periodontitis needs further clarification.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Johanna Bacher
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus B. Tomek
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Bettina Janesch
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
7
|
Tsaplina O. The Balance between Protealysin and Its Substrate, the Outer Membrane Protein OmpX, Regulates Serratia proteamaculans Invasion. Int J Mol Sci 2024; 25:6159. [PMID: 38892348 PMCID: PMC11172720 DOI: 10.3390/ijms25116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Serratia are opportunistic bacteria, causing infections in plants, insects, animals and humans under certain conditions. The development of bacterial infection in the human body involves several stages of host-pathogen interaction, including entry into non-phagocytic cells to evade host immune cells. The facultative pathogen Serratia proteamaculans is capable of penetrating eukaryotic cells. These bacteria synthesize an actin-specific metalloprotease named protealysin. After transformation with a plasmid carrying the protealysin gene, noninvasive E. coli penetrate eukaryotic cells. This suggests that protealysin may play a key role in S. proteamaculans invasion. This review addresses the mechanisms underlying protealysin's involvement in bacterial invasion, highlighting the main findings as follows. Protealysin can be delivered into the eukaryotic cell by the type VI secretion system and/or by bacterial outer membrane vesicles. By cleaving actin in the host cell, protealysin can mediate the reversible actin rearrangements required for bacterial invasion. However, inactivation of the protealysin gene leads to an increase, rather than decrease, in the intensity of S. proteamaculans invasion. This indicates the presence of virulence factors among bacterial protealysin substrates. Indeed, protealysin cleaves the virulence factors, including the bacterial surface protein OmpX. OmpX increases the expression of the EGFR and β1 integrin, which are involved in S. proteamaculans invasion. It has been shown that an increase in the invasion of genetically modified S. proteamaculans may be the result of the accumulation of full-length OmpX on the bacterial surface, which is not cleaved by protealysin. Thus, the intensity of the S. proteamaculans invasion is determined by the balance between the active protealysin and its substrate OmpX.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
8
|
Zang X, Zhang J, Jiang Y, Feng T, Cui Y, Wang H, Cui Z, Dang G, Liu S. Serine protease Rv2569c facilitates transmission of Mycobacterium tuberculosis via disrupting the epithelial barrier by cleaving E-cadherin. PLoS Pathog 2024; 20:e1012214. [PMID: 38722857 PMCID: PMC11081392 DOI: 10.1371/journal.ppat.1012214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Epithelial cells function as the primary line of defense against invading pathogens. However, bacterial pathogens possess the ability to compromise this barrier and facilitate the transmigration of bacteria. Nonetheless, the specific molecular mechanism employed by Mycobacterium tuberculosis (M.tb) in this process is not fully understood. Here, we investigated the role of Rv2569c in M.tb translocation by assessing its ability to cleave E-cadherin, a crucial component of cell-cell adhesion junctions that are disrupted during bacterial invasion. By utilizing recombinant Rv2569c expressed in Escherichia coli and subsequently purified through affinity chromatography, we demonstrated that Rv2569c exhibited cell wall-associated serine protease activity. Furthermore, Rv2569c was capable of degrading a range of protein substrates, including casein, fibrinogen, fibronectin, and E-cadherin. We also determined that the optimal conditions for the protease activity of Rv2569c occurred at a temperature of 37°C and a pH of 9.0, in the presence of MgCl2. To investigate the function of Rv2569c in M.tb, a deletion mutant of Rv2569c and its complemented strains were generated and used to infect A549 cells and mice. The results of the A549-cell infection experiments revealed that Rv2569c had the ability to cleave E-cadherin and facilitate the transmigration of M.tb through polarized A549 epithelial cell layers. Furthermore, in vivo infection assays demonstrated that Rv2569c could disrupt E-cadherin, enhance the colonization of M.tb, and induce pathological damage in the lungs of C57BL/6 mice. Collectively, these results strongly suggest that M.tb employs the serine protease Rv2569c to disrupt epithelial defenses and facilitate its systemic dissemination by crossing the epithelial barrier.
Collapse
Affiliation(s)
- Xinxin Zang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jiajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanyan Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Tingting Feng
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yingying Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Ziyin Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guanghui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
9
|
Wang ST, Yang HW, Zhang WL, Li Z, Ji R. Disruption of the gastric epithelial barrier in Correa's cascade: Clinical evidence via confocal endomicroscopy. Helicobacter 2024; 29:e13065. [PMID: 38443332 DOI: 10.1111/hel.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Gastric epithelial barrier disruption constitutes a crucial step in gastric cancer (GC). We investigated these disruptions during the Correa's cascade timeline to correlate epithelial barrier dysfunction. MATERIALS AND METHODS This study was conducted as a single-center, non-randomized clinical trial in China from May 2019 to October 2022. Patients with chronic atrophic gastritis (CAG), gastric intestinal metaplasia (GIM), low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and intramucosal carcinoma underwent probe-based confocal laser endomicroscopy (pCLE). The pCLE scoring system was used to assess gastric epithelial barrier disruption semi-quantitatively. RESULTS We enrolled 95 patients who underwent a pCLE examination. The control group consisted of 15 individuals, and the experimental group included 17 patients with CAG, 27 patients with GIM, 20 patients with LGIN, and 16 patients with early gastric cancer (EGC). Apart from CAG, which showed no significant difference compared to the control group, a significantly higher incidence of gastric epithelial barrier damage was found in the GIM, LGIN, and EGC groups compared to the control group (Kruskal-Wallis H test = 69.295, p < 0.001). There is no difference in LGIN patients between GIM and LGIN areas, and there is no difference between the two groups compared with the EGC group. The intestinal metaplasia area in LGIN patients causes more severe gastric epithelial damage compared to that in non-LGIN patients. Additionally, compared to control group, a significant difference (p < 0.001) was noted between individuals with Helicobacter pylori-positive atrophic gastritis and those with IM, whereas no significant difference (p > 0.05) was observed among individuals with H. pylori-negative atrophic gastritis. CONCLUSIONS The gastric epithelial barrier remains dysfunctional from the initiation of H. pylori infection to GC progression. Beyond the "point of no return," subsequent carcinogenesis processes may be attributed to other mechanisms.
Collapse
Affiliation(s)
- Shao-Tong Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Hua-Wei Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Lin Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, China
| | - Rui Ji
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for digestive disease, Jinan, China
| |
Collapse
|
10
|
Mordzińska-Rak A, Szałapata K, Wydrych J, Gagoś M, Jarosz-Wilkołazka A. Attachment of Proteolytic Enzyme Inhibitors to Vascular Prosthesis-An Analysis of Binding and Antimicrobial Properties. Molecules 2024; 29:935. [PMID: 38474448 DOI: 10.3390/molecules29050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Prosthetic infections are associated with high morbidity, mortality, and relapse rates, making them still a serious problem for implantology. Staphylococcus aureus is one of the most common bacterial pathogens causing prosthetic infections. In response to the increasing rate of bacterial resistance to commonly used antibiotics, this work proposes a method for combating pathogenic microorganisms by modifying the surfaces of synthetic polymeric biomaterials using proteolytic enzyme inhibitors (serine protease inhibitors-4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride and puromycin). While using techniques based on the immobilization of biologically active molecules, it is important to monitor the changes occurring on the surface of the modified biomaterial, where spectroscopic techniques (e.g., FTIR) are ideal. ATR-FTIR measurements demonstrated that the immobilization of both inhibitors caused large structural changes on the surface of the tested vascular prostheses (polyester or polytetrafluoroethylene) and showed that they were covalently bonded to the surfaces of the biomaterials. Next, the bactericidal and antibiofilm activities of the tested serine protease inhibitors were determined using the CLSM microscopic technique with fluorescent staining. During LIVE/DEAD analyses, a significant decrease in the formation of Staphylococcus aureus biofilm after exposure to selected concentrations of native inhibitors (0.02-0.06 mg/mL for puromycin and 0.2-1 mg/mL for 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride) was demonstrated.
