1
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
2
|
Carvalho DZ, Kremen V, Mivalt F, St. Louis EK, McCarter SJ, Bukartyk J, Przybelski SA, Kamykowski MG, Spychalla AJ, Machulda MM, Boeve BF, Petersen RC, Jack CR, Lowe VJ, Graff-Radford J, Worrell GA, Somers VK, Varga AW, Vemuri P. Non-rapid eye movement sleep slow-wave activity features are associated with amyloid accumulation in older adults with obstructive sleep apnoea. Brain Commun 2024; 6:fcae354. [PMID: 39429245 PMCID: PMC11487750 DOI: 10.1093/braincomms/fcae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with an increased risk for cognitive impairment and dementia, which likely involves Alzheimer's disease pathology. Non-rapid eye movement slow-wave activity (SWA) has been implicated in amyloid clearance, but it has not been studied in the context of longitudinal amyloid accumulation in OSA. This longitudinal retrospective study aims to investigate the relationship between polysomnographic and electrophysiological SWA features and amyloid accumulation. From the Mayo Clinic Study of Aging cohort, we identified 71 participants ≥60 years old with OSA (mean baseline age = 72.9 ± 7.5 years, 60.6% male, 93% cognitively unimpaired) who had at least 2 consecutive Amyloid Pittsburgh Compound B (PiB)-PET scans and a polysomnographic study within 5 years of the baseline scan and before the second scan. Annualized PiB-PET accumulation [global ΔPiB(log)/year] was estimated by the difference between the second and first log-transformed global PiB-PET uptake estimations divided by the interval between scans (years). Sixty-four participants were included in SWA analysis. SWA was characterized by the mean relative spectral power density (%) in slow oscillation (SO: 0.5-0.9 Hz) and delta (1-3.9 Hz) frequency bands and by their downslopes (SO-slope and delta-slope, respectively) during the diagnostic portion of polysomnography. We fit linear regression models to test for associations among global ΔPiB(log)/year, SWA features (mean SO% and delta% or mean SO-slope and delta-slope), and OSA severity markers, after adjusting for age at baseline PiB-PET, APOE ɛ4 and baseline amyloid positivity. For 1 SD increase in SO% and SO-slope, global ΔPiB(log)/year increased by 0.0033 (95% CI: 0.0001; 0.0064, P = 0.042) and 0.0069 (95% CI: 0.0009; 0.0129, P = 0.026), which were comparable to 32% and 59% of the effect size associated with baseline amyloid positivity, respectively. Delta-slope was associated with a reduction in global ΔPiB(log)/year by -0.0082 (95% CI: -0.0143; -0.0021, P = 0.009). Sleep apnoea severity was not associated with amyloid accumulation. Regional associations were stronger in the pre-frontal region. Both slow-wave slopes had more significant and widespread regional associations. Annualized PiB-PET accumulation was positively associated with SO and SO-slope, which may reflect altered sleep homeostasis due to increased homeostatic pressure in the setting of unmet sleep needs, increased synaptic strength, and/or hyper-excitability in OSA. Delta-slope was inversely associated with PiB-PET accumulation, suggesting it may represent residual physiological activity. Further investigation of SWA dynamics in the presence of sleep disorders before and after treatment is necessary for understanding the relationship between amyloid accumulation and SWA physiology.
Collapse
Affiliation(s)
- Diego Z Carvalho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Filip Mivalt
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik K St. Louis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stuart J McCarter
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan Bukartyk
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew W Varga
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
3
|
Liu J, Niethard N, Lun Y, Dimitrov S, Ehrlich I, Born J, Hallschmid M. Slow-wave sleep drives sleep-dependent renormalization of synaptic AMPA receptor levels in the hypothalamus. PLoS Biol 2024; 22:e3002768. [PMID: 39163472 PMCID: PMC11364421 DOI: 10.1371/journal.pbio.3002768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/30/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
According to the synaptic homeostasis hypothesis (SHY), sleep serves to renormalize synaptic connections that have been potentiated during the prior wake phase due to ongoing encoding of information. SHY focuses on glutamatergic synaptic strength and has been supported by numerous studies examining synaptic structure and function in neocortical and hippocampal networks. However, it is unknown whether synaptic down-regulation during sleep occurs in the hypothalamus, i.e., a pivotal center of homeostatic regulation of bodily functions including sleep itself. We show that sleep, in parallel with the synaptic down-regulation in neocortical networks, down-regulates the levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the hypothalamus of rats. Most robust decreases after sleep were observed at both sites for AMPARs containing the GluA1 subunit. Comparing the effects of selective rapid eye movement (REM) sleep and total sleep deprivation, we moreover provide experimental evidence that slow-wave sleep (SWS) is the driving force of the down-regulation of AMPARs in hypothalamus and neocortex, with no additional contributions of REM sleep or the circadian rhythm. SWS-dependent synaptic down-regulation was not linked to EEG slow-wave activity. However, spindle density during SWS predicted relatively increased GluA1 subunit levels in hypothalamic synapses, which is consistent with the role of spindles in the consolidation of memory. Our findings identify SWS as the main driver of the renormalization of synaptic strength during sleep and suggest that SWS-dependent synaptic renormalization is also implicated in homeostatic control processes in the hypothalamus.
Collapse
Affiliation(s)
- Jianfeng Liu
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Yu Lun
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Ingrid Ehrlich
- Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
4
|
Jan M, Jimenez S, Hor CN, Dijk DJ, Skeldon AC, Franken P. Model integration of circadian- and sleep-wake-driven contributions to rhythmic gene expression reveals distinct regulatory principles. Cell Syst 2024; 15:610-627.e8. [PMID: 38986625 DOI: 10.1016/j.cels.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Maxime Jan
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland.
| | - Sonia Jimenez
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Charlotte N Hor
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK
| | - Anne C Skeldon
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK; School of Mathematics and Physics, University of Surrey, Guildford, UK
| | - Paul Franken
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Yesilkaya HU, Chen X, Watford L, McCoy E, Genc I, Du F, Ongur D, Yuksel C. Poor Self-Reported Sleep is Associated with Prolonged White Matter T2 Relaxation in Psychotic Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601887. [PMID: 39005452 PMCID: PMC11244968 DOI: 10.1101/2024.07.03.601887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Schizophrenia (SZ) and bipolar disorder (BD) are characterized by white matter (WM) abnormalities, however, their relationship with illness presentation is not clear. Sleep disturbances are common in both disorders, and recent evidence suggests that sleep plays a critical role in WM physiology. Therefore, it is plausible that sleep disturbances are associated with impaired WM integrity in these disorders. To test this hypothesis, we examined the association of self-reported sleep disturbances with WM transverse (T2) relaxation times in patients with SZ spectrum disorders and BD with psychotic features. Methods 28 patients with psychosis (17 BD-I, with psychotic features and 11 SZ spectrum disorders) were included. Metabolite and water T2 relaxation times were measured in the anterior corona radiata at 4T. Sleep was evaluated using the Pittsburgh Sleep Quality Index. Results PSQI total score showed a moderate to strong positive correlation with water T2 (r = 0.64, p<0.001). Linear regressions showed that this association was specific to sleep disturbance but was not a byproduct of exacerbation in depressive, manic, or psychotic symptoms. In our exploratory analysis, sleep disturbance was correlated with free water percentage, suggesting that increased extracellular water may be a mechanism underlying the association of disturbed sleep and prolonged water T2 relaxation. Conclusion Our results highlight the connection between poor sleep and WM abnormalities in psychotic disorders. Future research using objective sleep measures and neuroimaging techniques suitable to probe free water is needed to further our insight into this relationship.
Collapse
Affiliation(s)
- Haluk Umit Yesilkaya
- McLean Hospital, Belmont, MA
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | | | | | - Fei Du
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Dost Ongur
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Cagri Yuksel
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Pinto MJ, Bizien L, Fabre JM, Ðukanović N, Lepetz V, Henderson F, Pujol M, Sala RW, Tarpin T, Popa D, Triller A, Léna C, Fabre V, Bessis A. Microglial TNFα controls daily changes in synaptic GABAARs and sleep slow waves. J Cell Biol 2024; 223:e202401041. [PMID: 38695719 PMCID: PMC11070559 DOI: 10.1083/jcb.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.
Collapse
Affiliation(s)
- Maria Joana Pinto
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Lucy Bizien
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Julie M.J. Fabre
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nina Ðukanović
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Valentin Lepetz
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fiona Henderson
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Marine Pujol
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Romain W. Sala
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Thibault Tarpin
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Daniela Popa
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Antoine Triller
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Véronique Fabre
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Alain Bessis
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
7
|
Squarcio F, Tononi G, Cirelli C. Effects of non-rapid eye movement sleep on the cortical synaptic expression of GluA1-containing AMPA receptors. Eur J Neurosci 2024; 60:3961-3972. [PMID: 38973508 DOI: 10.1111/ejn.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Converging electrophysiological, molecular and ultrastructural evidence supports the hypothesis that sleep promotes a net decrease in excitatory synaptic strength, counteracting the net synaptic potentiation caused by ongoing learning during waking. However, several outstanding questions about sleep-dependent synaptic weakening remain. Here, we address some of these questions by using two established molecular markers of synaptic strength, the levels of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors containing the GluA1 subunit and the phosphorylation of GluA1 at serine 845 (p-GluA1(845)). We previously found that, in the rat cortex and hippocampus, these markers are lower after 6-8 h of sleep than after the same time spent awake. Here, we measure GluA1 and p-GluA1(845) levels in synaptosomes of mouse cortex after 5 h of either sleep, sleep deprivation, recovery sleep after sleep deprivation or selective REM sleep deprivation (32 C57BL/B6 adult mice, 16 females). We find that relative to after sleep deprivation, these synaptic markers are lower after sleep independent of whether the mice were allowed to enter REM sleep. Moreover, 5 h of recovery sleep following acute sleep deprivation is enough to renormalize their expression. Thus, the renormalization of GluA1 and p-GluA1(845) expression crucially relies on NREM sleep and can occur in a few hours of sleep after acute sleep deprivation.
