1
|
Ma L, Yue L, Liu S, Xu S, Tong J, Sun X, Su L, Cui S, Liu FY, Wan Y, Yi M. A distinct neuronal ensemble of prelimbic cortex mediates spontaneous pain in rats with peripheral inflammation. Nat Commun 2024; 15:7922. [PMID: 39256428 PMCID: PMC11387830 DOI: 10.1038/s41467-024-52243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
The absence of a comprehensive understanding of the neural basis of spontaneous pain limits the development of therapeutic strategies targeting this primary complaint of patients with chronic pain. Here we report a distinct neuronal ensemble within the prelimbic cortex which processes signals related to spontaneous pain in rats with chronic inflammatory pain. This neuronal ensemble specifically encodes spontaneous pain-related behaviors, independently of other locomotive and evoked behaviors. Activation of this neuronal ensemble elicits marked spontaneous pain-like behaviors and enhances nociceptive responses, whereas prolonged silencing of its activities alleviates spontaneous pain and promotes overall recovery from inflammatory pain. Notably, afferents from the primary somatosensory cortex and infralimbic cortex bidirectionally modulate the activities of the spontaneous pain-responsive prelimbic cortex neuronal ensemble and pain behaviors. These findings reveal the cortical basis of spontaneous pain at the neuronal level, highlighting a distinct neuronal ensemble within the prelimbic cortex and its associated pain-regulatory brain networks.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Science, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shi Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China.
- Medical Innovation Center (Taizhou) of Peking University, Taizhou, China.
| |
Collapse
|
2
|
Saliba I, Bachy-Razzouk M, Bensidhoum M, Hoc T, Potier E, Vialle R, Hardy A. Analysis of a Chronic Lateral Ankle Instability Model in the Rat: Conclusions and Suggestions for Future Research. Life (Basel) 2024; 14:829. [PMID: 39063583 PMCID: PMC11278175 DOI: 10.3390/life14070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this study was to evaluate potential osteoarthritic alterations within the ankle using a surgically-induced chronic lateral ankle instability (CLAI) model. Twelve rats were assigned randomly to either the control (n = 4) or CLAI group (n = 8). Surgery was performed on the right ankle. Osteoarthritis was assessed through in-vivo micro-CT at 8 weeks and a clinical analysis. Macroscopic analysis, high-resolution ex-vivo micro-CT and histological examination were conducted after euthanasia at 12 weeks. Three subgroups (SG) were analyzed. SG1 comprised the operated ankles of the CLAI group (n = 8). SG2 consisted of the non-operated ankles of the CLAI group (n = 8). SG3 included both sides of the control group (n = 8). In-vivo micro-CT revealed no significant differences among the three subgroups when analyzed together (p = 0.42), and when comparing SG1 with SG2 (p = 0.23) and SG3 (p = 0.43) individually. No noticeable clinical differences were observed. After euthanasia, macroscopic analysis employing OARSI score, did not demonstrate significant differences, except between the medial tibia of SG1 and SG3 (p = 0.03), and in the total score comparison between these two subgroups (p = 0.015). Ex-vivo micro-CT did not reveal any differences between the three subgroups regarding bony irregularities and BV/TV measurements (SG1 vs. SG2 vs. SG3: p = 0.72; SG1 vs. SG2: p = 0.80; SG1 vs. SG3: p = 0.72). Finally, there was no difference between the three subgroups regarding OARSI histologic score (p = 0.27). These findings indicate that the current model failed to induce significant osteoarthritis. However, they lay the groundwork for improving the model's effectiveness and expanding its use in CLAI research, aiming to enhance understanding of this pathology and reduce unnecessary animal sacrifice.
Collapse
Affiliation(s)
- Ibrahim Saliba
- Orthopedics Department, Cochin Hospital, 75014 Paris, France
| | - Manon Bachy-Razzouk
- Orthopedics Department, Armand Trousseau Hospital, 75012 Paris, France; (M.B.-R.); (R.V.)
| | - Morad Bensidhoum
- CNRS, INSERM, ENVA, B3OA, University of Paris Cite, 75010 Paris, France; (M.B.); (T.H.); (E.P.)
| | - Thierry Hoc
- CNRS, INSERM, ENVA, B3OA, University of Paris Cite, 75010 Paris, France; (M.B.); (T.H.); (E.P.)
- Mechanical Department, Ecole Centrale—Lyon, 69134 Ecully, France
| | - Esther Potier
- CNRS, INSERM, ENVA, B3OA, University of Paris Cite, 75010 Paris, France; (M.B.); (T.H.); (E.P.)
| | - Raphaël Vialle
- Orthopedics Department, Armand Trousseau Hospital, 75012 Paris, France; (M.B.-R.); (R.V.)
| | | |
Collapse
|
3
|
Rodrigues P, Frare JM, Peres DS, Viero FT, Ruviaro NA, Dos Santos Stein C, da Silva Brum E, Moresco RN, Oliveira SM, Bochi GV, Trevisan G. Increased levels of advanced oxidation protein products (AOPPs) were associated with nociceptive behavior and clinical scores in an experimental progressive autoimmune encephalomyelitis model (PMS-EAE). J Neurochem 2024; 168:1143-1156. [PMID: 38372436 DOI: 10.1111/jnc.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system (CNS) generating neuropathic pain and anxiety. Primary progressive MS (PPMS) is the most disabling clinical form, and the patients present an intense neurodegenerative process. In this context, the advanced oxidation protein products (AOPPs) are oxidized compounds and their accumulation in plasma has been related to clinical disability in MS patients. However, the involvement of AOPPs in neuropathic pain- and anxiety-like symptoms was not previously evaluated. To assess this, female mice C57BL/6J were used to induce progressive experimental autoimmune encephalomyelitis (PMS-EAE). Clinical score, weight, strength of plantar pressure, rotarod test, mechanical allodynia, and cold hypersensitivity were evaluated before induction (baseline) and on days 7th, 10th, and 14th post-immunization. We assessed nest building, open field, and elevated plus-maze tests 13 days post-immunization. Animals were killed at 14 days post-immunization; then, AOPPs levels, NADPH oxidase, and myeloperoxidase (MPO) activity were measured in the prefrontal cortex, hippocampus, and spinal cord samples. The clinical score increased 14th post-immunization without changes in weight and mobility. Reduced paw strength, mechanical allodynia, and cold allodynia increased in the PMS-EAE animals. PMS-EAE mice showed spontaneous nociception and anxiety-like behavior. AOPPs concentration, NADPH oxidase, and MPO activity increase in CNS structures. Multivariate analyses indicated that the rise of AOPPs levels, NADPH oxidase, and MPO activity influenced the clinical score and cold allodynia. Thus, we indicated the association between non-stimuli painful perception, anxiety-like, and CNS oxidative damage in the PMS-EAE model.
Collapse
Affiliation(s)
- Patrícia Rodrigues
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Julia Maria Frare
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Diulle Spat Peres
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Náthaly Andrighetto Ruviaro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Carolina Dos Santos Stein
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Guilherme Vargas Bochi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Rodrigues P, Cassanego GB, Peres DS, Viero FT, Kudsi SQ, Ruviaro NA, Aires KDV, Portela VM, Bauermann LDF, Trevisan G. Alpha-lipoic acid reduces nociception by reducing oxidative stress and neuroinflammation in a model of complex regional pain syndrome type I in mice. Behav Brain Res 2024; 459:114790. [PMID: 38040057 DOI: 10.1016/j.bbr.2023.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Complex regional pain syndrome type I (CRPS-I) is a disabling pain condition without adequate treatment. Chronic post-ischemia pain injury (CPIP) is a model of CRPS-I that causes allodynia, spontaneous pain, inflammation, vascular injury, and oxidative stress formation. Antioxidants, such as alpha lipoic acid (ALA), have shown a therapeutic potential for CRPS-I pain control. Thus, we aim to evaluate if ALA repeated treatment modulates neuroinflammation in a model of CRPS-I in mice. We used male C57BL/6 mice to induce the CPIP model (O-ring torniquet for 2 h in the hindlimb). For the treatment with ALA or vehicle (Veh) mice were randomly separated in four groups and received 100 mg/kg orally once daily for 15 days (CPIP-ALA, CPIP-Veh, Control-ALA, and Control-Veh). We evaluated different behavioral tests including von Frey (mechanical stimulus), acetone (cold thermal stimulus), rotarod, open field, hind paw edema determination, and nest-building (spontaneous pain behavior). Also, hydrogen peroxide (H2O2) levels, NADPH oxidase and superoxide dismutase (SOD) activity in the sciatic nerve and spinal cord, and Iba1, Nrf2, and Gfap in spinal cord were evaluated at 16 days after CPIP or sham induction. Repeated ALA treatment reduced CPIP-induced mechanical and cold allodynia and restored nest-building capacity without causing locomotor or body weight alteration. ALA treatment reduced SOD and NADPH oxidase activity, and H2O2 production in the spinal cord and sciatic nerve. CPIP-induced neuroinflammation in the spinal cord was associated with astrocyte activation and elevated Nfr2, which were reduced by ALA. ALA repeated treatment prevents nociception by reducing oxidative stress and neuroinflammation in a model of CRPS-I in mice.
Collapse
Affiliation(s)
- Patrícia Rodrigues
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Gabriela Buzatti Cassanego
- Graduated Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Diulle Spat Peres
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Fernanda Tibolla Viero
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Sabrina Qader Kudsi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Náthaly Andrighetto Ruviaro
- Graduated Program in Biochemistry Toxicological Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Karine de Vargas Aires
- Graduate Program of Veterinary Medicine, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Valério Marques Portela
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Liliane De Freitas Bauermann
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil; Graduated Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil; Graduated Program in Biochemistry Toxicological Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Guo C, Yue Y, Wang B, Chen S, Li D, Zhen F, Liu L, Zhu H, Xie M. Anemoside B4 alleviates arthritis pain via suppressing ferroptosis-mediated inflammation. J Cell Mol Med 2024; 28:e18136. [PMID: 38334255 PMCID: PMC10853948 DOI: 10.1111/jcmm.18136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
Chronic pain is the key manifestations of rheumatoid arthritis. Neuroinflammation in the spinal cord drives central sensitization and chronic pain. Ferroptosis has potentially important roles in the occurrence of neuroinflammation and chronic pain. In the current study, mouse model of collagen-induced arthritis was established by intradermal injection of type II collagen in complete Freund's adjuvant (CFA) solution. CFA inducement resulted in swollen paw and ankle, mechanical and spontaneous pain, and impaired motor coordination. The spinal inflammation was triggered, astrocytes were activated, and increased NLRP3-mediated inflammatory signal was found in CFA spinal cord. Oxidative stress and ferroptosis in the spinal cord were manifested. Meanwhile, enhancive spinal GSK-3β activity and abnormal phosphorylated Drp1 were observed. To investigate the potential therapeutic options for arthritic pain, mice were intraperitoneally injected with AB4 for three consecutive days. AB4 treatment reduced pain sensitivity and increased the motor coordination. In the spinal cord, AB4 treatment inhibited NLRP3 inflammasome-mediated inflammatory response, increased antioxidation, decreased mitochondrial reactive oxygen species and ferroptosis. Furthermore, AB4 decreased GSK-3β activity by binding with GSK-3β through five electrovalent bonds. Our findings indicated that AB treatment relieves arthritis pain by inhibiting GSK-3β activation, increasing antioxidant capability, reducing Drp1-mediated mitochondrial dysfunction and suppressing neuroinflammation.
