1
|
Menger MM, Speicher R, Hans S, Histing T, El Kayali MKD, Ehnert S, Menger MD, Ampofo E, Wrublewsky S, Laschke MW. Nlrp3 Deficiency Does Not Substantially Affect Femoral Fracture Healing in Mice. Int J Mol Sci 2024; 25:11788. [PMID: 39519338 PMCID: PMC11546854 DOI: 10.3390/ijms252111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammation has been recognized as major factor for successful bone regeneration. On the other hand, a prolonged or overshooting inflammatory response can also cause fracture healing failure. The nucleotide-binding oligomerization domain (NOD)-like receptor protein (NLRP)3 inflammasome plays a crucial role in inflammatory cytokine production. However, its role during fracture repair remains elusive. We investigated the effects of Nlrp3 deficiency on the healing of closed femoral fractures in Nlrp3-/- and wildtype mice. The callus tissue was analyzed by means of X-ray, biomechanics, µCT and histology, as well as immunohistochemistry and Western blotting at 2 and 5 weeks after surgery. We found a significantly reduced trabecular thickness at 2 weeks after fracture in the Nlrp3-/- mice when compared to the wildtype animals. However, the amount of bone tissue did not differ between the two groups. Additional immunohistochemical analyses showed a reduced number of CD68-positive macrophages within the callus tissue of the Nlrp3-/- mice at 2 weeks after fracture, whereas the number of myeloperoxidase (MPO)-positive granulocytes was increased. Moreover, we detected a significantly lower expression of vascular endothelial growth factor (VEGF) and a reduced number of microvessels in the Nlrp3-/- mice. The expression of the absent in melanoma (AIM)2 inflammasome was increased more than 2-fold in the Nlrp3-/- mice, whereas the expression of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 was not affected. Our results demonstrate that Nlrp3 deficiency does not markedly affect femoral fracture healing in mice. This is most likely due to the unaltered expression of pro-inflammatory cytokines and pro-osteogenic growth factors.
Collapse
Affiliation(s)
- Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (T.H.)
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Rouven Speicher
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; (T.H.)
| | - Moses K. D. El Kayali
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (R.S.); (S.H.); (M.K.D.E.K.); (M.D.M.); (E.A.); (S.W.); (M.W.L.)
| |
Collapse
|
2
|
Xiao P, Wen Y, Du G, Luo E, Su Z, Liao Z, Ding H, Li W. Clusterin attenuates blood-brain barrier damage and cognitive impairment by inhibiting astrocyte aging in mice with sepsis-associated encephalopathy. Neuroreport 2024; 35:857-867. [PMID: 38973492 DOI: 10.1097/wnr.0000000000002075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, however, its exact mechanism remains unknown. This study aimed to evaluate whether clusterin is essential to the development of SAE during the aging process of astrocytes. In the study, septic mice were established with cecal ligation and puncture (CLP) and lipopolysaccharides were applied to astrocytes in vitro. Evan's blue dye was used in vivo to show blood-brain barrier (BBB) permeability. A morris water maze test was conducted to assess cognitive functions of the mice. Clusterin-knockout mice were used to examine the effect of clusterin on sepsis. The astrocytes were transfected with lentivirus expressing clusterin cDNA for clusterin overexpression or pYr-LV-clusterin small hairpin RNA for clusterin knockdown in vitro . The expression of clusterin, p-p53, p21, GDNF, and iNOS was detected. he CLP mice exhibited a higher clusterin expression in hippocampus tissue, aging astrocytes, lower GDNF expression and higher iNOS expression, accompanied with BBB damage and cognitive deficiency. Following clusterin knockout, this pathological process was further enhanced. In vitro , following lipopolysaccharides treatment, astrocytes exhibited increased clusterin, p-p53, p21, iNOS and decreased GDNF. Following clusterin knockdown, the cells exhibited a further increase in p-p53, p21, and iNOS and decrease in GDNF. Clusterin overexpression, however, helped inhibit astrocytes aging and neuroinflammation evidenced by decreased p-p53, p21, iNOS and increased GDNF. The present study has revealed that clusterin may exert its neuroprotective effect by preventing aging in astrocytes, suppressing the secretion of iNOS and promoting GNDF release.