Collapse
Affiliation(s)
- Fabio Squarcio
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Valdivia G, Espinosa N, Lara-Vasquez A, Caneo M, Inostroza M, Born J, Fuentealba P. Sleep-dependent decorrelation of hippocampal spatial representations. iScience 2024; 27:110076. [PMID: 38883845 PMCID: PMC11176648 DOI: 10.1016/j.isci.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Ariel Lara-Vasquez
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Mauricio Caneo
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| |
Collapse
|
9
|
Built-up sleep pressure drives the loss of neuronal connections during slumber. Nature 2024:10.1038/d41586-024-01559-7. [PMID: 38890520 DOI: 10.1038/d41586-024-01559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
|
10
|
Berres S, Erdfelder E, Kuhlmann BG. Does sleep benefit source memory? Investigating 12-h retention intervals with a multinomial modeling approach. Mem Cognit 2024:10.3758/s13421-024-01579-8. [PMID: 38831160 DOI: 10.3758/s13421-024-01579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
For retention intervals of up to 12 h, the active systems consolidation hypothesis predicts that sleep compared to wakefulness strengthens the context binding of memories previously established during encoding. Sleep should thus improve source memory. By comparing retention intervals filled with natural night sleep versus daytime wakefulness, we tested this prediction in two online source-monitoring experiments using intentionally learned pictures as items and incidentally learned screen positions and frame colors as source dimensions. In Experiment 1, we examined source memory by varying the spatial position of pictures on the computer screen. Multinomial modeling analyses revealed a significant sleep benefit in source memory. In Experiment 2, we manipulated both the spatial position and the frame color of pictures orthogonally to investigate source memory for two different source dimensions at the same time, also allowing exploration of bound memory for both source dimensions. The sleep benefit on spatial source memory replicated. In contrast, no source memory sleep benefit was observed for either frame color or bound memory of both source dimensions, probably as a consequence of a floor effect in incidental encoding of color associations. In sum, the results of both experiments show that sleep within a 12-h retention interval improves source memory for spatial positions, supporting the prediction of the active systems consolidation hypothesis. However, additional research is required to clarify the impact of sleep on source memory for other context features and bound memories of multiple source dimensions.
Collapse
Affiliation(s)
- Sabrina Berres
- Department of Psychology, School of Social Sciences, University of Mannheim, L13, 15-17, Room 425, 68161, Mannheim, Germany.
| | - Edgar Erdfelder
- Department of Psychology, School of Social Sciences, University of Mannheim, L13, 15-17, Room 425, 68161, Mannheim, Germany.
| | - Beatrice G Kuhlmann
- Department of Psychology, School of Social Sciences, University of Mannheim, L13, 15-17, Room 425, 68161, Mannheim, Germany.
| |
Collapse
|
11
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
12
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Hein E, Halonen R, Wolbers T, Makkonen T, Kyllönen M, Kuula L, Kurki I, Stepnicka P, Pesonen AK. Does sleep promote adaptation to acute stress: An experimental study. Neurobiol Stress 2024; 29:100613. [PMID: 38371490 PMCID: PMC10869260 DOI: 10.1016/j.ynstr.2024.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
Objectives Evidence of the impact of chronic stress on sleep is abundant, yet experimental sleep studies with a focus on acute stress are scarce and the results are mixed. Our study aimed to fill this gap by experimentally investigating the effects of pre-sleep social stress on sleep dynamics during the subsequent night, as measured with polysomnography (PSG). Methods Thirty-four healthy individuals (65% females, Mage = 25.76 years SD = 3.35) underwent a stress-inducing (SC) or neutral control condition (CC) in virtual reality (VR). We used overnight EEG measurements to analyze the basic sleep parameters and power spectral density (PSD) across the sleep cycles, and measured heart rate and its variability (HRV), skin electrodermal activity (EDA), and salivary cortisol to capture physiological arousal during the VR task and the pre-sleep period. Results Following acute stress (SC), the amount of slow-wave sleep (SWS) was higher and N2 sleep lower relative to CC, specifically in the first sleep cycle. In SC, PSD was elevated in the beta-low (16-24 Hz) and beta-high (25-35 Hz) frequency ranges during both stages N2 and SWS over the entire night. Conclusions Sleep promoted adaptation to acute social stress by a longer duration of SWS in the subsequent sleep period, especially in early sleep. A similar homeostatic effect towards restorative sleep is well-evidenced in animal model stress studies but has not been previously reported in experimental human studies. Whether the high-frequency PSD activity during stages N2 and SWS also serves in the resolution of transient stress, remains open.
Collapse
Affiliation(s)
- Emil Hein
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Risto Halonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Wolbers
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
- Neomento GmbH, Berlin, Germany
| | - Tommi Makkonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markus Kyllönen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilmari Kurki
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anu-Katriina Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Gottesman RF, Lutsey PL, Benveniste H, Brown DL, Full KM, Lee JM, Osorio RS, Pase MP, Redeker NS, Redline S, Spira AP. Impact of Sleep Disorders and Disturbed Sleep on Brain Health: A Scientific Statement From the American Heart Association. Stroke 2024; 55:e61-e76. [PMID: 38235581 DOI: 10.1161/str.0000000000000453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Accumulating evidence supports a link between sleep disorders, disturbed sleep, and adverse brain health, ranging from stroke to subclinical cerebrovascular disease to cognitive outcomes, including the development of Alzheimer disease and Alzheimer disease-related dementias. Sleep disorders such as sleep-disordered breathing (eg, obstructive sleep apnea), and other sleep disturbances, as well, some of which are also considered sleep disorders (eg, insomnia, sleep fragmentation, circadian rhythm disorders, and extreme sleep duration), have been associated with adverse brain health. Understanding the causal role of sleep disorders and disturbances in the development of adverse brain health is complicated by the common development of sleep disorders among individuals with neurodegenerative disease. In addition to the role of sleep disorders in stroke and cerebrovascular injury, mechanistic hypotheses linking sleep with brain health and biomarker data (blood-based, cerebrospinal fluid-based, and imaging) suggest direct links to Alzheimer disease-specific pathology. These potential mechanisms and the increasing understanding of the "glymphatic system," and the recognition of the importance of sleep in poststroke recovery, as well, support a biological basis for the indirect (through the worsening of vascular disease) and direct (through specific effects on neuropathology) connections between sleep disorders and brain health. Given promising evidence for the benefits of treatment and prevention, sleep disorders and disturbances represent potential targets for early treatment that may improve brain health more broadly. In this scientific statement, we discuss the evidence supporting an association between sleep disorders and disturbances and poor brain health ranging from stroke to dementia and opportunities for prevention and early treatment.
Collapse
|
15
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
16
|
De La Fontaine E, Hamel R, Lepage JF, Bernier PM. The influence of learning history on anterograde interference. Neurobiol Learn Mem 2023; 206:107866. [PMID: 37995802 DOI: 10.1016/j.nlm.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Classically interpreted as a competition between opposite memories (A vs B), anterograde interference (AI) also emerges in the absence of competing memories (A vs A), suggesting that mechanisms other than those involved in memory competition contribute to AI. To investigate this, we tested the hypothesis that extending motor practice would enhance a first memory, but come at the cost of reduced learning capabilities when subsequently exposed to a second learning session of the same task. Based on converging biological evidence, AI was expected to depend upon the degree of extended practice of the initial exposure. During a first Session, four conditions were carried out where participants (n = 24) adapted to a gradually introduced -20° visual deviation while the extent of the initial exposure was manipulated by varying the duration or type of the performance asymptote. Specifically, the performance asymptote at -20° was either Short (40 trials), Moderate (160 trials), Long (320 trials), or absent due to continuously changing perturbations around the mean of -20° (Jagged; 160 trials). After a 2-min interval, participants re-adapted to the same (-20°) visual deviation, which was meant to probe the effect of extended practice in the first Session on the learning capabilities of a second identical memory (A vs A). The results first confirmed that the duration of exposure in the first Session enhanced immediate aftereffects in the Moderate, Long, and Jagged conditions as compared to the Short condition, suggesting that extended practice enhanced retention of the first memory. When comparing the second Session to the first one, results revealed a different pattern of re-adaptation depending on the duration of initial exposure: in the Short condition, there was evidence for facilitated re-adaptation and similar aftereffects. However, in the Moderate, Long and Jagged conditions, re-adaptation was similar and aftereffects were impaired, suggestive of AI. This suggests that extended practice initially enhances memory formation, but comes at the cost of reduced subsequent learning capabilities. One possibility is that AI occurs because extended practice induces the emergence of network-specific homeostatic constraints, which limit subsequent neuroplastic and learning capabilities in the same neural network.
