1
|
Browne RK, Luo Q, Wang P, Mansour N, Kaurova SA, Gakhova EN, Shishova NV, Uteshev VK, Kramarova LI, Venu G, Bagaturov MF, Vaissi S, Heshmatzad P, Janzen P, Swegen A, Strand J, McGinnity D. The Sixth Mass Extinction and Amphibian Species Sustainability Through Reproduction and Advanced Biotechnologies, Biobanking of Germplasm and Somatic Cells, and Conservation Breeding Programs (RBCs). Animals (Basel) 2024; 14:3395. [PMID: 39682361 DOI: 10.3390/ani14233395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Primary themes in intergenerational justice are a healthy environment, the perpetuation of Earth's biodiversity, and the sustainable management of the biosphere. However, the current rate of species declines globally, ecosystem collapses driven by accelerating and catastrophic global heating, and a plethora of other threats preclude the ability of habitat protection alone to prevent a cascade of amphibian and other species mass extinctions. Reproduction and advanced biotechnologies, biobanking of germplasm and somatic cells, and conservation breeding programs (RBCs) offer a transformative change in biodiversity management. This change can economically and reliably perpetuate species irrespective of environmental targets and extend to satisfy humanity's future needs as the biosphere expands into space. Currently applied RBCs include the hormonal stimulation of reproduction, the collection and refrigerated storage of sperm and oocytes, sperm cryopreservation, in vitro fertilization, and biobanking of germplasm and somatic cells. The benefits of advanced biotechnologies in development, such as assisted evolution and cloning for species adaptation or restoration, have yet to be fully realized. We broaden our discussion to include genetic management, political and cultural engagement, and future applications, including the extension of the biosphere through humanity's interplanetary and interstellar colonization. The development and application of RBCs raise intriguing ethical, theological, and philosophical issues. We address these themes with amphibian models to introduce the Multidisciplinary Digital Publishing Institute Special Issue, The Sixth Mass Extinction and Species Sustainability through Reproduction Biotechnologies, Biobanking, and Conservation Breeding Programs.
Collapse
Affiliation(s)
- Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize 91011, Belize
| | - Qinghua Luo
- Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Pei Wang
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Nabil Mansour
- Fujairah Research Centre, University of Science and Technology of Fujairah, Fujairah P.O. Box 2202, United Arab Emirates
| | - Svetlana A Kaurova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Edith N Gakhova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Natalia V Shishova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Victor K Uteshev
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Ludmila I Kramarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Govindappa Venu
- Centre for Applied Genetics, Department of Zoology, Jnana Bharathi Campus, Bangalore University, Bengaluru 560056, Karnataka, India
| | - Mikhail F Bagaturov
- IUCN/SSC/Athens Institute for Education and Research/Zoological Institute RAS, St. Petersburg 199034, Northern Region, Russia
- Leningrad Zoo, St. Petersburg 197198, Northern Region, Russia
| | - Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Baghabrisham, Kermanshah 57146, Iran
| | - Pouria Heshmatzad
- Department of Biology, Faculty of Science, Razi University, Baghabrisham, Kermanshah 57146, Iran
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138, Iran
| | - Peter Janzen
- Justus-von-Liebig-Schule, 47166 Duisburg, Germany
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Julie Strand
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7K, 9220 Aalborg Ost, Denmark and Randers Regnskov, Torvebryggen 11, 8900 Randers C, Denmark
| | - Dale McGinnity
- Ectotherm Department, Nashville Zoo at Grassmere, Nashville, TN 37211, USA
| |
Collapse
|
2
|
Chong JP, Minnaert‐Grote J, Zaya DN, Ashley MV, Coons J, Ramp Neale JM, Molano‐Flores B. Genetic Diversity and Structure of Physaria on the Kaibab Plateau: Implications for Conservation. Ecol Evol 2024; 14:e70523. [PMID: 39559472 PMCID: PMC11570800 DOI: 10.1002/ece3.70523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
Assessing patterns of genetic diversity within and among closely related congeners is important for evaluating the conservation status of rare plant taxa. We used nuclear microsatellite genotyping to examine the genetic relatedness among three Physaria taxa on the Kaibab Plateau in northern Arizona. Over 100 species of Physaria are recognized, and are widely distributed in Western North America. On the Kaibab Plateau several taxa occur, including Physaria arizonica and two subspecies of P. kingii, P. kingii subsp. latifolia and P. kingii subsp. kaibabensis. The latter subspecies, the Kaibab bladderpod, is rare and endemic to the Kaibab Plateau and is a potential candidate to be listed under the Endangered Species Act. Morphological characters, primarily flower color, have been used to distinguish P. kingii subsp. kaibabensis from other subspecies. Here we aim to assess its genetic diversity and differentiation as compared to congeners on and around the Kaibab Plateau. We genotyped DNA obtained from leaf samples from 463 individuals collected from 26 sites representing the three putative taxa (12 P. kingii subsp. kaibabensis, 8 P. kingii subsp. latifolia, and 6 P. arizonica). Our results showed that all samples initially identified as P. kingii subsp. latifolia and P. kingii subsp. kaibabensis on the Kaibab Plateau form a single genetic cluster that is well-differentiated from P. kingii subsp. latifolia sampled from sites off the plateau or P. arizonica on or off the plateau. For P. kingii on the plateau, our findings do not support the previous subspecies designations based on morphological characters. While additional studies of P. kingii will further resolve taxonomic uncertainties within this species, our findings indicate that the Kaibab Plateau population is genetically diverse and genetically distinct, and federal protection is justified in light of the threats faced on the Kaibab Plateau and its limited range.
Collapse
Affiliation(s)
- Jer Pin Chong
- Department of Biological SciencesUniversity of IllinoisChicagoIllinoisUSA
| | - Jamie Minnaert‐Grote
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - David N. Zaya
- Department of Biological SciencesUniversity of IllinoisChicagoIllinoisUSA
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Mary V. Ashley
- Department of Biological SciencesUniversity of IllinoisChicagoIllinoisUSA
| | - Janice Coons
- Biological Sciences DepartmentEastern Illinois UniversityCharlestonIllinoisUSA
| | | | - Brenda Molano‐Flores
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| |
Collapse
|
3
|
Horníková M, Lanier HC, Marková S, Escalante MA, Searle JB, Kotlík P. Genetic admixture drives climate adaptation in the bank vole. Commun Biol 2024; 7:863. [PMID: 39009753 PMCID: PMC11251159 DOI: 10.1038/s42003-024-06549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Genetic admixture introduces new variants at relatively high frequencies, potentially aiding rapid responses to environmental changes. Here, we evaluate its role in adaptive variation related to climatic conditions in bank voles (Clethrionomys glareolus) in Britain, using whole-genome data. Our results reveal loci showing excess ancestry from one of the two postglacial colonist populations inconsistent with overall admixture patterns. Notably, loci associated with climate adaptation exhibit disproportionate amounts of excess ancestry, highlighting the impact of admixture between colonist populations on local adaptation. The results suggest strong and localized selection on climate-adaptive loci, as indicated by steep clines and/or shifted cline centres, during population replacement. A subset, including a haemoglobin gene, is associated with oxidative stress responses, underscoring a role of oxidative stress in local adaptation. Our study highlights the important contribution of admixture during secondary contact between populations from distinct climatic refugia enriching adaptive diversity. Understanding these dynamics is crucial for predicting future adaptive capacity to anthropogenic climate change.
Collapse
Affiliation(s)
- Michaela Horníková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Hayley C Lanier
- Department of Biology, Program in Ecology & Evolutionary Biology, University of Oklahoma, Norman, OK, USA
- Sam Noble Museum, University of Oklahoma, Norman, OK, USA
| | - Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Marco A Escalante
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| |
Collapse
|
4
|
Berger L, Skerratt LF, Kosch TA, Brannelly LA, Webb RJ, Waddle AW. Advances in Managing Chytridiomycosis for Australian Frogs: Gradarius Firmus Victoria. Annu Rev Anim Biosci 2024; 12:113-133. [PMID: 38358840 DOI: 10.1146/annurev-animal-021122-100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.
Collapse
Affiliation(s)
- Lee Berger
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Laura A Brannelly
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Rebecca J Webb
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Anthony W Waddle
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
- Applied Biosciences, Macquarie University, Sydney, New South Wales, Australia;
| |
Collapse
|
5
|
Torres E, García-Fernández A, Iñigo D, Lara-Romero C, Morente-López J, Prieto-Benítez S, Rubio Teso ML, Iriondo JM. Facilitated Adaptation as A Conservation Tool in the Present Climate Change Context: A Methodological Guide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1258. [PMID: 36986946 PMCID: PMC10053585 DOI: 10.3390/plants12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.