Collapse
Affiliation(s)
- Chenlu Guo
- School of PharmacyHubei University of Science and TechnologyXianningChina
| | - Yuanfen Yue
- Department of ObstetricsXianning Central Hospital, First Affiliated Hospital of Hubei University of Science and TechnologyXianningChina
| | - Bojun Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Shaohui Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Dai Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Fangshou Zhen
- Department of PharmacyMatang Hospital of Traditional Chinese MedicineXianningChina
| | - Ling Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Haili Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| | - Min Xie
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical CollegeHubei University of Science and TechnologyXianningChina
| |
Collapse
|
6
|
Toledano‐Martos R, Bagó‐Mas A, Deulofeu M, Homs J, Fiol N, Verdú E, Boadas‐Vaello P. Natural polyphenolic coffee extract administration relieves chronic nociplastic pain in a reserpine-induced fibromyalgia-like female mouse model. Brain Behav 2024; 14:e3386. [PMID: 38376034 PMCID: PMC10794125 DOI: 10.1002/brb3.3386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Nociplastic pain involves reflexive and nonreflexive pain responses and it is a core symptom of fibromyalgia (FM). The increasing prevalence of this health condition and the low rates of patients' quality of life, combined with the lack of suitable pharmacologic treatments, evidence the demand to research new alternatives. Polyphenols may be potential therapeutic candidates as they have been reported to exert pathological pain modulation in preclinical models. In that context, this work was aimed to study the antinociceptive effects of a polyphenolic extract obtained from decaffeinated ground roasted coffee, in the RIM6 FM-like mouse model. METHODS To this end, RIM6 adult ICR-CD1 female mice were administered daily once a week with either 10 or 15 mg/kg of extract, and reflexive pain responses were evaluated for up to 3 weeks. At the end, the depressive-like behavior was assessed as a nonreflexive pain response, and spinal cord and serum samples were collected for immunohistochemical and toxicological analyses. RESULTS These findings showed that the repeated administration of the coffee polyphenolic extract (CE) modulated reflexive pain responses, depressive-like behavior, and spinal cord gliosis in a dose-dependent manner, without signs of systemic toxicity. CONCLUSION Thus, the CE may be a potential pharmacological treatment suitable to relieve nociplastic pain responses characteristic of FM.
Collapse
Affiliation(s)
- Rubén Toledano‐Martos
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| | - Anna Bagó‐Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
- University School of Health and Sport (EUSES), University of GironaGironaCataloniaSpain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic SchoolUniversity of GironaGironaCataloniaSpain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| | - Pere Boadas‐Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical SciencesUniversity of GironaGironaCataloniaSpain
| |
Collapse
|
7
|
Liu AR, Lin ZJ, Wei M, Tang Y, Zhang H, Peng XG, Li Y, Zheng YF, Tan Z, Zhou LJ, Feng X. The potent analgesia of intrathecal 2R, 6R-HNK via TRPA1 inhibition in LF-PENS-induced chronic primary pain model. J Headache Pain 2023; 24:141. [PMID: 37858040 PMCID: PMC10585932 DOI: 10.1186/s10194-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Chronic primary pain (CPP) is an intractable pain of unknown cause with significant emotional distress and/or dysfunction that is a leading factor of disability globally. The lack of a suitable animal model that mimic CPP in humans has frustrated efforts to curb disease progression. 2R, 6R-hydroxynorketamine (2R, 6R-HNK) is the major antidepressant metabolite of ketamine and also exerts antinociceptive action. However, the analgesic mechanism and whether it is effective for CPP are still unknown. METHODS Based on nociplastic pain is evoked by long-term potentiation (LTP)-inducible high- or low-frequency electrical stimulation (HFS/LFS), we wanted to develop a novel CPP mouse model with mood and cognitive comorbidities by noninvasive low-frequency percutaneous electrical nerve stimulation (LF-PENS). Single/repeated 2R, 6R-HNK or other drug was intraperitoneally (i.p.) or intrathecally (i.t.) injected into naïve or CPP mice to investigate their analgesic effect in CPP model. A variety of behavioral tests were used to detect the changes in pain, mood and memory. Immunofluorescent staining, western blot, reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and calcium imaging of in cultured dorsal root ganglia (DRG) neurons by Fluo-8-AM were used to elucidate the role and mechanisms of 2R, 6R-HNK in vivo or in vitro. RESULTS Intrathecal 2R, 6R-HNK, rather than intraperitoneal 2R, 6R-HNK or intrathecal S-Ketamine, successfully mitigated HFS-induced pain. Importantly, intrathecal 2R, 6R-HNK displayed effective relief of bilateral pain hypersensitivity and depressive and cognitive comorbidities in a dose-dependent manner in LF-PENS-induced CPP model. Mechanically, 2R, 6R-HNK markedly attenuated neuronal hyperexcitability and the upregulation of calcitonin gene-related peptide (CGRP), transient receptor potential ankyrin 1 (TRPA1) or vanilloid-1 (TRPV1), and vesicular glutamate transporter-2 (VGLUT2) in peripheral nociceptive pathway. In addition, 2R, 6R-HNK suppressed calcium responses and CGRP overexpression in cultured DRG neurons elicited by the agonists of TRPA1 or/and TRPV1. Strikingly, the inhibitory effects of 2R, 6R-HNK on these pain-related molecules and mechanical allodynia were substantially occluded by TRPA1 antagonist menthol. CONCLUSIONS In the newly designed CPP model, our findings highlighted the potential utility of intrathecal 2R, 6R-HNK for preventing and therapeutic modality of CPP. TRPA1-mediated uprgulation of CGRP and neuronal hyperexcitability in nociceptive pathways may undertake both unique characteristics and solving process of CPP.
Collapse
Affiliation(s)
- An-Ran Liu
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yuan Tang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, No.466, Mid Xingang Road, Haizhu District, Guangzhou, 510317, China
| | - Xiang-Ge Peng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Xia Feng
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Zhang XY, Diaz-delCastillo M, Kong L, Daniels N, MacIntosh-Smith W, Abdallah A, Domanski D, Sofrenovic D, Yeung TP(S, Valiente D, Vollert J, Sena E, Rice AS, Soliman N. A systematic review and meta-analysis of thigmotactic behaviour in the open field test in rodent models associated with persistent pain. PLoS One 2023; 18:e0290382. [PMID: 37682863 PMCID: PMC10490990 DOI: 10.1371/journal.pone.0290382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Thigmotaxis is an innate predator avoidance behaviour of rodents. To gain insight into how injury and disease models, and analgesic drug treatments affect thigmotaxis, we performed a systematic review and meta-analysis of studies that assessed thigmotaxis in the open field test. Systematic searches were conducted of 3 databases in October 2020, March and August 2022. Study design characteristics and experimental data were extracted and analysed using a random-effects meta-analysis. We also assessed the correlation between thigmotaxis and stimulus-evoked limb withdrawal. This review included the meta-analysis of 165 studies We report thigmotaxis was increased in injury and disease models associated with persistent pain and this increase was attenuated by analgesic drug treatments in both rat and mouse experiments. Its usefulness, however, may be limited in certain injury and disease models because our analysis suggested that thigmotaxis may be associated with the locomotor function. We also conducted subgroup analyses and meta-regression, but our findings on sources of heterogeneity are inconclusive because analyses were limited by insufficient available data. It was difficult to assess internal validity because reporting of methodological quality measures was poor, therefore, the studies have an unclear risk of bias. The correlation between time in the centre (type of a thigmotactic metric) and types of stimulus-evoked limb withdrawal was inconsistent. Therefore, stimulus-evoked and ethologically relevant behavioural paradigms should be viewed as two separate entities as they are conceptually and methodologically different from each other.
Collapse
Affiliation(s)
- Xue Ying Zhang
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | | | - Lingsi Kong
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Natasha Daniels
- Bart’s Health NHS Trust Whipps Cross Hospital, London, United Kingdom
| | - William MacIntosh-Smith
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Aya Abdallah
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Dominik Domanski
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Denis Sofrenovic
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Diego Valiente
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Emily Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew S. Rice
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| |
Collapse
|
9
|
Schmidt H, Blechschmidt V. [Nociplastic pain in research and practice : Overview of biopsychosocial principles, possibilities and difficulties]. Schmerz 2023:10.1007/s00482-023-00734-5. [PMID: 37432482 DOI: 10.1007/s00482-023-00734-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023]
Abstract
Traditionally, two mechanistic pain categories were distinguished: nociceptive and neuropathic pain. After the definitions of these two mechanistic descriptors were refined more precisely in the International Association for the Study of Pain (IASP) taxonomy in 2011, a large group of patients remained whose pain could not be assigned to either of the two categories. Nociplastic pain was therefore proposed as a third mechanistic descriptor in 2016. This review article presents the current state of the integration of nociplastic pain into research and clinical practice. In particular, the possibilities and difficulties of applying this concept are addressed from a human and animal experimental research perspective.
Collapse
Affiliation(s)
- Hannah Schmidt
- Abteilung für Neurophysiologie, Mannheimer Zentrum für Translationale Neurowissenschaft, Universität Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Deutschland
| | - Vivian Blechschmidt
- Abteilung für Neurophysiologie, Mannheimer Zentrum für Translationale Neurowissenschaft, Universität Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Deutschland.
| |
Collapse
|
10
|
Peppermüller PP, Gehring J, Zentrich E, Bleich A, Häger C, Buettner M. Grimace scale assessment during Citrobacter rodentium inflammation and colitis development in laboratory mice. Front Vet Sci 2023; 10:1173446. [PMID: 37342621 PMCID: PMC10277495 DOI: 10.3389/fvets.2023.1173446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Bacterial infections and chronic intestinal inflammations triggered by genetic susceptibility, environment or an imbalance in the intestinal microbiome are usually long-lasting and painful diseases in which the development and maintenance of these various intestinal inflammations is not yet fully understood, research is still needed. This still requires the use of animal models and is subject to the refinement principle of the 3Rs, to minimize suffering or pain perceived by the animals. With regard to this, the present study aimed at the recognition of pain using the mouse grimace scale (MGS) during chronic intestinal colitis due to dextran sodium sulfate (DSS) treatment or after infection with Citrobacter rodentium. Methods In this study 56 animals were included which were divided into 2 experimental groups: 1. chronic intestinal inflammation (n = 9) and 2. acute intestinal inflammation (with (n = 23) and without (n = 24) C. rodentium infection). Before the induction of intestinal inflammation in one of the animal models, mice underwent an abdominal surgery and the live MGS from the cage side and a clinical score were assessed before (bsl) and after 2, 4, 6, 8, 24, and 48 hours. Results The highest clinical score as well as the highest live MGS was detected 2 hours after surgery and almost no sign of pain or severity were detected after 24 and 48 hours. Eight weeks after abdominal surgery B6-Il4/Il10-/- mice were treated with DSS to trigger chronic intestinal colitis. During the acute phase as well as the chronic phase of the experiment, the live MGS and a clinical score were evaluated. The clinical score increased after DSS administration due to weight loss of the animals but no change of the live MGS was observed. In the second C57BL/6J mouse model, after infection with C. rodentium the clinical score increased but again, no increased score values in the live MGS was detectable. Discussion In conclusion, the live MGS detected post-operative pain, but indicated no pain during DSS-induced colitis or C. rodentium infection. In contrast, clinical scoring and here especially the weight loss revealed a decreased wellbeing due to surgery and intestinal inflammation.