Collapse
Affiliation(s)
- E De La Fontaine
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke
| | - R Hamel
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke; Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke
| | - J F Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke
| | - P M Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke.
| |
Collapse
|
17
|
Levendowski DJ, Neylan TC, Walsh CM, Tsuang D, Salat D, Hamilton JM, Lee-Iannotti JK, Berka C, Mazeika G, Boeve BF, St. Louis EK. Proof-of-concept for characterization of neurodegenerative disorders utilizing two non-REM sleep biomarkers. Front Neurol 2023; 14:1272369. [PMID: 37928153 PMCID: PMC10623683 DOI: 10.3389/fneur.2023.1272369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Study objective This proof-of-concept study aimed to determine whether the combined features of two non-rapid eye movement (NREM) sleep biomarkers acquired predominantly in-home could characterize different neurodegenerative disorders. Methods Sleep spindle duration and non-REM hypertonia (NRH) were evaluated in seven groups including a control group (CG = 61), and participants with isolated REM sleep behavior disorder (iRBD = 19), mild cognitive impairment (MCI = 41), Parkinson disease (PD = 16), Alzheimer disease dementia (ADem = 29), dementia with Lewy Bodies or Parkinson disease dementia (LBD = 19) and progressive supranuclear palsy (PSP = 13). One-way analysis of variance (ANOVA), Mann-Whitney U, intra-class (ICC) and Spearman ranked correlations, Bland-Altman plots and Kappa scores, Chi-square and Fisher exact probability test, and multiple-logistic regression were focused primarily on spindle duration and NRH and the frequencies assigned to the four normal/abnormal spindle duration/NRH combinations. Results ANOVA identified group differences in age, sleep efficiency, REM, NRH (p < 0.0001) and sleep time (p = 0.015), Spindle duration and NRH each demonstrated good night-to-night reliabilities (ICC = 0.95 and 0.75, Kappa = 0.93 and 0.66, respectively) and together exhibited an association in the PD and LBD groups only (p < 0.01). Abnormal spindle duration was greater in records of PSP (85%) and LBD (84%) patients compared to CG, MCI, PD and ADem (p < 0.025). Abnormal NRH was greater in PSP = 92%, LBD = 79%, and iRBD = 74% compared to MCI = 32%, ADem = 17%, and CG = 16% (p < 0.005).The combination biomarker normal spindle duration/normal NRH was observed most frequently in CG (56%) and MCI (41%). ADem most frequently demonstrated normal spindle duration/normal NRH (45%) and abnormal spindle duration/normal NRH (38%). Normal spindle duration/abnormal NRH was greatest in iRBD = 47%, while abnormal spindle duration/abnormal NRH was predominant in PSP = 85% and LBD = 74%. Conclusion The NREM sleep biomarkers spindle duration and NRH may be useful in distinguishing patients with different neurodegenerative disorders. Larger prospective cohort studies are needed to determine whether spindle duration and NRH can be combined for prodromal assessment and/or monitoring disease progression.
Collapse
Affiliation(s)
| | - Thomas C. Neylan
- UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Christine M. Walsh
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Debby Tsuang
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States
| | - David Salat
- Massachusetts General Hospital, Charlestown, MA, United States
| | | | | | - Chris Berka
- Advanced Brain Monitoring, Inc., Carlsbad, CA, United States
| | - Gandis Mazeika
- Advanced Brain Monitoring, Inc., Carlsbad, CA, United States
| | - Bradley F. Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Erik K. St. Louis
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
18
|
Züst MA, Mikutta C, Omlin X, DeStefani T, Wunderlin M, Zeller CJ, Fehér KD, Hertenstein E, Schneider CL, Teunissen CE, Tarokh L, Klöppel S, Feige B, Riemann D, Nissen C. The Hierarchy of Coupled Sleep Oscillations Reverses with Aging in Humans. J Neurosci 2023; 43:6268-6279. [PMID: 37586871 PMCID: PMC10490476 DOI: 10.1523/jneurosci.0586-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
A well orchestrated coupling hierarchy of slow waves and spindles during slow-wave sleep supports memory consolidation. In old age, the duration of slow-wave sleep and the number of coupling events decrease. The coupling hierarchy deteriorates, predicting memory loss and brain atrophy. Here, we investigate the dynamics of this physiological change in slow wave-spindle coupling in a frontocentral electroencephalography position in a large sample (N = 340; 237 females, 103 males) spanning most of the human life span (age range, 15-83 years). We find that, instead of changing abruptly, spindles gradually shift from being driven by slow waves to driving slow waves with age, reversing the coupling hierarchy typically seen in younger brains. Reversal was stronger the lower the slow-wave frequency, and starts around midlife (age range, ∼40-48 years), with an established reversed hierarchy between 56 and 83 years of age. Notably, coupling strength remains unaffected by age. In older adults, deteriorating slow wave-spindle coupling, measured using the phase slope index (PSI) and the number of coupling events, is associated with blood plasma glial fibrillary acidic protein levels, a marker for astrocyte activation. Data-driven models suggest that decreased sleep time and higher age lead to fewer coupling events, paralleled by increased astrocyte activation. Counterintuitively, astrocyte activation is associated with a backshift of the coupling hierarchy (PSI) toward a "younger" status along with increased coupling occurrence and strength, potentially suggesting compensatory processes. As the changes in coupling hierarchy occur gradually starting at midlife, we suggest there exists a sizable window of opportunity for early interventions to counteract undesirable trajectories associated with neurodegeneration.SIGNIFICANCE STATEMENT Evidence accumulates that sleep disturbances and cognitive decline are bidirectionally and causally linked, forming a vicious cycle. Improving sleep quality could break this cycle. One marker for sleep quality is a clear hierarchical structure of sleep oscillations. Previous studies showed that sleep oscillations decouple in old age. Here, we show that, rather, the hierarchical structure gradually shifts across the human life span and reverses in old age, while coupling strength remains unchanged. This shift is associated with markers for astrocyte activation in old age. The shifting hierarchy resembles brain maturation, plateau, and wear processes. This study furthers our comprehension of this important neurophysiological process and its dynamic evolution across the human life span.
Collapse
Affiliation(s)
- Marc Alain Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- Private Clinic Meiringen, 3860 Meiringen, Switzerland
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ximena Omlin
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Tatjana DeStefani
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Céline Jacqueline Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Kristoffer Daniel Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- Division of Psychiatric Specialties, Geneva University Hospitals (HUG), 1201 Geneva, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Charlotte Elisabeth Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Leila Tarokh
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, 79104 Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, 79104 Freiburg, Germany
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- Division of Psychiatric Specialties, Geneva University Hospitals (HUG), 1201 Geneva, Switzerland
| |
Collapse
|
19
|
Wick A, Rasch B. Targeted memory reactivation during slow-wave sleep vs. sleep stage N2: no significant differences in a vocabulary task. Learn Mem 2023; 30:192-200. [PMID: 37726143 PMCID: PMC10547374 DOI: 10.1101/lm.053683.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
Sleep supports memory consolidation, and slow-wave sleep (SWS) in particular is assumed to benefit the consolidation of verbal learning material. Re-exposure to previously learned words during SWS with a technique known as targeted memory reactivation (TMR) consistently benefits memory. However, TMR has also been successfully applied during sleep stage N2, though a direct comparison between words selectively reactivated during SWS versus N2 is still missing. Here, we directly compared the effects of N2 TMR and SWS TMR on memory performance in a vocabulary learning task in a within-subject design. Thirty-four healthy young participants (21 in the main sample and 13 in an additional sample) learned 120 Dutch-German word pairs before sleep. Participants in the main sample slept for ∼8 h during the night, while participants in the additional sample slept ∼3 h. We reactivated the Dutch words selectively during N2 and SWS in one single night. Forty words were not cued. Participants in the main sample recalled the German translations of the Dutch words after sleep in the morning, while those in the additional sample did so at 2:00 a.m. As expected, we observed no differences in recall performance between words reactivated during N2 and SWS. However, we failed to find an overall memory benefit of reactivated over nonreactivated words. Detailed time-frequency analyses showed that words played during N2 elicited stronger characteristic oscillatory responses in several frequency bands, including spindle and theta frequencies, compared with SWS. These oscillatory responses did not vary with the memory strengths of individual words. Our results question the robustness and replicability of the TMR benefit on memory using our Dutch vocabulary learning task. We discuss potential boundary conditions for vocabulary reactivation paradigms and, most importantly, see the need for further replication studies, ideally including multiple laboratories and larger sample sizes.
Collapse
Affiliation(s)
- Anna Wick
- Department of Psychology, University of Fribourg, Fribourg 1700, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
20
|
Skorucak J, Bölsterli BK, Storz S, Leach S, Schmitt B, Ramantani G, Huber R. Automated analysis of a large-scale paediatric dataset illustrates the interdependent relationship between epilepsy and sleep. Sci Rep 2023; 13:12882. [PMID: 37553387 PMCID: PMC10409812 DOI: 10.1038/s41598-023-39984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
Slow waves are an electrophysiological characteristic of non-rapid eye movement sleep and a marker of the restorative function of sleep. In certain pathological conditions, such as different types of epilepsy, slow-wave sleep is affected by epileptiform discharges forming so-called "spike-waves". Previous evidence shows that the overnight change in slope of slow waves during sleep is impaired under these conditions. However, these past studies were performed in a small number of patients, considering only short segments of the recording night. Here, we screened a clinical data set of 39'179 pediatric EEG recordings acquired in the past 25 years (1994-2019) at the University Children's Hospital Zurich and identified 413 recordings of interest. We applied an automated approach based on machine learning to investigate the relationship between sleep and epileptic spikes in this large-scale data set. Our findings show that the overnight change in the slope of slow waves was correlated with the spike-wave index, indicating that the impairment of the net reduction in synaptic strength during sleep is spike dependent.