Collapse
Affiliation(s)
- Aleksandra Mordzińska-Rak
- Department of Biochemistry and Biotechnology, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland
| | - Katarzyna Szałapata
- Department of Biochemistry and Biotechnology, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland
| | - Jerzy Wydrych
- Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland
| |
Collapse
|
11
|
Sharafutdinov I, Tegtmeyer N, Rohde M, Olofsson A, Rehman ZU, Arnqvist A, Backert S. Campylobacter jejuni Surface-Bound Protease HtrA, but Not the Secreted Protease nor Protease in Shed Membrane Vesicles, Disrupts Epithelial Cell-to-Cell Junctions. Cells 2024; 13:224. [PMID: 38334616 PMCID: PMC10854787 DOI: 10.3390/cells13030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Fundamental functions of the intestinal epithelium include the digestion of food, absorption of nutrients, and its ability to act as the first barrier against intruding microbes. Campylobacter jejuni is a major zoonotic pathogen accounting for a substantial portion of bacterial foodborne illnesses. The germ colonizes the intestines of birds and is mainly transmitted to humans through the consumption of contaminated poultry meat. In the human gastrointestinal tract, the bacterium triggers campylobacteriosis that can progress to serious secondary disorders, including reactive arthritis, inflammatory bowel disease and Guillain-Barré syndrome. We recently discovered that C. jejuni serine protease HtrA disrupts intestinal epithelial barrier functions via cleavage of the tight and adherens junction components occludin, claudin-8 and E-cadherin. However, it is unknown whether epithelial damage is mediated by the secreted soluble enzyme, by HtrA contained in shed outer-membrane vesicles (OMVs) or by another mechanism that has yet to be identified. In the present study, we investigated whether soluble recombinant HtrA and/or purified OMVs induce junctional damage to polarized intestinal epithelial cells compared to live C. jejuni bacteria. By using electron and confocal immunofluorescence microscopy, we show that HtrA-expressing C. jejuni bacteria trigger efficient junctional cell damage, but not soluble purified HtrA or HtrA-containing OMVs, not even at high concentrations far exceeding physiological levels. Instead, we found that only bacteria with active protein biosynthesis effectively cleave junctional proteins, which is followed by paracellular transmigration of C. jejuni through the epithelial cell layer. These findings shed new light on the pathogenic activities of HtrA and virulence strategies of C. jejuni.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Annelie Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Zia ur Rehman
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| |
Collapse
|
12
|
Desiderato CK, Müller C, Schretzmeier A, Hasenauer KM, Gnannt B, Süpple B, Reiter A, Steier V, Oldiges M, Eikmanns BJ, Riedel CU. Optimized recombinant production of the bacteriocin garvicin Q by Corynebacterium glutamicum. Front Microbiol 2024; 14:1254882. [PMID: 38260893 PMCID: PMC10800739 DOI: 10.3389/fmicb.2023.1254882] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Bacteriocins are antimicrobial peptides applied in food preservation and are interesting candidates as alternatives to conventional antibiotics or as microbiome modulators. Recently, we established Corynebacterium glutamicum as a suitable production host for various bacteriocins including garvicin Q (GarQ). Here, we establish secretion of GarQ by C. glutamicum via the Sec translocon achieving GarQ titers of about 7 mg L-1 in initial fermentations. At neutral pH, the cationic peptide is efficiently adsorbed to the negatively charged envelope of producer bacteria limiting availability of the bacteriocin in culture supernatants. A combination of CaCl2 and Tween 80 efficiently reduces GarQ adsorption to C. glutamicum. Moreover, cultivation in minimal medium supplemented with CaCl2 and Tween 80 improves GarQ production by C. glutamicum to about 15 mg L-1 but Tween 80 resulted in reduced GarQ activity at later timepoints. Using a reporter strain and proteomic analyses, we identified HtrA, a protease associated with secretion stress, as another potential factor limiting GarQ production. Transferring production to HtrA-deficient C. glutamicum K9 improves GarQ titers to close to 40 mg L-1. Applying conditions of low aeration prevented loss in activity at later timepoints and improved GarQ titers to about 100 mg L-1. This is about 50-fold higher than previously shown with a C. glutamicum strain employing the native GarQ transporter GarCD for secretion and in the range of levels observed with the native producer Lactococcus petauri B1726. Additionally, we tested several synthetic variants of GarQ and were able to show that exchange of the methionine in position 5 to a phenylalanine (GarQM5F) results in markedly increased activity against Lactococcus lactis and Listeria monocytogenes. In summary, our findings shed light on several aspects of recombinant GarQ production that may also be of relevance for production with natural producers and other bacteriocins.
Collapse
Affiliation(s)
- Christian K. Desiderato
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Carolin Müller
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Schretzmeier
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Katharina M. Hasenauer
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bruno Gnannt
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Süpple
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Valentin Steier
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Bernhard J. Eikmanns
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Christian U. Riedel
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| |
Collapse
|
13
|
Öktem A, Núñez-Nepomuceno D, Ferrero-Bordera B, Walgraeve J, Seefried M, Gesell Salazar M, Steil L, Michalik S, Maaß S, Becher D, Mäder U, Völker U, van Dijl JM. Enhancing bacterial fitness and recombinant enzyme yield by engineering the quality control protease HtrA of Bacillus subtilis. Microbiol Spectr 2023; 11:e0177823. [PMID: 37819116 PMCID: PMC10715036 DOI: 10.1128/spectrum.01778-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In the expanding market of recombinant proteins, microbial cell factories such as Bacillus subtilis are key players. Microbial cell factories experience secretion stress during high-level production of secreted proteins, which can negatively impact product yield and cell viability. The CssRS two-component system and CssRS-regulated quality control proteases HtrA and HtrB play critical roles in the secretion stress response. HtrA has a presumptive dual function in protein quality control by exerting both chaperone-like and protease activities. However, its potential role as a chaperone has not been explored in B. subtilis. Here, we describe for the first time the beneficial effects of proteolytically inactive HtrA on α-amylase yields and overall bacterial fitness.
Collapse
Affiliation(s)
- Ayşegül Öktem
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Núñez-Nepomuceno
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Borja Ferrero-Bordera
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | | | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Soto Perezchica MM, Guerrero Barrera AL, Avelar Gonzalez FJ, Quezada Tristan T, Macias Marin O. Actinobacillus pleuropneumoniae, surface proteins and virulence: a review. Front Vet Sci 2023; 10:1276712. [PMID: 38098987 PMCID: PMC10720984 DOI: 10.3389/fvets.2023.1276712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/17/2023] Open
Abstract
Actinobacillus pleuropneumoniae (App) is a globally distributed Gram-negative bacterium that produces porcine pleuropneumonia. This highly contagious disease produces high morbidity and mortality in the swine industry. However, no effective vaccine exists to prevent it. The infection caused by App provokes characteristic lesions, such as edema, inflammation, hemorrhage, and necrosis, that involve different virulence factors. The colonization and invasion of host surfaces involved structures and proteins such as outer membrane vesicles (OMVs), pili, flagella, adhesins, outer membrane proteins (OMPs), also participates proteases, autotransporters, and lipoproteins. The recent findings on surface structures and proteins described in this review highlight them as potential immunogens for vaccine development.
Collapse
Affiliation(s)
- María M. Soto Perezchica
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Alma L. Guerrero Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Francisco J. Avelar Gonzalez
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Teodulo Quezada Tristan
- Departamento de Ciencias Veterinaria, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Osvaldo Macias Marin
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
15
|
Tokumon R, Sebastián I, Humbel BM, Okura N, Yamanaka H, Yamashiro T, Toma C. Degradation of p0071 and p120-catenin during adherens junction disassembly by Leptospira interrogans. Front Cell Infect Microbiol 2023; 13:1228051. [PMID: 37795382 PMCID: PMC10545952 DOI: 10.3389/fcimb.2023.1228051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Leptospira interrogans disseminates hematogenously to reach the target organs by disrupting epithelial adherens junctions (AJs), thus causing leptospirosis, which is a globally neglected zoonotic disease. L. interrogans induces E-cadherin (E-cad) endocytosis and cytoskeletal rearrangement during AJ disassembly, but the detailed mechanism remains unknown. Elucidation of AJ disassembly mechanisms will guide new approaches to developing vaccines and diagnostic methods. In this study, we combine proteomic and imaging analysis with chemical inhibition studies to demonstrate that disrupting the AJs of renal proximal tubule epithelial cells involves the degradation of two armadillo repeat-containing proteins, p0071 and p120-catenin, that stabilize E-cad at the plasma membrane. Combining proteasomal and lysosomal inhibitors substantially prevented p120-catenin degradation, and monolayer integrity destruction without preventing p0071 proteolysis. In contrast, the pan-caspase inhibitor Z-VAD-FMK inhibited p0071 proteolysis and displacement of both armadillo repeat-containing proteins from the cell-cell junctions. Our results show that L. interrogans induces p120-catenin and p0071 degradation, which mutually regulates E-cad stability by co-opting multiple cellular degradation pathways. This strategy may allow L. interrogans to disassemble AJs and disseminate through the body efficiently.