Collapse
|
11
|
Zhang Q, Hu S, Talay R, Xiao Z, Rosenberg D, Liu Y, Sun G, Li A, Caravan B, Singh A, Gould JD, Chen ZS, Wang J. A prototype closed-loop brain-machine interface for the study and treatment of pain. Nat Biomed Eng 2023; 7:533-545. [PMID: 34155354 PMCID: PMC9516430 DOI: 10.1038/s41551-021-00736-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Chronic pain is characterized by discrete pain episodes of unpredictable frequency and duration. This hinders the study of pain mechanisms and contributes to the use of pharmacological treatments associated with side effects, addiction and drug tolerance. Here, we show that a closed-loop brain-machine interface (BMI) can modulate sensory-affective experiences in real time in freely behaving rats by coupling neural codes for nociception directly with therapeutic cortical stimulation. The BMI decodes the onset of nociception via a state-space model on the basis of the analysis of online-sorted spikes recorded from the anterior cingulate cortex (which is critical for pain processing) and couples real-time pain detection with optogenetic activation of the prelimbic prefrontal cortex (which exerts top-down nociceptive regulation). In rats, the BMI effectively inhibited sensory and affective behaviours caused by acute mechanical or thermal pain, and by chronic inflammatory or neuropathic pain. The approach provides a blueprint for demand-based neuromodulation to treat sensory-affective disorders, and could be further leveraged for nociceptive control and to study pain mechanisms.
Collapse
Affiliation(s)
- Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Sile Hu
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Robert Talay
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - David Rosenberg
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Guanghao Sun
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Bassir Caravan
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Amrita Singh
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Jonathan D Gould
- College of Arts and Sciences, New York University, New York, NY, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Modi AD, Parekh A, Pancholi YN. Evaluating Pain Behaviours: Widely Used Mechanical and Thermal Methods in Rodents. Behav Brain Res 2023; 446:114417. [PMID: 37003494 DOI: 10.1016/j.bbr.2023.114417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Globally, over 300 million surgical procedures are performed annually, with pain being one of the most common post-operative side effects. During the onset of injury, acute pain plays a protective role in alerting the individual to remove noxious stimuli, while long-lasting chronic pain without any physiological reason is detrimental to the recovery process. Hence, it created an urgent need to better understand the pain mechanism and explore therapeutic targets. Despite the hardship in performing human pain studies due to ethical considerations, clinically relevant rodent pain models provide an excellent opportunity to perform pain studies. Several neurobehavioural tests are used to assess the drug efficacy in rodents to determine avoidance behaviour latency and threshold. This review article provides a methodological overview of mechanical (i.e. von Frey, Mechanical Conflict System) and thermal (i.e. Hargreaves Assay, Hot and Cold Plate, Temperature Place Preference) tests to assess pain in clinically relevant pain rodent models. We further discussed the current modifications of those tests along with their use in literature, the impact of confounding variables, advantages and disadvantages.
Collapse
Affiliation(s)
- Akshat D Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Genetics and Development, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.
| | - Anavi Parekh
- Department of Neuroscience, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Yajan N Pancholi
- Department of Neuroscience, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
13
|
Krueger JC, Habigt MA, Helmedag MJ, Uhlig M, Moss M, Bleich A, Tolba RH, Rossaint R, Hein M, Mechelinck M. Evaluation of score parameters for severity assessment of surgery and liver cirrhosis in rats. Anim Welf 2023; 32:e29. [PMID: 38487427 PMCID: PMC10936376 DOI: 10.1017/awf.2023.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 03/12/2023]
Abstract
Severity assessment in animals is an ongoing field of research. In particular, the question of objectifiable and meaningful parameters of score-sheets, as well as their best combination, arise. This retrospective analysis investigates the suitability of a score-sheet for assessing severity and seeks to optimise it for predicting survival in 89 male Sprague Dawley rats (Rattus norvegicus), during an experiment evaluating the influence of liver cirrhosis by bile duct ligation (BDL) on vascular healing. The following five parameters were compared for their predictive power: (i) overall score; (ii) relative weight loss; (iii) general condition score; (iv) spontaneous behaviour score; and (v) the observer's assessment whether pain might be present. Suitable cut-off values of these individual parameters and the combination of multiple parameters were investigated. A total of ten rats (11.2%; 10/89) died or had to be sacrificed at an early stage due to pre-defined humane endpoints. Neither the overall score nor any individual parameter yielded satisfactory results for predicting survival. Using retrospectively calculated cut-off values and combining the overall score with the observer's assessment of whether the animal required analgesia (dipyrone) for pain relief resulted in an improved prediction of survival on the second post-operative day. This study demonstrates that combining score parameters was more suitable than using single ones and that experienced human judgement of animals can be useful in addition to objective parameters in the assessment of severity. By optimising the score-sheet and better understanding the burden of the model on rats, this study contributes to animal welfare.
Collapse
Affiliation(s)
- Johanne C Krueger
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Faculty of Medicine, Aachen 52074, Germany
- Animal Welfare Unit, University of Bonn, Bonn 53113, Germany
| | - Moriz A Habigt
- Department of Anaesthesiology, RWTH Aachen University, Faculty of Medicine, Pauwelsstraße 30, Aachen 52074, Germany
| | - Marius J Helmedag
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Faculty of Medicine, Aachen 52074, Germany
| | - Moritz Uhlig
- Department of Anaesthesiology, RWTH Aachen University, Faculty of Medicine, Pauwelsstraße 30, Aachen 52074, Germany
| | - Michaela Moss
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Faculty of Medicine, Aachen 52074, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover 30625, Germany
| | - René H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Faculty of Medicine, Aachen 52074, Germany
| | - Rolf Rossaint
- Department of Anaesthesiology, RWTH Aachen University, Faculty of Medicine, Pauwelsstraße 30, Aachen 52074, Germany
| | - Marc Hein
- Department of Anaesthesiology, RWTH Aachen University, Faculty of Medicine, Pauwelsstraße 30, Aachen 52074, Germany
| | - Mare Mechelinck
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Faculty of Medicine, Aachen 52074, Germany
- Department of Anaesthesiology, RWTH Aachen University, Faculty of Medicine, Pauwelsstraße 30, Aachen 52074, Germany
| |
Collapse
|
14
|
Behavioral Voluntary and Social Bioassays Enabling Identification of Complex and Sex-Dependent Pain-(-Related) Phenotypes in Rats with Bone Cancer. Cancers (Basel) 2023; 15:cancers15051565. [PMID: 36900357 PMCID: PMC10000428 DOI: 10.3390/cancers15051565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a common and devastating symptom with limited treatment options in patients, significantly affecting their quality of life. The use of rodent models is the most common approach to uncovering the mechanisms underlying CIBP; however, the translation of results to the clinic may be hindered because the assessment of pain-related behavior is often based exclusively on reflexive-based methods, which are only partially indicative of relevant pain in patients. To improve the accuracy and strength of the preclinical, experimental model of CIBP in rodents, we used a battery of multimodal behavioral tests that were also aimed at identifying rodent-specific behavioral components by using a home-cage monitoring assay (HCM). Rats of all sexes received an injection with either heat-deactivated (sham-group) or potent mammary gland carcinoma Walker 256 cells into the tibia. By integrating multimodal datasets, we assessed pain-related behavioral trajectories of the CIBP-phenotype, including evoked and non-evoked based assays and HCM. Using principal component analysis (PCA), we discovered sex-specific differences in establishing the CIBP-phenotype, which occurred earlier (and differently) in males. Additionally, HCM phenotyping revealed the occurrence of sensory-affective states manifested by mechanical hypersensitivity in sham when housed with a tumor-bearing cagemate (CIBP) of the same sex. This multimodal battery allows for an in-depth characterization of the CIBP-phenotype under social aspects in rats. The detailed, sex-specific, and rat-specific social phenotyping of CIBP enabled by PCA provides the basis for mechanism-driven studies to ensure robustness and generalizability of results and provide information for targeted drug development in the future.
Collapse
|
15
|
Nunez-Badinez P, Laux-Biehlmann A, Hayward MD, Buiakova O, Zollner TM, Nagel J. Anxiety-related behaviors without observation of generalized pain in a mouse model of endometriosis. Front Behav Neurosci 2023; 17:1118598. [PMID: 36844654 PMCID: PMC9947402 DOI: 10.3389/fnbeh.2023.1118598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Endometriosis is a chronic, hormone-dependent, inflammatory disease, characterized by the presence and growth of endometrial tissue outside the uterine cavity. It is associated with moderate to severe pelvic and abdominal pain symptoms, subfertility and a marked reduction in health-related quality of life. Furthermore, relevant co-morbidities with affective disorders like depression or anxiety have been described. These conditions have a worsening effect on pain perception in patients and might explain the negative impact on quality of life observed in those suffering from endometriosis-associated pain. Whereas several studies using rodent models of endometriosis focused on biological and histopathological similarities with the human situation, the behavioral characterization of these models was never performed. This study investigated the anxiety-related behaviors in a syngeneic model of endometriosis. Using elevated plus maze and the novel environment induced feeding suppression assays we observed the presence of anxiety-related behaviors in endometriosis-induced mice. In contrast, locomotion or generalized pain did not differ between groups. These results indicate that the presence of endometriosis lesions in the abdominal cavity could, similarly to patients, induce profound psychopathological changes/impairments in mice. These readouts might provide additional tools for preclinical identification of mechanisms relevant for development of endometriosis-related symptoms.
Collapse
Affiliation(s)
- Paulina Nunez-Badinez
- Exploratory Pathobiology, Research and Early Development, Research and Development, Bayer AG, Wuppertal, Germany
| | - Alexis Laux-Biehlmann
- Exploratory Pathobiology, Research and Early Development, Research and Development, Bayer AG, Wuppertal, Germany
| | | | | | - Thomas M. Zollner
- Endocrinology, Metabolism and Reproductive Health, Research and Early Development, Research and Development, Bayer AG, Berlin, Germany
| | - Jens Nagel
- Exploratory Pathobiology, Research and Early Development, Research and Development, Bayer AG, Wuppertal, Germany
| |
Collapse
|
16
|
Wang Q, Chen T, Shuqing Z, Yu L, Chen S, Lu H, Zhu H, Min X, Li X, Liu L. Xanthohumol relieves arthritis pain in mice by suppressing mitochondrial-mediated inflammation. Mol Pain 2023; 19:17448069231204051. [PMID: 37699859 PMCID: PMC10536840 DOI: 10.1177/17448069231204051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023] Open
Abstract
Chronic pain is the most common symptom for people who suffer from rheumatoid arthritis and it affects approximately 1% of the global population. Neuroinflammation in the spinal cord induces chronic arthritis pain. In this study, a collagen-induced arthritis (CIA) mice model was established through intradermally injection of type II collagen in complete Freund's adjuvant solution. Following CIA inducement, the paws and ankles of mice were found to swell, mechanical pain and spontaneous pain were induced, and their motor coordination was impaired. The spinal inflammatory reaction was triggered, which presented as severe infiltration of inflammatory cells, and the expression levels of GFAP, IL-1β, NLRP3, and cleaved caspase-1 increased. Oxidative stress in the spinal cord of CIA mice was manifested as reduced Nrf2 and NDUFB11 expression and SOD activity, and increased levels of DHODH and Cyto-C. At the same time, spinal AMPK activity was decreased. In order to explore the potential therapeutic options for arthritic pain, Xanthohumol (Xn) was intraperitoneally injected into mice for three consecutive days. Xn treatment was found to reduce the number of spontaneous flinches, in addition to elevating mechanical pain thresholds and increasing latency time. At the same time, Xn treatment in the spinal cord reduced NLRP3 inflammasome-mediated inflammation, increased the Nrf2-mediated antioxidant response, and decreased mitochondrial ROS level. In addition, Xn was found to bind with AMPK via two electrovalent bonds and increased AMPK phosphorylation at Thr174. In summary, the findings indicate that Xn treatment activates AMPK, increases Nrf2-mediated antioxidant response, reduces Drp1-mediated mitochondrial dysfunction, suppresses neuroinflammation, and can serve to relieve arthritis pain.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tao Chen
- Xianning Central Hospital, First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Zhen Shuqing
- Matang Hospital of Traditional Chinese Medicine, Xianning, China
| | - Liangzhu Yu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Shaohui Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hong Lu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Haili Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xie Min
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiong Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ling Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
17
|
Gan Z, Gangadharan V, Liu S, Körber C, Tan LL, Li H, Oswald MJ, Kang J, Martin-Cortecero J, Männich D, Groh A, Kuner T, Wieland S, Kuner R. Layer-specific pain relief pathways originating from primary motor cortex. Science 2022; 378:1336-1343. [PMID: 36548429 DOI: 10.1126/science.add4391] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The primary motor cortex (M1) is involved in the control of voluntary movements and is extensively mapped in this capacity. Although the M1 is implicated in modulation of pain, the underlying circuitry and causal underpinnings remain elusive. We unexpectedly unraveled a connection from the M1 to the nucleus accumbens reward circuitry through a M1 layer 6-mediodorsal thalamus pathway, which specifically suppresses negative emotional valence and associated coping behaviors in neuropathic pain. By contrast, layer 5 M1 neurons connect with specific cell populations in zona incerta and periaqueductal gray to suppress sensory hypersensitivity without altering pain affect. Thus, the M1 employs distinct, layer-specific pathways to attune sensory and aversive-emotional components of neuropathic pain, which can be exploited for purposes of pain relief.