Collapse
Affiliation(s)
- Ping Xiao
- Surgical Department of Pulmonary Oncology
| | - Yin Wen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou
| | - Guoqiang Du
- Department of Emergency Medicine, Luoding People's Hospital, Yunfu
| | - Ensi Luo
- Department of Endocrinology, Binhaiwan Central Hospital of Dongguan, Dongguan Hospital Affiliated to Medical College of Jinan University, Dongguan
| | - ZhiWei Su
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou
| | - Zhong Liao
- Department of Emergency Medicine, Longnan First People's Hospital, Longnan
| | - Hongguang Ding
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Chen P, Wang W, Ban W, Zhang K, Dai Y, Yang Z, You Y. Deciphering Post-Stroke Sleep Disorders: Unveiling Neurological Mechanisms in the Realm of Brain Science. Brain Sci 2024; 14:307. [PMID: 38671959 PMCID: PMC11047862 DOI: 10.3390/brainsci14040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sleep disorders are the most widespread mental disorders after stroke and hurt survivors' functional prognosis, response to restoration, and quality of life. This review will address an overview of the progress of research on the biological mechanisms associated with stroke-complicating sleep disorders. Extensive research has investigated the negative impact of stroke on sleep. However, a bidirectional association between sleep disorders and stroke exists; while stroke elevates the risk of sleep disorders, these disorders also independently contribute as a risk factor for stroke. This review aims to elucidate the mechanisms of stroke-induced sleep disorders. Possible influences were examined, including functional changes in brain regions, cerebrovascular hemodynamics, neurological deficits, sleep ion regulation, neurotransmitters, and inflammation. The results provide valuable insights into the mechanisms of stroke complicating sleep disorders.
Collapse
Affiliation(s)
- Pinqiu Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (P.C.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (P.C.)
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Kecan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yanan Dai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Fattakhov N, Ngo A, Torices S, Joseph JA, Okoro A, Moore C, Naranjo O, Becker S, Toborek M. Cenicriviroc prevents dysregulation of astrocyte/endothelial cross talk induced by ischemia and HIV-1 via inhibiting the NLRP3 inflammasome and pyroptosis. Am J Physiol Cell Physiol 2024; 326:C487-C504. [PMID: 38145295 PMCID: PMC11192487 DOI: 10.1152/ajpcell.00600.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Blood-brain barrier (BBB) breakdown is one of the pathophysiological characteristics of ischemic stroke, which may contribute to the progression of brain tissue damage and subsequent neurological impairment. Human immunodeficiency virus (HIV)-infected individuals are at greater risk for ischemic stroke due to diminished immune function and HIV-associated vasculopathy. Studies have shown that astrocytes are involved in maintaining BBB integrity and facilitating HIV-1 infection in the brain. The present study investigated whether targeting astrocyte-endothelial cell signaling with cenicriviroc (CVC), a dual chemokine receptor (CCR)2 and CCR5 antagonist, may protect against dysregulation of cross talk between these cells after oxygen-glucose deprivation/reoxygenation (OGD/R) combined with HIV-1 infection. Permeability assay with 10 kDa fluorescein isothiocyanate (FITC)-dextran demonstrated that CVC alleviated endothelial barrier disruption in noncontact coculture of human brain microvascular endothelial cells (HBMECs) with HIV-1-infected human astrocytes, and reversed downregulation of tight junction protein claudin-5 induced by OGD/R- and HIV-1. Moreover, CVC attenuated OGD/R- and HIV-1-triggered upregulation of the NOD-like receptor protein-3 (NLRP3) inflammasome and IL-1β secretion. Treatment with CVC also suppressed astrocyte pyroptosis by attenuating cleaved caspase-1 levels and the formation of cleaved N-terminal GSDMD (N-GSDMD). Secretome profiling revealed that CVC ameliorated secretion levels of chemokine CC chemokine ligand 17 (CCL17), adhesion molecule intercellular adhesion molecule-1 (ICAM-1), and T cell activation modulator T cell immunoglobulin and mucin domain 3 (TIM-3) by astrocytes synergistically induced by OGD/R and HIV-1. Overall, these results suggest that CVC contributes to restoring astrocyte-endothelial cross interactions in an astrocyte-dependent manner via protection against NLRP3 activation and pyroptosis.NEW & NOTEWORTHY The present study reveals the role of astrocytic NOD-like receptor protein-3 (NLRP3) inflammasome in dysfunctional astrocyte-endothelial cross interactions triggered in response to oxygen/glucose deprivation injury associated with human immunodeficiency virus type 1 (HIV-1) infection. Our results suggest that blocking NLRP3 inflammasome activation and pyroptosis-mediated inflammation with cenicriviroc (CVC) may constitute a potentially effective therapeutic strategy for blood-brain barrier (BBB) protection during HIV-1-associated ischemic stroke.