Collapse
Affiliation(s)
- Jelena Skorucak
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bigna K Bölsterli
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Sarah Storz
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sven Leach
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bernhard Schmitt
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Georgia Ramantani
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Roach ST, Ford MC, Simhambhatla V, Loutrianakis V, Farah H, Li Z, Periandri EM, Abdalla D, Huang I, Kalra A, Shaw PJ. Sleep deprivation, sleep fragmentation, and social jet lag increase temperature preference in Drosophila. Front Neurosci 2023; 17:1175478. [PMID: 37274220 PMCID: PMC10237294 DOI: 10.3389/fnins.2023.1175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Despite the fact that sleep deprivation substantially affects the way animals regulate their body temperature, the specific mechanisms behind this phenomenon are not well understood. In both mammals and flies, neural circuits regulating sleep and thermoregulation overlap, suggesting an interdependence that may be relevant for sleep function. To investigate this relationship further, we exposed flies to 12 h of sleep deprivation, or 48 h of sleep fragmentation and evaluated temperature preference in a thermal gradient. Flies exposed to 12 h of sleep deprivation chose warmer temperatures after sleep deprivation. Importantly, sleep fragmentation, which prevents flies from entering deeper stages of sleep, but does not activate sleep homeostatic mechanisms nor induce impairments in short-term memory also resulted in flies choosing warmer temperatures. To identify the underlying neuronal circuits, we used RNAi to knock down the receptor for Pigment dispersing factor, a peptide that influences circadian rhythms, temperature preference and sleep. Expressing UAS-PdfrRNAi in subsets of clock neurons prevented sleep fragmentation from increasing temperature preference. Finally, we evaluated temperature preference after flies had undergone a social jet lag protocol which is known to disrupt clock neurons. In this protocol, flies experience a 3 h light phase delay on Friday followed by a 3 h light advance on Sunday evening. Flies exposed to social jet lag exhibited an increase in temperature preference which persisted for several days. Our findings identify specific clock neurons that are modulated by sleep disruption to increase temperature preference. Moreover, our data indicate that temperature preference may be a more sensitive indicator of sleep disruption than learning and memory.
Collapse
Affiliation(s)
- S. Tanner Roach
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Melanie C. Ford
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vikram Simhambhatla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vasilios Loutrianakis
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Hamza Farah
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Zhaoyi Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Erica M. Periandri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Dina Abdalla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Irene Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Arjan Kalra
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Wilson A, Babadi M. SynapseCLR: Uncovering features of synapses in primary visual cortex through contrastive representation learning. PATTERNS (NEW YORK, N.Y.) 2023; 4:100693. [PMID: 37123442 PMCID: PMC10140600 DOI: 10.1016/j.patter.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023]
Abstract
3D electron microscopy (EM) connectomics image volumes are surpassing 1 mm3, providing information-dense, multi-scale visualizations of brain circuitry and necessitating scalable analysis techniques. We present SynapseCLR, a self-supervised contrastive learning method for 3D EM data, and use it to extract features of synapses from mouse visual cortex. SynapseCLR feature representations separate synapses by appearance and functionally important structural annotations. We demonstrate SynapseCLR's utility for valuable downstream tasks, including one-shot identification of defective synapse segmentations, dataset-wide similarity-based querying, and accurate imputation of annotations for unlabeled synapses, using manual annotation of only 0.2% of the dataset's synapses. In particular, excitatory versus inhibitory neuronal types can be assigned with >99.8% accuracy to individual synapses and highly truncated neurites, enabling neurite-enhanced connectomics analysis. Finally, we present a data-driven, unsupervised study of synaptic structural variation on the representation manifold, revealing its intrinsic axes of variation and showing that representations contain inhibitory subtype information.
Collapse
Affiliation(s)
- Alyssa Wilson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Cohen H, Ephraim‐Oluwanuga OT, Akintunde OT, Gureje O, Matar MA, Todder D, Zohar J. The potential beneficial effect of sleep deprivation following traumatic events to preventing PTSD: Review of current insight regarding sleep, memory, and trauma resonating with ancient rituals-Àìsùn Oku (African) and Tsuya (Japanese). Neuropsychopharmacol Rep 2023; 43:2-11. [PMID: 36622038 PMCID: PMC10009425 DOI: 10.1002/npr2.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sleep figures in numerous ancient texts, for example, Epic of Gilgamesh, and has been a focus for countless mystical and philosophical texts. Even in the present century, sleep remains one of the most complex behaviors whose function still remains to be further explored. Current hypotheses suggest that among other functions, sleep contributes to memory processes. Memory is a core topic of study in post-traumatic stress disorder (PTSD) and other stress-related phenomena. It is widely accepted that sleep plays a major role in the consolidation of newly encoded hippocampus-dependent memories to pre-existing knowledge networks. Conversely, sleep deprivation disrupts consolidation and impairs memory retrieval. Along this line, sleep deprivation following a potentially traumatic event may interfere with the consolidation of event-related memories and, thereby, may reduce long-term post-traumatic stress-related symptoms. This review consolidates clinical and animal studies on the relationships between sleep, sleep deprivation, memory processes, and trauma exposure while introducing new contemporary insights into an ancient African tribal ritual (Àìsùn Oku) and Japanese ceremony ritual (Tsuya). We propose that these findings, focusing specifically on the effects of sleep deprivation in the immediate aftermath of traumatic events, may be explored as a possible therapeutic measure. Along with a summary of the field questions on whether sleep is performed "to remember" or "to forget" we lay the rationale for using sleep deprivation as a clinical tool. A tool that may partially prevent the long-term persistence of these traumatic events' memory and thereby, at least partly, attenuating the development of PTSD.
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | | | - Orunmuyi T. Akintunde
- Department of Nuclear Medicine, College of MedicineUniversity of IbadanIbadanNigeria
| | - Oye Gureje
- Department of PsychiatryCollege of Health Sciences University of AbujaAbujaNigeria
| | - Michael A. Matar
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Doron Todder
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Joseph Zohar
- Post‐Trauma Center, Sheba Medical CenterTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
24
|
Mariano V, Kanellopoulos AK, Aiello G, Lo AC, Legius E, Achsel T, Bagni C. SREBP modulates the NADP +/NADPH cycle to control night sleep in Drosophila. Nat Commun 2023; 14:763. [PMID: 36808152 PMCID: PMC9941135 DOI: 10.1038/s41467-022-35577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/12/2022] [Indexed: 02/22/2023] Open
Abstract
Sleep behavior is conserved throughout evolution, and sleep disturbances are a frequent comorbidity of neuropsychiatric disorders. However, the molecular basis underlying sleep dysfunctions in neurological diseases remains elusive. Using a model for neurodevelopmental disorders (NDDs), the Drosophila Cytoplasmic FMR1 interacting protein haploinsufficiency (Cyfip85.1/+), we identify a mechanism modulating sleep homeostasis. We show that increased activity of the sterol regulatory element-binding protein (SREBP) in Cyfip85.1/+ flies induces an increase in the transcription of wakefulness-associated genes, such as the malic enzyme (Men), causing a disturbance in the daily NADP+/NADPH ratio oscillations and reducing sleep pressure at the night-time onset. Reduction in SREBP or Men activity in Cyfip85.1/+ flies enhances the NADP+/NADPH ratio and rescues the sleep deficits, indicating that SREBP and Men are causative for the sleep deficits in Cyfip heterozygous flies. This work suggests modulation of the SREBP metabolic axis as a new avenue worth exploring for its therapeutic potential in sleep disorders.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland.,Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | | | - Giuseppe Aiello
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland. .,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
25
|
Zong F, Min X, Zhang Y, Li Y, Zhang X, Liu Y, He K. Circadian time- and sleep-dependent modulation of cortical parvalbumin-positive inhibitory neurons. EMBO J 2023; 42:e111304. [PMID: 36477886 PMCID: PMC9890233 DOI: 10.15252/embj.2022111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Parvalbumin-positive neurons (PVs) are the main class of inhibitory neurons in the mammalian central nervous system. By examining diurnal changes in synaptic and neuronal activity of PVs in the supragranular layer of the mouse primary visual cortex (V1), we found that both PV input and output are modulated in a time- and sleep-dependent manner throughout the 24-h day. We first show that PV-evoked inhibition is stronger by the end of the light cycle (ZT12) relative to the end of the dark cycle (ZT0), which is in line with the lower inhibitory input of PV neurons at ZT12 than at ZT0. Interestingly, PV inhibitory and excitatory synaptic transmission slowly oscillate in opposite directions during the light/dark cycle. Although excitatory synapses are predominantly regulated by experience, inhibitory synapses are regulated by sleep, via acetylcholine activating M1 receptors. Consistent with synaptic regulation of PVs, we further show in vivo that spontaneous PV activity displays daily rhythm mainly determined by visual experience, which negatively correlates with the activity cycle of surrounding pyramidal neurons and the dorsal lateral geniculate nucleus-evoked responses in V1. These findings underscore the physiological significance of PV's daily modulation.
Collapse
Affiliation(s)
- Fang‐Jiao Zong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Present address:
Qingdao University School of PharmacyQingdaoChina
| | - Xia Min
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Zhang
- Shanghai Open UniversityShanghaiChina
| | - Yu‐Ke Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xue‐Ting Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kai‐Wen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
26
|
Lafrenière A, Lina JM, Hernandez J, Bouchard M, Gosselin N, Carrier J. Sleep slow waves' negative-to-positive-phase transition: a marker of cognitive and apneic status in aging. Sleep 2023; 46:zsac246. [PMID: 36219687 PMCID: PMC9832517 DOI: 10.1093/sleep/zsac246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/12/2022] [Indexed: 11/07/2022] Open
Abstract
The sleep slow-wave (SW) transition between negative and positive phases is thought to mirror synaptic strength and likely depends on brain health. This transition shows significant age-related changes but has not been investigated in pathological aging. The present study aimed at comparing the transition speed and other characteristics of SW between older adults with amnestic mild cognitive impairment (aMCI) and cognitively normal (CN) controls with and without obstructive sleep apnea (OSA). We also examined the association of SW characteristics with the longitudinal changes of episodic memory and executive functions and the degree of subjective cognitive complaints. aMCI (no/mild OSA = 17; OSA = 15) and CN (no/mild OSA = 20; OSA = 17) participants underwent a night of polysomnography and a neuropsychological evaluation at baseline and 18 months later. Participants with aMCI had a significantly slower SW negative-to-positive-phase transition speed and a higher proportion of SW that are "slow-switchers" than CN participants. These SW measures in the frontal region were significantly correlated with memory decline and cognitive complaints in aMCI and cognitive improvements in CN participants. The transition speed of the SW that are "fast-switchers" was significantly slower in OSA compared to no or mild obstructive sleep apnea participants. The SW transition-related metrics showed opposite correlations with the longitudinal episodic memory changes depending on the participants' cognitive status. These relationships were particularly strong in participants with aMCI. As the changes of the SW transition-related metrics in pathological aging might reflect synaptic alterations, future studies should investigate whether these new metrics covary with biomarker levels of synaptic integrity in this population.