Collapse
Affiliation(s)
- Zheng Gan
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Vijayan Gangadharan
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sheng Liu
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christoph Körber
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Han Li
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Manfred Josef Oswald
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Juhyun Kang
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Jesus Martin-Cortecero
- Institute for Physiology and Pathophysiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Deepitha Männich
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Alexander Groh
- Institute for Physiology and Pathophysiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sebastian Wieland
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.,Department of General Internal Medicine and Psychosomatics, Medical Faculty Heidelberg and University Clinic Heidelberg, Heidelberg, Germany
| | - Rohini Kuner
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
18
|
Jin Y, Mao Y, Chen D, Tai Y, Hu R, Yang CL, Zhou J, Chen L, Liu X, Gu E, Jia C, Zhang Z, Tao W. Thalamocortical circuits drive remifentanil-induced postoperative hyperalgesia. J Clin Invest 2022; 132:158742. [PMID: 36519547 PMCID: PMC9754001 DOI: 10.1172/jci158742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Remifentanil-induced hyperalgesia (RIH) is a severe but common postoperative clinical problem with elusive underlying neural mechanisms. Here, we discovered that glutamatergic neurons in the thalamic ventral posterolateral nucleus (VPLGlu) exhibited significantly elevated burst firing accompanied by upregulation of Cav3.1 T-type calcium channel expression and function in RIH model mice. In addition, we identified a glutamatergic neuronal thalamocortical circuit in the VPL projecting to hindlimb primary somatosensory cortex glutamatergic neurons (S1HLGlu) that mediated RIH. In vivo calcium imaging and multi-tetrode recordings revealed heightened S1HLGlu neuronal activity during RIH. Moreover, preoperative suppression of Cav3.1-dependent burst firing in VPLGlu neurons or chemogenetic inhibition of VPLGlu neuronal terminals in the S1HL abolished the increased S1HLGlu neuronal excitability while alleviating RIH. Our findings suggest that remifentanil induces postoperative hyperalgesia by upregulating T-type calcium channel-dependent burst firing in VPLGlu neurons to activate S1HLGlu neurons, thus revealing an ion channel-mediated neural circuit basis for RIH that can guide analgesic development.
Collapse
Affiliation(s)
- Yan Jin
- Stroke Center and Department of Neurology and,Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Yu Mao
- Stroke Center and Department of Neurology and,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Danyang Chen
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Yingju Tai
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Rui Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen-Ling Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing Zhou
- Department of head, neck, and breast Surgery, Western district of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunhui Jia
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Wenjuan Tao
- Stroke Center and Department of Neurology and,Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Aulehner K, Leenaars C, Buchecker V, Stirling H, Schönhoff K, King H, Häger C, Koska I, Jirkof P, Bleich A, Bankstahl M, Potschka H. Grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats-A systematic review. Front Vet Sci 2022; 9:930005. [PMID: 36277074 PMCID: PMC9583882 DOI: 10.3389/fvets.2022.930005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022] Open
Abstract
Several studies suggested an informative value of behavioral and grimace scale parameters for the detection of pain. However, the robustness and reliability of the parameters as well as the current extent of implementation are still largely unknown. In this study, we aimed to systematically analyze the current evidence-base of grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats. The following platforms were searched for relevant articles: PubMed, Embase via Ovid, and Web of Science. Only full peer-reviewed studies that describe the grimace scale, burrowing, and/or nest building as pain parameters in the post-surgical phase in mice and/or rats were included. Information about the study design, animal characteristics, intervention characteristics, and outcome measures was extracted from identified publications. In total, 74 papers were included in this review. The majority of studies have been conducted in young adult C57BL/6J mice and Sprague Dawley and Wistar rats. While there is an apparent lack of information about young animals, some studies that analyzed the grimace scale in aged rats were identified. The majority of studies focused on laparotomy-associated pain. Only limited information is available about other types of surgical interventions. While an impact of surgery and an influence of analgesia were rather consistently reported in studies focusing on grimace scales, the number of studies that assessed respective effects was rather low for nest building and burrowing. Moreover, controversial findings were evident for the impact of analgesics on post-surgical nest building activity. Regarding analgesia, a monotherapeutic approach was identified in the vast majority of studies with non-steroidal anti-inflammatory (NSAID) drugs and opioids being most commonly used. In conclusion, most evidence exists for grimace scales, which were more frequently used to assess post-surgical pain in rodents than the other behavioral parameters. However, our findings also point to relevant knowledge gaps concerning the post-surgical application in different strains, age levels, and following different surgical procedures. Future efforts are also necessary to directly compare the sensitivity and robustness of different readout parameters applied for the assessment of nest building and burrowing activities.
Collapse
Affiliation(s)
- Katharina Aulehner
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Hannah King
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
20
|
Jhumka ZA, Abdus-Saboor IJ. Next generation behavioral sequencing for advancing pain quantification. Curr Opin Neurobiol 2022; 76:102598. [PMID: 35780688 DOI: 10.1016/j.conb.2022.102598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
With symptoms such as spontaneous pain and pathologically heightened sensitivity to stimuli, chronic pain accounts for about 20% of physician visits and up to 2/3 of patients are dissatisfied with current treatments. Much of our knowledge on pain processing and analgesics has emerged from behavioral studies performed on animals presenting the same symptoms under pathological conditions. While humans can verbally describe their pain, studies on rodents have relied on behavioral assays providing non-exhaustive characterization or altering animals' original sensitivity through repetitive stimulations. The emergence of what we term "next-generation behavioral sequencing" is now permitting us to quantitatively describe behavioral features on millisecond to minutes long timescales that lie beyond easy detection with the unaided eye. Here, we summarize emerging videography and computational based behavioral approaches that have the potential to significantly improve pain research.
Collapse
Affiliation(s)
- Z Anissa Jhumka
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. https://twitter.com/AnissaJhumka
| | - Ishmail J Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute and Department of Biological Sciences, Columbia University, New York, NY, USA. ia2458columbia.edu
| |
Collapse
|
21
|
Lenert ME, Gomez R, Lane BT, Dailey DL, Vance CGT, Rakel BA, Crofford LJ, Sluka KA, Merriwether EN, Burton MD. Translating Outcomes from the Clinical Setting to Preclinical Models: Chronic Pain and Functionality in Chronic Musculoskeletal Pain. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:1690-1707. [PMID: 35325207 PMCID: PMC9527603 DOI: 10.1093/pm/pnac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022]
Abstract
Fibromyalgia (FM) is a chronic pain disorder characterized by chronic widespread musculoskeletal pain (CWP), resting pain, movement-evoked pain (MEP), and other somatic symptoms that interfere with daily functioning and quality of life. In clinical studies, this symptomology is assessed, while preclinical models of CWP are limited to nociceptive assays. The aim of the study was to investigate the human-to-model translatability of clinical behavioral assessments for spontaneous (or resting) pain and MEP in a preclinical model of CWP. For preclinical measures, the acidic saline model of FM was used to induce widespread muscle pain in adult female mice. Two intramuscular injections of acidic or neutral pH saline were administered following baseline measures, 5 days apart. An array of adapted evoked and spontaneous pain measures and functional assays were assessed for 3 weeks. A novel paradigm for MEP assessment showed increased spontaneous pain following activity. For clinical measures, resting and movement-evoked pain and function were assessed in adult women with FM. Moreover, we assessed correlations between the preclinical model of CWP and in women with fibromyalgia to examine whether similar relationships between pain assays that comprise resting and MEP existed in both settings. For both preclinical and clinical outcomes, MEP was significantly associated with mechanical pain sensitivity. Preclinically, it is imperative to expand how the field assesses spontaneous pain and MEP when studying multi-symptom disorders like FM. Targeted pain assessments to match those performed clinically is an important aspect of improving preclinical to clinical translatability of animal models.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Rachelle Gomez
- Inclusive and Translational Research in Pain Lab, Department of Physical Therapy, Steinhardt School of Culture, Education, and Human Development, New York University, New York, New York, USA
| | - Brandon T Lane
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Dana L Dailey
- Neurobiology of Pain Lab, Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Physical Therapy, Center for Health Sciences, St. Ambrose University, Davenport, Iowa, USA
| | - Carol G T Vance
- Neurobiology of Pain Lab, Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Barbara A Rakel
- College of Nursing, University of Iowa, Iowa City, Iowa, USA
| | - Leslie J Crofford
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathleen A Sluka
- Neurobiology of Pain Lab, Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ericka N Merriwether
- Inclusive and Translational Research in Pain Lab, Department of Physical Therapy, Steinhardt School of Culture, Education, and Human Development, New York University, New York, New York, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
22
|
Yoon H, Bak MS, Kim SH, Lee JH, Chung G, Kim SJ, Kim SK. Development of a spontaneous pain indicator based on brain cellular calcium using deep learning. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1179-1187. [PMID: 35982300 PMCID: PMC9385425 DOI: 10.1038/s12276-022-00828-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022]
Abstract
Chronic pain remains an intractable condition in millions of patients worldwide. Spontaneous ongoing pain is a major clinical problem of chronic pain and is extremely challenging to diagnose and treat compared to stimulus-evoked pain. Although extensive efforts have been made in preclinical studies, there still exists a mismatch in pain type between the animal model and humans (i.e., evoked vs. spontaneous), which obstructs the translation of knowledge from preclinical animal models into objective diagnosis and effective new treatments. Here, we developed a deep learning algorithm, designated AI-bRNN (Average training, Individual test-bidirectional Recurrent Neural Network), to detect spontaneous pain information from brain cellular Ca2+ activity recorded by two-photon microscopy imaging in awake, head-fixed mice. AI-bRNN robustly determines the intensity and time points of spontaneous pain even in chronic pain models and evaluates the efficacy of analgesics in real time. Furthermore, AI-bRNN can be applied to various cell types (neurons and glia), brain areas (cerebral cortex and cerebellum) and forms of somatosensory input (itch and pain), proving its versatile performance. These results suggest that our approach offers a clinically relevant, quantitative, real-time preclinical evaluation platform for pain medicine, thereby accelerating the development of new methods for diagnosing and treating human patients with chronic pain. A microscopy technique coupled with an artificial intelligence (AI) platform could help researchers discover new types of pain-relief medicines. A team from South Korea led by Sun Kwang Kim of Kyung Hee University and Sang Jeong Kim of Seoul National University created a machine-learning algorithm that converts calcium signaling data in the brain, as estimated via imaging on genetically engineered mice, into a measurement of pain intensity. The researchers applied the technique to several mouse models of chronic pain and showed that it accurately captured the analgesic effects of known painkillers. They also extended the system to multiple brain regions, cell types and another brain-controlled sensory process, itch. The researchers propose using the AI-based tool to evaluate candidate anti-pain and anti-itch medicines ahead of human trials.