Collapse
Affiliation(s)
- Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alex Ngo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Joelle-Ann Joseph
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Adesuwa Okoro
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Cameron Moore
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sarah Becker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
5
|
Mathias K, Machado RS, Stork S, Dos Santos D, Joaquim L, Generoso J, Danielski LG, Barichello T, Prophiro JS, Petronilho F. Blood-brain barrier permeability in the ischemic stroke: An update. Microvasc Res 2024; 151:104621. [PMID: 37918521 DOI: 10.1016/j.mvr.2023.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Stroke is the second leading cause of death globally and the major cause of long-term disability. Among the types of strokes, ischemic stroke, which occurs due to obstruction of blood vessels responsible for cerebral irrigation, is considered the most prevalent, accounting for approximately 86 % of all stroke cases. This interruption of blood supply leads to a critical pathophysiological mechanism, including oxidative stress and neuroinflammation which are responsible for structural alterations of the blood-brain barrier (BBB). The increased BBB permeability associated with cerebral ischemia-reperfusion may contribute to a worse outcome after stroke. Thus, this narrative review aims to update the pathophysiological mechanisms involved in the increase in BBB permeability and to list the possible therapeutic strategies.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil; Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Josiane Somariva Prophiro
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| |
Collapse
|
6
|
Min J, Chen Q, Pan M, Liu T, Gu Q, Zhang D, Sun R. Butylphthalide improves brain damage induced by renal ischemia-reperfusion injury rats through Nrf2/HO-1 and NOD2/MAPK/NF-κB pathways. Ren Fail 2023; 45:2259234. [PMID: 37732403 PMCID: PMC10515692 DOI: 10.1080/0886022x.2023.2259234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury leads to irreversible brain damage with serious consequences. Activation of oxidative stress and release of inflammatory mediators are considered potential pathological mechanisms. Butylphthalide (NBP) has anti-inflammatory and antioxidant effects on I/R injuries. However, it is unclear whether NBP can effectively mitigate renal I/R secondary to brain injury as well as its mechanism, which are the aims of this study. Both renal I/R injury rats and oxygen and glucose deprivation cell models were established and pre-intervened NBP. The Morris water maze assay was used to detect behavior. Hippocampal histopathology and function were examined after renal I/R. Apoptosis and tube-forming capacity of brain microvascular endothelial cells (BMVECs) were tested. Immunohistochemistry and Western blot were used to measure protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) pathway and NOD-like receptor C2 (NOD2)/Mitogen-activated protein kinases (MAPK)/Nuclear factor kappa-B (NF-κB) pathway. NBP treatment attenuated renal I/R-induced brain tissue damage and learning and memory dysfunction. NBP treatment inhibited apoptosis and promoted blood-brain barrier restoration and microangiogenesis. Also, it decreased oxidative stress levels and pro-inflammatory factor expression in renal I/R rats. Furthermore, NBP enhanced BMVECs' viability and tube-forming capacity while inhibiting apoptosis and oxidative stress. Notably, the alleviating effects of NBP were attributed to Nrf2/HO-1 pathway activation and NOD2/MAPK/NF-κB inhibition. This study demonstrates that NBP maintains BBB function by activating the Nrf2/HO-1 pathway and inhibiting the NOD2/MAPK/NF-κB pathway to suppress inflammation and oxidative stress, thereby alleviating renal I/R-induced brain injury.
Collapse
Affiliation(s)
- Jingjing Min
- Department of Neurology, The First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Qi Chen
- Department of Nephrology, The First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Mengxiong Pan
- Department of Neurology, The First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Tan Liu
- Department of Neurology, The First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Qun Gu
- Department of Neurology, The First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Dongwei Zhang
- Department of Neurology, The First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Ru Sun
- Department of Neurology, The First People’s Hospital of Huzhou, First affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
7
|
Gullotta GS, Costantino G, Sortino MA, Spampinato SF. Microglia and the Blood-Brain Barrier: An External Player in Acute and Chronic Neuroinflammatory Conditions. Int J Mol Sci 2023; 24:ijms24119144. [PMID: 37298096 DOI: 10.3390/ijms24119144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Microglia are the resident immune cells of the central nervous system that guarantee immune surveillance and exert also a modulating role on neuronal synaptic development and function. Upon injury, microglia get activated and modify their morphology acquiring an ameboid phenotype and pro- or anti-inflammatory features. The active role of microglia in blood-brain barrier (BBB) function and their interaction with different cellular components of the BBB-endothelial cells, astrocytes and pericytes-are described. Here, we report the specific crosstalk of microglia with all the BBB cell types focusing in particular on the involvement of microglia in the modulation of BBB function in neuroinflammatory conditions that occur in conjunction with an acute event, such as a stroke, or in a slow neurodegenerative disease, such as Alzheimer's disease. The potential of microglia to exert a dual role, either protective or detrimental, depending on disease stages and environmental conditioning factors is also discussed.