Collapse
Affiliation(s)
- Elena Torres
- Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alfredo García-Fernández
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Diana Iñigo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Carlos Lara-Romero
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Javier Morente-López
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Grupo de Investigación de Ecología y Evolución en Islas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 Tenerife, Spain
| | - Samuel Prieto-Benítez
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Ecotoxicology of Air Pollution, Environmental Department, CIEMAT, 28040 Madrid, Spain
| | - María Luisa Rubio Teso
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - José M. Iriondo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| |
Collapse
|
6
|
Burley JT, Orzechowski SCM, Sin SYW, Edwards SV. Whole-genome phylogeography of the blue-faced honeyeater (Entomyzon cyanotis) and discovery and characterization of a neo-Z chromosome. Mol Ecol 2023; 32:1248-1270. [PMID: 35797346 DOI: 10.1111/mec.16604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Whole-genome surveys of genetic diversity and geographic variation often yield unexpected discoveries of novel structural variation, which long-read DNA sequencing can help clarify. Here, we report on whole-genome phylogeography of a bird exhibiting classic vicariant geographies across Australia and New Guinea, the blue-faced honeyeater (Entomyzon cyanotis), and the discovery and characterization of a novel neo-Z chromosome by long-read sequencing. Using short-read genome-wide SNPs, we inferred population divergence events within E. cyanotis across the Carpentarian and other biogeographic barriers during the Pleistocene (~0.3-1.7 Ma). Evidence for introgression between nonsister populations supports a hypothesis of reticulate evolution around a triad of dynamic barriers around Pleistocene Lake Carpentaria between Australia and New Guinea. During this phylogeographic survey, we discovered a large (134 Mbp) neo-Z chromosome and we explored its diversity, divergence and introgression landscape. We show that, as in some sylvioid passerine birds, a fusion occurred between chromosome 5 and the Z chromosome to form a neo-Z chromosome; and in E. cyanotis, the ancestral pseudoautosomal region (PAR) appears nonrecombinant between Z and W, along with most of the fused chromosome 5. The added recombination-suppressed portion of the neo-Z (~37.2 Mbp) displays reduced diversity and faster population genetic differentiation compared with the ancestral-Z. Yet, the new PAR (~17.4 Mbp) shows elevated diversity and reduced differentiation compared to autosomes, potentially resulting from introgression. In our case, long-read sequencing helped clarify the genomic landscape of population divergence on autosomes and sex chromosomes in a species where prior knowledge of genome structure was still incomplete.
Collapse
Affiliation(s)
- John T Burley
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.,Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden.,Department of Ecology Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA.,Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | | | - Simon Yung Wa Sin
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.,School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Scott V Edwards
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Shen Y, Tu Z, Zhang Y, Zhong W, Xia H, Hao Z, Zhang C, Li H. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116024. [PMID: 36055092 DOI: 10.1016/j.jenvman.2022.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Climate change has a crucial impact on the distributions of plants, especially relict species. Hence, predicting the potential impact of climate change on the distributions of relict plants is critical for their future conservation. Liriodendron plants are relict trees, and only two natural species have survived: L. chinense and L. tulipifera. However, the extent of the impact of future climate change on the distributions of these two Liriodendron species remains unclear. Therefore, we predicted the suitable habitat distributions of two Liriodendron species under present and future climate scenarios using MaxEnt modeling. The results showed that the area of suitable habitats for two Liriodendron species would significantly decrease. However, the two relict species presented different habitat shift patterns, with a local contraction of suitable habitat for L. chinense and a northward shift in suitable habitat for L. tulipifera, indicating that changes in environmental factors will affect the distributions of these species. Among the environmental factors assessed, May precipitation induced the largest impact on the L. chinense distribution, while L. tulipifera was significantly affected by precipitation in the driest quarter. Furthermore, to explore the relationship between habitat suitability and Liriodendron stress tolerance, we analyzed six physiological indicators of stress tolerance by sampling twelve provenances of L. chinense and five provenances of L. tulipifera. The composite index of six physiological indicators was significantly negatively correlated with the habitat suitability of the species. The stress tolerance of Liriodendron plants in highly suitable areas was lower than that in areas with moderate or low suitability. Overall, these findings improve our understanding of the ecological impacts of climate change, informing future conservation efforts for Liriodendron species.
Collapse
Affiliation(s)
- Yufang Shen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yali Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Weiping Zhong
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui Xia
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Ziyuan Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chengge Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huogen Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
8
|
von Takach B, Ranjard L, Burridge CP, Cameron SF, Cremona T, Eldridge MDB, Fisher DO, Frankenberg S, Hill BM, Hohnen R, Jolly CJ, Kelly E, MacDonald AJ, Moussalli A, Ottewell K, Phillips BL, Radford IJ, Spencer PBS, Trewella GJ, Umbrello LS, Banks SC. Population genomics of a predatory mammal reveals patterns of decline and impacts of exposure to toxic toads. Mol Ecol 2022; 31:5468-5486. [PMID: 36056907 PMCID: PMC9826391 DOI: 10.1111/mec.16680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units.
Collapse
Affiliation(s)
- Brenton von Takach
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia,School of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Louis Ranjard
- The Research School of Biology, Faculty of ScienceThe Australian National UniversityActonAustralian Capital TerritoryAustralia,PlantTech Research InstituteTaurangaNew Zealand
| | | | - Skye F. Cameron
- Australian Wildlife ConservancyKimberleyWestern AustraliaAustralia,School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Teigan Cremona
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | - Diana O. Fisher
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Brydie M. Hill
- Flora and Fauna Division, Department of Environment, Parks and Water SecurityNorthern Territory GovernmentNorthern TerritoryAustralia
| | - Rosemary Hohnen
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Chris J. Jolly
- Institute of Land, Water and Society, School of Environmental ScienceCharles Sturt UniversityAlburyNew South WalesAustralia,School of Natural SciencesMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Ella Kelly
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Anna J. MacDonald
- The Research School of Biology, Faculty of ScienceThe Australian National UniversityActonAustralian Capital TerritoryAustralia,Australian Antarctic Division, Department of AgricultureWater and the EnvironmentKingstonTasmaniaAustralia
| | - Adnan Moussalli
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia,Department of ScienceMuseums VictoriaMelbourneVictoriaAustralia
| | - Kym Ottewell
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Ben L. Phillips
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ian J. Radford
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Peter B. S. Spencer
- Environmental and Conservation Sciences, Murdoch UniversityPerthWestern AustraliaAustralia
| | - Gavin J. Trewella
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Linette S. Umbrello
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia,Collections and Research CentreWestern Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Sam C. Banks
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| |
Collapse
|
9
|
Evans MJ, Weeks AR, Scheele BC, Gordon IJ, Neaves LE, Andrewartha TA, Brockett B, Rapley S, Smith KJ, Wilson BA, Manning AD. Coexistence conservation: Reconciling threatened species and invasive predators through adaptive ecological and evolutionary approaches. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Maldwyn J. Evans
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Andrew R. Weeks
- School of BioSciences The University of Melbourne Parkville Victoria Australia
| | - Ben C. Scheele
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Iain J. Gordon
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
- The James Hutton Institute Dundee UK
- Central Queensland University Townsville Queensland Australia
- Land & water, CSIRO Townsville Queensland Australia
- Lead, Protected Places Mission, National Environmental Science Program Reef and Rainforest Research Centre Cairns Queensland Australia
| | - Linda E. Neaves
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Tim A. Andrewartha
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Brittany Brockett
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Shoshana Rapley
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Kiarrah J. Smith
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Belinda A. Wilson
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| | - Adrian D. Manning
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
10
|
Genetic approaches for increasing fitness in endangered species. Trends Ecol Evol 2022; 37:332-345. [PMID: 35027225 DOI: 10.1016/j.tree.2021.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
The global rate of wildlife extinctions is accelerating, and the persistence of many species requires conservation breeding programs. A central paradigm of these programs is to preserve the genetic diversity of the founder populations. However, this may preserve original characteristics that make them vulnerable to extinction. We introduce targeted genetic intervention (TGI) as an alternative approach that promotes traits that enable species to persist in the face of threats by changing the incidence of alleles that impact on fitness. The TGI toolkit includes methods with established efficacy in model organisms and agriculture but are largely untried for conservation, such as synthetic biology and artificial selection. We explore TGI approaches as a species-restoration tool for intractable threats including infectious disease and climate change.