Collapse
Affiliation(s)
- Heera Yoon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myeong Seong Bak
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ji Hwan Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
23
|
Ulker E, Caillaud M, Koseli E, Contreras K, Alkhlaif Y, Lindley E, Barik M, Ghani S, Bryant CD, Imad Damaj M. Comparison of Pain-Like behaviors in two surgical incision animal models in C57BL/6J mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100103. [PMID: 36531613 PMCID: PMC9755018 DOI: 10.1016/j.ynpai.2022.100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Management of pain post-surgery is crucial for tissue healing in both veterinary and human medicine. Overuse of some analgesics such as opioids may lead to addictions and worsen pain syndromes (opioid-induced hyperalgesia), while underuse of it may affect the welfare of the patient. Therefore, the importance of using surgery models in laboratory animals is increasing, with the goal of improving our understanding of pain neurobiology and developing safer analgesics. METHODS We compared the widely used plantar incision model with the laparotomy surgery model and measured pain-related behaviors using both spontaneous and evoked responses in female and male C57BL/6J mice. Additionally, we assessed conditioned place preference (CPP) and sucrose preference tests to measure pain-induced motivation for the analgesic ketoprofen and anhedonia-like behavior. RESULTS Laparotomized mice showed increased abdominal sensitivity while paw-incised mice showed increased paw thermal and mechanical sensitivity up to seven days post-surgery. Laparotomy surgery reduced all spontaneous behaviors in our study however this effect dissipated by 24 h post-laparotomy. On the other hand, paw incision only reduced the percentage of cage hanging in a sex-dependent manner at 6 h post-incision. We also showed that both surgery models increased conditioned place preference for ketoprofen while preference for sucrose was only reduced at 24 h post-laparotomy. Laporatomy, but not paw incision, induced a decrease in body weight at 24 h post-surgery. Neither surgery model affected fluid intake. CONCLUSION Our results indicate that post-surgery hypersensitivity and behavioral deficits may differ by the incision site. Furthermore, factors associated with the surgery including length of the incision, duration of the anesthesia, and the layers that received stitches may affect subsequent spontaneous behaviors. These findings may help to improve drug development or the choice of the effective analgesic, depending on the surgery type.
Collapse
Affiliation(s)
- Esad Ulker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Eda Koseli
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Katherine Contreras
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Eric Lindley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Mitali Barik
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Sofia Ghani
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Camron D. Bryant
- Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
- Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| |
Collapse
|
24
|
Tang SN, Walter BA, Heimann MK, Gantt CC, Khan SN, Kokiko-Cochran ON, Askwith CC, Purmessur D. In vivo Mouse Intervertebral Disc Degeneration Models and Their Utility as Translational Models of Clinical Discogenic Back Pain: A Comparative Review. FRONTIERS IN PAIN RESEARCH 2022; 3:894651. [PMID: 35812017 PMCID: PMC9261914 DOI: 10.3389/fpain.2022.894651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Low back pain is a leading cause of disability worldwide and studies have demonstrated intervertebral disc (IVD) degeneration as a major risk factor. While many in vitro models have been developed and used to study IVD pathophysiology and therapeutic strategies, the etiology of IVD degeneration is a complex multifactorial process involving crosstalk of nearby tissues and systemic effects. Thus, the use of appropriate in vivo models is necessary to fully understand the associated molecular, structural, and functional changes and how they relate to pain. Mouse models have been widely adopted due to accessibility and ease of genetic manipulation compared to other animal models. Despite their small size, mice lumbar discs demonstrate significant similarities to the human IVD in terms of geometry, structure, and mechanical properties. While several different mouse models of IVD degeneration exist, greater standardization of the methods for inducing degeneration and the development of a consistent set of output measurements could allow mouse models to become a stronger tool for clinical translation. This article reviews current mouse models of IVD degeneration in the context of clinical translation and highlights a critical set of output measurements for studying disease pathology or screening regenerative therapies with an emphasis on pain phenotyping. First, we summarized and categorized these models into genetic, age-related, and mechanically induced. Then, the outcome parameters assessed in these models are compared including, molecular, cellular, functional/structural, and pain assessments for both evoked and spontaneous pain. These comparisons highlight a set of potential key parameters that can be used to validate the model and inform its utility to screen potential therapies for IVD degeneration and their translation to the human condition. As treatment of symptomatic pain is important, this review provides an emphasis on critical pain-like behavior assessments in mice and explores current behavioral assessments relevant to discogenic back pain. Overall, the specific research question was determined to be essential to identify the relevant model with histological staining, imaging, extracellular matrix composition, mechanics, and pain as critical parameters for assessing degeneration and regenerative strategies.
Collapse
Affiliation(s)
- Shirley N. Tang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Benjamin A. Walter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Mary K. Heimann
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Connor C. Gantt
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Safdar N. Khan
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Candice C. Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- *Correspondence: Devina Purmessur ;
| |
Collapse
|
25
|
Ma L, Liu S, Yi M, Wan Y. Spontaneous pain as a challenge of research and management in chronic pain. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:308-319. [PMID: 37724190 PMCID: PMC10388751 DOI: 10.1515/mr-2022-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 09/20/2023]
Abstract
Spontaneous pain occurring without apparent external stimuli, is a significant complaint of individuals with chronic pain whose mechanisms, somewhat surprisingly, remain poorly understood. Over the past decades, neuroimaging studies start to reveal brain activities accompanying spontaneous pain. Meanwhile, a variety of animal models and behavioral tests have been established, including non-reflexive tests and free-choice tests, which have been shown to be effective in assessing spontaneous pain. For the spontaneous pain mechanisms, multiple lines of research mainly focus on three aspects: (1) sensitization of peripheral nociceptor receptors and ion channels, (2) spontaneous neuronal firing and abnormal activity patterns at the dorsal root ganglion and spinal cord level, (3) functional and structural alterations in the brain, particularly the limbic system and the medial pain pathway. Despite accumulating evidence revealing distinct neuronal mechanisms from evoked pain, we are still far from full understanding of spontaneous pain, leaving a big gap between bench and bedside for chronic pain treatment. A better understanding of the neural processes in chronic pain, with specific linkage as to which anatomical structures and molecules related to spontaneous pain perception and comorbidities, will greatly improve our ability to develop novel therapeutics.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
26
|
Bourgeois JR, Feustel PJ, Kopec AM. Sex differences in choice-based thermal nociceptive tests in adult rats. Behav Brain Res 2022; 429:113919. [PMID: 35525338 DOI: 10.1016/j.bbr.2022.113919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
Abstract
Interest in the role of sex as a biological variable has increased, including a mandate for the study of both sexes in NIH-funded research. As sex differences exist in both human chronic pain conditions and rodent models of nociception, it is critical to understand the impact of sex in nociceptive assays. Choice-based thermal nociceptive tests permit the study of avoidance responses to thermal stimuli compared to traditional nociceptive assays, which measure nocifensive reactions. However, to date no comparison of male and female responses to choice-based tests has been published. Herein, we examined the effect of sex on two choice-based thermal nociceptive tests, the thermal gradient test and the temperature place preference test, in adult rats. The activation of a 10 °C-to-47 °C thermal gradient results in an increase in time spent in the 10 °C zone in females, compared to a reduction in males. Additionally, in a temperature place preference test pairing a surface temperature of 22 °C with either 5 °C, 10 °C, 47 °C, or 50 °C, females appeared to have overall greater tolerance for non-ambient temperatures. Males spent less than 50% of their time in every non-22 °C zone, whereas in females this was only observed when testing 5 °C and 50 °C. Together, these results suggest that male rats show more avoidance behavior than females to both hot and cold non-ambient temperatures when given free access to multiple zones, including at milder temperatures than those typically used to evoke a nociceptive response in traditional hot and cold plate tests.
Collapse
Affiliation(s)
- J R Bourgeois
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - P J Feustel
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - A M Kopec
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
27
|
Nagakura Y. Therapeutic Approaches to Nociplastic Pain Based on Findings in the Reserpine-Induced Fibromyalgia-Like Animal Model. J Pharmacol Exp Ther 2022; 381:106-119. [PMID: 35246482 DOI: 10.1124/jpet.121.001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Nociplastic pain, the third category of chronic pain, has emerged as a serious medical issue. Due to its significant negative influences on patients and society, high prevalence, and lack of sufficiently effective treatments, more efficacious therapies are required. This review highlights the potential therapeutic approaches identified in studies that used reserpine-induced myalgia (RIM) animal model that exhibits nociplastic pain-associated phenotypes. These studies have revealed that biological processes including the chronic reduction of monoamines, increase of oxidative/nitrosative stresses and inflammatory mediators, upregulation of pronociceptive neurotransmitters and their receptors, increase of trophic factors, enhancement of the apoptotic pathway, sensory nerve sensitization, and activation of immune cells in central and/or peripheral regions, underly the nociplastic pain-associated phenotypes in RIM animal model. Potential therapeutic approaches to nociplastic pain, i.e., 1) functional modification of specific molecules which expression is distinctly altered following monoamine reduction, 2) targeting the molecules which are responsible for other major categories of chronic pain (i.e., chronic inflammatory pain and neuropathic pain), 3) supplementation of nutrition to correct the disrupted nutritional balance, 4) improvement of physical constitution by natural substances, and 5) nonpharmacological interventions, have been identified. Significance Statement Studies in RIM animal model have revealed the pathologies that occur after the chronic reduction of monoamines and identified potential therapeutic approaches to nociplastic pain. Translation of their analgesic efficacy from RIM animal model to patients remains an issue to be addressed. Successful translation would lead to better therapies for nociplastic pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Japan
| |
Collapse
|
28
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
29
|
Tejada MA, Santos-Llamas AI, Escriva L, Tarin JJ, Cano A, Fernández-Ramírez MJ, Nunez-Badinez P, De Leo B, Saunders PTK, Vidal V, Barthas F, Vincent K, Sweeney PJ, Sillito RR, Armstrong JD, Nagel J, Gomez R. Identification of Altered Evoked and Non-Evoked Responses in a Heterologous Mouse Model of Endometriosis-Associated Pain. Biomedicines 2022; 10:501. [PMID: 35203710 PMCID: PMC8962432 DOI: 10.3390/biomedicines10020501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to develop and refine a heterologous mouse model of endometriosis-associated pain in which non-evoked responses, more relevant to the patient experience, were evaluated. Immunodeficient female mice (N = 24) were each implanted with four endometriotic human lesions (N = 12) or control tissue fat (N = 12) on the abdominal wall using tissue glue. Evoked pain responses were measured biweekly using von Frey filaments. Non-evoked responses were recorded weekly for 8 weeks using a home cage analysis (HCA). Endpoints were distance traveled, social proximity, time spent in the center vs. outer areas of the cage, drinking, and climbing. Significant differences between groups for von Frey response, climbing, and drinking were detected on days 14, 21, and 35 post implanting surgery, respectively, and sustained for the duration of the experiment. In conclusion, a heterologous mouse model of endometriosis-associated evoked a non-evoked pain was developed to improve the relevance of preclinical models to patient experience as a platform for drug testing.