Collapse
Affiliation(s)
- Giorgia Serena Gullotta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Costantino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Ph.D. Program in Neuroscience and Education, DISTUM, University of Foggia, 71121 Foggia, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | |
Collapse
|
8
|
Huang W, Xia Q, Zheng F, Zhao X, Ge F, Xiao J, Liu Z, Shen Y, Ye K, Wang D, Li Y. Microglia-Mediated Neurovascular Unit Dysfunction in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S335-S354. [PMID: 36683511 PMCID: PMC10473143 DOI: 10.3233/jad-221064] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
The neurovascular unit (NVU) is involved in the pathological changes in Alzheimer's disease (AD). The NVU is a structural and functional complex that maintains microenvironmental homeostasis and metabolic balance in the central nervous system. As one of the most important components of the NVU, microglia not only induce blood-brain barrier breakdown by promoting neuroinflammation, the infiltration of peripheral white blood cells and oxidative stress but also mediate neurovascular uncoupling by inducing mitochondrial dysfunction in neurons, abnormal contraction of cerebral vessels, and pericyte loss in AD. In addition, microglia-mediated dysfunction of cellular components in the NVU, such as astrocytes and pericytes, can destroy the integrity of the NVU and lead to NVU impairment. Therefore, we review the mechanisms of microglia-mediated NVU dysfunction in AD. Furthermore, existing therapeutic advancements aimed at restoring the function of microglia and the NVU in AD are discussed. Finally, we predict the role of pericytes in microglia-mediated NVU dysfunction in AD is the hotspot in the future.
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaying Xiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingying Shen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
9
|
Li G, Ruan L, Meng H, Liu W, Zhong X, Yu J, Zhang L, Zhu M, Wang J. 1H NMR Spectroscopy-Based Metabolomics Approach to Study the Anti-Stroke Activity of G-3702, a Novel Better Alternative to DL-3-n-Butylphthalide. Neurochem Res 2022; 47:3024-3036. [PMID: 35737204 DOI: 10.1007/s11064-022-03648-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Cerebrovascular disease is the leading cause of disability and death, and ischemic stroke accounts for most stroke cases. However, few effective drugs are available for the treatment of ischemic stroke; thus, there is an urgent need to develop effective drugs to treat ischemic stroke. DL-3-n-butylphthalide (NBP) is clinically approved as an anti-ischemic drug in China, but its potential hepatotoxicity limits its use. G-3702 (a structural analogue of NBP) is synthesized with the boron hydroxyl group replacing carbonyl group. G-3702 significantly enhanced the survival of middle cerebral artery occlusion (MCAO) rats, decreased neurobehavioral deficit scores and cerebral infarct volume, comparable with NBP, which was also supported by tissue damage assessment, immunohistochemistry staining, biochemical parameters and ELISA assay. G-3702 showed better anti-stroke activity than NBP according to 1H NMR spectroscopy-based metabolomics analysis, demonstrating the feasibility of metabolomics approach to assess drug efficacy. G-3702 markedly ameliorated energy metabolism, attenuated oxidative and inflammatory stress during ischemia/reperfusion (I/R). G-3702 exhibited good neuroprotective effects against I/R induced injury and favorable little possibility of hepatotoxicity, which made it a promising anti-stroke drug and better NBP alternative.
Collapse
Affiliation(s)
- Guanghui Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Lingyu Ruan
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Huihui Meng
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Wenya Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Xinyu Zhong
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Jinran Yu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Lin Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Minqiang Zhu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
10
|
Yang R, Chen M, Zheng J, Li X, Zhang X. The Role of Heparin and Glycocalyx in Blood-Brain Barrier Dysfunction. Front Immunol 2022; 12:754141. [PMID: 34992593 PMCID: PMC8724024 DOI: 10.3389/fimmu.2021.754141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB) functions as a dynamic boundary that protects the central nervous system from blood and plays an important role in maintaining the homeostasis of the brain. Dysfunction of the BBB is a pathophysiological characteristic of multiple neurologic diseases. Glycocalyx covers the luminal side of vascular endothelial cells(ECs). Damage of glycocalyx leads to disruption of the BBB, while inhibiting glycocalyx degradation maintains BBB integrity. Heparin has been recognized as an anticoagulant and it protects endothelial glycocalyx from destruction. In this review, we summarize the role of glycocalyx in BBB formation and the therapeutic potency of heparin to provide a theoretical basis for the treatment of neurological diseases related to BBB breakdown.
Collapse
Affiliation(s)
- Rui Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingming Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayin Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaojuan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
PAF Receptor Inhibition Attenuates Neuronal Pyroptosis in Cerebral Ischemia/Reperfusion Injury. Mol Neurobiol 2021; 58:6520-6539. [PMID: 34562185 DOI: 10.1007/s12035-021-02537-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is an inflammation-related disease, during which process activation of NLRP3 inflammasome and subsequent pyroptosis play crucial roles. Platelet-activating factor (PAF) is a potent phospholipid regulator of inflammation which exerts its effect via binding specific PAF receptor (PAFR). However, whether PAFR contributes to pyroptosis during ischemia/reperfusion (I/R) injury remains to be elucidated. To explore the underlying effect of PAFR on ischemic stroke from the perspective of pyroptosis, mice were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) injury and primary cultures of mice cerebral cortical neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury to mimic I/R in vivo and in vitro, after which indexes associated with pyroptosis were analyzed. Intriguingly, our results indicated that inhibition of PAFR with its inhibitor XQ-1H or PAFR siRNA exerted a neuroprotective effect against I/R injury both in vivo and in vitro. Furthermore, inflammasome activation and pyroptosis after ischemic challenge were attenuated by XQ-1H or PAFR siRNA. Besides, the protection of XQ-1H was abolished by PAF stimulaiton to some extent. Moreover, XQ-1H or PAFR siRNA alleviated the neuronal pyroptosis induced by LPS and nigericin (an NLRP3 activator) in cortical neurons. Taken together, this study firstly demonstrates that PAFR is involved in neuronal pyroptosis after I/R injury, and XQ-1H, a specific PAFR inhibitor, has a promising prospect in attenuating I/R injury from the perspective of anti-pyroptosis.