Collapse
Affiliation(s)
- Romina Tokumon
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Isabel Sebastián
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Bruno M. Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Microscopy Center, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hidenori Yamanaka
- Environmental Technology Department, Chemicals Evaluation and Research Institute, Saitama, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Claudia Toma
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
16
|
Sharafutdinov I, Tegtmeyer N, Linz B, Rohde M, Vieth M, Tay ACY, Lamichhane B, Tuan VP, Fauzia KA, Sticht H, Yamaoka Y, Marshall BJ, Backert S. A single-nucleotide polymorphism in Helicobacter pylori promotes gastric cancer development. Cell Host Microbe 2023; 31:1345-1358.e6. [PMID: 37490912 DOI: 10.1016/j.chom.2023.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) in various human genes are key factors in carcinogenesis. However, whether SNPs in bacterial pathogens are similarly crucial in cancer development is unknown. Here, we analyzed 1,043 genomes of the stomach pathogen Helicobacter pylori and pinpointed a SNP in the serine protease HtrA (position serine/leucine 171) that significantly correlates with gastric cancer. Our functional studies reveal that the 171S-to-171L mutation triggers HtrA trimer formation and enhances proteolytic activity and cleavage of epithelial junction proteins occludin and tumor-suppressor E-cadherin. 171L-type HtrA, but not 171S-HtrA-possessing H. pylori, inflicts severe epithelial damage, enhances injection of oncoprotein CagA into epithelial cells, increases NF-κB-mediated inflammation and cell proliferation through nuclear accumulation of β-catenin, and promotes host DNA double-strand breaks, collectively triggering malignant changes. These findings highlight the 171S/L HtrA mutation as a unique bacterial cancer-associated SNP and as a potential biomarker for risk predictions in H. pylori infections.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Alfred Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia
| | - Binit Lamichhane
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia
| | - Vo Phuoc Tuan
- Department of Endoscopy, Choray Hospital, Ho Chi Minh, Vietnam; Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan; Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barry J Marshall
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia; University of Western Australia, Marshall Centre, M504, Crawley, WA, Australia; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
17
|
Widen SA, Bes IC, Koreshova A, Pliota P, Krogull D, Burga A. Virus-like transposons cross the species barrier and drive the evolution of genetic incompatibilities. Science 2023; 380:eade0705. [PMID: 37384706 DOI: 10.1126/science.ade0705] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Horizontal gene transfer, the movement of genetic material between species, has been reported across all major eukaryotic lineages. However, the underlying mechanisms of transfer and their impact on genome evolution are still poorly understood. While studying the evolutionary origin of a selfish element in the nematode Caenorhabditis briggsae, we discovered that Mavericks, ancient virus-like transposons related to giant viruses and virophages, are one of the long-sought vectors of horizontal gene transfer. We found that Mavericks gained a novel herpesvirus-like fusogen in nematodes, leading to the widespread exchange of cargo genes between extremely divergent species, bypassing sexual and genetic barriers spanning hundreds of millions of years. Our results show how the union between viruses and transposons causes horizontal gene transfer and ultimately genetic incompatibilities in natural populations.
Collapse
Affiliation(s)
- Sonya A Widen
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Israel Campo Bes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Alevtina Koreshova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Pinelopi Pliota
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daniel Krogull
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
18
|
Yu WL, Pan JG, Qin RX, Lu ZH, Bai XH, Sun Y. TCS01 Two-Component System Influenced the Virulence of Streptococcus pneumoniae by Regulating PcpA. Infect Immun 2023; 91:e0010023. [PMID: 37052497 PMCID: PMC10187121 DOI: 10.1128/iai.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023] Open
Abstract
Streptococcus pneumoniae relies on two-component systems (TCSs) to regulate the processes of pathogenicity, osmotic pressure, chemotaxis, and energy metabolism. The TCS01 system of S. pneumoniae is composed of HK01 (histidine kinase) and RR01 (response regulator). Previous studies have reported that an rr01 mutant reduced the pneumococcal virulence in rat pneumonia, bacteremia, a nasopharyngeal model, and infective endocarditis. However, the mechanism of TCS01 (HK/RR01) regulating pneumococcal virulence remains unclear. Here, pneumococcal mutant strains Δrr01, Δhk01, and Δrr01&hk01 were constructed, and bacterial adhesion and invasion to A549 cells were compared. RNA sequencing was performed in D39 wild-type and Δrr01 strains, and transcript profile changes were analyzed. Differentially expressed virulence genes in the Δrr01 strain were screened out and identified by quantitative real-time PCR (qRT-PCR). Our results showed that pneumococcal mutant strains exhibited attenuated adhesion and invasion to A549 cells and differential transcript profiles. Results of qRT-PCR identification showed that the differential virulence genes screened out were downregulated. Among those changed virulence genes in the Δrr01 strain, the downregulated expression level of choline binding protein pcpA was the most obvious. Complementation of rr01 and overexpression of pcpA in the Δrr01 strain partially restored both pneumococcal adhesion and invasion, and rr01 complementation made the expression of pcpA upregulated. These findings revealed that rr01 influenced pneumococcal virulence by regulating pcpA.
Collapse
Affiliation(s)
- Wei-Li Yu
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jin-Ge Pan
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ru-Xue Qin
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhong-Hua Lu
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Hui Bai
- College of Life and Environment Sciences, Huangshan University, Huangshan, Anhui, China
| | - Yun Sun
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
19
|
Zarzecka U, Tegtmeyer N, Sticht H, Backert S. Trimer stability of Helicobacter pylori HtrA is regulated by a natural mutation in the protease domain. Med Microbiol Immunol 2023:10.1007/s00430-023-00766-9. [PMID: 37183214 DOI: 10.1007/s00430-023-00766-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
The human pathogen Helicobacter pylori is a major risk factor for gastric disease development. Serine protease HtrA is an important bacterial virulence factor that cleaves the cell junction proteins occludin, claudin-8 and E-cadherin, which causes gastric tissue damage. Using casein zymography, we discovered that HtrA trimer stability varies in clinical H. pylori strains. Subsequent sequence analyses revealed that HtrA trimer stability correlated with the presence of leucine or serine residue at position 171. The importance of these amino acids in determining trimer stability was confirmed by leucine-to-serine swapping experiments using isogenic H. pylori mutant strains as well as recombinant HtrA proteins. In addition, this sequence position displays a high sequence variability among various bacterial species, but generally exhibits a preference for hydrophilic amino acids. This natural L/S171 polymorphism in H. pylori may affect the protease activity of HtrA during infection, which could be of clinical importance and may determine gastric disease development.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
20
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
21
|
Fu Y, Maaβ S, Cavallo FM, de Jong A, Raangs E, Westra J, Buist G, Becher D, van Dijl JM. Differential Virulence of Aggregatibacter actinomycetemcomitans Serotypes Explained by Exoproteome Heterogeneity. Microbiol Spectr 2023; 11:e0329822. [PMID: 36541765 PMCID: PMC9927298 DOI: 10.1128/spectrum.03298-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a Gram-negative bacterial pathogen associated with periodontitis and nonoral diseases like rheumatoid arthritis and Alzheimer´s disease. Aa isolates with the serotypes a, b, and c are globally most prevalent. Importantly, isolates displaying these serotypes have different clinical presentations. While serotype b isolates are predominant in severe periodontitis, serotypes a and c are generally encountered in mild periodontitis or healthy individuals. It is currently unknown how these differences are reflected in the overall secretion of virulence factors. Therefore, this study was aimed at a comparative analysis of exoproteomes from different clinical Aa isolates with serotypes a, b, or c by mass spectrometry, and a subsequent correlation of the recorded exoproteome profiles with virulence. Overall, we identified 425 extracellular proteins. Significant differences in the exoproteome composition of isolates with different serotypes were observed in terms of protein identification and abundance. In particular, serotype a isolates presented more extracellular proteins than serotype b or c isolates. These differences are mirrored in their virulence in infection models based on human salivary gland epithelial cells and neutrophils. Remarkably, serotype a isolates displayed stronger adhesive capabilities and induced more lysis of epithelial cells and neutrophils than serotype b or c isolates. Conversely, serotype c isolates showed relatively low leukotoxicity, while provoking NETosis to similar extents as serotype a and b isolates. Altogether, we conclude that the differential virulence presentation by Aa isolates with the dominant serotypes a, b, or c can be explained by their exoproteome heterogeneity. IMPORTANCE Periodontitis is an inflammatory disease that causes progressive destruction of alveolar bone and supporting tissues around the teeth, ultimately resulting in tooth loss. The bacterium Aggregatibacter actinomycetemcomitans (Aa) is a prevalent causative agent of periodontitis, but this oral pathogen is also associated with serious extraoral diseases like rheumatoid arthritis and Alzheimer's disease. Clinical Aa isolates are usually distinguished by serotyping, because of known serotype-specific differences in virulence. Aa with serotype b is associated with aggressive forms of periodontitis, while isolates with serotypes a or c are usually encountered in cases of mild periodontitis or healthy individuals. The molecular basis for these differences in virulence was so far unknown. In the present study, we pinpoint serotype-specific differences in virulence factor production by clinical Aa isolates. We consider these findings important, because they provide new leads for future preventive or therapeutic approaches to fight periodontitis and associated morbidities.
Collapse
Affiliation(s)
- Yanyan Fu
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Sandra Maaβ
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Francis M. Cavallo
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Anne de Jong
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, Groningen, the Netherlands
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Girbe Buist
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Dörte Becher
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| |
Collapse
|
22
|
Linz B, Sharafutdinov I, Tegtmeyer N, Backert S. Evolution and Role of Proteases in Campylobacter jejuni Lifestyle and Pathogenesis. Biomolecules 2023; 13:biom13020323. [PMID: 36830692 PMCID: PMC9953165 DOI: 10.3390/biom13020323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Infection with the main human food-borne pathogen Campylobacter jejuni causes campylobacteriosis that accounts for a substantial percentage of gastrointestinal infections. The disease usually manifests as diarrhea that lasts for up to two weeks. C. jejuni possesses an array of peptidases and proteases that are critical for its lifestyle and pathogenesis. These include serine proteases Cj1365c, Cj0511 and HtrA; AAA+ group proteases ClpP, Lon and FtsH; and zinc-dependent protease PqqE, proline aminopeptidase PepP, oligopeptidase PepF and peptidase C26. Here, we review the numerous critical roles of these peptide bond-dissolving enzymes in cellular processes of C. jejuni that include protein quality control; protein transport across the inner and outer membranes into the periplasm, cell surface or extracellular space; acquisition of amino acids and biofilm formation and dispersal. In addition, we highlight their role as virulence factors that inflict intestinal tissue damage by promoting cell invasion and mediating cleavage of crucial host cell factors such as epithelial cell junction proteins. Furthermore, we reconstruct the evolution of these proteases in 34 species of the Campylobacter genus. Finally, we discuss to what extent C. jejuni proteases have initiated the search for inhibitor compounds as prospective novel anti-bacterial therapies.