Collapse
Affiliation(s)
- Miguel A. Tejada
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
| | - Ana I. Santos-Llamas
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
| | - Lesley Escriva
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
| | - Juan J. Tarin
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
| | - Maria J. Fernández-Ramírez
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario, 46010 Valencia, Spain
| | - Paulina Nunez-Badinez
- Bayer AG. Research & Early Development, Pharmaceuticals, Reproductive Health, Müllerstr. 178, 13342 Berlin, Germany; (P.N.-B.); (B.D.L.)
| | - Bianca De Leo
- Bayer AG. Research & Early Development, Pharmaceuticals, Reproductive Health, Müllerstr. 178, 13342 Berlin, Germany; (P.N.-B.); (B.D.L.)
| | - Philippa T. K. Saunders
- Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Victor Vidal
- Faculty of Science, International University of La Rioja, Avda de la paz 137, 26006 Logrono, Spain;
| | | | - Katy Vincent
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;
| | - Patrick J. Sweeney
- Actual Analytics, 99 Giles Street, Edinburgh EH6 6BZ, UK; (P.J.S.); (R.R.S.); (J.D.A.)
| | - Rowland R. Sillito
- Actual Analytics, 99 Giles Street, Edinburgh EH6 6BZ, UK; (P.J.S.); (R.R.S.); (J.D.A.)
| | - James Douglas Armstrong
- Actual Analytics, 99 Giles Street, Edinburgh EH6 6BZ, UK; (P.J.S.); (R.R.S.); (J.D.A.)
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Jens Nagel
- Bayer AG. Research & Early Development, Pharmaceuticals, Exploratory Pathobiology, Aprather Weg 18a, 42096 Wuppertal, Germany;
| | - Raúl Gomez
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
30
|
Inhibiting Hv1 channel in peripheral sensory neurons attenuates chronic inflammatory pain and opioid side effects. Cell Res 2022; 32:461-476. [PMID: 35115667 PMCID: PMC9061814 DOI: 10.1038/s41422-022-00616-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Both opioids and nonsteroidal anti-inflammatory drugs (NSAIDS) produce deleterious side effects and fail to provide sustained relief in patients with chronic inflammatory pain. Peripheral neuroinflammation (PN) is critical for initiation and development of inflammatory pain. A better understanding of molecular mechanisms underlying PN would facilitate the discovery of new analgesic targets and the development of new therapeutics. Emerging evidence suggests that peripheral sensory neurons are not only responders to painful stimuli, but are also actively engaged in inflammation and immunity, whereas the intrinsic regulatory mechanism is poorly understood. Here we report the expression of proton-selective ion channel Hv1 in peripheral sensory neurons in rodents and humans, which was previously shown as selectively expressed in microglia in mammalian central nervous system. Neuronal Hv1 was up-regulated by PN or depolarizing stimulation, which in turn aggravates inflammation and nociception. Inhibiting neuronal Hv1 genetically or by a newly discovered selective inhibitor YHV98-4 reduced intracellular alkalization and ROS production in inflammatory pain, mitigated the imbalance in downstream SHP-1-pAKT signaling, and also diminished pro-inflammatory chemokine release to alleviate nociception and morphine-induced hyperalgesia and tolerance. Thus, our data reveal neuronal Hv1 as a novel target in analgesia strategy and managing opioids-related side effects.
Collapse
|
31
|
Sandora N, Fitria NA, Kusuma TR, Winarno GA, Tanjunga SF, Wardhana A. Amnion bilayer for dressing and graft replacement for delayed grafting of full-thickness burns; A study in a rat model. PLoS One 2022; 17:e0262007. [PMID: 35061768 PMCID: PMC8782387 DOI: 10.1371/journal.pone.0262007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Burn is a common case in developing countries, with over half of fire-related deaths reported in Southeast Asia and full-thickness burns as a high mortality risk. Human amnion has been used as a wound dressing for centuries. In this study, a decellularised amnion overlaid with fibrin, “amnion bilayer (AB),” was used as a dressing immediately after burn and as a graft to replace the scar in Sprague-Dawley rats subjected to full-thickness burn model. The aim was to observe whether amnion bilayer can reduce damages in third-grade burn when skin replacement is deemed impossible. The burn was induced using an electrical solder, heated for 5 mins, and contacted on the rat’s bare skin for 20 s. AB was applied as a (i) dressing immediately after induction and graft after eschar removal. Two groups (n = 6) were compared: AB and Sofra-Tulle ®, the National Hospital of Indonesia (NHI) protocol. Sections were stained with hematoxylin and eosin and Masson trichrome stains. Immunohistochemistry labelling was used to indicate scars (α-smooth muscle actin [α-SMA] and collagen-1) and angiogenesis (von Willebrand factor). Also, the macrophages inflammatory protein-3α (MIP-3α) indicates an early inflammatory process. The post dressing of the AB group demonstrated hair follicle remains and adipose tissue development. The NHI group appeared with a denatured matrix. Complete healing was seen in the AB group after 28 days with skin appendages similar to normal, while the NHI group showed no appendages in the centre of the actively inflamed area. The α-SMA was found in both groups. Collagen-1 was highly expressed in the NHI group, which led to a scar. Angiogenesis was found more in the AB group. The AB group had shown the capacity to accelerate complete healing and recover skin appendages better than the current protocol.
Collapse
Affiliation(s)
- Normalina Sandora
- Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Indonesian Medical Education and Research Institute (IMERI), Jakarta, Indonesia
| | - Nur Amalina Fitria
- Indonesian Medical Education and Research Institute (IMERI), Jakarta, Indonesia
| | - Tyas Rahmah Kusuma
- Indonesian Medical Education and Research Institute (IMERI), Jakarta, Indonesia
| | - Gammaditya Adhibarata Winarno
- Burn Unit, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Department of Surgery, Plastic and Reconstructive Surgery Division, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Sanjaya Faisal Tanjunga
- Burn Unit, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Department of Surgery, Plastic and Reconstructive Surgery Division, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Aditya Wardhana
- Burn Unit, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Department of Surgery, Plastic and Reconstructive Surgery Division, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- * E-mail:
| |
Collapse
|
32
|
Sympathetic yet painful: Autonomic innervation drives cluster firing of somatosensory neurons. Neuron 2022; 110:175-177. [PMID: 35051359 DOI: 10.1016/j.neuron.2021.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this issue of Neuron, Zheng et al. (2021) report synchronized cluster firing of dorsal root ganglion (DRG) neurons that correlates with spontaneous pain in the setting of nerve injury. The authors' findings further suggest that sympathetic sprouting in the DRG plays a key role in this phenomenon.
Collapse
|
33
|
Abstract
Injury-free pain conditions, defined as functional pain syndromes, are more prevalent and more disabling in women. Mechanisms of sexual dimorphism in functional pain are now emerging from preclinical studies, suggesting an opportunity to advance the development of sex-specific therapies that may improve treatment of pain in women.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
- Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
34
|
Segelcke D, Pradier B, Reichl S, Schäfer LC, Pogatzki-Zahn EM. Investigating the Role of Ly6G+ Neutrophils in Incisional and Inflammatory Pain by Multidimensional Pain-Related Behavioral Assessments: Bridging the Translational Gap. FRONTIERS IN PAIN RESEARCH 2021; 2:735838. [PMID: 35295496 PMCID: PMC8915677 DOI: 10.3389/fpain.2021.735838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
In recent years, preclinical pain research has failed to develop genuinely new analgesics for clinical use. This fact is reflected by a high number of patients, limited drug efficacy accompanied by side effects, and a long-term opioid intake. Two main aspects have been addressed, which hinder translation: the use of non-relevant pain models and a mismatch between pain-related outcomes in preclinical and clinical studies. Conversely, disease-specific pain models that mirror more closely the clinical situation and multidimensional behavioral outcome measures that objectively and reproducibly assess relevant pain-related symptoms in a preclinical setting could improve translation. Mechanistically, a matter of debate is the role of Ly6G+ neutrophil granulocytes (NGs) for pain. NGs are essential to eliminate pathogens and promote the wound healing process. For this purpose, there is a need to release various pro- and anti-inflammatory mediators, some of which could ameliorate or enhance pain. However, the contribution of NGs to different pain entities is contradictory for reflex-based tests, and completely unknown in the context of non-evoked pain (NEP) and movement-evoked pain (MEP). First, we combined withdrawal reflex-based assays with novel video-based assessments for NEP- and MEP-related behavior in two mouse pain models. The pain models utilized in this study were incision (INC) and pathogen/adjuvant-induced inflammation (CFA), translating well to postsurgical and inflammatory pain entities. Second, we depleted NGs and applied a set of behavioral assessments to investigate the role of NG migration in different pain modalities. Our comprehensive behavioral approach identified pain-related behaviors in mice that resemble (NEP) or differentiate (MEP) behavioral trajectories in comparison to mechanical and heat hypersensitivity, thereby indicating modality-dependent mechanisms. Further, we show that injury-induced accumulation of NGs minimally affects pain-related behaviors in both pain models. In conclusion, we report a novel assessment to detect NEP in mice after unilateral injuries using a more unbiased approach. Additionally, we are capable of detecting an antalgic gait for both pain entities with unique trajectories. The different trajectories between MEP and other pain modalities suggest that the underlying mechanisms differ. We further conclude that NGs play a subordinate role in pain-related behaviors in incisional and inflammatory pain.
Collapse
Affiliation(s)
- Daniel Segelcke
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
| | - Bruno Pradier
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
| | - Sylvia Reichl
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
- Department of Anesthesiology, Perioperative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Lukas C. Schäfer
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
| | - Esther M. Pogatzki-Zahn
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
- *Correspondence: Esther M. Pogatzki-Zahn
| |
Collapse
|
35
|
Nunez-Badinez P, De Leo B, Laux-Biehlmann A, Hoffmann A, Zollner TM, Saunders PT, Simitsidellis I, Charrua A, Cruz F, Gomez R, Tejada MA, McMahon SB, Lo Re L, Barthas F, Vincent K, Birch J, Meijlink J, Hummelshoj L, Sweeney PJ, Armstrong JD, Treede RD, Nagel J. Preclinical models of endometriosis and interstitial cystitis/bladder pain syndrome: an Innovative Medicines Initiative-PainCare initiative to improve their value for translational research in pelvic pain. Pain 2021; 162:2349-2365. [PMID: 34448751 PMCID: PMC8374713 DOI: 10.1097/j.pain.0000000000002248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023]
Abstract
ABSTRACT Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.
