1
|
Bakner NW, Masto NM, Lavretsky P, Highway CJ, Keever AC, Blake‐Bradshaw AG, Askren RJ, Hagy HM, Feddersen JC, Osborne DC, Cohen BS. Mallard Hybridization With Domesticated Lineages Alters Spring Migration Behavior and Timing. Ecol Evol 2025; 15:e70706. [PMID: 39744458 PMCID: PMC11685176 DOI: 10.1002/ece3.70706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/29/2025] Open
Abstract
Introgressive hybridization, the interbreeding and gene flow between different species, has become increasingly common in the Anthropocene, where human-induced ecological changes and the introduction of captively reared individuals are increasing secondary contact among closely related species, leading to gene flow between wild and domesticated lineages. As a result, domesticated-wild hybridization may potentially affect individual fitness, leading to maladaptive effects such as shifts in behavior or life-history decisions (e.g., migration patterns), which could influence population demographics. In North America, the release of captive-reared game-farm mallards (Anas platyrhynchos) for hunting has led to extensive hybridization with wild mallards, altering the genetic structure in the Atlantic and Mississippi flyways. We aimed to investigate differences in spring migratory behavior among 296 GPS-tagged mallards captured during winter in Tennessee and Arkansas with varying levels of hybridization. Despite relatively low levels of genetic introgression of game-farm genes, mallards with higher percentages of game-farm ancestry exhibited later departure and arrival times, shorter migration distances, and a tendency to establish residency at lower latitudes. Specifically, for every 10% increase in game-farm genetics, mallards departed 17.7% later, arrived 22.1% later, settled 3.3% farther south, and traveled 7.1% shorter distances during migration. These findings suggest that genetic introgression from game-farm mallards influences migratory behavior, potentially reducing fitness, and contributing to population declines in wild mallards. Our study presents a need for understanding how domestic hybridization effects fitness and behavioral change of other species.
Collapse
Affiliation(s)
- Nicholas W. Bakner
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
| | - Nicholas M. Masto
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNew YorkUSA
| | - Philip Lavretsky
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTexasUSA
| | - Cory J. Highway
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
| | - Allison C. Keever
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
| | - Abigail G. Blake‐Bradshaw
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
- Illinois Natural History Survey, Forbes Biological Station–Bellrose Waterfowl Research Center, Prairie Research InstituteUniversity of Illinois at Urbana‐ChampaignHavanaIllinoisUSA
| | - Ryan J. Askren
- Division of Agriculture Experiment Station and Arkansas Forest Resources CenterUniversity of ArkansasMonticelloArkansasUSA
| | - Heath M. Hagy
- U.S. Fish and Wildlife Service, Region 6Habitat and Population Evaluation TeamBismarckNorth DakotaUSA
| | - Jamie C. Feddersen
- Migratory Gamebird ProgramTennessee Wildlife Resources AgencyNashvilleTennesseeUSA
| | - Douglas C. Osborne
- Division of Agriculture Experiment Station and Arkansas Forest Resources CenterUniversity of ArkansasMonticelloArkansasUSA
| | - Bradley S. Cohen
- College of Arts and SciencesTennessee Technological UniversityCookevilleTennesseeUSA
| |
Collapse
|
2
|
Longo PADS, Azevedo-Silva M, Mansur KFR, Marinho TA, Madeira AG, de Souza AP, Hirota SK, Suyama Y, Mori GM, Leite FPP. Towards the understanding of genetic and morphological variations of a highly abundant seaweed-associated marine invertebrate. ESTUARINE, COASTAL AND SHELF SCIENCE 2024; 309:108977. [DOI: 10.1016/j.ecss.2024.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Mualim KS, Spence JP, Weiß C, Selmoni O, Lin M, Exposito-Alonso M. Genetic diversity loss in the Anthropocene will continue long after habitat destruction ends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619096. [PMID: 39484505 PMCID: PMC11526952 DOI: 10.1101/2024.10.21.619096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Genetic diversity within species is the basis for evolutionary adaptive capacity and has recently been included as a target for protection in the United Nations' Global Biodiversity Framework (GBF). However, there is a lack of reliable large-scale predictive frameworks to quantify how much genetic diversity has already been lost, let alone to quantitatively predict future losses under different conservation scenarios in the 21st century. Combining spatio-temporal population genetic theory with population genomic data of 18 plant and animal species, we studied the dynamics of genetic diversity after habitat area losses. We show genetic diversity reacts slowly to habitat area and population declines, but lagged losses will continue for many decades even after habitats are fully protected. To understand the magnitude of this problem, we combined our predictive method with species' habitat area and population monitoring reported in the Living Planet Index, the Red List, and new GBF indicators. We then project genetic diversity loss in 13,808 species with a short-term genetic diversity loss of 13-22% and long-term loss of 42-48% with substantial deviations depending on the level of habitat fragmentation. These results highlight that protection of only current habitats is insufficient to ensure the genetic health of species and that continuous genetic monitoring alone likely underestimates long term impacts. We provide an area-based spatio-temporal predictive framework to develop quantitative scenarios of global genetic biodiversity.