Collapse
Affiliation(s)
- Bodo Linz
- Correspondence: ; Tel.: +49-(0)-9131-8528988
| | | | | | | |
Collapse
|
23
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
24
|
Naumann M, Ferino L, Sharafutdinov I, Backert S. Gastric Epithelial Barrier Disruption, Inflammation and Oncogenic Signal Transduction by Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:207-238. [PMID: 38231220 DOI: 10.1007/978-3-031-47331-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori exemplifies one of the most favourable bacterial pathogens worldwide. The bacterium colonizes the gastric mucosa in about half of the human population and constitutes a major risk factor for triggering gastric diseases such as stomach cancer. H. pylori infection represents a prime example of chronic inflammation and cancer-inducing bacterial pathogens. The microbe utilizes a remarkable set of virulence factors and strategies to control cellular checkpoints of inflammation and oncogenic signal transduction. This chapter emphasizes on the pathogenicity determinants of H. pylori such as the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system (T4SS), effector protein CagA, lipopolysaccharide (LPS) metabolite ADP-glycero-β-D-manno-heptose (ADP-heptose), cytotoxin VacA, serine protease HtrA, and urease, and how they manipulate various key host cell signaling networks in the gastric epithelium. In particular, we highlight the H. pylori-induced disruption of cell-to-cell junctions, pro-inflammatory activities, as well as proliferative, pro-apoptotic and anti-apoptotic responses. Here we review these hijacked signal transduction events and their impact on gastric disease development.
Collapse
Affiliation(s)
- Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Lorena Ferino
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Irshad Sharafutdinov
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Steffen Backert
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
25
|
Ronzetti M, Baljinnyam B, Jalal I, Pal U, Simeonov A. Application of biophysical methods for improved protein production and characterization: A case study on an high-temperature requirement A-family bacterial protease. Protein Sci 2022; 31:e4498. [PMID: 36334045 PMCID: PMC9679970 DOI: 10.1002/pro.4498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
The high-temperature requirement A (HtrA) serine protease family presents an attractive target class for antibacterial therapeutics development. These proteins possess dual protease and chaperone functions and contain numerous binding sites and regulatory loops, displaying diverse oligomerization patterns dependent on substrate type and occupancy. HtrA proteins that are natively purified coelute with contaminating peptides and activating species, shifting oligomerization and protein structure to differently activated populations. Here, a redesigned HtrA production results in cleaner preparations with high yields by overexpressing and purifying target protein from inclusion bodies under denaturing conditions, followed by a high-throughput screen for optimal refolding buffer composition using function-agnostic biophysical techniques that do not rely on target-specific measurements. We use Borrelia burgdorferi HtrA to demonstrate the effectiveness of our function-agnostic approach, while characterization with both new and established biophysical methods shows the retention of proteolytic and chaperone activity of the refolded protein. This systematic workflow and toolset will translate to the production of HtrA-family proteins in higher quantities of pure and monodisperse composition than the current literature standard, with applicability to a broad array of protein purification strategies.
Collapse
Affiliation(s)
- Michael Ronzetti
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
- Department of Veterinary Medicine, College of Agriculture & Natural ResourcesUniversity of MarylandCollege ParkMarylandUSA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | | | - Utpal Pal
- Department of Veterinary Medicine, College of Agriculture & Natural ResourcesUniversity of MarylandCollege ParkMarylandUSA
| | - Anton Simeonov
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
26
|
Ronzetti MH, Baljinnyam B, Itkin Z, Jain S, Rai G, Zakharov AV, Pal U, Simeonov A. Application of temperature-responsive HIS-tag fluorophores to differential scanning fluorimetry screening of small molecule libraries. Front Pharmacol 2022; 13:1040039. [PMID: 36506591 PMCID: PMC9729254 DOI: 10.3389/fphar.2022.1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Differential scanning fluorimetry is a rapid and economical biophysical technique used to monitor perturbations to protein structure during a thermal gradient, most often by detecting protein unfolding events through an environment-sensitive fluorophore. By employing an NTA-complexed fluorophore that is sensitive to nearby structural changes in histidine-tagged protein, a robust and sensitive differential scanning fluorimetry (DSF) assay is established with the specificity of an affinity tag-based system. We developed, optimized, and miniaturized this HIS-tag DSF assay (HIS-DSF) into a 1536-well high-throughput biophysical platform using the Borrelial high temperature requirement A protease (BbHtrA) as a proof of concept for the workflow. A production run of the BbHtrA HIS-DSF assay showed a tight negative control group distribution of Tm values with an average coefficient of variation of 0.51% and median coefficient of variation of compound Tm of 0.26%. The HIS-DSF platform will provide an additional assay platform for future drug discovery campaigns with applications in buffer screening and optimization, target engagement screening, and other biophysical assay efforts.
Collapse
Affiliation(s)
- Michael H. Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Sankalp Jain
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| |
Collapse
|
27
|
Wang L, Li S, Fan H, Han M, Xie J, Du J, Peng F. Bifidobacterium lactis combined with Lactobacillus plantarum inhibit glioma growth in mice through modulating PI3K/AKT pathway and gut microbiota. Front Microbiol 2022; 13:986837. [PMID: 36147842 PMCID: PMC9486703 DOI: 10.3389/fmicb.2022.986837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is a common primary aggressive tumor with limited clinical treatment. Recently, growing research suggests that gut microbiota is involved in tumor progression, and several probiotics can inhibit tumor growth. However, evidence for the effect of probiotics on glioma is lacking. Here, we found that Bifidobacterium (B.) lactis combined with Lactobacillus (L.) plantarum reduced tumor volume, prolonged survival time and repaired the intestinal barrier damage in an orthotopic mouse model of glioma. Experiments demonstrated that B. lactis combined with L. plantarum suppressed the PI3K/AKT pathway and down-regulated the expression of Ki-67 and N-cadherin. The glioma-inhibitory effect of probiotic combination is also related to the modulation of gut microbiota composition, which is characterized by an increase in relative abundance of Lactobacillus and a decrease in some potential pathogenic bacteria. Additionally, probiotic combination altered fecal metabolites represented by fatty acyls and organic oxygen compounds. Together, our results prove that B. lactis combined with L. plantarum can inhibit glioma growth by suppressing PI3K/AKT pathway and regulating gut microbiota composition and metabolites in mice, thus suggesting the potential benefits of B. lactis and L. plantarum against glioma.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mingyu Han
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jie Xie
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Junrong Du,
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Fu Peng,
| |
Collapse
|
28
|
Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis. J Pers Med 2022; 12:jpm12081301. [PMID: 36013250 PMCID: PMC9410366 DOI: 10.3390/jpm12081301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli releases outer membrane vesicles (OMVs) into the extracellular environment. OMVs, which contain the outer membrane protein, lipopolysaccharides (LPS), and genetic material, play an important role in immune response modulation. An isobaric tag for relative and absolute quantitation (iTRAQ) analysis was used to investigate OMV constituent proteins and their functions in burn trauma. OMV sizes ranged from 50 to 200 nm. Proteomics and Gene Ontology analysis revealed that ΔrfaC and ΔrfaG were likely involved in the upregulation of the structural constituent of ribosomes for the outer membrane and of proteins involved in protein binding and OMV synthesis. ΔrfaL was likely implicated in the downregulation of the structural constituent of the ribosome, translation, and cytosolic large ribosomal subunit. Kyoto Encyclopedia of Genes and Genomes analysis indicated that ΔrfaC and ΔrfaG downregulated ACP, ACEF, and ADHE genes; ΔrfaL upregulated ACP, ACEF, and ADHE genes. Heat map analysis demonstrated upregulation of galF, clpX, accA, fabB, and grpE and downregulation of pspA, ydiY, rpsT, and rpmB. These results suggest that RfaC, RfaG, and RfaL proteins were involved in outer membrane and LPS synthesis. Therefore, direct contact between wounds and LPS may lead to apoptosis, reduction in local cell proliferation, and delayed wound healing.