Collapse
|
12
|
Li Z, Xu H, Xu Y, Lu G, Peng Q, Chen J, Bi R, Li J, Chen S, Li H, Jin H, Hu B. Morinda officinalis oligosaccharides alleviate depressive-like behaviors in post-stroke rats via suppressing NLRP3 inflammasome to inhibit hippocampal inflammation. CNS Neurosci Ther 2021; 27:1570-1586. [PMID: 34559953 PMCID: PMC8611777 DOI: 10.1111/cns.13732] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 01/14/2023] Open
Abstract
Aims Morinda officinalis oligosaccharides (MOOs), a traditional Chinese medicine, have been used to treat mild and moderate depressive episodes. In this study, we investigated whether MOOs can ameliorate depressive‐like behaviors in post‐stroke depression (PSD) rats and further explored its mechanism by suppressing microglial NLRP3 inflammasome activation to inhibit hippocampal inflammation. Methods Behavioral tests were performed to evaluate the effect of MOOs on depressive‐like behaviors in PSD rats. The effects of MOOs on the expression of IL‐18, IL‐1β, and nucleotide‐binding domain leucine‐rich repeat (NLR) family pyrin domain containing 3 (NLRP3) inflammasome were measured in both PSD rats and lipopolysaccharide (LPS) and adenosine triphosphate (ATP) stimulated primary rat microglia by reverse transcription polymerase chain reaction (RT‐PCR), immunofluorescence and Western blot analysis. Adeno‐associated virus (AAV) was injected into the hippocampus to regulate NLRP3 inflammasome expression. The detailed molecular mechanism underlying the effects of MOOs was analyzed by Western blot and immunofluorescence. Results MOOs can alleviate depressive‐like behaviors in PSD rats. PSD rats showed increased expression of IL‐18, IL‐1β, and NLRP3 inflammasome in the ischemic hippocampus, while MOOs reversed the elevation. NLRP3 downregulation ameliorated depressive‐like behaviors and hippocampal inflammation response in PSD rats, while NLRP3 upregulation inhibited the effect of MOOs on depressive‐like behaviors and hippocampal inflammation response in PSD rats. Moreover, we found that NLRP3 was mainly expressed on microglia. In vitro, MOOs effectively inhibited the expression of IL‐18, IL‐1β, and NLRP3 inflammasome in LPS + ATP treated primary rat microglia. We also showed that modulation of NLRP3 inflammasome by MOOs was associated with the IκB/NF‐κB p65 signaling pathway. Conclusion Overall, our study reveals the antidepressive effect of MOOs on PSD rats through modulation of microglial NLRP3 inflammasome. We also provide a novel insight into hippocampal inflammation response in PSD pathology and put forward NLRP3 inflammasome as a potential therapeutic target for PSD.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hexiang Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xu
- Institute of Science, Beijing Tongrentang Co., Ltd., Beijing, China
| | - Guanfeng Lu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianzhuang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongkai Li
- Institute of Science, Beijing Tongrentang Co., Ltd., Beijing, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Chen L, Qing W, Yi Z, Lin G, Peng Q, Zhou F. NU9056, a KAT 5 Inhibitor, Treatment Alleviates Brain Dysfunction by Inhibiting NLRP3 Inflammasome Activation, Affecting Gut Microbiota, and Derived Metabolites in LPS-Treated Mice. Front Nutr 2021; 8:701760. [PMID: 34327209 PMCID: PMC8313765 DOI: 10.3389/fnut.2021.701760] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The pathogenesis of sepsis-associated encephalopathy (SAE) is complicated, while the efficacy of current treatment technologies is poor. Therefore, the discovery of related targets and the development of new drugs are essential. Methods: A mouse model of SAE was constructed by intraperitoneal injection of lipopolysaccharide (LPS). LPS treatment of microglia was used to build an in vitro model of inflammation. Nine-day survival rates, behavioral testing, transmission electron microscopy (TEM), immunohistochemical (IHC), immunofluorescence (IF), and ELISA were performed. The expression levels of Occludin, Claudin 5, NLRP3, caspase-1, and ASC genes and proteins were detected by RT-qPCR or Western blot. Caspase-1 P10 (Casp-1 P10) protein expression was detected. 16S rDNA sequencing and gas chromatography-mass spectrometer (GC-MS) were used to analyze the gut microbiota and metabolism. Flow cytometric experiment and Cell Counting Kit-8 (CCK8) assay were performed. Results: NU9056 improved the survival rate of mice and alleviated LPS-induced cognitive impairment, anxiety, and depression in vivo. The tight junctions were thickened via NU9056 treatment. Further, the mRNAs and proteins expression levels of Occludin and Claudin 5 were up-regulated by NU9056. NU9056 increased the expression level of DCX. The expression levels of Iba-1, NLRP3, IL-1β, ASC, and Casp-1 P10 were down-regulated by NU9056. The composition of the gut microbiota changed. Kyoto Encyclopedia of Genes and Genomes data predicted that the effects of NU9056 might be related to apoptosis and tight junction pathways. NU9056 up-regulated the concentration of acetate, propionate, and butyrate. NU9056 significantly reduced LPS-induced apoptosis of microglia, the average fluorescence intensity of ROS, and the release of IL-1β and IL-18, while improving cell viability in vitro. Conclusions: NU9056 might effectively alleviate LPS-induced cognitive impairment and emotional disorder in experimental mice by inhibiting the NLRP3 inflammasome. The therapeutic effects may be related to gut microbiota and derived metabolites. NU9056 might be a potential drug of SAE prevention.