Collapse
Affiliation(s)
- Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, Canada
| | - Jimmy Hernandez
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Canada
| | - Maude Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| |
Collapse
|
27
|
Phillips DJ, Blaine S, Wallace NK, Karatsoreos IN. Brain-derived neurotrophic factor Val66Met polymorphism modulates the effects of circadian desynchronization on activity and sleep in male mice. Front Neurosci 2023; 16:1013673. [PMID: 36699530 PMCID: PMC9868941 DOI: 10.3389/fnins.2022.1013673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/30/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Understanding how environmental interact challenges with genetic predispositions modulate health and wellbeing is an important area of biomedical research. Circadian rhythms play an important role in coordinating the multitude of cellular and tissue processes that organisms use to predict and adapt to regular changes in the environment, and robust circadian rhythms contribute to optimal physiological and behavioral responses to challenge. However, artificial lighting and modern round-the-clock lifestyles can disrupt the circadian system, leading to desynchronization of clocks throughout the brain and body. When coupled with genetic predispositions, circadian desynchronization may compound negative outcomes. Polymorphisms in the brain-derived neurotrophic (BDNF) gene contribute to variations in neurobehavioral responses in humans, including impacts on sleep, with the common Val66Met polymorphism linked to several negative outcomes. Methods We explored how the Val66Met polymorphism modulates the response to environmental circadian desynchronization (ECD) in a mouse model. ECD was induced by housing adult male mice in a 20 h light-dark cycle (LD10:10; 10 h light, 10 h dark). Sleep and circadian activity were recorded in homozygous (Met) mice and their wild-type (Val) littermates in a standard 24 h LD cycle (LD12:12), then again after 20, 40, and 60 days of ECD. Results We found ECD significantly affected the sleep/wake timing in Val mice, however, Met mice maintained appropriate sleep timing after 20 days ECD, but not after 40 and 60 days of ECD. In addition, the rise in delta power at lights on was absent in Val mice but was maintained in Met mice. To elucidate the circadian and homeostatic contribution to disrupted sleep, mice were sleep deprived by gentle handling in LD12:12 and after 20 days in ECD. Following 6 h of sleep deprivation delta power was increased for both Val and Met mice in LD12:12 and ECD conditions. However, the time constant was significantly longer in the Val mice during ECD compared to LD12:12, suggesting a functioning but altered sleep homeostat. Discussion These data suggest the Val66Met mutation is associated with an ability to resist the effects of LD10:10, which may result in carriers suffering fewer negative impacts of ECD.
Collapse
Affiliation(s)
- Derrick J. Phillips
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States,*Correspondence: Derrick J. Phillips,
| | - Scott Blaine
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Naomi K. Wallace
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Ilia N. Karatsoreos
- Neuroscience and Behavior Program, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States,Ilia N. Karatsoreos,
| |
Collapse
|
28
|
Picard K, Corsi G, Decoeur F, Di Castro MA, Bordeleau M, Persillet M, Layé S, Limatola C, Tremblay MÈ, Nadjar A. Microglial homeostasis disruption modulates non-rapid eye movement sleep duration and neuronal activity in adult female mice. Brain Behav Immun 2023; 107:153-164. [PMID: 36202169 DOI: 10.1016/j.bbi.2022.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Sleep is a natural physiological state, tightly regulated through several neuroanatomical and neurochemical systems, which is essential to maintain physical and mental health. Recent studies revealed that the functions of microglia, the resident immune cells of the brain, differ along the sleep-wake cycle. Inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mainly produced by microglia in the brain, are also well-known to promote sleep. However, the contributing role of microglia on sleep regulation remains largely elusive, even more so in females. Given the higher prevalence of various sleep disorders in women, we aimed to determine the role of microglia in regulating the sleep-wake cycle specifically in female mice. Microglia were depleted in adult female mice with inhibitors of the colony-stimulating factor 1 receptor (CSF1R) (PLX3397 or PLX5622), which is required for microglial population maintenance. This led to a 65-73% reduction of the microglial population, as confirmed by immunofluorescence staining against IBA1 (marker of microglia/macrophages) and TMEM119 (microglia-specific marker) in the reticular nucleus of the thalamus and primary motor cortex. The spontaneous sleep-wake cycle was evaluated at steady-state, during microglial homeostasis disruption and after complete microglial repopulation, upon cessation of treatment with the inhibitors of CSF1R, using electroencephalography (EEG) and electromyography (EMG). We found that microglia-depleted female mice spent more time in non-rapid eye movement (NREM) sleep and had an increased number of NREM sleep episodes, which was partially restored after microglial total repopulation. To determine whether microglia could regulate sleep locally by modulating synaptic transmission, we used patch clamp to record spontaneous activity of pyramidal neurons in the primary motor cortex, which showed an increase of excitatory synaptic transmission during the dark phase. These changes in neuronal activity were modulated by microglial depletion in a phase-dependent manner. Altogether, our results indicate that microglia are involved in the sleep regulation of female mice, further strengthening their potential implication in the development and/or progression of sleep disorders. Furthermore, our findings indicate that microglial repopulation can contribute to normalizing sleep alterations caused by their partial depletion.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Giorgio Corsi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fanny Decoeur
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marine Persillet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Department of Neurophysiology, Neuropharmacology, Inflammaging, IRCCS Neuromed, Pozzilli, Italy
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Agnès Nadjar
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
29
|
Ruch S, Schmidig FJ, Knüsel L, Henke K. Closed-loop modulation of local slow oscillations in human NREM sleep. Neuroimage 2022; 264:119682. [PMID: 36240988 DOI: 10.1016/j.neuroimage.2022.119682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Slow-wave sleep is the deep non-rapid eye-movement (NREM) sleep stage that is most relevant for the recuperative function of sleep. Its defining property is the presence of slow oscillations (<2 Hz) in the scalp electroencephalogram (EEG). Slow oscillations are generated by a synchronous back and forth between highly active UP-states and silent DOWN-states in neocortical neurons. Growing evidence suggests that closed-loop sensory stimulation targeted at UP-states of EEG-defined slow oscillations can enhance the slow oscillatory activity, increase sleep depth, and boost sleep's recuperative functions. However, several studies failed to replicate such findings. Failed replications might be due to the use of conventional closed-loop stimulation algorithms that analyze the signal from one single electrode and thereby neglect the fact that slow oscillations vary with respect to their origins, distributions, and trajectories on the scalp. In particular, conventional algorithms nonspecifically target functionally heterogeneous UP-states of distinct origins. After all, slow oscillations at distinct sites of the scalp have been associated with distinct functions. Here we present a novel EEG-based closed-loop stimulation algorithm that allows targeting UP- and DOWN-states of distinct cerebral origins based on topographic analyses of the EEG: the topographic targeting of slow oscillations (TOPOSO) algorithm. We present evidence that the TOPOSO algorithm can detect and target local slow oscillations with specific, predefined voltage maps on the scalp in real-time. When compared to a more conventional, single-channel-based approach, TOPOSO leads to fewer but locally more specific stimulations in a simulation study. In a validation study with napping participants, TOPOSO targets auditory stimulation reliably at local UP-states over frontal, sensorimotor, and centro-parietal regions. Importantly, auditory stimulation temporarily enhanced the targeted local state. However, stimulation then elicited a standard frontal slow oscillation rather than local slow oscillations. The TOPOSO algorithm is suitable for the modulation and the study of the functions of local slow oscillations.
Collapse
Affiliation(s)
- Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Otfried-Müller-Str. 45, Tübingen 72076, Germany; Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| | - Flavio Jean Schmidig
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Leona Knüsel
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Katharina Henke
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| |
Collapse
|
30
|
Gorgoni M, Galbiati A. Non-REM sleep electrophysiology in REM sleep behaviour disorder: A narrative mini-review. Neurosci Biobehav Rev 2022; 142:104909. [DOI: 10.1016/j.neubiorev.2022.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 10/31/2022]
|
31
|
Ngo HVV, Staresina BP. Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proc Natl Acad Sci U S A 2022; 119:e2123428119. [PMID: 36279449 PMCID: PMC9636934 DOI: 10.1073/pnas.2123428119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep constitutes a privileged state for new memories to reactivate and consolidate. Previous work has demonstrated that consolidation can be bolstered experimentally either via delivery of reminder cues (targeted memory reactivation [TMR]) or via noninvasive brain stimulation geared toward enhancing endogenous sleep rhythms. Here, we combined both approaches, controlling the timing of TMR cues with respect to ongoing slow-oscillation (SO) phases. Prior to sleep, participants learned associations between unique words and a set of repeating images (e.g., car) while hearing a prototypical image sound (e.g., engine starting). Memory performance on an immediate test vs. a test the next morning quantified overnight memory consolidation. Importantly, two image sounds were designated as TMR cues, with one cue delivered at SO UP states and the other delivered at SO DOWN states. A novel sound was used as a TMR control condition. Behavioral results revealed a significant reduction of overnight forgetting for words associated with UP-state TMR compared with words associated with DOWN-state TMR. Electrophysiological results showed that UP-state cueing led to enhancement of the ongoing UP state and was followed by greater spindle power than DOWN-state cueing. Moreover, UP-state (and not DOWN-state) cueing led to reinstatement of target image representations. Together, these results unveil the behavioral and mechanistic effects of delivering reminder cues at specific phases of endogenous sleep rhythms and mark an important step for the endeavor to experimentally modulate memories during sleep.