Collapse
|
29
|
Feng C, Liu X, Hu N, Tang Y, Feng M, Zhou Z. Aeromonas hydrophila Ssp1: A secretory serine protease that disrupts tight junction integrity and is essential for host infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:530-541. [PMID: 35798244 DOI: 10.1016/j.fsi.2022.06.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is a Gram-negative bacterial pathogen with a broad host range, including fish and humans. In this study, we examined the function of a secretory serine protease (named Ssp1) identified in pathogenic A. hydrophila CCL1. Ssp1 possesses a trypsin-like serine protease domain and contains two conserved PDZ domains. Recombinant Ssp1 protein (rSsp1) treatment increased intestinal permeability by downregulating and redistributing tight junction protein Occludin in intestinal Caco-2 cells in vitro. Western blot demonstrated that rSsp1 treatment in Caco-2 cells resulted in marked increases in the expressions of myosin light chain kinase (MLCK) and phosphorylated myosin light chain (p-MLC). For virulence analysis, an isogenic CCL1 mutant ΔSsp1 was created. ΔSsp1 bears an in-frame deletion of the Ssp1 gene. A live infection study in crucian carps showed that, compared to CCL1, ΔSsp1 infection exhibited increased Occludin expression, reduced intestinal permeability and tissue dissemination capacity, and attenuated overall virulence in vivo. However, ΔSsp1 showed no differences in the biofilm formation, swimming motility, and resistance to environmental stress. These lost virulence capacities of ΔSsp1 were restored by complementation with the Ssp1 gene. Global transcriptome analysis and quantitative real-time RT-PCR showed that compared to CCL1 infection, ΔSsp1 promoted the expressions of antimicrobial molecules (MUC2, LEAP-2, Hepcidin-1, and IL-22). Finally, CCL1 infection caused significant dysbiosis of the gut microbiota, including increased Vibrio and Deefgea compared to ΔSsp1 infected fish. Taken together, these results indicate that Ssp1 is essential for the virulence of A. hydrophila and is required for the perturbation of intestinal tight junction barrier.
Collapse
Affiliation(s)
- Chen Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Niewen Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Mengzhe Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
30
|
Shen Q, Xu B, Wang C, Xiao Y, Jin Y. Bacterial membrane vesicles in inflammatory bowel disease. Life Sci 2022; 306:120803. [PMID: 35850249 DOI: 10.1016/j.lfs.2022.120803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation with no cure. The intestine is fundamental in controlling human health. Disruption of the microbial ecosystem in the intestine is considered an important cause of IBD. The interaction between the host and microbiota significantly impacts the intestinal epithelial barrier and immune function. Bacterial membrane vesicles (MVs) are vital participants in bacteria-bacteria and host-microbiota communication. Currently, MVs have been found to exhibit many important regulating effects for intestinal microecology and have excellent application potential in clinical disease therapies. In the present review, we review the current knowledge on MVs, and specifically focus on gut bacterial MVs and their roles in the IBD. In addition, we summarized the potential utility of MVs as a novel therapeutic approach in IBD patients.
Collapse
Affiliation(s)
- Qichen Shen
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bingbai Xu
- SUNNY Biotech Hangzhou, Hangzhou 310012, China
| | - Caihong Wang
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuanxiang Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
31
|
Sharafutdinov I, Ekici A, Vieth M, Backert S, Linz B. Early and late genome-wide gastric epithelial transcriptome response during infection with the human carcinogen Helicobacterpylori. CELL INSIGHT 2022; 1:100032. [PMID: 37193047 PMCID: PMC10120309 DOI: 10.1016/j.cellin.2022.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/18/2023]
Abstract
Infection of the stomach by Helicobacter pylori is a major risk factor for the development of gastric cancer. Colonization of the gastric epithelium leads to the activation of multiple disease-related signaling pathways. Serine protease HtrA represents an important secreted virulence factor that mediates cleavage of cellular junctions. However, its potential role in nuclear responses is unknown. Here, we performed a genome-wide RNA-seq analysis of polarized gastric epithelial cells infected by wild-type (wt) and ΔhtrA mutant bacteria. Fluorescence microscopy showed that H. pylori wt, but not ΔhtrA bacteria, preferably localized at cellular junctions. Our results pinpointed early (2 h) and late (6 h) transcriptional responses, with most differentially expressed genes at 6 h post infection. The transcriptomes revealed HtrA-dependent targeting of genes associated with inflammation and apoptosis (e.g. IL8, ZFP36, TNF). Accordingly, infection with the ΔhtrA mutant induced increased apoptosis rates in host cells, which was associated with reduced H. pylori CagA expression. In contrast, transcription of various carcinogenesis-associated genes (e.g. DKK1, DOCK8) was affected by H. pylori independent of HtrA. These findings suggest that H. pylori disturbs previously unknown molecular pathways in an HtrA-dependent and HtrA-independent manner, and provide valuable new insights of this significant pathogen in humans and thus potential targets for better controlling the risk of malignant transformation.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, University Hospital, Friedrich Alexander Universität Erlangen-Nürnberg, Schwabachanlage 10, D-91054, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str 101, D-95445, Bayreuth, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| |
Collapse
|
32
|
Liang L, Yang C, Liu L, Mai G, Li H, Wu L, Jin M, Chen Y. Commensal bacteria-derived extracellular vesicles suppress ulcerative colitis through regulating the macrophages polarization and remodeling the gut microbiota. Microb Cell Fact 2022; 21:88. [PMID: 35578339 PMCID: PMC9109417 DOI: 10.1186/s12934-022-01812-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
Background The extracellular vesicles (EVs) traffic constitutes an essential pathway of cellular communication. And the molecules in EVs produced by procaryotes help in maintaining homeostasis, addressing microbial imbalance and infections, and regulating the immune system. Despite the fact that Clostridium butyricum (C. butyricum) is commonly used for treating ulcerative colitis (UC), the potential role of C. butyricum-secreted EVs in commensals-host crosstalk remains unclear. Results Here, we performed flow cytometry, western blot, immunohistochemistry and 16S rRNA analysis to explore the role of C. butyricum-derived EVs on macrophage polarization and gut microbiota composition in a dextran sulfate sodium (DSS)-induced UC mouse model. The antibiotic cocktail-induced microbiome depletion and faecal transplantations were used to further investigate the mechanisms by which EVs regulate macrophage balance. Our findings showed that C. butyricum-derived EVs improved the remission of murine colitis and polarized the transformation of macrophages to the M2 type. Furthermore, C. butyricum-derived EVs restored gut dysbiosis and altered the relative abundance of Helicobacter, Escherichia-Shigella, Lactobacillus, Akkermansia and Bacteroides, which, in turn, faecal transplantations from EVs-treated mice relieved the symptoms of UC and improved the impact of EVs on the reprogramming of the M2 macrophages. Conclusion C. butyricum-derived EVs could protect against DSS-induced colitis by regulating the repolarization of M2 macrophages and remodelling the composition of gut microbiota, suggesting the potential efficacy of EVs from commensal and probiotic Clostridium species against UC. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01812-6.
Collapse
|
33
|
Campylobacter jejuni Serine Protease HtrA Induces Paracellular Transmigration of Microbiota across Polarized Intestinal Epithelial Cells. Biomolecules 2022; 12:biom12040521. [DOI: 10.3390/biom12040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Campylobacter jejuni represents an eminent zoonotic germ responsible for foodborne infections causing campylobacteriosis. In addition, infections with C. jejuni constitute a risk factor for the occurrence of inflammatory bowel disease (IBD). In the latter case, patients show inflammatory reactions not only against C. jejuni, but also against the non-infectious microbiota. However, the involved mechanisms and molecular basis are still largely unclear. We recently reported that C. jejuni breaches the intestinal epithelial barrier by secretion of serine protease HtrA (high temperature requirement A), which cleaves several major tight and adherens junction proteins. In the present study, we aimed to study if HtrA-expressing C. jejuni may also trigger the transepithelial migration of non-pathogenic gastrointestinal microbiota. Using confocal immunofluorescence and scanning electron microscopy, we demonstrate that C. jejuni wild-type (wt) as well as the isogenic ∆htrA mutant bind to the surface of polarized intestinal Caco-2 epithelial cells, but do not invade them at the apical side. Instead, C. jejuni wt, but not ∆htrA mutant, disrupt the cellular junctions and transmigrate using the paracellular route between neighboring cells. Using transwell filter systems, we then co-incubated the cells with C. jejuni and non-invasive microbiota strains, either Escherichia coli or Lactococcus lactis. Interestingly, C. jejuni wt, but not ∆htrA mutant, induced the efficient transmigration of these microbiota bacteria into the basal compartment. Thus, infection of the intestinal epithelium with C. jejuni causes local opening of cellular junctions and paracellular translocation in an HtrA-dependent manner, which paves the way for transmigration of microbiota that is otherwise non-invasive. Taken together, these findings may have impacts on various Campylobacter-associated diseases such as IBD, which are discussed here.
Collapse
|
34
|
Clanchy FIL, Huang YS, Ogbechi J, Darlington LG, Williams RO, Stone TW. Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin, Prostate Specific Antigen, CD26 and HtrA: A New Form of Immunosuppression? Front Immunol 2022; 13:832989. [PMID: 35371018 PMCID: PMC8964980 DOI: 10.3389/fimmu.2022.832989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Several serine proteases have been linked to autoimmune disorders and tumour initiation although the mechanisms are not fully understood. Activation of the kynurenine pathway enzyme indoleamine-2,3-dioxygenase (IDO1) modulates cellular activity in the brain, tolerogenesis in the immune system and is a major checkpoint in cancer development. We now report that IDO1 mRNA and IDO1 protein expression (generating kynurenine) are induced in human monocyte-derived macrophages by several chymotryptic serine proteases with direct links to tumorigenesis, including Prostate Specific Antigen (PSA), CD26 (Dipeptidyl-peptidase-4, CD26/DPP-4), High Temperature Requirement protein-A (HtrA), and the bacterial virulence factor subtilisin. These proteases also induce expression of the pro-inflammatory cytokine genes IL1B and IL6. Other serine proteases tested: bacterial glu-C endopeptidase and mammalian Pro-protein Convertase Subtilase-Kexin-3 (PCSK3, furin), urokinase plasminogen activator (uPA), cathepsin G or neutrophil elastase, did not induce IDO1, indicating that the reported effects are not a general property of all serine proteases. The results represent a novel mechanism of activating immunosuppressive IDO1 and inducing kynurenine generation which, together with the production of inflammatory cytokines, would contribute to tumour initiation and progression, providing a new target for drug development. In addition, the proteasomal S20 serine protease inhibitor carfilzomib, used in the treatment of myeloma, prevented the induction of IDO1 and cytokine gene expression, potentially contributing to its clinical anti-cancer activity.