Collapse
Affiliation(s)
- Lu Chen
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenxiang Qing
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zexiong Yi
- Medical College of Xiangya, Central South University, Changsha, China
| | - Guoxin Lin
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Xu SY, Bian HJ, Shu S, Xia SN, Gu Y, Zhang MJ, Xu Y, Cao X. AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neurosci Ther 2021; 27:1224-1237. [PMID: 34156153 PMCID: PMC8446221 DOI: 10.1111/cns.13699] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Aims Ischemic stroke is a life‐threatening disease with limited therapeutic strategies. Blood‐brain barrier (BBB) disruption is a critical pathological process that contributes to poor outcomes in ischemic stroke. We previously showed that the microglial inhibition of the inflammasome sensor absent in melanoma 2 (AIM2) suppressed the inflammatory response and protected against ischemic stroke. However, whether AIM2 is involved in BBB disruption during cerebral ischemia is unknown. Methods Middle cerebral artery occlusion (MCAO) and oxygen‐glucose deprivation/reoxygenation (OGD/R) were used to mimic cerebral ischemia in mice and brain microvascular endothelial cells (HBMECs), respectively. The infarct volume, neurological deficits, and BBB permeability were measured in mice after MCAO. Transendothelial electrical resistance (TEER) and neutrophil adhesion to the HBMEC monolayer were assessed after OGD/R treatment. Western blot and immunofluorescence analyses were conducted to evaluate the expression of related proteins. Results AIM2 was shown to be expressed in brain endothelial cells and upregulated after ischemic stroke in the mouse brain. AIM2 deletion reduced the infarct volume, improved neurological and motor functions, and decreased BBB disruption. In vitro, OGD/R significantly increased the protein levels of AIM2 and ICAM‐1 and decreased those of the tight junction (TJ) proteins ZO‐1 and occludin. AIM2 knockdown effectively protected BBB integrity by promoting the expression of TJ proteins and decreasing ICAM‐1 expression and neutrophil adhesion. Mechanistically, AIM2 knockdown reversed the OGD/R‐induced increases in ICAM‐1 expression and STAT3 phosphorylation in brain endothelial cells. Furthermore, treatment with the p‐STAT3 inhibitor AG490 mitigated the effect of AIM2 on BBB breakdown. Conclusion Our findings indicated that inhibiting AIM2 preserved the BBB integrity after ischemic stroke, at least partially by modulating STAT3 activation and that AIM2 may be a promising therapeutic target for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Si-Yi Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hui-Jie Bian
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Mei-Juan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| |
Collapse
|
15
|
Hou K, Li G, Yu J, Xu K, Wu W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021; 460:167-180. [PMID: 33609636 DOI: 10.1016/j.neuroscience.2021.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Stroke is the largest contributor to global neurological disability-adjusted life-years, posing a huge economic and social burden to the world. Though pharmacological recanalization with recombinant tissue plasminogen activator and mechanical thrombectomy have greatly improved the prognosis of patients with ischemic stroke, clinically, there is still no effective treatment for the secondary injury caused by cerebral ischemia. In recent years, more and more evidences show that neuroinflammation plays a pivotal role in the pathogenesis and progression of ischemic cerebral injury. Microglia are brain resident innate immune cells and act the role peripheral macrophages. They play critical roles in mediating neuroinflammation after ischemic stroke. Microglia-mediated neuroinflammation is not an isolated process and has complex relationships with other pathophysiological processes as oxidative/nitrative stress, excitotoxicity, necrosis, apoptosis, pyroptosis, autophagy, and adaptive immune response. Upon activation, microglia differentially express various receptors, channel proteins, and enzymes involved in promoting or inhibiting the inflammatory processes, making them the targets of intervention for ischemic stroke. To inhibit microglia-related neuroinflammation and promote neurological recovery after ischemic stroke, numerous biochemical agents, cellular therapies, and physical methods have been demonstrated to have therapeutic potentials. Though accumulating experimental evidences have demonstrated that targeting microglia is a promising approach in the treatment of ischemic stroke, the clinical progress is slow. Till now, no clinical study could provide convincing evidence that any biochemical or physical therapies could exert neuroprotective effect by specifically targeting microglia following ischemic stroke.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| |
Collapse
|
16
|