Collapse
Affiliation(s)
- Hong-Viet V. Ngo
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Centre for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Bernhard P. Staresina
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 9DU, United Kingdom
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
32
|
Abstract
Sleep is a fundamental, evolutionarily conserved, plastic behavior that is regulated by circadian and homeostatic mechanisms as well as genetic factors and environmental factors, such as light, humidity, and temperature. Among environmental cues, temperature plays an important role in the regulation of sleep. This review presents an overview of thermoreception in animals and the neural circuits that link this process to sleep. Understanding the influence of temperature on sleep can provide insight into basic physiologic processes that are required for survival and guide strategies to manage sleep disorders.
Collapse
|
33
|
Tang X, Yang J, Zhu Y, Gong H, Sun H, Chen F, Guan Q, Yu L, Wang W, Zhang Z, Li L, Ma G, Wang X. High PSQI score is associated with the development of dyskinesia in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:124. [PMID: 36175559 PMCID: PMC9522669 DOI: 10.1038/s41531-022-00391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
Dyskinesia is one of the most disabling motor complications in Parkinson's Disease (PD). Sleep is crucial to keep neural circuit homeostasis, and PD patients often suffer from sleep disturbance. However, few prospective studies have been conducted to investigate the association of sleep quality with dyskinesia in PD. The objective of the current study is to investigate the association between sleep quality and dyskinesia and build a prediction model for dyskinesia in PD. We prospectively followed a group of PD patients without dyskinesia at baseline for a maximum of 36 months. Univariable and multivariable Cox regression with stepwise variable selection was used to investigate risk factors for dyskinesia. The performance of the model was assessed by the time-dependent area under the receiver-operating characteristic curve (AUC). At the end of follow-up, 32.8% of patients developed dyskinesia. Patients with bad sleep quality had a significantly higher proportion of dyskinesia compared with those with good sleep quality (48.1% vs. 20.6%, p = 0.023). Multivariable Cox regression selected duration of PD, sleep quality, cognition, mood, and levodopa dose. Notably, high Pittsburgh sleep quality index (PSQI) score was independently associated with an increased risk of dyskinesia (HR = 2.96, 95% CI 1.05-8.35, p = 0.041). The model achieved a good discriminative ability, with the highest AUC being 0.83 at 35 months. Our results indicated that high PSQI score may increase the risk of developing dyskinesia in PD, implying that therapeutic intervention targeting improving sleep quality may be a promising approach to prevent or delay the development of dyskinesia in PD.
Collapse
Affiliation(s)
- Xiaohui Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology,, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Zhabei Central Hospital, Jing'an District, Shanghai, China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yining Zhu
- School of Mathematical Sciences, Fudan University, Yangpu District, Shanghai, China
| | - Haiyan Gong
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Sun
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Chen
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Guan
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijia Yu
- Department of Neurology,, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijia Wang
- Department of Neurology, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Zengping Zhang
- Department of Neurology, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Li Li
- Department of Neurology, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Guozhao Ma
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong Province, China.
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
- Department of Neurology,, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Morris EE, Howell MJ, Pickup E, Iber C, Wang SG. Pediatric sleep and pain: etiologies, consequences, and clinical considerations. J Clin Sleep Med 2022; 18:2281-2289. [PMID: 35499282 PMCID: PMC9435332 DOI: 10.5664/jcsm.10008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To examine current evidence of the relationship between sleep and pain from the neonatal period through adolescence. This review serves as a critical review of the literature and of the needs for future research on pediatric sleep and pain. METHODS The PubMed online database was queried from January 1, 1960, to March 1, 2020, producing 149 articles applicable to pain and sleep in the pediatric population. Of those, 97 articles were cited in this review with the key articles including over 3800 participants. RESULTS The pediatric literature supports the relationship between poor sleep (both sleep efficiency and nighttime awakenings) and subsequent risk for pain, especially among children with chronic disease. The reverse effect of pain on sleep is not yet well delineated. The key moderating factors explored in the literature are pharmacologic and nonpharmacologic therapies, psychologic health, and the etiology of pain. There is evidence that both altered sleep and pain early in life impact neurodevelopment, as seen by changes in sleep structure in clinical studies and alterations in brain development in animal models. CONCLUSIONS The complicated relationship between sleep and pain is critically important during pediatric development when alterations to a normal sleep structure can have a lifelong impact. It is becoming clear that sleep deprivation and poor sleep quality exacerbate pain. Further research is needed into the complex alterations of sleep in chronic pain conditions as well as treatments to improve sleep in pediatric care. CITATION Morris EE, Howell MJ, Pickup E, Iber C, Wang SG. Pediatric sleep and pain: etiologies, consequences, and clinical considerations. J Clin Sleep Med. 2022;18(9):2281-2289.
Collapse
Affiliation(s)
- Erin E. Morris
- Department of Pediatrics, University of Minnesota–Twin Cities, Minneapolis, Minnesota
| | - Michael J. Howell
- Department of Neurology, University of Minnesota–Twin Cities, Minneapolis, Minnesota
| | - Elizabeth Pickup
- Pediatric Neurology, Children’s National Hospital, Washington, DC
| | - Conrad Iber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Minnesota–Twin Cities, Minneapolis, Minnesota
| | - Sonya G. Wang
- Department of Pediatrics, University of Minnesota–Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
35
|
Adaptive Solutions to the Problem of Vulnerability During Sleep. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1007/s40806-022-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractSleep is a behavioral state whose quantity and quality represent a trade-off between the costs and benefits this state provides versus the costs and benefits of wakefulness. Like many species, we humans are particularly vulnerable during sleep because of our reduced ability to monitor the external environment for nighttime predators and other environmental dangers. A number of variations in sleep characteristics may have evolved over the course of human history to reduce this vulnerability, at both the individual and group level. The goals of this interdisciplinary review paper are (1) to explore a number of biological/instinctual features of sleep that may have adaptive utility in terms of enhancing the detection of external threats, and (2) to consider relatively recent cultural developments that improve vigilance and reduce vulnerability during sleep and the nighttime. This paper will also discuss possible benefits of the proposed adaptations beyond vigilance, as well as the potential costs associated with each of these proposed adaptations. Finally, testable hypotheses will be presented to evaluate the validity of these proposed adaptations.
Collapse
|
36
|
Palagini L, Bianchini C. Pharmacotherapeutic management of insomnia and effects on sleep processes, neural plasticity, and brain systems modulating stress: A narrative review. Front Neurosci 2022; 16:893015. [PMID: 35968380 PMCID: PMC9374363 DOI: 10.3389/fnins.2022.893015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionInsomnia is a stress-related sleep disorder, may favor a state of allostatic overload impairing brain neuroplasticity, stress immune and endocrine pathways, and may contribute to mental and physical disorders. In this framework, assessing and targeting insomnia is of importance.AimSince maladaptive neuroplasticity and allostatic overload are hypothesized to be related to GABAergic alterations, compounds targeting GABA may play a key role. Accordingly, the aim of this review was to discuss the effect of GABAA receptor agonists, short-medium acting hypnotic benzodiazepines and the so called Z-drugs, at a molecular level.MethodLiterature searches were done according to PRISMA guidelines. Several combinations of terms were used such as “hypnotic benzodiazepines” or “brotizolam,” or “lormetazepam” or “temazepam” or “triazolam” or “zolpidem” or “zopiclone” or “zaleplon” or “eszopiclone” and “insomnia” and “effects on sleep” and “effect on brain plasticity” and “effect on stress system”. Given the complexity and heterogeneity of existing literature, we ended up with a narrative review.ResultsAmong short-medium acting compounds, triazolam has been the most studied and may regulate the stress system at central and peripheral levels. Among Z-drugs eszopiclone may regulate the stress system. Some compounds may produce more “physiological” sleep such as brotizolam, triazolam, and eszopiclone and probably may not impair sleep processes and related neural plasticity. In particular, triazolam, eszopiclone, and zaleplon studied in vivo in animal models did not alter neuroplasticity.ConclusionCurrent models of insomnia may lead us to revise the way in which we use hypnotic compounds in clinical practice. Specifically, compounds should target sleep processes, the stress system, and sustain neural plasticity. In this framework, among the short/medium acting hypnotic benzodiazepines, triazolam has been the most studied compound while among the Z-drugs eszopiclone has demonstrated interesting effects. Both offer potential new insight for treating insomnia.
Collapse
Affiliation(s)
- Laura Palagini
- Psychiatry Division, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Laura Palagini,
| | | |
Collapse
|
37
|
Thankachan S, Yang C, Kastanenka KV, Bacskai BJ, Gerashchenko D. Low frequency visual stimulation enhances slow wave activity without disrupting the sleep pattern in mice. Sci Rep 2022; 12:12278. [PMID: 35853986 PMCID: PMC9296645 DOI: 10.1038/s41598-022-16478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Non-invasive stimulation technologies are emerging as potential treatment options for a range of neurodegenerative disorders. Experimental evidence suggests that stimuli-evoked changes in slow brain rhythms may mitigate or even prevent neuropathological and behavioral impairments. Slow wave activity is prevalent during sleep and can be triggered non-invasively by sensory stimulation targeting the visual system or directly via activation of neurons locally using optogenetics. Here, we developed new tools for delivering visual stimulation using light-emitting diodes in freely moving mice while awake and during sleep. We compared these tools to traditional optogenetic approaches used for local stimulation of neurons in the cerebral cortex. We then used these tools to compare the effects of low-frequency visual versus optogenetic stimulations on the slow wave activity and sleep pattern in mice. Visual stimulation effectively enhanced slow wave activity without disrupting the sleep pattern. Optogenetic stimulation of cortical GABAergic neurons increased NREM sleep. These results suggest that visual stimulation can be effective at boosting slow wave activity without having adverse effects on sleep and thus holds great potential as a non-invasive stimulation treatment strategy.