Collapse
Affiliation(s)
- Kristy S. Mualim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Jeffrey P. Spence
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Clemens Weiß
- Department of Genetics, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Oliver Selmoni
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Meixi Lin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, USA
| |
Collapse
|
4
|
Parsons DJ, Green AE, Carstens BC, Pelletier TA. Predicting genetic biodiversity in salamanders using geographic, climatic, and life history traits. PLoS One 2024; 19:e0310932. [PMID: 39423177 PMCID: PMC11488749 DOI: 10.1371/journal.pone.0310932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
The geographic distribution of genetic variation within a species reveals information about its evolutionary history, including responses to historical climate change and dispersal ability across various habitat types. We combine genetic data from salamander species with geographic, climatic, and life history data collected from open-source online repositories to develop a machine learning model designed to identify the traits that are most predictive of unrecognized genetic lineages. We find evidence of hidden diversity distributed throughout the clade Caudata that is largely the result of variation in climatic variables. We highlight some of the difficulties in using machine-learning models on open-source data that are often messy and potentially taxonomically and geographically biased.
Collapse
Affiliation(s)
- Danielle J. Parsons
- Museum of Biological Diversity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Abigail E. Green
- Department of Biology, Radford University, Radford, Virginia, United States of America
| | - Bryan C. Carstens
- Museum of Biological Diversity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Tara A. Pelletier
- Department of Biology, Radford University, Radford, Virginia, United States of America
| |
Collapse
|
5
|
Dapporto L, Menchetti M, Dincă V, Talavera G, Garcia-Berro A, D'Ercole J, Hebert PD, Vila R. The genetic legacy of the Quaternary ice ages for West Palearctic butterflies. SCIENCE ADVANCES 2024; 10:eadm8596. [PMID: 39292774 PMCID: PMC11409959 DOI: 10.1126/sciadv.adm8596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
The interplay between geographic barriers and climatic oscillations over the past 2.6 million years structured genetic variation at the continental scale. The genetic legacy of the Quaternary ice ages (GLQ) hypothesis outlines this phenomenon for Europe, but a comprehensive data-driven assessment is lacking. Using innovative genetic landscape methods, we model the GLQ in the West Palearctic based on 31,653 Cytochrome c oxidase subunit 1 (COI) sequences from 494 butterfly species and three functional traits. Seven distinct bioregions with varying levels of genetic endemicity emerge, revealing a latitudinal gradient in variation that confirms the "southern richness, northern purity" hypothesis. Through shift from case studies to a comparative approach, we objectively identify the main glacial refugia, colonization routes, and barriers to dispersal. Our findings offer a quantitative model of the GLQ across Europe, North Africa, and neighboring Asia, with broader applicability to other taxa and potentially scalable to encompass life on Earth.