Collapse
|
11
|
Nimmo DG, Carthey AJR, Jolly CJ, Blumstein DT. Welcome to the Pyrocene: Animal survival in the age of megafire. GLOBAL CHANGE BIOLOGY 2021; 27:5684-5693. [PMID: 34404117 DOI: 10.1111/gcb.15834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Planet Earth is entering the age of megafire, pushing ecosystems to their limits and beyond. While fire causes mortality of animals across vast portions of the globe, scientists are only beginning to consider fire as an evolutionary force in animal ecology. Here, we generate a series of hypotheses regarding animal responses to fire by adopting insights from the predator-prey literature. Fire is a lethal threat; thus, there is likely strong selection for animals to recognize the olfactory, auditory, and visual cues of fire, and deploy fire avoidance behaviours that maximize survival probability. If fire defences are costly, it follows that intraspecific variation in fire avoidance behaviours should correspond with variation in fire behaviour and regimes. Species and populations inhabiting ecosystems that rarely experience fire may lack these traits, placing 'fire naive' populations and species at enhanced extinction risk as the distribution of fire extends into new ecosystem types. We outline a research agenda to understand behavioural responses to fire and to identify conservation interventions that could be used to overcome fire naivety.
Collapse
Affiliation(s)
- Dale G Nimmo
- Institute of Land, Water and Society, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | - Alexandra J R Carthey
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Chris J Jolly
- Institute of Land, Water and Society, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
12
|
Rudin-Bitterli TS, Evans JP, Mitchell NJ. Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs. Commun Biol 2021; 4:1195. [PMID: 34663885 PMCID: PMC8523558 DOI: 10.1038/s42003-021-02695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Targeted gene flow (TGF) could bolster the adaptive potential of isolated populations threatened by climate change, but could also lead to outbreeding depression. Here, we explore these possibilities by creating mixed- and within-population crosses in a terrestrial-breeding frog species threatened by a drying climate. We reared embryos of the crawling frog (Pseudophryne guentheri) on wet and dry soils and quantified fitness-related traits upon hatching. TGF produced mixed outcomes in hybrids, which depended on crossing direction (origin of gametes from each sex). North-south crosses led to low embryonic survival if eggs were of a southern origin, and high malformation rates when eggs were from a northern population. Conversely, east-west crosses led to one instance of hybrid vigour, evident by increased fitness and desiccation tolerance of hybrid offspring relative to offspring produced from within-population crosses. These contrasting results highlight the need to experimentally evaluate the outcomes of TGF for focal species across generations prior to implementing management actions.
Collapse
Affiliation(s)
- Tabitha S Rudin-Bitterli
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Centre for Evolutionary Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jonathan P Evans
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Centre for Evolutionary Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
13
|
Souther S, McGraw JB, Souther JD, Waller DM. Effects of altered climates on American ginseng population dynamics. POPUL ECOL 2021. [DOI: 10.1002/1438-390x.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Souther
- Center for Adaptable Western Landscapes School of Earth and Sustainability Northern Arizona University Flagstaff Arizona USA
| | - James B. McGraw
- Department of Biology West Virginia University Morgantown West Virginia USA
| | - John D. Souther
- Coconino National Forest United States Forest Service Flagstaff Arizona USA
| | - Donald M. Waller
- Nelson Institute of Environmental Studies University of Wisconsin—Madison Madison Wisconsin USA
| |
Collapse
|
14
|
Vranken S, Wernberg T, Scheben A, Severn-Ellis AA, Batley J, Bayer PE, Edwards D, Wheeler D, Coleman MA. Genotype-Environment mismatch of kelp forests under climate change. Mol Ecol 2021; 30:3730-3746. [PMID: 34018645 DOI: 10.1111/mec.15993] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023]
Abstract
Climate change is increasingly impacting ecosystems globally. Understanding adaptive genetic diversity and whether it will keep pace with projected climatic change is necessary to assess species' vulnerability and design efficient mitigation strategies such as assisted adaptation. Kelp forests are the foundations of temperate reefs globally but are declining in many regions due to climate stress. A lack of knowledge of kelp's adaptive genetic diversity hinders assessment of vulnerability under extant and future climates. Using 4245 single nucleotide polymorphisms (SNPs), we characterized patterns of neutral and putative adaptive genetic diversity for the dominant kelp in the southern hemisphere (Ecklonia radiata) from ~1000 km of coastline off Western Australia. Strong population structure and isolation-by-distance was underpinned by significant signatures of selection related to temperature and light. Gradient forest analysis of temperature-linked SNPs under selection revealed a strong association with mean annual temperature range, suggesting adaptation to local thermal environments. Critically, modelling revealed that predicted climate-mediated temperature changes will probably result in high genomic vulnerability via a mismatch between current and future predicted genotype-environment relationships such that kelp forests off Western Australia will need to significantly adapt to keep pace with projected climate change. Proactive management techniques such as assisted adaptation to boost resilience may be required to secure the future of these kelp forests and the immense ecological and economic values they support.
Collapse
Affiliation(s)
- Sofie Vranken
- UWA Oceans Institute, Crawley, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Thomas Wernberg
- UWA Oceans Institute, Crawley, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Institute of Marine Research, His, Norway
| | - Armin Scheben
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Philipp Emanuel Bayer
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - David Wheeler
- New South Wales Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, Australia
| | - Melinda Ann Coleman
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- New South Wales Fisheries, National Marine Science Centre, Coffs Harbour, NSW, Australia
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, Australia
| |
Collapse
|
15
|
Genomic Approaches for Conservation Management in Australia under Climate Change. Life (Basel) 2021; 11:life11070653. [PMID: 34357024 PMCID: PMC8304512 DOI: 10.3390/life11070653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Conservation genetics has informed threatened species management for several decades. With the advent of advanced DNA sequencing technologies in recent years, it is now possible to monitor and manage threatened populations with even greater precision. Climate change presents a number of threats and challenges, but new genomics data and analytical approaches provide opportunities to identify critical evolutionary processes of relevance to genetic management under climate change. Here, we discuss the applications of such approaches for threatened species management in Australia in the context of climate change, identifying methods of facilitating viability and resilience in the face of extreme environmental stress. Using genomic approaches, conservation management practices such as translocation, targeted gene flow, and gene-editing can now be performed with the express intention of facilitating adaptation to current and projected climate change scenarios in vulnerable species, thus reducing extinction risk and ensuring the protection of our unique biodiversity for future generations. We discuss the current barriers to implementing conservation genomic projects and the efforts being made to overcome them, including communication between researchers and managers to improve the relevance and applicability of genomic studies. We present novel approaches for facilitating adaptive capacity and accelerating natural selection in species to encourage resilience in the face of climate change.
Collapse
|
16
|
van Weelden C, Towers JR, Bosker T. Impacts of climate change on cetacean distribution, habitat and migration. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Draining the Swamping Hypothesis: Little Evidence that Gene Flow Reduces Fitness at Range Edges. Trends Ecol Evol 2021; 36:533-544. [DOI: 10.1016/j.tree.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
|
18
|
Bal TMP, Llanos-Garrido A, Chaturvedi A, Verdonck I, Hellemans B, Raeymaekers JAM. Adaptive Divergence under Gene Flow along an Environmental Gradient in Two Coexisting Stickleback Species. Genes (Basel) 2021; 12:435. [PMID: 33803820 PMCID: PMC8003309 DOI: 10.3390/genes12030435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
There is a general and solid theoretical framework to explain how the interplay between natural selection and gene flow affects local adaptation. Yet, to what extent coexisting closely related species evolve collectively or show distinctive evolutionary responses remains a fundamental question. To address this, we studied the population genetic structure and morphological differentiation of sympatric three-spined and nine-spined stickleback. We conducted genotyping-by-sequencing and morphological trait characterisation using 24 individuals of each species from four lowland brackish water (LBW), four lowland freshwater (LFW) and three upland freshwater (UFW) sites in Belgium and the Netherlands. This combination of sites allowed us to contrast populations from isolated but environmentally similar locations (LFW vs. UFW), isolated but environmentally heterogeneous locations (LBW vs. UFW), and well-connected but environmentally heterogenous locations (LBW vs. LFW). Overall, both species showed comparable levels of genetic diversity and neutral genetic differentiation. However, for all three spatial scales, signatures of morphological and genomic adaptive divergence were substantially stronger among populations of the three-spined stickleback than among populations of the nine-spined stickleback. Furthermore, most outlier SNPs in the two species were associated with local freshwater sites. The few outlier SNPs that were associated with the split between brackish water and freshwater populations were located on one linkage group in three-spined stickleback and two linkage groups in nine-spined stickleback. We conclude that while both species show congruent evolutionary and genomic patterns of divergent selection, both species differ in the magnitude of their response to selection regardless of the geographical and environmental context.