Collapse
Affiliation(s)
- Stephen Thankachan
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Chun Yang
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA.
| |
Collapse
|
38
|
Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, Dubljević V, Fecteau S, Ferreri F, Flöel A, Hallett M, Hamilton RH, Herrmann CS, Lavidor M, Loo C, Lustenberger C, Machado S, Miniussi C, Moliadze V, Nitsche MA, Rossi S, Rossini PM, Santarnecchi E, Seeck M, Thut G, Turi Z, Ugawa Y, Venkatasubramanian G, Wenderoth N, Wexler A, Ziemann U, Paulus W. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract 2022; 7:146-165. [PMID: 35734582 PMCID: PMC9207555 DOI: 10.1016/j.cnp.2022.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.
Collapse
Key Words
- AD, Alzheimer’s Disease
- BDNF, brain derived neurotrophic factor
- Cognitive enhancement
- DARPA, Defense Advanced Research Projects Agency
- DIY stimulation
- DIY, Do-It-Yourself
- DLPFC, dorsolateral prefrontal cortex
- EEG, electroencephalography
- EMG, electromyography
- FCC, Federal Communications Commission
- FDA, (U.S.) Food and Drug Administration
- Home-stimulation
- IFCN, International Federation of Clinical Neurophysiology
- LTD, long-term depression
- LTP, long-term potentiation
- MCI, mild cognitive impairment
- MDD, Medical Device Directive
- MDR, Medical Device Regulation
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- NIBS, noninvasive brain stimulation
- Neuroenhancement
- OTC, Over-The-Counter
- PAS, paired associative stimulation
- PET, positron emission tomography
- PPC, posterior parietal cortex
- QPS, quadripulse stimulation
- RMT, resting motor threshold
- SAE, serious adverse event
- SMA, supplementary motor cortex
- TBS, theta-burst stimulation
- TMS, transcranial magnetic stimulation
- Transcranial brain stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tACS
- tACS, transcranial alternating current stimulation
- tDCS
- tDCS, transcranial direct current stimulation
- tES, transcranial electric stimulation
- tRNS, transcranial random noise stimulation
Collapse
Affiliation(s)
- Andrea Antal
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Marom Bikson
- Biomedical Engineering at the City College of New York (CCNY) of the City University of New York (CUNY), NY, USA
| | - Andre R. Brunoni
- Departamento de Clínica Médica e de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Veljko Dubljević
- Science, Technology and Society Program, College of Humanities and Social Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shirley Fecteau
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Quebec City, Quebec, Canada
| | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475 Greifswald, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Michal Lavidor
- Department of Psychology and the Gonda Brain Research Center, Bar Ilan University, Israel
| | - Collen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales; The George Institute; Sydney, Australia
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sergio Machado
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados-RJ, Brazil
| | - Carlo Miniussi
- Center for Mind/Brain Sciences – CIMeC and Centre for Medical Sciences - CISMed, University of Trento, Rovereto, Italy
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU, Dortmund, Germany
- Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Paolo M. Rossini
- Department of Neuroscience and Neurorehabilitation, Brain Connectivity Lab, IRCCS-San Raffaele-Pisana, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margitta Seeck
- Department of Clinical Neurosciences, Hôpitaux Universitaires de Genève, Switzerland
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, EEG & Epolepsy Unit, University of Glasgow, United Kingdom
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | | | - Nicole Wenderoth
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Walter Paulus
- Department of of Neurology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
39
|
Aime M, Calcini N, Borsa M, Campelo T, Rusterholz T, Sattin A, Fellin T, Adamantidis A. Paradoxical somatodendritic decoupling supports cortical plasticity during REM sleep. Science 2022; 376:724-730. [PMID: 35549430 DOI: 10.1126/science.abk2734] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid eye movement (REM) sleep is associated with the consolidation of emotional memories. Yet, the underlying neocortical circuits and synaptic mechanisms remain unclear. We found that REM sleep is associated with a somatodendritic decoupling in pyramidal neurons of the prefrontal cortex. This decoupling reflects a shift of inhibitory balance between parvalbumin neuron-mediated somatic inhibition and vasoactive intestinal peptide-mediated dendritic disinhibition, mostly driven by neurons from the central medial thalamus. REM-specific optogenetic suppression of dendritic activity led to a loss of danger-versus-safety discrimination during associative learning and a lack of synaptic plasticity, whereas optogenetic release of somatic inhibition resulted in enhanced discrimination and synaptic potentiation. Somatodendritic decoupling during REM sleep promotes opposite synaptic plasticity mechanisms that optimize emotional responses to future behavioral stressors.
Collapse
Affiliation(s)
- Mattia Aime
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Niccolò Calcini
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Micaela Borsa
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Tiago Campelo
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Antoine Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Mitter P, De Crescenzo F, Loo Yong Kee K, Xia J, Roberts S, Kurtulumus A, Kyle SD, Geddes JR, Cipriani A. Sleep deprivation as a treatment for major depressive episodes: a systematic review and meta-analysis. Sleep Med Rev 2022; 64:101647. [DOI: 10.1016/j.smrv.2022.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
41
|
Strauss M, Griffon L, Van Beers P, Elbaz M, Bouziotis J, Sauvet F, Chennaoui M, Léger D, Peigneux P. Order matters: sleep spindles contribute to memory consolidation only when followed by rapid-eye-movement sleep. Sleep 2022; 45:6509075. [PMID: 35037060 DOI: 10.1093/sleep/zsac022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
Sleep is known to benefit memory consolidation, but little is known about the contribution of sleep stages within the sleep cycle. The sequential hypothesis proposes that memories are first replayed during nonrapid-eye-movement (NREM or N) sleep and then integrated into existing networks during rapid-eye-movement (REM or R) sleep, two successive critical steps for memory consolidation. However, it lacks experimental evidence as N always precedes R sleep in physiological conditions. We tested this sequential hypothesis in patients with central hypersomnolence disorder, including patients with narcolepsy who present the unique, anti-physiological peculiarity of frequently falling asleep in R sleep before entering N sleep. Patients performed a visual perceptual learning task before and after daytime naps stopped after one sleep cycle, starting in N or R sleep and followed by the other stage (i.e. N-R vs. R-N sleep sequence). We compared over-nap changes in performance, reflecting memory consolidation, depending on the sleep sequence during the nap. Thirty-six patients who slept for a total of 67 naps were included in the analysis. Results show that sleep spindles are associated with memory consolidation only when N is followed by R sleep, that is in physiologically ordered N-R naps, thus providing support to the sequential hypothesis in humans. In addition, we found a negative effect of rapid-eye-movements in R sleep on perceptual consolidation, highlighting the complex role of sleep stages in the balance to remember and to forget.
Collapse
Affiliation(s)
- Mélanie Strauss
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France.,Neuropsychology and Functional Imaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, Brussels, Belgium.,Cliniques Universitaires de Bruxelles, Hôpital Erasme, Services de Neurologie, Psychiatrie et laboratoire du sommeil, Université Libre de Bruxelles, Brussels, Belgium
| | - Lucie Griffon
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Pascal Van Beers
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France.,Unité Fatigue et vigilance, Institut de recherche biomédicale des armées, Brétigny sur Orge, France
| | - Maxime Elbaz
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Jason Bouziotis
- Cliniques Universitaires de Bruxelles, Hôpital Erasme, Service de la Recherche Biomédicale, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabien Sauvet
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France.,Unité Fatigue et vigilance, Institut de recherche biomédicale des armées, Brétigny sur Orge, France
| | - Mounir Chennaoui
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France.,Unité Fatigue et vigilance, Institut de recherche biomédicale des armées, Brétigny sur Orge, France
| | - Damien Léger
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Philippe Peigneux
- Neuropsychology and Functional Imaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
42
|
Deperrois N, Petrovici MA, Senn W, Jordan J. Learning cortical representations through perturbed and adversarial dreaming. eLife 2022; 11:76384. [PMID: 35384841 PMCID: PMC9071267 DOI: 10.7554/elife.76384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Humans and other animals learn to extract general concepts from sensory experience without extensive teaching. This ability is thought to be facilitated by offline states like sleep where previous experiences are systemically replayed. However, the characteristic creative nature of dreams suggests that learning semantic representations may go beyond merely replaying previous experiences. We support this hypothesis by implementing a cortical architecture inspired by generative adversarial networks (GANs). Learning in our model is organized across three different global brain states mimicking wakefulness, non-rapid eye movement (NREM), and REM sleep, optimizing different, but complementary, objective functions. We train the model on standard datasets of natural images and evaluate the quality of the learned representations. Our results suggest that generating new, virtual sensory inputs via adversarial dreaming during REM sleep is essential for extracting semantic concepts, while replaying episodic memories via perturbed dreaming during NREM sleep improves the robustness of latent representations. The model provides a new computational perspective on sleep states, memory replay, and dreams, and suggests a cortical implementation of GANs.