Collapse
Affiliation(s)
- Leonardo Dapporto
- ZEN Lab, Department of Biology, University of Florence, Florence, Italy
| | - Mattia Menchetti
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC-CMCNB), Barcelona, Spain
| | | | - Jacopo D'Ercole
- Centre for Biodiversity Genomics, Guelph, Canada
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Paul Dn Hebert
- Centre for Biodiversity Genomics, Guelph, Canada
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
6
|
Guo Y, Sun F, Wang J, Wang Z, Yang H, Wu F. Application of Synchronous Evaluation-Diagnosis Model with Quantitative Stressor-Response Analysis (SED-QSR) to Urban Lake Ecological Status: A Proposed Multiple-Level System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16028-16039. [PMID: 39207301 DOI: 10.1021/acs.est.4c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ecological integrity assessment and degradation diagnosis are used globally to evaluate the health of water bodies and pinpoint critical stressors. However, current studies mainly focus on separate evaluation or diagnosis, leading to an inadequate exploration of the relationship between stressors and responses. Here, based on multiple data sets in an urban lake system, a synchronous evaluation-diagnosis model with quantitative stressor-response analysis was advanced, aiming to improve the accuracy of evaluation and diagnosis. The weights for key physicochemical stressors were quantitatively determined in the sequence of NDAVIadj > CODMn > TP > NH4+-N by the combination of generalized additive model and structural equation modeling, clarifying the most significant effects of aquatic vegetation on the degradation of fish assemblages. Then, sensitive biological metrics were screened by considering the distinct contributions of four key stressors to alleviate the possible deviation caused by common methods. Finally, ecological integrity was evaluated by summing the key physicochemical stressors and sensitive biological metrics according to the model-deduced weights instead of empirical weights. Our system's diagnosis and evaluation results achieved an accuracy of over 80% when predicting anthropogenic stress and biological status, which highlights the great potential of our multiple-level system for ecosystem management.
Collapse
Affiliation(s)
- Yiding Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ziteng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
7
|
Sinclair JS, Welti EAR, Altermatt F, Álvarez-Cabria M, Aroviita J, Baker NJ, Barešová L, Barquín J, Bonacina L, Bonada N, Cañedo-Argüelles M, Csabai Z, de Eyto E, Dohet A, Dörflinger G, Eriksen TE, Evtimova V, Feio MJ, Ferréol M, Floury M, Forio MAE, Fornaroli R, Goethals PLM, Heino J, Hering D, Huttunen KL, Jähnig SC, Johnson RK, Kuglerová L, Kupilas B, L'Hoste L, Larrañaga A, Leitner P, Lorenz AW, McKie BG, Muotka T, Osadčaja D, Paavola R, Palinauskas V, Pařil P, Pilotto F, Polášek M, Rasmussen JJ, Schäfer RB, Schmidt-Kloiber A, Scotti A, Skuja A, Straka M, Stubbington R, Timm H, Tyufekchieva V, Tziortzis I, Vannevel R, Várbíró G, Velle G, Verdonschot RCM, Vray S, Haase P. Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics. Nat Ecol Evol 2024; 8:430-441. [PMID: 38278985 DOI: 10.1038/s41559-023-02305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/11/2023] [Indexed: 01/28/2024]
Abstract
Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.