Collapse
Affiliation(s)
- Thijs M. P. Bal
- Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway;
| | | | - Anurag Chaturvedi
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland;
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | - Io Verdonck
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | | |
Collapse
|
19
|
Novak BJ, Phelan R, Weber M. U.S. conservation translocations: Over a century of intended consequences. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Reducing the Extinction Risk of Populations Threatened by Infectious Diseases. DIVERSITY 2021. [DOI: 10.3390/d13020063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extinction risk is increasing for a range of species due to a variety of threats, including disease. Emerging infectious diseases can cause severe declines in wild animal populations, increasing population fragmentation and reducing gene flow. Small, isolated, host populations may lose adaptive potential and become more susceptible to extinction due to other threats. Management of the genetic consequences of disease-induced population decline is often necessary. Whilst disease threats need to be addressed, they can be difficult to mitigate. Actions implemented to conserve the Tasmanian devil (Sarcophilus harrisii), which has suffered decline to the deadly devil facial tumour disease (DFTD), exemplify how genetic management can be used to reduce extinction risk in populations threatened by disease. Supplementation is an emerging conservation technique that may benefit populations threatened by disease by enabling gene flow and conserving their adaptive potential through genetic restoration. Other candidate species may benefit from genetic management via supplementation but concerns regarding outbreeding depression may prevent widespread incorporation of this technique into wildlife disease management. However, existing knowledge can be used to identify populations that would benefit from supplementation where risk of outbreeding depression is low. For populations threatened by disease and, in situations where disease eradication is not an option, wildlife managers should consider genetic management to buffer the host species against inbreeding and loss of genetic diversity.
Collapse
|
21
|
Feiner N, Brun-Usan M, Uller T. Evolvability and evolutionary rescue. Evol Dev 2021; 23:308-319. [PMID: 33528902 DOI: 10.1111/ede.12374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/22/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
The survival prospects of threatened species or populations can sometimes be improved by adaptive change. Such evolutionary rescue is particularly relevant when the threat comes from changing environments, or when long-term population persistence requires range expansion into new habitats. Conservation biologists are therefore often interested in whether or not populations or lineages show a disposition for adaptive evolution, that is, if they are evolvable. Here, we discuss four alternative perspectives that target different causes of evolvability and outline some of the key challenges those perspectives are designed to address. Standing genetic variation provides one familiar estimate of evolvability. Yet, the mere presence of genetic variation is often insufficient to predict if a population will adapt, or how it will adapt. The reason is that adaptive change not only depends on genetic variation, but also on the extent to which this genetic variation can be realized as adaptive phenotypic variation. This requires attention to developmental systems and how plasticity influences evolutionary potential. Finally, we discuss how a better understanding of the different factors that contribute to evolvability can be exploited in conservation practice.
Collapse
Affiliation(s)
| | | | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Layman NC, Tuschhoff BM, Basinski AJ, Remien CH, Bull JJ, Nuismer SL. Suppressing evolution in genetically engineered systems through repeated supplementation. Evol Appl 2021; 14:348-359. [PMID: 33664781 PMCID: PMC7896713 DOI: 10.1111/eva.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/09/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022] Open
Abstract
Genetically engineered organisms are prone to evolve in response to the engineering. This evolution is often undesirable and can negatively affect the purpose of the engineering. Methods that maintain the stability of engineered genomes are therefore critical to the successful design and use of genetically engineered organisms. One potential method to limit unwanted evolution is by taking advantage of the ability of gene flow to counter local adaption, a process of supplementation. Here, we investigate the feasibility of supplementation as a mechanism to offset the evolutionary degradation of a transgene in three model systems: a bioreactor, a gene drive, and a transmissible vaccine. In each model, continual introduction from a stock is used to balance mutation and selection against the transgene. Each system has its unique features. The bioreactor system is especially tractable and has a simple answer: The level of supplementation required to maintain the transgene at a frequency p ^ is approximatelyp ^ s , where s is the selective disadvantage of the transgene. Supplementation is also feasible in the transmissible vaccine case but is probably not practical to prevent the evolution of resistance against a gene drive. We note, however, that the continual replacement of even a small fraction of a large population can be challenging, limiting the usefulness of supplementation as a means of controlling unwanted evolution.
Collapse
Affiliation(s)
| | | | | | | | - James J. Bull
- Department of Biological SciencesUniversity of IdahoMoscowIDUSA
| | | |
Collapse
|
23
|
Moore HA, Dunlop JA, Jolly CJ, Kelly E, Woinarski JCZ, Ritchie EG, Burnett S, van Leeuwen S, Valentine LE, Cowan MA, Nimmo DG. A brief history of the northern quoll (Dasyurus hallucatus): a systematic review. AUSTRALIAN MAMMALOGY 2021. [DOI: 10.1071/am21002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
No outbreeding depression in a trial of targeted gene flow in an endangered Australian marsupial. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01316-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Miller AD, Nitschke C, Weeks AR, Weatherly WL, Heyes SD, Sinclair SJ, Holland OJ, Stevenson A, Broadhurst L, Hoebee SE, Sherman CDH, Morgan JW. Genetic data and climate niche suitability models highlight the vulnerability of a functionally important plant species from south-eastern Australia. Evol Appl 2020; 13:2014-2029. [PMID: 32908601 PMCID: PMC7463319 DOI: 10.1111/eva.12958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022] Open
Abstract
Habitat fragmentation imperils the persistence of many functionally important species, with climate change a new threat to local persistence due to climate niche mismatching. Predicting the evolutionary trajectory of species essential to ecosystem function under future climates is challenging but necessary for prioritizing conservation investments. We use a combination of population genetics and niche suitability models to assess the trajectory of a functionally important, but highly fragmented, plant species from south-eastern Australia (Banksia marginata, Proteaceae). We demonstrate significant genetic structuring among, and high level of relatedness within, fragmented remnant populations, highlighting imminent risks of inbreeding. Population simulations, controlling for effective population size (N e), suggest that many remnant populations will suffer rapid declines in genetic diversity due to drift in the absence of intervention. Simulations were used to demonstrate how inbreeding and drift processes might be suppressed by assisted migration and population mixing approaches that enhance the size and connectivity of remnant populations. These analyses were complemented by niche suitability models that predicted substantial reductions of suitable habitat by 2080; ~30% of the current distribution of the species climate niche overlaps with the projected distribution of the species climate niche in the geographic region by the 2080s. Our study highlights the importance of conserving remnant populations and establishing new populations in areas likely to support B. marginata in the future, and adopting seed sourcing strategies that can help populations overcome the risks of inbreeding and maladaptation. We also argue that ecological replacement of B. marginata using climatically suited plant species might be needed in the future to maintain ecosystem processes where B. marginata cannot persist. We recommend the need for progressive revegetation policies and practices to prevent further deterioration of species such as B. marginata and the ecosystems they support.
Collapse
Affiliation(s)
- Adam D. Miller
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVicAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVicAustralia
| | - Craig Nitschke
- School of Ecosystem and Forest SciencesThe University of MelbourneRichmondVicAustralia
| | - Andrew R. Weeks
- School of BioSciencesThe University of MelbourneParkvilleVicAustralia
| | | | - Simon D. Heyes
- Department of Ecology, Environment and EvolutionLa Trobe UniversityBundooraVicAustralia
| | - Steve J. Sinclair
- Department of Environment, Land, Water and PlanningArthur Rylah InstituteHeidelbergVicAustralia
| | - Owen J. Holland
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVicAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVicAustralia
| | - Aggie Stevenson
- Glenelg Hopkins Catchment Management AuthorityHamiltonVicAustralia
| | - Linda Broadhurst
- Centre for Australian National Biodiversity ResearchCSIRO National Research CollectionsCanberraACTAustralia
| | - Susan E. Hoebee
- Department of Ecology, Environment and EvolutionLa Trobe UniversityBundooraVicAustralia
| | - Craig D. H. Sherman
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVicAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVicAustralia
| | - John W. Morgan
- Department of Ecology, Environment and EvolutionLa Trobe UniversityBundooraVicAustralia
| |
Collapse
|
26
|
Jowers MJ, Queirós J, Resende Pinto R, Ali AH, Mutinda M, Angelone S, Alves PC, Godinho R. Genetic diversity in natural range remnants of the critically endangered hirola antelope. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlz174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractThe hirola antelope (Beatragus hunteri) is considered to be the most endangered antelope in the world. In the ex situ translocated population at Tsavo East National Park, calf mortality and the critically low population numbers might suggest low genetic diversity and inbreeding depression. Consequently, a genetic study of the wild population is pivotal to gain an understanding of diversity and differentiation within its range before designing future translocation plans to increase the genetic diversity of the ex situ population. For that purpose, we assessed 55 individuals collected across five localities in eastern Kenya, covering its entire natural range. We used the complete mitochondrial DNA control region and microsatellite genotyping to estimate genetic diversity and differentiation across its range. Nuclear genetic diversity was moderate in comparison to other endangered African antelopes, with no signals of inbreeding. However, the mitochondrial data showed low nucleotide diversity, few haplotypes and low haplotypic differentiation. Overall, the inferred low degree of genetic differentiation and population structure suggests a single population of hirola across the natural range. An overall stable population size was inferred over the recent history of the species, although signals of a recent genetic bottleneck were found. Our results show hope for ongoing conservation management programmes and that there is a future for the hirola in Kenya.