Collapse
Affiliation(s)
- Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Medicine and Rheumatology, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Ueda M, Kobayashi H, Seike S, Takahashi E, Okamoto K, Yamanaka H. Aeromonas sobria Serine Protease Degrades Several Protein Components of Tight Junctions and Assists Bacterial Translocation Across the T84 Monolayer. Front Cell Infect Microbiol 2022; 12:824547. [PMID: 35273923 PMCID: PMC8902146 DOI: 10.3389/fcimb.2022.824547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
Aeromonas sobria is a Gram-negative pathogen that causes food-borne illness. In immunocompromised patients and the elderly, A. sobria opportunistically leads to severe extraintestinal diseases including sepsis, peritonitis, and meningitis. If A. sobria that infects the intestinal tract causes such an extraintestinal infection, the pathogen must pass through the intestinal epithelial barrier. In our earlier study using intestinal cultured cells (T84 cells), we observed that an A. sobria strain with higher A. sobria serine protease (ASP) production caused a marked level of bacterial translocation across the T84 intestinal epithelial monolayer. Herein, we investigated the effect of ASP on tight junctions (TJs) in T84 cells. We observed that ASP acts on TJs and causes the destruction of ZO-1, ZO-2, ZO-3, and claudin-7 (i.e., some of the protein components constituting TJs), especially in the strains with high ASP productivity. Based on the present results together with those of our earlier study, we propose that ASP may cause a disruption of the barrier function of the intestinal epithelium as a whole due to the destruction of TJs (in addition to the destruction of adherens junctions) and that ASP may assist invasion of the pathogens from the intestinal epithelium into deep sites in the human body.
Collapse
Affiliation(s)
- Mitsunobu Ueda
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Hidetomo Kobayashi
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Soshi Seike
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Eizo Takahashi
- Laboratory of Medical Microbiology, Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera Enteric Diseases, Kolkata, India
| | - Hiroyasu Yamanaka
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
- *Correspondence: Hiroyasu Yamanaka,
| |
Collapse
|
36
|
Song Y, Ke Y, Kang M, Bao R. Function, molecular mechanisms, and therapeutic potential of bacterial HtrA proteins: An evolving view. Comput Struct Biotechnol J 2022; 20:40-49. [PMID: 34976310 PMCID: PMC8671199 DOI: 10.1016/j.csbj.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/05/2023] Open
Abstract
Members of the high temperature requirement A (HtrA) protein family are widely distributed amongst prokaryotic and eukaryotic species. HtrA proteins have ATP-independent dual chaperone-protease activity and mediate protein quality control. Emerging evidence indicates that HtrA family members are vital for establishing infections and bacterial survival under stress conditions. Bacterial HtrA proteins are increasingly thought of as important new targets for antibacterial drug development. Recent literature suggests that HtrA protein AlgW from Pseudomonas aeruginosa has distinct structural, functional, and regulatory characteristics. The novel dual-signal activation mechanism seen in AlgW is required to modulate stress and drug responses in bacteria, prompting us to review our understanding of the many HtrA proteins found in microorganisms. Here, we describe the distribution of HtrA gene orthologues in pathogenic bacteria, discuss their structure–function relationships, outline the molecular mechanisms exhibited by different bacterial HtrA proteins in bacteria under selective pressure, and review the significance of recently developed small molecule inhibitors targeting HtrA in pathogenic bacteria.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yitao Ke
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Corresponding authors.
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Corresponding authors.
| |
Collapse
|
37
|
Hwang J, Strange N, Mazraani R, Phillips MJ, Gamble AB, Huston WM, Tyndall JDA. Design, synthesis and biological evaluation of P2-modified proline analogues targeting the HtrA serine protease in Chlamydia. Eur J Med Chem 2021; 230:114064. [PMID: 35007862 DOI: 10.1016/j.ejmech.2021.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
High temperature requirement A (HtrA) serine proteases have emerged as a novel class of antibacterial target, which are crucial in protein quality control and are involved in the pathogenesis of a wide array of bacterial infections. Previously, we demonstrated that HtrA in Chlamydia is essential for bacterial survival, replication and virulence. Here, we report a new series of proline (P2)-modified inhibitors of Chlamydia trachomatis HtrA (CtHtrA) developed by proline ring expansion and Cγ-substitutions. The structure-based drug optimization process was guided by molecular modelling and in vitro pharmacological evaluation of inhibitory potency, selectivity and cytotoxicity. Compound 25 from the first-generation 4-substituted proline analogues increased antiCtHtrA potency and selectivity over human neutrophil elastase (HNE) by approximately 6- and 12-fold, respectively, relative to the peptidic lead compound 1. Based on this compound, second-generation substituted proline residues containing 1,2,3-triazole moieties were synthesized by regioselective azide-alkyne click chemistry. Compound 49 demonstrated significantly improved antichlamydial activity in whole cell assays, diminishing the bacterial infectious progeny below the detection limit at the lowest dose tested. Compound 49 resulted in approximately 9- and 22-fold improvement in the inhibitory potency and selectivity relative to 1, respectively. To date, compound 49 is the most potent HtrA inhibitor developed against Chlamydia spp.
Collapse
Affiliation(s)
- Jimin Hwang
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Natalie Strange
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Rami Mazraani
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Matthew J Phillips
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| | - Wilhelmina M Huston
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia.
| | | |
Collapse
|
38
|
Tuan VP, Yahara K, Dung HDQ, Binh TT, Huu Tung P, Tri TD, Thuan NPM, Khien VV, Trang TTH, Phuc BH, Tshibangu-Kabamba E, Matsumoto T, Akada J, Suzuki R, Okimoto T, Kodama M, Murakami K, Yano H, Fukuyo M, Takahashi N, Kato M, Nishiumi S, Azuma T, Ogura Y, Hayashi T, Toyoda A, Kobayashi I, Yamaoka Y. Genome-wide association study of gastric cancer- and duodenal ulcer-derived Helicobacter pylori strains reveals discriminatory genetic variations and novel oncoprotein candidates. Microb Genom 2021; 7. [PMID: 34846284 PMCID: PMC8743543 DOI: 10.1099/mgen.0.000680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWASs) can reveal genetic variations associated with a phenotype in the absence of any hypothesis of candidate genes. The problem of false-positive sites linked with the responsible site might be bypassed in bacteria with a high homologous recombination rate, such as Helicobacter pylori, which causes gastric cancer. We conducted a small-sample GWAS (125 gastric cancer cases and 115 controls) followed by prediction of gastric cancer and control (duodenal ulcer) H. pylori strains. We identified 11 single nucleotide polymorphisms (eight amino acid changes) and three DNA motifs that, combined, allowed effective disease discrimination. They were often informative of the underlying molecular mechanisms, such as electric charge alteration at the ligand-binding pocket, alteration in subunit interaction, and mode-switching of DNA methylation. We also identified three novel virulence factors/oncoprotein candidates. These results provide both defined targets for further informatic and experimental analyses to gain insights into gastric cancer pathogenesis and a basis for identifying a set of biomarkers for distinguishing these H. pylori-related diseases.