Collapse
Affiliation(s)
- James S Sinclair
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Ellen A R Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Mario Álvarez-Cabria
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
| | - Jukka Aroviita
- Freshwater and Marine Solutions, Finnish Environment Institute, Oulu, Finland
| | - Nathan J Baker
- Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | | | - José Barquín
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
| | - Luca Bonacina
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Milan, Italy
| | - Núria Bonada
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain
| | - Miguel Cañedo-Argüelles
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Zoltán Csabai
- Department of Hydrobiology, University of Pécs, Pécs, Hungary
- Balaton Limnological Research Institute, Tihany, Hungary
| | - Elvira de Eyto
- Fisheries Ecosystems Advisory Services, Marine Institute, Newport, Ireland
| | - Alain Dohet
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Gerald Dörflinger
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Tor E Eriksen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Vesela Evtimova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria J Feio
- Department of Life Sciences, University of Coimbra, Marine and Environmental Sciences Centre, Associated Laboratory ARNET, Coimbra, Portugal
| | - Martial Ferréol
- INRAE, UR RiverLy, centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Mathieu Floury
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | | | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Milan, Italy
| | - Peter L M Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Jani Heino
- Geography Research Unit, University of Oulu, Oulu, Finland
| | - Daniel Hering
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Sonja C Jähnig
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lenka Kuglerová
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Benjamin Kupilas
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Institute of Landscape Ecology, Chair for Applied Landscape Ecology and Ecological Planning, University of Münster, Münster, Germany
| | - Lionel L'Hoste
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, University of the Basque Country, Leioa, Spain
| | - Patrick Leitner
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Armin W Lorenz
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Brendan G McKie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Timo Muotka
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Diana Osadčaja
- Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Riku Paavola
- Oulanka Research Station, University of Oulu Infrastructure Platform, Kuusamo, Finland
| | | | - Petr Pařil
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Marek Polášek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jes J Rasmussen
- NIVA Denmark (Norwegian Institute for Water Research), Copenhagen, Denmark
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Astrid Schmidt-Kloiber
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Alberto Scotti
- Eurac Research, Institute for Alpine Environment, Bolzano/Bozen, Italy
- APEM Ltd, Stockport, UK
| | - Agnija Skuja
- Institute of Biology, University of Latvia, Riga, Latvia
| | - Michal Straka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- T.G. Masaryk Water Research Institute, p.r.i., Brno, Czech Republic
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Henn Timm
- Chair of Hydrobiology and Fishery, Centre for Limnology, Estonian University of Life Sciences, Elva vald, Estonia
| | - Violeta Tyufekchieva
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iakovos Tziortzis
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Rudy Vannevel
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
- Flanders Environment Agency, Aalst, Belgium
| | - Gábor Várbíró
- Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
| | - Gaute Velle
- LFI - The Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ralf C M Verdonschot
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
| | - Sarah Vray
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Leung B, Gonzalez A. Global monitoring for biodiversity: Uncertainty, risk, and power analyses to support trend change detection. SCIENCE ADVANCES 2024; 10:eadj1448. [PMID: 38363843 PMCID: PMC11639671 DOI: 10.1126/sciadv.adj1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
Global targets aim to reverse biodiversity declines by 2050 but require knowledge of current trends and future projections under policy intervention. First, given uncertainty in measurement of current trends, we propose a risk framework, considering probability and magnitude of decline. While only 11 of 198 systems analyzed (taxonomic groups by country from the Living Planet Database) showed declining abundance with high certainty, 20% of systems had a 70% chance of strong declines. Society needs to decide acceptable risks of biodiversity loss. Second, we calculated statistical power to detect trend change using ~12,000 populations from 62 systems currently showing strong declines. Current trend uncertainty hinders our ability to assess improvements. Trend change is detectable with high certainty in only 14 systems, even if thousands of populations are sampled, and conservation action reduces net declines to zero immediately, on average. We provide potential solutions to improve monitoring of progress toward biodiversity targets.
Collapse
Affiliation(s)
- Brian Leung
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
- Bieler School of Environment, McGill University, Montreal, Quebec H3A 2A7, Canada
- Smithsonian Tropical Research Institute (STRI), P.O. Box 0843-03092, Panama City, Panama
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
- Quebec Centre for Biodiversity Science (QCBS), Montreal, Quebec H3A 1B1, Canada
- Group on Earth Observations Biodiversity Observation Network (GEO BON), Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|
9
|
Govaert L, Hendry AP, Fattahi F, Möst M. Quantifying interspecific and intraspecific diversity effects on ecosystem functioning. Ecology 2024; 105:e4199. [PMID: 37901985 DOI: 10.1002/ecy.4199] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 10/31/2023]
Abstract
Rapid environmental changes result in massive biodiversity loss, with detrimental consequences for the functioning of ecosystems. Recent studies suggest that intraspecific diversity can contribute to ecosystem functioning to an extent comparable to contributions of interspecific diversity. Knowledge on the relative importance of these two sources of biodiversity is essential for predicting ecosystem consequences of biodiversity loss and will aid in the prioritization of conservation targets and implementation of management measures. However, our quantitative insights into how interspecific and intraspecific biodiversity loss affects ecosystem functioning and how the effects of these two sources of biodiversity loss on ecosystem functioning can be compared are still very limited. To facilitate such quantitative insights, we extend the interspecific Price partitioning method originally introduced by J. Fox in 2006, previously used to quantify species loss and gain effects on ecosystem functioning, to also account for the effects of intraspecific diversity loss and gain on ecosystem function. Using this extended version can yield the quantitative information required for answering research questions addressing correlations between interspecific and intraspecific diversity effects on ecosystem functioning, identifying interspecific and intraspecific groups with large effects, and assessing whether intraspecific diversity can compensate for losses in interspecific diversity. Applying this method to carefully designed experiments will provide additional insights into how biodiversity loss at different ecological levels contributes to and changes ecosystem functioning.