Collapse
Affiliation(s)
- Michael Joseph Jowers
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - João Queirós
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - Rui Resende Pinto
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - Abdullahi H Ali
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- National Museums of Kenya, Nairobi, Kenya
- Hirola Conservation Programme, Garissa, Kenya
| | - Mathew Mutinda
- Department of Veterinary and Capture Services, Kenya Wildlife Service, Nairobi, Kenya
| | - Samer Angelone
- Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland
| | - Paulo Célio Alves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Department of Zoology, University of Johannesburg, South Africa
| |
Collapse
|
27
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
28
|
Phelps MP, Seeb LW, Seeb JE. Transforming ecology and conservation biology through genome editing. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:54-65. [PMID: 30693970 DOI: 10.1111/cobi.13292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/23/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
As the conservation challenges increase, new approaches are needed to help combat losses in biodiversity and slow or reverse the decline of threatened species. Genome-editing technology is changing the face of modern biology, facilitating applications that were unimaginable only a decade ago. The technology has the potential to make significant contributions to the fields of evolutionary biology, ecology, and conservation, yet the fear of unintended consequences from designer ecosystems containing engineered organisms has stifled innovation. To overcome this gap in the understanding of what genome editing is and what its capabilities are, more research is needed to translate genome-editing discoveries into tools for ecological research. Emerging and future genome-editing technologies include new clustered regularly interspaced short palindromic repeats (CRISPR) targeted sequencing and nucleic acid detection approaches as well as species genetic barcoding and somatic genome-editing technologies. These genome-editing tools have the potential to transform the environmental sciences by providing new noninvasive methods for monitoring threatened species or for enhancing critical adaptive traits. A pioneering effort by the conservation community is required to apply these technologies to real-world conservation problems.
Collapse
Affiliation(s)
- Michael P Phelps
- Department of Pathology, University of Washington, Box 357705, Seattle, WA, 98195, U.S.A
| | - Lisa W Seeb
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, 98195, U.S.A
| | - James E Seeb
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, 98195, U.S.A
| |
Collapse
|
29
|
Oh KP, Aldridge CL, Forbey JS, Dadabay CY, Oyler-McCance SJ. Conservation Genomics in the Sagebrush Sea: Population Divergence, Demographic History, and Local Adaptation in Sage-Grouse (Centrocercus spp.). Genome Biol Evol 2020; 11:2023-2034. [PMID: 31135036 DOI: 10.1093/gbe/evz112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Sage-grouse are two closely related iconic species of the North American West, with historically broad distributions across sagebrush-steppe habitat. Both species are dietary specialists on sagebrush during winter, with presumed adaptations to tolerate the high concentrations of toxic secondary metabolites that function as plant chemical defenses. Marked range contraction and declining population sizes since European settlement have motivated efforts to identify distinct population genetic variation, particularly that which might be associated with local genetic adaptation and dietary specialization of sage-grouse. We assembled a reference genome and performed whole-genome sequencing across sage-grouse from six populations, encompassing both species and including several populations on the periphery of the species ranges. Population genomic analyses reaffirmed genome-wide differentiation between greater and Gunnison sage-grouse, revealed pronounced intraspecific population structure, and highlighted important differentiation of a small isolated population of greater sage-grouse in the northwest of the range. Patterns of genome-wide differentiation were largely consistent with a hypothesized role of genetic drift due to limited gene flow among populations. Inferred ancient population demography suggested persistent declines in effective population sizes that have likely contributed to differentiation within and among species. Several genomic regions with single-nucleotide polymorphisms exhibiting extreme population differentiation were associated with candidate genes linked to metabolism of xenobiotic compounds. In vitro activity of enzymes isolated from sage-grouse livers supported a role for these genes in detoxification of sagebrush, suggesting that the observed interpopulation variation may underlie important local dietary adaptations, warranting close consideration for conservation strategies that link sage-grouse to the chemistry of local sagebrush.
Collapse
Affiliation(s)
- Kevin P Oh
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado
| | - Cameron L Aldridge
- Natural Resource Ecology Laboratory and Department of Ecosystem Sciences, Colorado State University in cooperation with U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado
| | | | | | | |
Collapse
|
30
|
Mahony CR, MacLachlan IR, Lind BM, Yoder JB, Wang T, Aitken SN. Evaluating genomic data for management of local adaptation in a changing climate: A lodgepole pine case study. Evol Appl 2020; 13:116-131. [PMID: 31892947 PMCID: PMC6935591 DOI: 10.1111/eva.12871] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/29/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023] Open
Abstract
We evaluate genomic data, relative to phenotypic and climatic data, as a basis for assisted gene flow and genetic conservation. Using a seedling common garden trial of 281 lodgepole pine (Pinus contorta) populations from across western Canada, we compare genomic data to phenotypic and climatic data to assess their effectiveness in characterizing the climatic drivers and spatial scale of local adaptation in this species. We find that phenotype-associated loci are equivalent or slightly superior to climate data for describing local adaptation in seedling traits, but that climate data are superior to genomic data that have not been selected for phenotypic associations. We also find agreement between the climate variables associated with genomic variation and with 20-year heights from a long-term provenance trial, suggesting that genomic data may be a viable option for identifying climatic drivers of local adaptation where phenotypic data are unavailable. Genetic clines associated with the experimental traits occur at broad spatial scales, suggesting that standing variation of adaptive alleles for this and similar species does not require management at scales finer than those indicated by phenotypic data. This study demonstrates that genomic data are most useful when paired with phenotypic data, but can also fill some of the traditional roles of phenotypic data in management of species for which phenotypic trials are not feasible.
Collapse
Affiliation(s)
- Colin R. Mahony
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Ian R. MacLachlan
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Brandon M. Lind
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Jeremy B. Yoder
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Tongli Wang
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| | - Sally N. Aitken
- Centre for Forest Conservation Genetics and Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
31
|
Wilson BC, Ramos JA, Peters RA. Intraspecific variation in behaviour and ecology in a territorial agamid, Ctenophorus fionni. AUST J ZOOL 2020. [DOI: 10.1071/zo20091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intraspecific variation as a way to explore factors affecting the evolution of species traits in natural environments is well documented, and also important in the context of preserving biodiversity. In this study, we investigated the extent of behavioural, morphological and ecological variation in the peninsula dragon (Ctenophorus fionni), an endemic Australian agamid that displays extensive variation in colour across three allopatric populations. The aims of the study were to quantify variation across the different populations in terms of the environment, morphometric characteristics and behaviour. We found population level differences in habitat structure and encounter rates. Adult body size of C. fionni, as well as a range of morphometric traits, differed between populations, as well as the frequency of social interactions, which appears to be related to population density and abundance. Analysis of communicative signals showed differences between the southern and central populations, which appear consistent with variations in response to environmental differences between study sites. The findings of the present study, coupled with previous work examining colour variation in this species, show that the three populations of C. fionni have likely undergone substantial differentiation, and would make an interesting study system to explore trait variation in more detail.