Collapse
Affiliation(s)
| | - Bianca De Leo
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | | | - Anja Hoffmann
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | | | - Philippa T.K. Saunders
- Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ioannis Simitsidellis
- Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ana Charrua
- I3S—Instituto de Investigação e Inovação em Saúde, and Faculty of Medicine of Porto, Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, and Faculty of Medicine of Porto, Porto, Portugal
| | - Raul Gomez
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | | | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Laure Lo Re
- Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | | | - Katy Vincent
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Judy Birch
- Pelvic Pain Support Network, Poole, United Kingdom
| | - Jane Meijlink
- International Painful Bladder Foundation, Naarden, the Netherlands
| | | | | | - J. Douglas Armstrong
- Actual Analytics, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jens Nagel
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
36
|
Marques Miranda C, de Lima Campos M, Leite-Almeida H. Diet, body weight and pain susceptibility - A systematic review of preclinical studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100066. [PMID: 34195483 PMCID: PMC8237587 DOI: 10.1016/j.ynpai.2021.100066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Obesity has been associated with increased chronic pain susceptibility but causes are unclear. In this review, we systematize and analyze pain outcomes in rodent models of obesity as these can be important tools for mechanistic studies. Studies were identified using MEDLINE/PubMed and Scopus databases using the following search query: (((pain) OR (nociception)) AND (obesity)) AND (rat OR (mouse) OR (rodent))). From each eligible record we extracted the following data: species, strain, sex, pain/obesity model and main behavioral readouts. Out of 695 records 33 were selected for inclusion. 27 studies assessed nociception/acute pain and 17 studies assessed subacute or chronic pain. Overall genetic and dietary models overlapped in pain-related outcomes. Most acute pain studies reported either decreased or unaltered responses to noxious painful stimuli. However, decreased thresholds to mechanical innocuous stimuli, i.e. allodynia, were frequently reported. In most studies using subacute and chronic pain models, namely of subcutaneous inflammation, arthritis and perineural inflammation, decreased thresholds and/or prolonged pain manifestations were reported in obesity models. Strain comparisons and longitudinal observations indicate that genetic factors and the time course of the pathology might account for some of the discrepancies observed across studies. Two studies reported increased pain in animals subjected to high fat diet in the absence of weight gain. Pain-related outcomes in experimental models and clinical obesity are aligned indicating that the rodent can be an useful tool to study the interplay between diet, obesity and pain. In both cases weight gain might represent only a minor contribution to abnormal pain manifestation.
Collapse
Affiliation(s)
- Carolina Marques Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana de Lima Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
37
|
Draxler P, Moen A, Galek K, Boghos A, Ramazanova D, Sandkühler J. Spontaneous, Voluntary, and Affective Behaviours in Rat Models of Pathological Pain. FRONTIERS IN PAIN RESEARCH 2021; 2:672711. [PMID: 35295455 PMCID: PMC8915731 DOI: 10.3389/fpain.2021.672711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
In pain patients affective and motivational reactions as well as impairment of daily life activities dominate the clinical picture. In contrast, many rodent pain models have been established on the basis of mechanical hypersensitivity testing. Up to today most rodent studies on pain still rely on reflexive withdrawal responses only. This discrepancy has likely contributed to the low predictive power of preclinical pain models for novel therapies. Here, we used a behavioural test array for rats to behaviourally evaluate five aetiologically distinct pain models consisting of inflammatory-, postsurgical-, cephalic-, neuropathic- and chemotherapy-induced pain. We assessed paralleling clinical expressions and comorbidities of chronic pain with an array of behavioural tests to assess anxiety, social interaction, distress, depression, and voluntary/spontaneous behaviours. Pharmacological treatment of the distinct pain conditions was performed with pathology-specific and clinically efficacious analgesics as gabapentin, sumatriptan, naproxen, and codeine. We found that rats differed in their manifestation of symptoms depending on the pain model and that pathology-specific analgesics also reduced the associated behavioural parameters. Based on all behavioural test performed, we screened for tests that can discriminate experimental groups on the basis of reflexive as well as non-sensory, affective parameters. Together, we propose a set of non-evoked behaviours with a comparable predictive power to mechanical threshold testing for each pain model.
Collapse
Affiliation(s)
- Peter Draxler
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Aurora Moen
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Karolina Galek
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ani Boghos
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Dariga Ramazanova
- Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS) Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Sandkühler
- Division of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
39
|
Kankowski S, Grothe C, Haastert-Talini K. Neuropathic pain: Spotlighting anatomy, experimental models, mechanisms, and therapeutic aspects. Eur J Neurosci 2021; 54:4475-4496. [PMID: 33942412 DOI: 10.1111/ejn.15266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
The International Association for the Study of Pain defines neuropathic pain as "pain arising as a direct consequence of a lesion or disease affecting the somatosensory system". The associated changes can be observed in the peripheral as well as the central nervous system. The available literature discusses a wide variety of causes as predisposing for the development and amplification of neuropathic pain. Further, key interactions within sensory pathways have been discovered, but no common molecular mechanism leading to neuropathic pain has been identified until now. In the first part of this review, the pain mediating lateral spinothalamic tract is described. Different in vivo models are presented that allow studying trauma-, chemotherapy-, virus-, and diabetes-induced neuropathic pain in rodents. We furthermore discuss approaches to assess neuropathic pain in these models. Second, the current knowledge about cellular and molecular mechanisms suggested to underlie the development of neuropathic pain is presented and discussed. A summary of established therapies that are already applied in the clinic and novel, promising approaches closes the paper. In conclusion, the established animal models are able to emulate the diversity of neuropathic pain observed in the clinics. However, the assessment of neuropathic pain in the presented in vivo models should be improved. The determination of common molecular markers with suitable in vitro models would simplify the assessment of neuropathic pain in vivo. This would furthermore provide insights into common molecular mechanisms of the disease and establish a basis to search for satisfying therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| |
Collapse
|
40
|
Nonsurgical mouse model of endometriosis-associated pain that responds to clinically active drugs. Pain 2021; 161:1321-1331. [PMID: 32132396 DOI: 10.1097/j.pain.0000000000001832] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that affects approximately 10% of women. Debilitating pelvic or abdominal pain is one of its major clinical features. Current animal models of endometriosis-associated pain require surgery either to implant tissue or to remove the ovaries. Moreover, existing models do not induce spontaneous pain, which is the primary symptom of patients with chronic pain, including endometriosis. A lack of models that accurately recapitulate the disease phenotype must contribute to the high failure rate of clinical trials for analgesic drugs directed at chronic pain, including those for endometriosis. We set out to establish a murine model of endometriosis-associated pain. Endometriosis was induced nonsurgically by injecting a dissociated uterine horn into a recipient mouse. The induced lesions exhibited histological features that resemble human lesions along with an increase in proinflammatory cytokines and recruitment of immune cells. We also observed the presence of calcitonin gene-related peptide-, TRPA1-, and TRPV1-expressing nerve fibers in the lesions. This model induced mechanical allodynia, spontaneous abdominal pain, and changes in thermal selection behavior that indicate discomfort. These behavioral changes were reduced by drugs used clinically for endometriosis, specifically letrozole (aromatase inhibitor) and danazol (androgen). Endometriosis also induced neuronal changes as evidenced by activation of the NF-κB signaling pathway in TRPA1- and TRPV1-expressing dorsal root ganglion neurons. In conclusion, we have established a model of endometriosis-associated pain that responds to clinically active drugs and can, therefore, be used to identify novel therapies.
Collapse
|
41
|
Gan Z, Li H, Naser PV, Oswald MJ, Kuner R. Suppression of neuropathic pain and comorbidities by recurrent cycles of repetitive transcranial direct current motor cortex stimulation in mice. Sci Rep 2021; 11:9735. [PMID: 33958647 PMCID: PMC8102487 DOI: 10.1038/s41598-021-89122-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Transcranial, minimally-invasive stimulation of the primary motor cortex (M1) has recently emerged to show promise in treating clinically refractory neuropathic pain. However, there is a major need for improving efficacy, reducing variability and understanding mechanisms. Rodent models hold promise in helping to overcome these obstacles. However, there still remains a major divide between clinical and preclinical studies with respect to stimulation programs, analysis of pain as a multidimensional sensory-affective-motivational state and lack of focus on chronic phases of established pain. Here, we employed direct transcranial M1 stimulation (M1 tDCS) either as a single 5-day block or recurring blocks of repetitive stimulation over early or chronic phases of peripherally-induced neuropathic pain in mice. We report that repeated blocks of stimulation reverse established neuropathic mechanical allodynia more strongly than a single 5-day regime and also suppress cold allodynia, aversive behavior and anxiety without adversely affecting motor function over a long period. Activity mapping revealed highly selective alterations in the posterior insula, periaqueductal gray subdivisions and superficial spinal laminae in reversal of mechanical allodynia. Our preclinical data reveal multimodal analgesia and improvement in quality of life by multiple blocks of M1 tDCS and uncover underlying brain networks, thus helping promote clinical translation.
Collapse
Affiliation(s)
- Zheng Gan
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Han Li
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Paul Vincent Naser
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Manfred Josef Oswald
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
42
|
Zhang H, Lecker I, Collymore C, Dokova A, Pham MC, Rosen SF, Crawhall-Duk H, Zain M, Valencia M, Filippini HF, Li J, D'Souza AJ, Cho C, Michailidis V, Whissell PD, Patel I, Steenland HW, Virginia Lee WJ, Moayedi M, Sterley TL, Bains JS, Stratton JA, Matyas JR, Biernaskie J, Dubins D, Vukobradovic I, Bezginov A, Flenniken AM, Martin LJ, Mogil JS, Bonin RP. Cage-lid hanging behavior as a translationally relevant measure of pain in mice. Pain 2021; 162:1416-1425. [PMID: 33230005 PMCID: PMC8054539 DOI: 10.1097/j.pain.0000000000002127] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
ABSTRACT The development of new analgesic drugs has been hampered by the inability to translate preclinical findings to humans. This failure is due in part to the weak connection between commonly used pain outcome measures in rodents and the clinical symptoms of chronic pain. Most rodent studies rely on the use of experimenter-evoked measures of pain and assess behavior under ethologically unnatural conditions, which limits the translational potential of preclinical research. Here, we addressed this problem by conducting an unbiased, prospective study of behavioral changes in mice within a natural homecage environment using conventional preclinical pain assays. Unexpectedly, we observed that cage-lid hanging, a species-specific elective behavior, was the only homecage behavior reliably impacted by pain assays. Noxious stimuli reduced hanging behavior in an intensity-dependent manner, and the reduction in hanging could be restored by analgesics. Finally, we developed an automated approach to assess hanging behavior. Collectively, our results indicate that the depression of hanging behavior is a novel, ethologically valid, and translationally relevant pain outcome measure in mice that could facilitate the study of pain and analgesic development.