Collapse
Affiliation(s)
| | | | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Jakob Jordan
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Upregulation of the endogenous peptide antisecretory factor enhances hippocampal long-term potentiation and promotes learning in wistar rats. Neuroscience 2022; 490:120-130. [PMID: 35276306 DOI: 10.1016/j.neuroscience.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/18/2023]
Abstract
Antisecretory Factor (AF) is an endogenous peptide known for its powerful antisecretory and anti-inflammatory properties. We have previously shown that AF also acts as a neuromodulator of GABAergic synaptic transmission in rat hippocampus in a way that results in disinhibition of CA1 pyramidal neurons. Disinhibition is expected to facilitate the induction of long-term potentiation (LTP), and LTP is known to play a crucial role in learning and memory acquisition. In the present study we investigated the effect of AF on LTP in CA3-CA1 synapses in rat hippocampus. In addition, endogenous AF plasma activity was upregulated by feeding the rats with specially processed cereals (SPC) and spatial learning and memory was studied in the Morris Water Maze (MWM). We found that LTP was significantly enhanced in the presence of AF, both when added exogenously in vitro as well as when upregulated endogenously by SPC-feeding. In the presence of the GABAA-receptor antagonist picrotoxin (PTX) there was however no significant enhancement of LTP. Moreover, rats fed with SPC demonstrated enhanced spatial learning and short-term memory, compared with control animals. These results show that the disinhibition of GABAergic transmission in the hippocampus by the endogenous peptide AF enhances LTP as well as spatial learning and memory.
Collapse
|
44
|
Tubbs AS, Fernandez FX, Grandner MA, Perlis ML, Klerman EB. The Mind After Midnight: Nocturnal Wakefulness, Behavioral Dysregulation, and Psychopathology. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 1:830338. [PMID: 35538929 PMCID: PMC9083440 DOI: 10.3389/fnetp.2021.830338] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Sufficient sleep with minimal interruption during the circadian/biological night supports daytime cognition and emotional regulation. Conversely, disrupted sleep involving significant nocturnal wakefulness leads to cognitive and behavioral dysregulation. Most studies to-date have examined how fragmented or insufficient sleep affects next-day functioning, but recent work highlights changes in cognition and behavior that occur when someone is awake during the night. This review summarizes the evidence for day-night alterations in maladaptive behaviors, including suicide, violent crime, and substance use, and examines how mood, reward processing, and executive function differ during nocturnal wakefulness. Based on this evidence, we propose the Mind after Midnight hypothesis in which attentional biases, negative affect, altered reward processing, and prefrontal disinhibition interact to promote behavioral dysregulation and psychiatric disorders.
Collapse
Affiliation(s)
- Andrew S. Tubbs
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine—Tucson, Tucson, AZ, United States
| | - Fabian-Xosé Fernandez
- Department of Psychology, Evelyn F Mcknight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Michael A. Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine—Tucson, Tucson, AZ, United States
| | - Michael L. Perlis
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, United States
| | - Elizabeth B. Klerman
- Department of Neurology, Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Abstract
Sleep homeostasis is a complex neurobiologic phenomenon involving a number of molecular pathways, neurotransmitter release, synaptic activity, and factors modulating neural networks. Sleep plasticity allows for homeostatic optimization of neural networks and the replay-based consolidation of specific circuits, especially important for cognition, behavior, and information processing. Furthermore, research is currently moving from an essentially brain-focused to a more comprehensive view involving other systems, such as the immune system, hormonal status, and metabolic pathways. When dysfunctional, these systems contribute to sleep loss and fragmentation as well as to sleep need. In this chapter, the implications of neural plasticity and sleep homeostasis for the diagnosis and treatment of some major sleep disorders, such as insomnia and sleep deprivation, obstructive sleep apnea syndrome, restless legs syndrome, REM sleep behavior disorder, and narcolepsy are discussed in detail with their therapeutical implications. This chapter highlights that sleep is necessary for the maintenance of an optimal brain function and is sensitive to both genetic background and environmental enrichment. Even in pathologic conditions, sleep acts as a resilient plastic state that consolidates prior information and prioritizes network activity for efficient brain functioning.
Collapse
|
46
|
Hamel R, Lepage JF, Bernier PM. Anterograde interference emerges along a gradient as a function of task similarity: A behavioural study. Eur J Neurosci 2021; 55:49-66. [PMID: 34894023 PMCID: PMC9299670 DOI: 10.1111/ejn.15561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Anterograde interference emerges when two opposite (B → A) or identical tasks (A → A) are learned in close temporal succession, suggesting that interference cannot be fully accounted for by competing memories. Informed by neurobiological evidence, this work tested the hypothesis that interference depends upon the degree of overlap between the neural networks involved in the learning of two tasks. In a fully within‐subject and counterbalanced design, participants (n = 24) took part in two learning sessions where the putative overlap between learning‐specific neural networks was behaviourally manipulated across four conditions by modifying reach direction and the effector used during gradual visuomotor adaptation. The results showed that anterograde interference emerged regardless of memory competition—that is, to a similar extent in the B → A and A → A conditions—and along a gradient as a function of the tasks' similarity. Specifically, learning under similar reaching conditions generated more anterograde interference than learning under dissimilar reaching conditions, suggesting that putatively overlapping neural networks are required to generate interference. Overall, these results indicate that competing memories are not the sole contributor to anterograde interference and suggest that overlapping neural networks between two learning sessions are required to trigger interference. One discussed possibility is that initial learning modifies the properties of its neural networks to constrain further plasticity induction and learning capabilities, therefore causing anterograde interference in a network‐dependent manner. One implication is that learning‐specific neural networks must be maximally dissociated to minimize the interfering influences of previous learning on subsequent learning.
Collapse
Affiliation(s)
- Raphaël Hamel
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Michel Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
47
|
Reyes-Resina I, Samer S, Kreutz MR, Oelschlegel AM. Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Front Mol Neurosci 2021; 14:767384. [PMID: 34867190 PMCID: PMC8636908 DOI: 10.3389/fnmol.2021.767384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The role of sleep for brain function has been in the focus of interest for many years. It is now firmly established that sleep and the corresponding brain activity is of central importance for memory consolidation. Less clear are the underlying molecular mechanisms and their specific contribution to the formation of long-term memory. In this review, we summarize the current knowledge of such mechanisms and we discuss the several unknowns that hinder a deeper appreciation of how molecular mechanisms of memory consolidation during sleep impact synaptic function and engram formation.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sebastian Samer
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
48
|
Mogavero MP, Mezzapesa DM, Savarese M, DelRosso LM, Lanza G, Ferri R. Morphological analysis of the brain subcortical gray structures in restless legs syndrome. Sleep Med 2021; 88:74-80. [PMID: 34740168 DOI: 10.1016/j.sleep.2021.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although several studies have shown the involvement of specific structures of the central nervous system, the dopaminergic system, and iron metabolism in restless legs syndrome (RLS), the exact location and extent of its anatomical substrate is not yet known. The scope of this new study was to investigate the brain subcortical gray structures, by means of structural magnetic resonance imaging (MRI) studies, in RLS patients in order to assess the presence of any volume or shape abnormalities involving these structures. METHODS Thirty-three normal controls (24 females and nine males) and 45 RLS patients (34 females and 11 males) were retrospectively recruited and underwent a 1.5 Tesla MRI study with two-dimensional T1 sequences in the sagittal plane. Post-processing was performed by means of the Functional Magnetic Resonance Imaging of the Brain Analysis Group Integrated Registration and Segmentation Tool (FIRST) software, and both volumetric and morphological analyses of the thalamus, caudate, putamen, globus pallidus, brainstem, hippocampus, and amygdala, bilaterally, were carried out. RESULTS A statistically significant volumetric reduction in the left amygdala and left globus pallidus was found in subjects with RLS, as well as large surface morphological alterations affecting the amygdala bilaterally and other less widespread surface changes in both hippocampi, the right caudate, the left globus pallidus, and the left putamen. CONCLUSIONS These findings seem to indicate that the basic mechanisms of RLS might include a pathway involving not only the hypothalamus-spinal dopaminergic circuit (nucleus A11), but also pathways including the basal ganglia and structures that are part of the limbic system; moreover, structural alterations in RLS seem to concern the morphology as well as the volume of the above structures. The role of basal ganglia in the complex neurophysiological and neurochemical mechanism of RLS needs to carefully reconsidered.
Collapse
Affiliation(s)
- Maria P Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Italy
| | - Domenico M Mezzapesa
- Neurology Unit and Stroke Center, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Mariantonietta Savarese
- Neurology Unit and Stroke Center, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Lourdes M DelRosso
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology I.C., Oasi Research Institute - IRCCS, Troina, Italy
| | - Raffaele Ferri
- Department of Neurology I.C., Oasi Research Institute - IRCCS, Troina, Italy.
| |
Collapse
|
49
|
Ruch S, Alain Züst M, Henke K. Sleep-learning impairs subsequent awake-learning. Neurobiol Learn Mem 2021; 187:107569. [PMID: 34863922 DOI: 10.1016/j.nlm.2021.107569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023]
Abstract
Although we can learn new information while asleep, we usually cannot consciously remember the sleep-formed memories - presumably because learning occurred in an unconscious state. Here, we ask whether sleep-learning expedites the subsequent awake-learning of the same information. To answer this question, we reanalyzed data (Züst et al., 2019, Curr Biol) from napping participants, who learned new semantic associations between pseudowords and translation-words (guga-ship) while in slow-wave sleep. They retrieved sleep-formed associations unconsciously on an implicit memory test following awakening. Then, participants took five runs of paired-associative learning to probe carry-over effects of sleep-learning on awake-learning. Surprisingly, sleep-learning diminished awake-learning when participants learned semantic associations that were congruent to sleep-learned associations (guga-boat). Yet, learning associations that conflicted with sleep-learned associations (guga-coin) was unimpaired relative to learning new associations (resun-table; baseline). We speculate that the impeded wake-learning originated in a deficient synaptic downscaling and resulting synaptic saturation in neurons that were activated during both sleep-learning and awake-learning.
Collapse
Affiliation(s)
- Simon Ruch
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| | - Marc Alain Züst
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Katharina Henke
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| |
Collapse
|
50
|
Abstract
A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.
Collapse
|