Collapse
|
32
|
Catullo RA, Llewelyn J, Phillips BL, Moritz CC. The Potential for Rapid Evolution under Anthropogenic Climate Change. Curr Biol 2019; 29:R996-R1007. [DOI: 10.1016/j.cub.2019.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Quigley KM, Bay LK, van Oppen MJH. The active spread of adaptive variation for reef resilience. Ecol Evol 2019; 9:11122-11135. [PMID: 31641460 PMCID: PMC6802068 DOI: 10.1002/ece3.5616] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The speed at which species adapt depends partly on the rates of beneficial adaptation generation and how quickly they spread within and among populations. Natural rates of adaptation of corals may not be able to keep pace with climate warming. Several interventions have been proposed to fast-track thermal adaptation, including the intentional translocation of warm-adapted adults or their offspring (assisted gene flow, AGF) and the ex situ crossing of warm-adapted corals with conspecifics from cooler reefs (hybridization or selective breeding) and field deployment of those offspring. The introgression of temperature tolerance loci into the genomic background of cooler-environment corals aims to facilitate adaptation to warming while maintaining fitness under local conditions. Here we use research on selective sweeps and connectivity to understand the spread of adaptive variants as it applies to AGF on the Great Barrier Reef (GBR), focusing on the genus Acropora. Using larval biophysical dispersal modeling, we estimate levels of natural connectivity in warm-adapted northern corals. We then model the spread of adaptive variants from single and multiple reefs and assess if the natural and assisted spread of adaptive variants will occur fast enough to prepare receiving central and southern populations given current rates of warming. We also estimate fixation rates and spatial extent of fixation under multiple release scenarios to inform intervention design. Our results suggest that thermal tolerance is unlikely to spread beyond northern reefs to the central and southern GBR without intervention, and if it does, 30+ generations are needed for adaptive gene variants to reach fixation even under multiple release scenarios. We argue that if translocation, breeding, and reseeding risks are managed, AGF using multiple release reefs can be beneficial for the restoration of coral populations. These interventions should be considered in addition to conventional management and accompanied by strong mitigation of CO2 emissions.
Collapse
Affiliation(s)
- Kate M. Quigley
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsvilleQldAustralia
- School of BioSciencesThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
34
|
Alcala N, Goldberg A, Ramakrishnan U, Rosenberg NA. Coalescent Theory of Migration Network Motifs. Mol Biol Evol 2019; 36:2358-2374. [PMID: 31165149 PMCID: PMC6759081 DOI: 10.1093/molbev/msz136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Natural populations display a variety of spatial arrangements, each potentially with a distinctive impact on genetic diversity and genetic differentiation among subpopulations. Although the spatial arrangement of populations can lead to intricate migration networks, theoretical developments have focused mainly on a small subset of such networks, emphasizing the island-migration and stepping-stone models. In this study, we investigate all small network motifs: the set of all possible migration networks among populations subdivided into at most four subpopulations. For each motif, we use coalescent theory to derive expectations for three quantities that describe genetic variation: nucleotide diversity, FST, and half-time to equilibrium diversity. We describe the impact of network properties on these quantities, finding that motifs with a high mean node degree have the largest nucleotide diversity and the longest time to equilibrium, whereas motifs with low density have the largest FST. In addition, we show that the motifs whose pattern of variation is most strongly influenced by loss of a connection or a subpopulation are those that can be split easily into disconnected components. We illustrate our results using two example data sets—sky island birds of genus Sholicola and Indian tigers—identifying disturbance scenarios that produce the greatest reduction in genetic diversity; for tigers, we also compare the benefits of two assisted gene flow scenarios. Our results have consequences for understanding the effect of geography on genetic diversity, and they can assist in designing strategies to alter population migration networks toward maximizing genetic variation in the context of conservation of endangered species.
Collapse
Affiliation(s)
- Nicolas Alcala
- Department of Biology, Stanford University, Stanford, CA
| | - Amy Goldberg
- Department of Biology, Stanford University, Stanford, CA.,Department of Evolutionary Anthropology, Duke University, Durham, NC
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
35
|
Xia S, Baskett ML, Powell JR. Quantifying the efficacy of genetic shifting in control of mosquito-borne diseases. Evol Appl 2019; 12:1552-1568. [PMID: 31462914 PMCID: PMC6708429 DOI: 10.1111/eva.12802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023] Open
Abstract
Many of the world's most prevalent diseases are transmitted by animal vectors such as dengue transmitted by mosquitoes. To reduce these vector-borne diseases, a promising approach is "genetic shifting": selective breeding of the vectors to be more resistant to pathogens and releasing them to the target populations to reduce their ability to transmit pathogens, that is, lower their vector competence. The efficacy of genetic shifting will depend on possible counterforces such as natural selection against low vector competence. To quantitatively evaluate the potential efficacy of genetic shifting, we developed a series of coupled genetic-demographic models that simulate the changes of vector competence during releases of individuals with low vector competence. We modeled vector competence using different genetic architectures, as a multilocus, one-locus, or two-locus trait. Using empirically determined estimates of model parameters, the model predicted a reduction of mean vector competence of at least three standard deviations after 20 releases, one release per generation, and 10% of the size of the target population released each time. Sensitivity analysis suggested that release efficacy depends mostly on the vector competence of the released population, release size, release frequency, and the survivorship of the released individuals, with duration of the release program less important. Natural processes such as density-dependent survival and immigration from external populations also strongly influence release efficacy. Among different sex-dependent release strategies, releasing blood-fed females together with males resulted in the highest release efficacy, as these females mate in captivity and reproduce when released, thus contributing a greater proportion of low-vector-competence offspring. Conclusions were generally consistent across three models assuming different genetic architectures of vector competence, suggesting that genetic shifting could generally apply to various vector systems and does not require detailed knowledge of the number of loci contributing to vector competence.
Collapse
Affiliation(s)
- Siyang Xia
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Marissa L. Baskett
- Department of Environmental Science and PolicyUniversity of California, DavisDavisCalifornia
| | | |
Collapse
|
36
|
Zimmerman SJ, Aldridge CL, Oh KP, Cornman RS, Oyler‐McCance SJ. Signatures of adaptive divergence among populations of an avian species of conservation concern. Evol Appl 2019; 12:1661-1677. [PMID: 31462921 PMCID: PMC6708427 DOI: 10.1111/eva.12825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Understanding the genetic underpinning of adaptive divergence among populations is a key goal of evolutionary biology and conservation. Gunnison sage-grouse (Centrocercus minimus) is a sagebrush obligate species with a constricted range consisting of seven discrete populations, each with distinctly different habitat and climatic conditions. Though geographically close, populations have low levels of natural gene flow resulting in relatively high levels of differentiation. Here, we use 15,033 SNP loci in genomic outlier analyses, genotype-environment association analyses, and gene ontology enrichment tests to examine patterns of putatively adaptive genetic differentiation in an avian species of conservation concern. We found 411 loci within 5 kbp of 289 putative genes associated with biological functions or pathways that were overrepresented in the assemblage of outlier SNPs. The identified gene set was enriched for cytochrome P450 gene family members (CYP4V2, CYP2R1, CYP2C23B, CYP4B1) and could impact metabolism of plant secondary metabolites, a critical challenge for sagebrush obligates. Additionally, the gene set was also enriched with members potentially involved in antiviral response (DEAD box helicase gene family and SETX). Our results provide a first look at local adaption for isolated populations of a single species and suggest adaptive divergence in multiple metabolic and biochemical pathways may be occurring. This information can be useful in managing this species of conservation concern, for example, to identify unique populations to conserve, avoid translocation or release of individuals that may swamp locally adapted genetic diversity, or guide habitat restoration efforts.
Collapse
Affiliation(s)
- Shawna J. Zimmerman
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University in Cooperation with U.S. Geological SurveyFort Collins Science CenterFort CollinsColorado
| | - Cameron L. Aldridge
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University in Cooperation with U.S. Geological SurveyFort Collins Science CenterFort CollinsColorado
| | - Kevin P. Oh
- U.S. Geological SurveyFort Collins Science CenterFort CollinsColorado
| | - Robert S. Cornman
- U.S. Geological SurveyFort Collins Science CenterFort CollinsColorado
| | | |
Collapse
|
37
|
Llewelyn J, Macdonald SL, Moritz C, Martins F, Hatcher A, Phillips BL. Adjusting to climate: Acclimation, adaptation and developmental plasticity in physiological traits of a tropical rainforest lizard. Integr Zool 2019; 13:411-427. [PMID: 29316349 DOI: 10.1111/1749-4877.12309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The impact of climate change may be felt most keenly by tropical ectotherms. In these taxa, it is argued, thermal specialization means a given shift in temperature will have a larger effect on fitness. For species with limited dispersal ability, the impact of climate change depends on the capacity for their climate-relevant traits to shift. Such shifts can occur through genetic adaptation, various forms of plasticity, or a combination of these processes. Here we assess the extent and causes of shifts in 7 physiological traits in a tropical lizard, the rainforest sunskink (Lampropholis coggeri). Two populations were sampled that differ from each other in both climate and physiological traits. We compared trait values in each animal soon after field collection versus following acclimation to laboratory conditions. We also compared trait values between populations in: (i) recently field-collected animals; (ii) the same animals following laboratory acclimation; and (iii) the laboratory-reared offspring of these animals. Our results reveal high trait lability, driven primarily by acclimation and local adaptation. By contrast, developmental plasticity, resulting from incubation temperature, had little to no effect on most traits. These results suggest that, while specialized, tropical ectotherms may be capable of rapid shifts in climate-relevant traits.