Collapse
Affiliation(s)
- Hantao Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Irene Lecker
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Chereen Collymore
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Animal Care and Veterinary Services, University of Ottawa, Ottawa, ON, Canada
| | - Anastassia Dokova
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | | | - Sarah F. Rosen
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | - Hayley Crawhall-Duk
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | - Maham Zain
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Megan Valencia
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | - Jerry Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Abigail J. D'Souza
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- The Centre for Phenogenomics, Toronto, ON, Canada
| | - Chulmin Cho
- Department of Psychology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Vassilia Michailidis
- Department of Psychology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Paul D. Whissell
- Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Ingita Patel
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | - Wai-Jane Virginia Lee
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Toni-Lee Sterley
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jaideep S. Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - John R. Matyas
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David Dubins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | | | | | - Loren J. Martin
- Department of Psychology, University of Toronto at Mississauga, Mississauga, ON, Canada
- Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Jeffrey S. Mogil
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| | - Robert P. Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Cell and Systems Biology, University of Toronto Toronto, ON, Canada
- Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Raja SN, Ringkamp M, Guan Y, Campbell JN. John J. Bonica Award Lecture: Peripheral neuronal hyperexcitability: the "low-hanging" target for safe therapeutic strategies in neuropathic pain. Pain 2021; 161 Suppl 1:S14-S26. [PMID: 33090736 DOI: 10.1097/j.pain.0000000000001838] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Matthias Ringkamp
- Neurological Surgery, Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Yun Guan
- Departments of Anesthesiology and Critical Care Medicine and.,Neurological Surgery, Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - James N Campbell
- Neurological Surgery, Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
Repetitive non-invasive prefrontal stimulation reverses neuropathic pain via neural remodelling in mice. Prog Neurobiol 2021; 201:102009. [PMID: 33621593 DOI: 10.1016/j.pneurobio.2021.102009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/31/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
Chronic neuropathic pain presents a major challenge to pharmacological therapy and neurostimulation-based alternatives are gaining interest. Although invasive and non-invasive motor cortex stimulation has been the focus of several studies, very little is known about the potential of targeting the prefrontal cortex. This study was designed to elucidate the analgesic potential of prefrontal stimulation in a translational context and to uncover the neural underpinnings thereof. Here, we report that non-invasive, repetitive direct anodal current transcranial stimulation (tDCS) of the prefrontal cortex exerted analgesia in mice with neuropathic pain for longer than a week. When applied at chronic stages of neuropathic pain, prefrontal tDCS reversed established allodynia and suppressed aversion and anxiety-related behaviours. Activity mapping as well as in vivo electrophysiological analyses revealed that although the cortex responds to acute tDCS with major excitation, repetitive prefrontal tDCS brings about large-scale silencing of cortical activity. Different classes of different classes of GABAergic interneurons and classes of excitatory neurons differs dramatically between single, acute vs and repetitive tDCS. Repetitive prefrontal tDCS alters basal activity as well as responsivity of a discrete set of distant cortical and sub-cortical areas to tactile stimuli, namely the rostral anterior cingulate cortex, the insular cortex, the ventrolateral periaqueductal grey and the spinal dorsal horn. This study thus makes a strong case for harnessing prefrontal cortical modulation for non-invasive transcranial stimulation paradigms to achieve long-lasting pain relief in established neuropathic pain states and provides valuable insights gained on neural mechanistic underpinnings of prefrontal tDCS in neuropathic pain.
Collapse
|
45
|
Zhang J, Embray L, Yanovsky Y, Brankačk J, Draguhn A. A New Apparatus for Recording Evoked Responses to Painful and Non-painful Sensory Stimulation in Freely Moving Mice. Front Neurosci 2021; 15:613801. [PMID: 33642977 PMCID: PMC7907443 DOI: 10.3389/fnins.2021.613801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/20/2021] [Indexed: 11/25/2022] Open
Abstract
Experiments on pain processing in animals face several methodological challenges including the reproducible application of painful stimuli. Ideally, behavioral and physiological correlates of pain should be assessed in freely behaving mice, avoiding stress, fear or behavioral restriction as confounding factors. Moreover, the time of pain-evoked brain activity should be precisely related to the time of stimulation, such that pain-specific neuronal activity can be unambiguously identified. This can be achieved with laser-evoked heat stimuli which are also well established for human pain research. However, laser-evoked neuronal potentials are rarely investigated in awake unrestrained rodents, partially due to the practical difficulties in precisely and reliably targeting and triggering stimulation. In order to facilitate such studies we have developed a versatile stimulation and recording system for freely moving mice. The custom-made apparatus can provide both laser- and mechanical stimuli with simultaneous recording of evoked potentials and behavioral responses. Evoked potentials can be recorded from superficial and deep brain areas showing graded pain responses which correlate with pain-specific behavioral reactions. Non-painful mechanical stimuli can be applied as a control, yielding clearly different electrophysiological and behavioral responses. The apparatus is suited for simultaneous acquisition of precisely timed electrophysiological and behavioral evoked responses in freely moving mice. Besides its application in pain research it may be also useful in other fields of sensory physiology.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Lee Embray
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Yevgenij Yanovsky
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Jurij Brankačk
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Fisher AS, Lanigan MT, Upton N, Lione LA. Preclinical Neuropathic Pain Assessment; the Importance of Translatability and Bidirectional Research. Front Pharmacol 2021; 11:614990. [PMID: 33628181 PMCID: PMC7897667 DOI: 10.3389/fphar.2020.614990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
For patients suffering with chronic neuropathic pain the need for suitable novel therapies is imperative. Over recent years a contributing factor for the lack of development of new analgesics for neuropathic pain has been the mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. Despite continuous forward translation failures across diverse mechanisms, reflexive quantitative sensory testing remains the primary assessment endpoint for neuropathic pain and analgesia in animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive outcomes is over simplified and can be argued not clinically relevant due to the continued lack of forward translation and failures in the clinic. The key to developing new analgesic treatments for neuropathic pain therefore lies in the development of clinically relevant endpoints that can translate preclinical animal results to human clinical trials. In this review we discuss this mismatch of primary neuropathic pain assessment endpoints, together with clinical and preclinical evidence that supports how bidirectional research is helping to validate new clinically relevant neuropathic pain assessment endpoints. Ethological behavioral endpoints such as burrowing and facial grimacing and objective measures such as electroencephalography provide improved translatability potential together with currently used quantitative sensory testing endpoints. By tailoring objective and subjective measures of neuropathic pain the translatability of new medicines for patients suffering with neuropathic pain will hopefully be improved.
Collapse
Affiliation(s)
- Amy S. Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Michael T. Lanigan
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Neil Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
47
|
TRPM3 Channels Play Roles in Heat Hypersensitivity and Spontaneous Pain after Nerve Injury. J Neurosci 2021; 41:2457-2474. [PMID: 33478988 DOI: 10.1523/jneurosci.1551-20.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/11/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential melastatin 3 (TRPM3) is a heat-activated ion channel in primary sensory neurons of the dorsal root ganglia (DRGs). Pharmacological and genetic studies implicated TRPM3 in various pain modalities, but TRPM3 inhibitors were not validated in TRPM3-/- mice. Here we tested two inhibitors of TRPM3 in male and female wild-type and TRPM3-/- mice in nerve injury-induced neuropathic pain. We found that intraperitoneal injection of either isosakuranetin or primidone reduced heat hypersensitivity induced by chronic constriction injury (CCI) of the sciatic nerve in wild-type, but not in TRPM3-/- mice. Primidone was also effective when injected locally in the hindpaw or intrathecally. Consistently, intrathecal injection of the TRPM3 agonist CIM0216 reduced paw withdrawal latency to radiant heat in wild-type, but not in TRPM3-/- mice. Intraperitoneal injection of 2 mg/kg, but not 0.5 mg/kg isosakuranetin, inhibited cold and mechanical hypersensitivity in CCI, both in wild-type and TRPM3-/- mice, indicating a dose-dependent off-target effect. Primidone had no effect on cold sensitivity, and only a marginal effect on mechanical hypersensitivity. Genetic deletion or inhibitors of TRPM3 reduced the increase in the levels of the early genes c-Fos and pERK in the spinal cord and DRGs in CCI mice, suggesting spontaneous activity of the channel. Intraperitoneal isosakuranetin also inhibited spontaneous pain related behavior in CCI in the conditioned place preference assay, and this effect was eliminated in TRPM3-/- mice. Overall, our data indicate a role of TRPM3 in heat hypersensitivity and in spontaneous pain after nerve injury.SIGNIFICANCE STATEMENT Neuropathic pain is a major unsolved medical problem. The heat-activated TRPM3 ion channel is a potential target for novel pain medications, but the pain modalities in which it plays a role are not clear. Here we used a combination of genetic and pharmacological tools to assess the role of this channel in spontaneous pain, heat, cold, and mechanical hypersensitivity in a nerve injury model of neuropathic pain in mice. Our findings indicate a role for TRPM3 in heat hyperalgesia, and spontaneous pain, but not in cold and mechanical hypersensitivity. We also find that not only TRPM3 located in the peripheral nerve termini, but also TRPM3 in the spinal cord or proximal segments of DRG neurons are important for heat hypersensitivity.
Collapse
|
48
|
Pineda-Farias JB, Saloman JL, Scheff NN. Animal Models of Cancer-Related Pain: Current Perspectives in Translation. Front Pharmacol 2021; 11:610894. [PMID: 33381048 PMCID: PMC7768910 DOI: 10.3389/fphar.2020.610894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The incidence of pain in cancer patients during diagnosis and treatment is exceedingly high. Although advances in cancer detection and therapy have improved patient prognosis, cancer and its treatment-associated pain have gained clinical prominence. The biological mechanisms involved in cancer-related pain are multifactorial; different processes for pain may be responsible depending on the type and anatomic location of cancer. Animal models of cancer-related pain have provided mechanistic insights into the development and process of pain under a dynamic molecular environment. However, while cancer-evoked nociceptive responses in animals reflect some of the patients’ symptoms, the current models have failed to address the complexity of interactions within the natural disease state. Although there has been a recent convergence of the investigation of carcinogenesis and pain neurobiology, identification of new targets for novel therapies to treat cancer-related pain requires standardization of methodologies within the cancer pain field as well as across disciplines. Limited success of translation from preclinical studies to the clinic may be due to our poor understanding of the crosstalk between cancer cells and their microenvironment (e.g., sensory neurons, infiltrating immune cells, stromal cells etc.). This relatively new line of inquiry also highlights the broader limitations in translatability and interpretation of basic cancer pain research. The goal of this review is to summarize recent findings in cancer pain based on preclinical animal models, discuss the translational benefit of these discoveries, and propose considerations for future translational models of cancer pain.
Collapse
Affiliation(s)
- Jorge B Pineda-Farias
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jami L Saloman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Hillman Cancer Center, University of Pittsburgh Medicine Center, Pittsburgh, PA, United States
| |
Collapse
|
49
|
Li J, Zain M, Bonin RP. Differential modulation of thermal preference after sensitization by optogenetic or pharmacological activation of heat-sensitive nociceptors. Mol Pain 2021; 17:17448069211000910. [PMID: 33719729 PMCID: PMC7960897 DOI: 10.1177/17448069211000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 01/24/2021] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
Common approaches to studying mechanisms of chronic pain and sensory changes in pre-clinical animal models involve measurement of acute, reflexive withdrawal responses evoked by noxious stimuli. These methods typically do not capture more subtle changes in sensory processing nor report on the consequent behavioral changes. In addition, data collection and analysis protocols are often labour-intensive and require direct investigator interactions, potentially introducing bias. In this study, we develop and characterize a low-cost, easily assembled behavioral assay that yields self-reported temperature preference from mice that is responsive to peripheral sensitization. This system uses a partially automated and freely available analysis pipeline to streamline the data collection process and enable objective analysis. We found that after intraplantar administration of the TrpV1 agonist, capsaicin, mice preferred to stay in cooler temperatures than saline injected mice. We further observed that gabapentin, a non-opioid analgesic commonly prescribed to treat chronic pain, reversed this aversion to higher temperatures. In contrast, optogenetic activation of the central terminals of TrpV1+ primary afferents via in vivo spinal light delivery did not induce a similar change in thermal preference, indicating a possible role for peripheral nociceptor activity in the modulation of temperature preference. We conclude that this easily produced and robust sensory assay provides an alternative approach to investigate the contribution of central and peripheral mechanisms of sensory processing that does not rely on reflexive responses evoked by noxious stimuli.
Collapse
Affiliation(s)
- Jerry Li
- Department of Human Biology: Neuroscience and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Maham Zain
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|