Collapse
Affiliation(s)
- Vo Phuoc Tuan
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Koji Yahara
- Antimicrobial Resistance ResearchCenter, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Koji Yahara,
| | | | - Tran Thanh Binh
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | - Pham Huu Tung
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | - Tran Dinh Tri
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | | | - Vu Van Khien
- Department of GI Endoscopy, 108 Central Hospital, Hanoi, Vietnam
| | | | - Bui Hoang Phuc
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
- Department of Microbiology, Cho Ray Hospital, Ho Chi Minh, Vietnam
| | | | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Hirokazu Yano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masaki Fukuyo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Molecular Oncology, Chiba University, Chiba, Japan
| | - Noriko Takahashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Mototsugu Kato
- Division of Endoscopy, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Gastroenterology, National Hospital Organization Hakodate Hospital, Hakodate, Hokkaido, Japan
| | - Shin Nishiumi
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuou-ku, Kobe, Hyogo, Japan
- Department of Omics Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Azuma
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuou-ku, Kobe, Hyogo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Toyoda
- Advanced GenomicsCenter, National Institute of Genetics, Shizuoka, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
- *Correspondence: Ichizo Kobayashi, ;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
- Department of Medicine, gastroenterology section, Baylor College of Medicine, Houston TX, USA
- *Correspondence: Yoshio Yamaoka,
| |
Collapse
|
39
|
Radhakrishnan D, M C A, Hutterer E, Wessler S, Ponnuraj K. High Temperature Requirement A (HtrA) protease of Listeria monocytogenes and its interaction with extracellular matrix molecules. FEMS Microbiol Lett 2021; 368:fnab141. [PMID: 34755852 DOI: 10.1093/femsle/fnab141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
High Temperature Requirement A (HtrA) was identified as a secreted virulence factor in many pathogenic bacteria, including Listeria monocytogenes. Recently, it was discovered that Helicobacter pylori and Campylobacter jejuni HtrAs can directly cleave the human cell-adhesion molecule E-cadherin, which facilitates bacterial transmigration. HtrAs also interact with extracellular matrix (ECM) molecules. However, only a limited number of studies have been carried out in this regard. In the present study, the protease and ECM binding properties of L. monocytogenes HtrA (LmHtrA) were studied using native rLmHtrA, catalytically inactive rLmHtrA(S343A) and rLmHtrA lacking the PDZ domain (∆PDZ) to gain more insights into HtrA-ECM molecule interaction. The results show that (1) native rLmHtrA cleaves fibrinogen, fibronectin, plasminogen and casein in a time and temperature dependent manner, (2) interaction of rLmHtrA with various host proteins was found in the micromolar to nanomolar range, (3) in the absence of PDZ domain, rLmHtrA exhibits no drastic change in binding affinity toward the host molecules when compared with native rLmHtrA and (4) the PDZ domain plays an important role in the substrate cleavage as rLmHtrA1-394∆PDZ cleaves the substrates only under certain conditions. The proteolysis of various ECM molecules by rLmHtrA possibly highlights the role of HtrA in L. monocytogenes pathogenesis involving ECM degradation.
Collapse
Affiliation(s)
- Deepthi Radhakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Amrutha M C
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Evelyn Hutterer
- Department of Biosciences, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria
| | - Silja Wessler
- Department of Biosciences, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| |
Collapse
|
40
|
Ali MQ, Kohler TP, Schulig L, Burchhardt G, Hammerschmidt S. Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Front Cell Infect Microbiol 2021; 11:763152. [PMID: 34790590 PMCID: PMC8592123 DOI: 10.3389/fcimb.2021.763152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.
Collapse
Affiliation(s)
- Murtadha Q Ali
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
41
|
Bernegger S, Vidmar R, Fonovic M, Posselt G, Turk B, Wessler S. Identification of Desmoglein-2 as a novel target of Helicobacter pylori HtrA in epithelial cells. Cell Commun Signal 2021; 19:108. [PMID: 34742300 PMCID: PMC8571890 DOI: 10.1186/s12964-021-00788-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND High temperature requirement A (HtrA) is an active serine protease secreted by the group-I carcinogen Helicobacter pylori (H. pylori). The human cell adhesion protein and tumor suppressor E-cadherin (hCdh1) expressed on the surface of gastric epithelial cells was identified as the first HtrA substrate. HtrA-mediated hCdh1 cleavage and subsequent disruption of intercellular adhesions are considered as important steps in H. pylori pathogenesis. In this study, we performed a proteomic profiling of H. pylori HtrA (HpHtrA) to decipher the complex mechanism of H. pylori interference with the epithelial barrier integrity. RESULTS Using a proteomic approach we identified human desmoglein-2 (hDsg2), neuropilin-1, ephrin-B2, and semaphorin-4D as novel extracellular HpHtrA substrates and confirmed the well characterized target hCdh1. HpHtrA-mediated hDsg2 cleavage was further analyzed by in vitro cleavage assays using recombinant proteins. In infection experiments, we demonstrated hDsg2 shedding from H. pylori-colonized MKN28 and NCI-N87 cells independently of pathogen-induced matrix-metalloproteases or ADAM10 and ADAM17. CONCLUSIONS Characterizing the substrate specificity of HpHtrA revealed efficient hDsg2 cleavage underlining the importance of HpHtrA in opening intercellular junctions. Video Abstract.
Collapse
Affiliation(s)
- Sabine Bernegger
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Marko Fonovic
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Gernot Posselt
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Silja Wessler
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| |
Collapse
|
42
|
Overview of Human HtrA Family Proteases and Their Distinctive Physiological Roles and Unique Involvement in Diseases, Especially Cancer and Pregnancy Complications. Int J Mol Sci 2021; 22:ijms221910756. [PMID: 34639128 PMCID: PMC8509474 DOI: 10.3390/ijms221910756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
The mammalian high temperature requirement A (HtrA) proteins are a family of evolutionarily conserved serine proteases, consisting of four homologs (HtrA1-4) that are involved in many cellular processes such as growth, unfolded protein stress response and programmed cell death. In humans, while HtrA1, 2 and 3 are widely expressed in multiple tissues with variable levels, HtrA4 expression is largely restricted to the placenta with the protein released into maternal circulation during pregnancy. This limited expression sets HtrA4 apart from the rest of the family. All four HtrAs are active proteases, and their specific cellular and physiological roles depend on tissue type. The dysregulation of HtrAs has been implicated in many human diseases such as cancer, arthritis, neurogenerative ailments and reproductive disorders. This review first discusses HtrAs broadly and then focuses on the current knowledge of key molecular characteristics of individual human HtrAs, their similarities and differences and their reported physiological functions. HtrAs in other species are also briefly mentioned in the context of understanding the human HtrAs. It then reviews the distinctive involvement of each HtrA in various human diseases, especially cancer and pregnancy complications. It is noteworthy that HtrA4 expression has not yet been reported in any primary tumour samples, suggesting an unlikely involvement of this HtrA in cancer. Collectively, we accentuate that a better understanding of tissue-specific regulation and distinctive physiological and pathological roles of each HtrA will improve our knowledge of many processes that are critical for human health.
Collapse
|
43
|
Cao Q, Wei W, Wang H, Wang Z, Lv Y, Dai M, Tan C, Chen H, Wang X. Cleavage of E-cadherin by porcine respiratory bacterial pathogens facilitates airway epithelial barrier disruption and bacterial paracellular transmigration. Virulence 2021; 12:2296-2313. [PMID: 34482810 PMCID: PMC8425755 DOI: 10.1080/21505594.2021.1966996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Airway epithelial cells are the first line of defense against respiratory pathogens. Porcine bacterial pathogens, such as Bordetella bronchiseptica, Actinobacillus pleuropneumoniae, Glaesserella (Haemophilus) parasuis, and Pasteurella multocida, breach this barrier to lead to local or systematic infections. Here, we demonstrated that respiratory bacterial pathogen infection disrupted the airway epithelial intercellular junction protein, E-cadherin, thus contributing to impaired epithelial cell integrity. E-cadherin knocking-out in newborn pig tracheal cells via CRISPR/Cas9 editing technology confirmed that E-cadherin was sufficient to suppress the paracellular transmigration of these porcine respiratory bacterial pathogens, including G. parasuis, A. pleuropneumoniae, P. multocida, and B. bronchiseptica. The E-cadherin ectodomain cleavage by these pathogens was probably attributed to bacterial HtrA/DegQ protease, but not host HtrA1, MMP7 and ADAM10, and the prominent proteolytic activity was further confirmed by a serine-to-alanine substitution mutation in the active center of HtrA/DegQ protein. Moreover, deletion of the htrA gene in G. parasuis led to severe defects in E-cadherin ectodomain cleavage, cell adherence and paracellular transmigration in vitro, as well as bacterial breaking through the tracheal epithelial cells, systemic invasion and dissemination in vivo. This common pathogenic mechanism shared by other porcine respiratory bacterial pathogens explains how these bacterial pathogens destroy the airway epithelial cell barriers and proliferate in respiratory mucosal surface or other systemic tissues.
Collapse
Affiliation(s)
- Qi Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenbin Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zesong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yujin Lv
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Menghong Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
44
|
Varon C, Azzi-Martin L, Khalid S, Seeneevassen L, Ménard A, Spuul P. Helicobacters and cancer, not only gastric cancer? Semin Cancer Biol 2021; 86:1138-1154. [PMID: 34425210 DOI: 10.1016/j.semcancer.2021.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The Helicobacter genus actually comprises 46 validly published species divided into two main clades: gastric and enterohepatic Helicobacters. These bacteria colonize alternative sites of the digestive system in animals and humans, and contribute to inflammation and cancers. In humans, Helicobacter infection is mainly related to H. pylori, a gastric pathogen infecting more than half of the world's population, leading to chronic inflammation of the gastric mucosa that can evolve into two types of gastric cancers: gastric adenocarcinomas and gastric MALT lymphoma. In addition, H. pylori but also non-H. pylori Helicobacter infection has been associated with many extra-gastric malignancies. This review focuses on H. pylori and its role in gastric cancers and extra-gastric diseases, as well as malignancies induced by non-H. pylori Helicobacters. Their different virulence factors and their involvement in carcinogenesis is discussed. This review highlights the importance of both gastric and enterohepatic Helicobacters in gastrointestinal and liver cancers.