Wang L, Xiong X, Zhang L, Shen J. Neurovascular Unit: A critical role in ischemic stroke. CNS Neurosci Ther 2021; 27:7-16. [PMID: 33389780 PMCID: PMC7804897 DOI: 10.1111/cns.13561] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke (IS), a common cerebrovascular disease, results from a sudden blockage of a blood vessel in the brain, thereby restricting blood supply to the area in question, and making a significantly negative impact on human health. Unfortunately, current treatments, that are mainly based on a recanalization of occluded blood vessels, are insufficient or inaccessible to many stroke patients. Recently, the profound influence of the neurovascular unit (NVU) on recanalization and the prognosis of IS have become better understood; in‐depth studies of the NVU have also provided novel approaches for IS treatment. In this article, we review the intimate connections between the changes in the NVU and IS outcomes, and discuss possible new management strategies having practical significance to IS. We discuss the concept of the NVU, as well as its roles in IS blood‐brain barrier regulation, cell preservation, inflammatory immune response, and neurovascular repair. Besides, we also summarize the influence of noncoding RNAs in NVU, and IS therapies targeting the NVU. We conclude that both the pathophysiological and neurovascular repair processes of IS are strongly associated with the homeostatic state of the NVU and that further research into therapies directed at the NVU could expand the range of treatments available for IS.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luyuan Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther 2021; 27:36-47. [PMID: 33381913 PMCID: PMC7804893 DOI: 10.1111/cns.13569] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
The blood-brain barrier (BBB) is an important physiological barrier that separates the central nervous system (CNS) from the peripheral circulation, which contains inflammatory mediators and immune cells. The BBB regulates cellular and molecular exchange between the blood vessels and brain parenchyma. Normal functioning of the BBB is crucial for the homeostasis and proper function of the brain. It has been demonstrated that peripheral inflammation can disrupt the BBB by various pathways, resulting in different CNS diseases. Recently, clinical research also showed CNS complications following SARS-CoV-2 infection and chimeric antigen receptor (CAR)-T cell therapy, which both lead to a cytokine storm in the circulation. Therefore, elucidation of the mechanisms underlying the BBB disruption induced by peripheral inflammation will provide an important basis for protecting the CNS in the context of exacerbated peripheral inflammatory diseases. In the present review, we first summarize the physiological properties of the BBB that makes the CNS an immune-privileged organ. We then discuss the relevance of peripheral inflammation-induced BBB disruption to various CNS diseases. Finally, we elaborate various factors and mechanisms of peripheral inflammation that disrupt the BBB.
Collapse
Affiliation(s)
- Xiaowen Huang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular ImmunomodulationInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular ImmunomodulationInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular ImmunomodulationInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
18
|
Xu X, Zhu L, Xue K, Liu J, Wang J, Wang G, Gu J, Zhang Y, Li X. Ultrastructural studies of the neurovascular unit reveal enhanced endothelial transcytosis in hyperglycemia‐enhanced hemorrhagic transformation after stroke. CNS Neurosci Ther 2021. [PMCID: PMC7804894 DOI: 10.1111/cns.13571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims Pre‐existing hyperglycemia (HG) aggravates the breakdown of blood–brain barrier (BBB) and increases the risk of hemorrhagic transformation (HT) after acute ischemic stroke in both animal models and patients. To date, HG‐induced ultrastructural changes of brain microvascular endothelial cells (BMECs) and the mechanisms underlying HG‐enhanced HT after ischemic stroke are poorly understood. Methods We used a mouse model of mild brain ischemia/reperfusion to investigate HG‐induced ultrastructural changes of BMECs that contribute to the impairment of BBB integrity after stroke. Adult male mice received systemic glucose administration 15 min before middle cerebral artery occlusion (MCAO) for 20 min. Ultrastructural characteristics of BMECs were evaluated using two‐dimensional and three‐dimensional electron microscopy and quantitatively analyzed. Results Mice with acute HG had exacerbated BBB disruption and larger brain infarcts compared to mice with normoglycemia (NG) after MCAO and 4 h of reperfusion, as assessed by brain extravasation of the Evans blue dye and microtubule‐associated protein 2 immunostaining. Electron microscopy further revealed that HG mice had more endothelial vesicles in the striatal neurovascular unit than NG mice, which may account for their deterioration of BBB impairment. In contrast with enhanced endothelial transcytosis, paracellular tight junction ultrastructure was not disrupted after this mild ischemia/reperfusion insult or altered upon HG. Consistent with the observed increase of endothelial vesicles, transcytosis‐related proteins caveolin‐1, clathrin, and hypoxia‐inducible factor (HIF)‐1α were upregulated by HG after MCAO and reperfusion. Conclusion Our study provides solid structural evidence to understand the role of endothelial transcytosis in HG‐elicited BBB hyperpermeability. Enhanced transcytosis occurs prior to the physical breakdown of BMECs and is a promising therapeutic target to preserve BBB integrity.