Collapse
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute für Gewässerökologie und Binnenfischerei (IGB), Berlin, Germany
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | - Markus Möst
- Department of Ecology, Universität Innsbruck, Innsbruck, Austria
- Research Department of Limnology, Universität Innsbruck, Mondsee, Austria
| |
Collapse
|
10
|
Wang X, Yang C, Qiao H, Hu J. More than two-fifths of the protected land in a global biodiversity hotspot in southwest China is under intense human pressure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167283. [PMID: 37778545 DOI: 10.1016/j.scitotenv.2023.167283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Habitat loss is the main threat to global biodiversity in the Anthropocene. To prevent this, protected areas are the most effective means for safeguarding biodiversity. However, extensive habitat protection under human pressure can undermine its effectiveness. Using the Hengduan Mountains, a global biodiversity hotspot in southwest China as an indicator, we assessed the extent and intensity of human pressure to highlight how these pressures have changed over time. We found that most ecoregions had high levels of intact habitat loss relative to areal protection by national nature reserves (NNRs). More than two-fifths of protected land is under intense human pressure, and lower elevation or smaller NNRs were subject to higher pressure. These increases have predominantly occurred in lower elevation NNRs, showing that elevation gradients correlate with increasing pressure. While protected areas are increasingly established, they are experiencing intense human pressure. Our findings provide useful insights for assessing resilience of protected areas and to prioritize areas where future conservation plans and actions should be focused in a changing world.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chen Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Huijie Qiao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junhua Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Schmidt C, Hoban S, Jetz W. Conservation macrogenetics: harnessing genetic data to meet conservation commitments. Trends Genet 2023; 39:816-829. [PMID: 37648576 DOI: 10.1016/j.tig.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets. Here we argue that focusing macrogenetic tools on conservation needs, or conservation macrogenetics, will enhance decision-making for conservation practice and fill key data gaps for global policy. Conservation macrogenetics provides an empirical basis for better understanding the complexity and resilience of biological systems and, thus, how anthropogenic drivers and policy decisions affect biodiversity.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Sean Hoban
- The Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Bharti DK, Pawar PY, Edgecombe GD, Joshi J. Genetic diversity varies with species traits and latitude in predatory soil arthropods (Myriapoda: Chilopoda). GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2023; 32:1508-1521. [PMID: 38708411 PMCID: PMC7615927 DOI: 10.1111/geb.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/13/2023] [Indexed: 05/07/2024]
Abstract
Aim To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location Asia, Australasia and Europe. Time Period Present. Major Taxa Studied Centipedes (Class: Chilopoda). Methods We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results A wide variation in genetic diversity across centipede species (0-0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.
Collapse
Affiliation(s)
- D. K. Bharti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Jahnavi Joshi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
French CM, Bertola LD, Carnaval AC, Economo EP, Kass JM, Lohman DJ, Marske KA, Meier R, Overcast I, Rominger AJ, Staniczenko PPA, Hickerson MJ. Global determinants of insect mitochondrial genetic diversity. Nat Commun 2023; 14:5276. [PMID: 37644003 PMCID: PMC10465557 DOI: 10.1038/s41467-023-40936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Understanding global patterns of genetic diversity is essential for describing, monitoring, and preserving life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrates, which comprise only a small fraction of Earth's biodiversity. Here, we construct a global map of predicted insect mitochondrial genetic diversity from cytochrome c oxidase subunit 1 sequences, derived from open data. We calculate the mitochondrial genetic diversity mean and genetic diversity evenness of insect assemblages across the globe, identify their environmental correlates, and make predictions of mitochondrial genetic diversity levels in unsampled areas based on environmental data. Using a large single-locus genetic dataset of over 2 million globally distributed and georeferenced mtDNA sequences, we find that mitochondrial genetic diversity evenness follows a quadratic latitudinal gradient peaking in the subtropics. Both mitochondrial genetic diversity mean and evenness positively correlate with seasonally hot temperatures, as well as climate stability since the last glacial maximum. Our models explain 27.9% and 24.0% of the observed variation in mitochondrial genetic diversity mean and evenness in insects, respectively, making an important step towards understanding global biodiversity patterns in the most diverse animal taxon.