Collapse
Affiliation(s)
- Christine Varon
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Lamia Azzi-Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France; Univ. Bordeaux, UFR des Sciences Médicales, Bordeaux, France
| | - Sadia Khalid
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia
| | - Lornella Seeneevassen
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Armelle Ménard
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Pirjo Spuul
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia.
| |
Collapse
|
45
|
Powell M, Blaskovich MAT, Hansford KA. Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery? ACS Infect Dis 2021; 7:2050-2067. [PMID: 34259518 DOI: 10.1021/acsinfecdis.1c00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted protein degradation aims to hijack endogenous protein quality control systems to achieve direct knockdown of protein targets. This exciting technology utilizes event-based pharmacology to produce therapeutic outcomes, a feature that distinguishes it from classical occupancy-based inhibitor agents. Early degrader candidates display resilience to mutations while possessing potent nanomolar activity and high target specificity. Paired with the rapid advancement of our knowledge in the factors driving targeted degradation, the expansion of this style of therapeutic agent to a range of disease indications is eagerly awaited. In particular, the area of antibiotic discovery is sorely lacking in novel approaches, with the Antimicrobial Resistance (AMR) crisis looming as the next potential global health calamity. Here, the current advances in targeted protein degradation are highlighted, and potential approaches for designing novel antimicrobial protein degraders are proposed, ranging from adaptations of current strategies to completely novel approaches to targeted protein degradation.
Collapse
Affiliation(s)
- Matthew Powell
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
46
|
The ALPK1 pathway drives the inflammatory response to Campylobacter jejuni in human intestinal epithelial cells. PLoS Pathog 2021; 17:e1009787. [PMID: 34339468 PMCID: PMC8360561 DOI: 10.1371/journal.ppat.1009787] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/12/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
The Gram-negative bacterium Campylobacter jejuni is a major cause of foodborne disease in humans. After infection, C. jejuni rapidly colonizes the mucus layer of the small and large intestine and induces a potent pro-inflammatory response characterized by the production of a large repertoire of cytokines, chemokines, and innate effector molecules, resulting in (bloody) diarrhea. The virulence mechanisms by which C. jejuni causes this intestinal response are still largely unknown. Here we show that C. jejuni releases a potent pro-inflammatory compound into its environment, which activates an NF-κB-mediated pro-inflammatory response including the induction of CXCL8, CXCL2, TNFAIP2 and PTGS2. This response was dependent on a functional ALPK1 receptor and independent of Toll-like Receptor and Nod-like Receptor signaling. Chemical characterization, inactivation of the heptose-biosynthesis pathway by the deletion of the hldE gene and in vitro engineering identified the released factor as the LOS-intermediate ADP-heptose and/or related heptose phosphates. During C. jejuni infection of intestinal cells, the ALPK1-NF-κB axis was potently activated by released heptose metabolites without the need for a type III or type IV injection machinery. Our results classify ADP-heptose and/or related heptose phosphates as a major virulence factor of C. jejuni that may play an important role during Campylobacter infection in humans.
Collapse
|
47
|
Optimization of peptide-based inhibitors targeting the HtrA serine protease in Chlamydia: Design, synthesis and biological evaluation of pyridone-based and N-Capping group-modified analogues. Eur J Med Chem 2021; 224:113692. [PMID: 34265463 DOI: 10.1016/j.ejmech.2021.113692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022]
Abstract
The obligate intracellular bacterium Chlamydia trachomatis (C. trachomatis) is responsible for the most common bacterial sexually transmitted infection and is the leading cause of preventable blindness, representing a major global health burden. While C. trachomatis infection is currently treatable with broad-spectrum antibiotics, there would be many benefits of a chlamydia-specific therapy. Previously, we have identified a small-molecule lead compound JO146 [Boc-Val-Pro-ValP(OPh)2] targeting the bacterial serine protease HtrA, which is essential in bacterial replication, virulence and survival, particularly under stress conditions. JO146 is highly efficacious in attenuating infectivity of both human (C. trachomatis) as well as koala (C. pecorum) species in vitro and in vivo, without host cell toxicity. Herein, we present our continuing efforts on optimizing JO146 by modifying the N-capping group as well as replacing the parent peptide structure with the 2-pyridone scaffold at P3/P2. The drug optimization process was guided by molecular modelling, enzyme and cell-based assays. Compound 18b from the pyridone series showed improved inhibitory activity against CtHtrA by 5-fold and selectivity over human neutrophil elastase (HNE) by 109-fold compared to JO146, indicating that 2-pyridone is a suitable bioisostere of the P3/P2 amide/proline for developing CtHtrA inhibitors. Most pyridone-based inhibitors showed superior anti-chlamydial potency to JO146 especially at lower doses (25 and 50 μM) in C. trachomatis and C. pecorum cell culture assays. Modifications of the N-capping group of the peptidyl inhibitors did not have much influence on the anti-chlamydial activities, providing opportunities for more versatile alterations and future optimization. In summary, we present 2-pyridone based analogues as a new generation of non-peptidic CtHtrA inhibitors, which hold better promise as anti-chlamydial drug candidates.
Collapse
|
48
|
Cao H, Xu H, Ning C, Xiang L, Ren Q, Zhang T, Zhang Y, Gao R. Multi-Omics Approach Reveals the Potential Core Vaccine Targets for the Emerging Foodborne Pathogen Campylobacter jejuni. Front Microbiol 2021; 12:665858. [PMID: 34248875 PMCID: PMC8265506 DOI: 10.3389/fmicb.2021.665858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in humans around the world. The emergence of bacterial resistance is becoming more serious; therefore, development of new vaccines is considered to be an alternative strategy against drug-resistant pathogen. In this study, we investigated the pangenome of 173 C. jejuni strains and analyzed the phylogenesis and the virulence factor genes. In order to acquire a high-quality pangenome, genomic relatedness was firstly performed with average nucleotide identity (ANI) analyses, and an open pangenome of 8,041 gene families was obtained with the correct taxonomy genomes. Subsequently, the virulence property of the core genome was analyzed and 145 core virulence factor (VF) genes were obtained. Upon functional genomics and immunological analyses, five core VF proteins with high antigenicity were selected as potential core vaccine targets for humans. Furthermore, functional annotations indicated that these proteins are involved in important molecular functions and biological processes, such as adhesion, regulation, and secretion. In addition, transcriptome analysis in human cells and pig intestinal loop proved that these vaccine target genes are important in the virulence of C. jejuni in different hosts. Comprehensive pangenome and relevant animal experiments will facilitate discovering the potential core vaccine targets with improved efficiency in reverse vaccinology. Likewise, this study provided some insights into the genetic polymorphism and phylogeny of C. jejuni and discovered potential vaccine candidates for humans. Prospective development of new vaccines using the targets will be an alternative to the use of antibiotics and prevent the development of multidrug-resistant C. jejuni in humans and even other animals.
Collapse
Affiliation(s)
- Hengchun Cao
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Chunhui Ning
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Li Xiang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Qiufang Ren
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Tiantian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
49
|
Zhu H, Zhou J, Wang D, Yu Z, Li B, Ni Y, He K. Quantitative proteomic analysis reveals that serine/threonine kinase is involved in Streptococcus suis virulence and adaption to stress conditions. Arch Microbiol 2021; 203:4715-4726. [PMID: 34028569 PMCID: PMC8141825 DOI: 10.1007/s00203-021-02369-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/27/2022]
Abstract
The eukaryotic-type serine/threonine kinase of Streptococcus suis serotype 2 (SS2) performs critical roles in bacterial pathogenesis. In this study, isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were used to analyze the protein profiles of wild type strain SS2-1 and its isogenic STK deletion mutant (Δstk). A total of 281 significant differential proteins, including 147 up-regulated and 134 down-regulated proteins, were found in Δstk. Moreover, 69 virulence factors (VFs) among these 281 proteins were predicted by the Virulence Factor Database (VFDB), including 38 downregulated and 31 up-regulated proteins in Δstk, among which 15 down regulated VFs were known VFs of SS2. Among the down-regulated proteins, high temperature requirement A (HtrA), glutamine synthase (GlnA), ferrichrome ABC transporter substrate-binding protein FepB, and Zinc-binding protein AdcA are known to be involved in bacterial survival and/or nutrient and energy acquisition under adverse host conditions. Overall, our results indicate that STK regulates the expression of proteins involved in virulence of SS2 and its adaption to stress environments.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| |
Collapse
|
50
|
Abstract
The Borrelia spp. are tick-borne pathogenic spirochetes that include the agents of Lyme disease and relapsing fever. As part of their life cycle, the spirochetes traffic between the tick vector and the vertebrate host, which requires significant physiological changes and remodeling of their outer membranes and proteome. This crucial proteome resculpting is carried out by a diverse set of proteases, adaptor proteins, and related chaperones. Despite its small genome, Borrelia burgdorferi has dedicated a large percentage of its genome to proteolysis, including a full complement of ATP-dependent proteases. Energy-driven proteolysis appears to be an important physiological feature of this dual-life-cycle bacterium. The proteolytic arsenal of Borrelia is strategically deployed for disposal of proteins no longer required as they move from one stage to another or are transferred from one host to another. Likewise, the Borrelia spp. are systemic organisms that need to break down and move through host tissues and barriers, and so their unique proteolytic resources, both endogenous and borrowed, make movement more feasible. Both the Lyme disease and relapsing fever Borrelia spp. bind plasminogen as well as numerous components of the mammalian plasminogen-activating system. This recruitment capacity endows the spirochetes with a borrowed proteolytic competency that can lead to increased invasiveness.
Collapse
|