Collapse
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,CSIRO Land and Water, Townsville, Queensland, Australia
| | - Stewart L Macdonald
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,CSIRO Land and Water, Townsville, Queensland, Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| | - Felipe Martins
- Centre for Biodiversity Analysis, Australian National University, Canberra, Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia
| | - Ben L Phillips
- Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Queensland, Australia.,School of BioSciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
38
|
von Takach Dukai B, Jack C, Borevitz J, Lindenmayer DB, Banks SC. Pervasive admixture between eucalypt species has consequences for conservation and assisted migration. Evol Appl 2019; 12:845-860. [PMID: 30976314 PMCID: PMC6439489 DOI: 10.1111/eva.12761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
Conservation management often uses information on genetic population structure to assess the importance of local provenancing for ecological restoration and reintroduction programs. For species that do not exhibit complete reproductive isolation, the estimation of population genetic parameters may be influenced by the extent of admixture. Therefore, to avoid perverse outcomes for conservation, genetically informed management strategies must determine whether hybridization between species is relevant, and the extent to which observed population genetic patterns are shaped by interspecific versus intraspecific gene flow. We used genotyping by sequencing to identify over 2,400 informative single nucleotide polymorphisms across 18 populations of Eucalyptus regnans F. Muell., a foundation tree species of montane forests in south-eastern Australia. We used these data to determine the extent of hybridization with another species, Eucalyptus obliqua L'Hér., and investigate how admixture influences genetic diversity parameters, by estimating metrics of genetic diversity and examining population genetic structure in datasets with and without admixed individuals. We found hybrid individuals at all sites and two highly introgressed populations. Hybrid individuals were not distributed evenly across environmental gradients, with logistic regression identifying hybrids as being associated with temperature. Removal of hybrids resulted in increases in genetic differentiation (F ST), expected heterozygosity, observed heterozygosity and the inbreeding coefficient, and different patterns of isolation by distance. After removal of hybrids and introgressed populations, mountain ash showed very little population genetic structure, with a small effect of isolation by distance, and very low global F ST(0.03). Our study shows that, in plants, decisions around provenancing of individuals for restoration depend on knowledge of whether hybridization is influencing population genetic structure. For species in which most genetic variation is held within populations, there may be little benefit in planning conservation strategies around environmental adaptation of seed sources. The possibility for adaptive introgression may also be relevant when species regularly hybridize.
Collapse
Affiliation(s)
- Brenton von Takach Dukai
- Fenner School of Environment and SocietyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Cameron Jack
- ANU Bioinformatics Consultancy, John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Justin Borevitz
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Centre of Excellence in Plant Energy BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - David B. Lindenmayer
- Fenner School of Environment and SocietyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Sam C. Banks
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthwest TerritoriesAustralia
| |
Collapse
|
39
|
Affiliation(s)
- Graham P. Wallis
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Kelly E, Phillips BL. Targeted gene flow and rapid adaptation in an endangered marsupial. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:112-121. [PMID: 29896894 DOI: 10.1111/cobi.13149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Targeted gene flow is an emerging conservation strategy. It involves translocating individuals with favorable genes to areas where they will have a conservation benefit. The applications for targeted gene flow are wide-ranging but include preadapting native species to the arrival of invasive species. The endangered carnivorous marsupial, the northern quoll (Dasyurus hallucatus), has declined rapidly since the introduction of the cane toad (Rhinella marina), which fatally poisons quolls that attack them. There are, however, a few remaining toad-invaded quoll populations in which the quolls survive because they know not to eat cane toads. It is this toad-smart behavior we hope to promote through targeted gene flow. For targeted gene flow to be feasible, however, toad-smart behavior must have a genetic basis. To assess this, we used a common garden experiment, comparing offspring from toad-exposed and toad-naïve parents raised in identical environments, to determine whether toad-smart behavior is heritable. Offspring from toad-exposed populations were substantially less likely to eat toads than those with toad-naïve parents. Hybrid offspring showed similar responses to quolls with 2 toad-exposed parents, indicating the trait may be dominant. Together, these results suggest a heritable trait and rapid adaptive response in a small number of toad-exposed populations. Although questions remain about outbreeding depression, our results are encouraging for targeted gene flow. It should be possible to introduce toad-smart behavior into soon to be affected quoll populations.
Collapse
Affiliation(s)
- Ella Kelly
- School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - Ben L Phillips
- School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| |
Collapse
|
41
|
Kelly E, Phillips B. How many and when? Optimising targeted gene flow for a step change in the environment. Ecol Lett 2019; 22:447-457. [PMID: 30618109 DOI: 10.1111/ele.13201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022]
Abstract
Targeted gene flow is an emerging conservation strategy that involves introducing individuals with particular traits to places where these traits are of benefit. One obvious application is to adapt a recipient population to a known threat, but questions remain as to how best to achieve this. Here, we vary timing and size of the introduction to maximise our objective - survival of the recipient population's genome. We explore a generic population model as well as a specific example - the northern quoll, an Australian marsupial predator threatened by the toxic cane toad. We reveal a trade-off between preserving the recipient genome and reducing population extinction risk, but key management levers can often optimise this so that nearly 100% of the recipient population's genome is preserved. Any action was better than none but the size of the benefit was sensitive to outbreeding depression, recombination rate, and the timing and size of the introduction.
Collapse
Affiliation(s)
- Ella Kelly
- School of Biosciences, The University of Melbourne, Parkville, 3010, Australia
| | - Ben Phillips
- School of Biosciences, The University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
42
|
Reside AE, Critchell K, Crayn DM, Goosem M, Goosem S, Hoskin CJ, Sydes T, Vanderduys EP, Pressey RL. Beyond the model: expert knowledge improves predictions of species' fates under climate change. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01824. [PMID: 30390399 DOI: 10.1002/eap.1824] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 05/25/2023]
Abstract
The need to proactively manage landscapes and species to aid their adaptation to climate change is widely acknowledged. Current approaches to prioritizing investment in species conservation generally rely on correlative models, which predict the likely fate of species under different climate change scenarios. Yet, while model statistics can be improved by refining modeling techniques, gaps remain in understanding the relationship between model performance and ecological reality. To investigate this, we compared standard correlative species distribution models to highly accurate, fine-scale, distribution models. We critically assessed the ecological realism of each species' model, using expert knowledge of the geography and habitat in the study area and the biology of the study species. Using interactive software and an iterative vetting with experts, we identified seven general principles that explain why the distribution modeling under- or overestimated habitat suitability, under both current and predicted future climates. Importantly, we found that, while temperature estimates can be dramatically improved through better climate downscaling, many models still inaccurately reflected moisture availability. Furthermore, the correlative models did not account for biotic factors, such as disease or competitor species, and were unable to account for the likely presence of micro refugia. Under-performing current models resulted in widely divergent future projections of species' distributions. Expert vetting identified regions that were likely to contain micro refugia, even where the fine-scale future projections of species distributions predicted population losses. Based on the results, we identify four priority conservation actions required for more effective climate change adaptation responses. This approach to improving the ecological realism of correlative models to understand climate change impacts on species can be applied broadly to improve the evidence base underpinning management responses.