Collapse
Affiliation(s)
- Xiaomin Xu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
- Qidong Women's and Children's Health Qidong China
| | - Liuqi Zhu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Ke Xue
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Jiayi Liu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Jian Wang
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Guohua Wang
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Jin‐hua Gu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Yunfeng Zhang
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Xia Li
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| |
Collapse
|
19
|
Zhao F, Zhong L, Luo Y. Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci Ther 2020; 27:26-35. [PMID: 33377610 PMCID: PMC7804892 DOI: 10.1111/cns.13560] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
The blood‐brain barrier is a dynamic and complex neurovascular unit that protects neurons from somatic circulatory factors as well as regulates the internal environmental stability of the central nervous system. Endothelial glycocalyx is a critical component of an extended neurovascular unit that influences the structure of the blood‐brain barrier and plays various physiological functions, including an important role in maintaining normal neuronal homeostasis. Specifically, glycocalyx acts in physical and charge barriers, mechanical transduction, regulation of vascular permeability, modulation of inflammatory response, and anticoagulation. Since intact glycocalyx is necessary to maintain the stability and integrity of the internal environment of the blood‐brain barrier, damage to glycocalyx can lead to the dysfunction of the blood‐brain barrier. This review discusses the role of glycocalyx in the context of the substantial literature regarding the blood‐brain barrier research, in order to provide a theoretical basis for the diagnosis and treatment of neurological diseases as well as point to new breakthroughs and innovations in glycocalyx‐dependent blood‐brain barrier function.
Collapse
Affiliation(s)
- Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Wang QS, Ding HG, Chen SL, Liu XQ, Deng YY, Jiang WQ, Li Y, Huang LQ, Han YL, Wen MY, Wang MQ, Zeng HK. Hypertonic saline mediates the NLRP3/IL-1β signaling axis in microglia to alleviate ischemic blood-brain barrier permeability by downregulating astrocyte-derived VEGF in rats. CNS Neurosci Ther 2020; 26:1045-1057. [PMID: 32529750 PMCID: PMC7539845 DOI: 10.1111/cns.13427] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction The aim of this study was to explore whether the antibrain edema of hypertonic saline (HS) is associated with alleviating ischemic blood‐brain barrier (BBB) permeability by downregulating astrocyte‐derived vascular endothelial growth factor (VEGF), which is mediated by microglia‐derived NOD‐like receptor protein 3 (NLRP3) inflammasome. Methods The infarct volume and BBB permeability were detected. The protein expression level of VEGF in astrocytes in a transient focal brain ischemia model of rats was evaluated after 10% HS treatment. Changes in the NLRP3 inflammasome, IL‐1β protein expression, and the interleukin‐1 receptor (IL1R1)/pNF‐кBp65/VEGF signaling pathway were determined in astrocytes. Results HS alleviated the BBB permeability, reduced the infarct volume, and downregulated the expression of VEGF in astrocytes. HS downregulates IL‐1β expression by inhibiting the activation of the NLRP3 inflammasome in microglia and then downregulates VEGF expression by inhibiting the phosphorylation of NF‐кBp65 mediated by IL‐1β in astrocytes. Conclusions HS alleviated the BBB permeability, reduced the infarct volume, and downregulated the expression of VEGF in astrocytes. HS downregulated IL‐1β expression via inhibiting the activation of the NLRP3 inflammasome in microglia and then downregulated VEGF expression through inhibiting the phosphorylation of NF‐кBp65 mediated by IL‐1β in astrocytes.
Collapse
Affiliation(s)
- Qiao-Sheng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong-Guang Ding
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sheng-Long Chen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin-Qiang Liu
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Yu Deng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Qiang Jiang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ya Li
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Lin-Qiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong-Li Han
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Miao-Yun Wen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mei-Qiu Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hong-Ke Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|