Collapse
Affiliation(s)
- April E Reside
- College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Kay Critchell
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Darren M Crayn
- Centre for Tropical Environmental Sustainability Science, James Cook University, Cairns, Queensland, 4878, Australia
- Australian Tropical Herbarium, James Cook University, McGregor Road, Smithfield, Queensland, 4878, Australia
| | - Miriam Goosem
- College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Stephen Goosem
- College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Wet Tropics Management Authority, P.O. Box 2050, Cairns, Queensland, 4870, Australia
| | - Conrad J Hoskin
- College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Travis Sydes
- Far North Queensland Regional Organisation of Councils, Cairns, Queensland, 4870, Australia
| | - Eric P Vanderduys
- CSIRO Ecosystem Sciences, ATSIP PMB PO, Aitkenvale, Queensland, 4814, Australia
| | - Robert L Pressey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
43
|
Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 2018; 11:1035-1052. [PMID: 30026796 PMCID: PMC6050180 DOI: 10.1111/eva.12569] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
Identifying and monitoring locally adaptive genetic variation can have direct utility for conserving species at risk, especially when management may include actions such as translocations for restoration, genetic rescue, or assisted gene flow. However, genomic studies of local adaptation require careful planning to be successful, and in some cases may not be a worthwhile use of resources. Here, we offer an adaptive management framework to help conservation biologists and managers decide when genomics is likely to be effective in detecting local adaptation, and how to plan assessment and monitoring of adaptive variation to address conservation objectives. Studies of adaptive variation using genomic tools will inform conservation actions in many cases, including applications such as assisted gene flow and identifying conservation units. In others, assessing genetic diversity, inbreeding, and demographics using selectively neutral genetic markers may be most useful. And in some cases, local adaptation may be assessed more efficiently using alternative approaches such as common garden experiments. Here, we identify key considerations of genomics studies of locally adaptive variation, provide a road map for successful collaborations with genomics experts including key issues for study design and data analysis, and offer guidelines for interpreting and using results from genomic assessments to inform monitoring programs and conservation actions.
Collapse
Affiliation(s)
- Sarah P. Flanagan
- National Institute for Mathematical and Biological SynthesisUniversity of TennesseeKnoxvilleTNUSA
| | - Brenna R. Forester
- Duke University, Nicholas School of the EnvironmentDurhamNCUSA
- Present address:
Department of BiologyColorado State UniversityFort CollinsCOUSA
| | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| | - Sally N. Aitken
- Faculty of ForestryUniversity of British ColumbiaVancouverBCCanada
| | | |
Collapse
|
44
|
Martins F, Kruuk L, Llewelyn J, Moritz C, Phillips B. Heritability of climate-relevant traits in a rainforest skink. Heredity (Edinb) 2018; 122:41-52. [PMID: 29789644 DOI: 10.1038/s41437-018-0085-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 11/09/2022] Open
Abstract
There is justified concern about the impact of global warming on the persistence of tropical ectotherms. There is also growing evidence for strong selection on climate-relevant physiological traits. Understanding the evolutionary potential of populations is especially important for low dispersal organisms in isolated populations, because these populations have little choice but to adapt. Despite this, direct estimates of heritability and genetic correlations for physiological traits in ectotherms-which will determine their evolutionary responses to selection-are sparse, especially for reptiles. Here we examine the heritabilities and genetic correlations for a set of four morphological and six climate-relevant physiological traits in an isolated population of an Australian rainforest lizard, Lampropholis coggeri. These traits show considerable variation across populations in this species, suggesting local adaptation. From laboratory crosses, we estimated very low to moderate heritability of temperature-related physiological traits (h2 < 0.31), but significant and higher heritability of desiccation resistance (h2~0.42). These values contrasted with uniformly higher heritabilities (h2 > 0.51) for morphological traits. At the phenotypic level, there were positive associations among the morphological traits and between thermal limits. Growth rate was positively correlated with thermal limits, but there was no indication that morphology and physiology were linked in any other way. We found some support for a specialist-generalist trade-off in the thermal performance curve, but otherwise there was no evidence for evolutionary constraints, suggesting broadly labile multivariate trait structure. Our results indicate little potential to respond to selection on thermal traits in this population and provide new insights into the capacity of tropical ectotherms to adapt in situ to rapid climate change.
Collapse
Affiliation(s)
- Felipe Martins
- Research School of Biology, Dept. of Ecology and Evolution, The Australian National University Acton, Canberra, ACT, 2601, Australia.
| | - Loeske Kruuk
- Research School of Biology, Dept. of Ecology and Evolution, The Australian National University Acton, Canberra, ACT, 2601, Australia
| | - John Llewelyn
- Centre for Tropical Biodiversity and Climate, James Cook University, Townsville, QLD, 4811, Australia
| | - Craig Moritz
- Research School of Biology, Dept. of Ecology and Evolution, The Australian National University Acton, Canberra, ACT, 2601, Australia
| | - Ben Phillips
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
45
|
Tingley R, Ward-Fear G, Schwarzkopf L, Greenlees MJ, Phillips BL, Brown G, Clulow S, Webb J, Capon R, Sheppard A, Strive T, Tizard M, Shine R. New Weapons in the Toad Toolkit: A Review of Methods to Control and Mitigate the Biodiversity Impacts of Invasive Cane Toads (Rhinella Marina). QUARTERLY REVIEW OF BIOLOGY 2018; 92:123-49. [PMID: 29562120 DOI: 10.1086/692167] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our best hope of developing innovative methods to combat invasive species is likely to come from the study of high-profile invaders that have attracted intensive research not only into control, but also basic biology. Here we illustrate that point by reviewing current thinking about novel ways to control one of the world’s most well-studied invasions: that of the cane toad in Australia. Recently developed methods for population suppression include more effective traps based on the toad’s acoustic and pheromonal biology. New tools for containing spread include surveillance technologies (e.g., eDNA sampling and automated call detectors), as well as landscape-level barriers that exploit the toad’s vulnerability to desiccation—a strategy that could be significantly enhanced through the introduction of sedentary, range-core genotypes ahead of the invasion front. New methods to reduce the ecological impacts of toads include conditioned taste aversion in free-ranging predators, gene banking, and targeted gene flow. Lastly, recent advances in gene editing and gene drive technology hold the promise of modifying toad phenotypes in ways that may facilitate control or buffer impact. Synergies between these approaches hold great promise for novel and more effective means to combat the toad invasion and its consequent impacts on biodiversity.
Collapse
|
46
|
Macdonald SL, Llewelyn J, Phillips BL. Using connectivity to identify climatic drivers of local adaptation. Ecol Lett 2017; 21:207-216. [DOI: 10.1111/ele.12883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Stewart L. Macdonald
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld.4811 Australia
- CSIRO Land and Water Flagship Townsville Qld. Australia
| | - John Llewelyn
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld.4811 Australia
- CSIRO Land and Water Flagship Townsville Qld. Australia
| | - Ben L. Phillips
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld.4811 Australia
- School of BioSciences University of Melbourne Melbourne Vic. Australia
| |
Collapse
|
47
|
Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/13836_2017_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
A comparison of genetic diversity and population structure of the endangered scaleshell mussel (Leptodea leptodon), the fragile papershell (Leptodea fragilis) and their host-fish the freshwater drum (Aplodinotus grunniens). CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1015-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Macdonald SL, Llewelyn J, Moritz C, Phillips BL. Peripheral Isolates as Sources of Adaptive Diversity under Climate Change. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00088] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
50
|
Wadgymar SM, Weis AE. Phenological mismatch and the effectiveness of assisted gene flow. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2017; 31:547-558. [PMID: 27943504 DOI: 10.1111/cobi.12877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The persistence of narrowly adapted species under climate change will depend on their ability to migrate apace with their historical climatic envelope or to adapt in place to maintain fitness. This second path to persistence can only occur if there is sufficient genetic variance for response to new selection regimes. Inadequate levels of genetic variation can be remedied through assisted gene flow (AGF), that is the intentional introduction of individuals genetically adapted to localities with historic climates similar to the current or future climate experienced by the resident population. However, the timing of reproduction is frequently adapted to local conditions. Phenological mismatch between residents and migrants can reduce resident × migrant mating frequencies, slowing the introgression of migrant alleles into the resident genetic background and impeding evolutionary rescue efforts. Focusing on plants, we devised a method to estimate the frequency of resident × migrant matings based on flowering schedules and applied it in an experiment that mimicked the first generation of an AGF program with Chamaecrista fasciculata, a prairie annual, under current and expected future temperature regimes. Phenological mismatch reduced the potential for resident × migrant matings by 40-90%, regardless of thermal treatment. The most successful migrant sires were the most resident like in their flowering time, further biasing the genetic admixture between resident and migrant populations. Other loci contributing to local adaptation-heat-tolerance genes, for instance-may be in linkage disequilibrium with phenology when residents and migrants are combined into a single mating pool. Thus, introgression of potentially adaptive migrant alleles into the resident genetic background is slowed when selection acts against migrant phenology. Successful AGF programs may require sustained high immigration rates or preliminary breeding programs when phenologically matched migrant source populations are unavailable.
Collapse
Affiliation(s)
- Susana M Wadgymar
- Department of Genetics, University of Georgia, 120 Green Street, Athens, GA, 30602-7223, U.S.A
| | - Arthur E Weis
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|