Collapse
Affiliation(s)
- Connor M French
- Biology Department, City College of New York, New York, NY, USA.
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA.
| | - Laura D Bertola
- Biology Department, City College of New York, New York, NY, USA
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, N 2200, Denmark
| | - Ana C Carnaval
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Jamie M Kass
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - David J Lohman
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Entomology Section, National Museum of Natural History, Manila, Philippines
| | | | - Rudolf Meier
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany
| | - Isaac Overcast
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Institut de Biologie de l'Ecole Normale Superieure, Paris, France
- Department of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME, USA
| | | | - Michael J Hickerson
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
14
|
Lawrence ER, Pedersen EJ, Fraser DJ. Macrogenetics reveals multifaceted influences of environmental variation on vertebrate population genetic diversity across the Americas. Mol Ecol 2023; 32:4557-4569. [PMID: 37365672 DOI: 10.1111/mec.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
The broad scale distribution of population-specific genetic diversity (GDP ) across taxa remains understudied relative to species diversity gradients, despite its relevance for systematic conservation planning. We used nuclear DNA data collected from 3678 vertebrate populations across the Americas to assess the role of environmental and spatial variables in structuring the distribution of GDP , a key component of adaptive potential in the face of environmental change. We specifically assessed non-linear trends for a metric of GDP, expected heterozygosity (HE ), and found more evidence for spatial hotspots and cold spots in HE rather than a strict pattern with latitude. We also detected inconsistent relationships between HE and environmental variables, where only 11 of 30 environmental comparisons among taxa groups were statistically significant at the .05 level, and the shape of significant trends differed substantially across vertebrate groups. Only one of six taxonomic groups, freshwater fishes, consistently showed significant relationships between HE and most (four of five) environmental variables. The remaining groups had statistically significant relationships for either two (amphibians, reptiles), one (birds, mammals), or no variables (anadromous fishes). Our study highlights gaps in the theoretical foundation upon which macrogenetic predictions have been made thus far in the literature, as well as the nuances for assessing broad patterns in GDP among vertebrate groups. Overall, our results suggest a disconnect between patterns of species and genetic diversity, and underscores that large-scale factors affecting genetic diversity may not be the same factors as those shaping taxonomic diversity. Thus, careful spatial and taxonomic-specific considerations are needed for applying macrogenetics to conservation planning.
Collapse
Affiliation(s)
| | - Eric J Pedersen
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Dylan J Fraser
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Gonzalez A, Chase JM, O'Connor MI. A framework for the detection and attribution of biodiversity change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220182. [PMID: 37246383 DOI: 10.1098/rstb.2022.0182] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/31/2023] [Indexed: 05/30/2023] Open
Abstract
The causes of biodiversity change are of great scientific interest and central to policy efforts aimed at meeting biodiversity targets. Changes in species diversity and high rates of compositional turnover have been reported worldwide. In many cases, trends in biodiversity are detected, but these trends are rarely causally attributed to possible drivers. A formal framework and guidelines for the detection and attribution of biodiversity change is needed. We propose an inferential framework to guide detection and attribution analyses, which identifies five steps-causal modelling, observation, estimation, detection and attribution-for robust attribution. This workflow provides evidence of biodiversity change in relation to hypothesized impacts of multiple potential drivers and can eliminate putative drivers from contention. The framework encourages a formal and reproducible statement of confidence about the role of drivers after robust methods for trend detection and attribution have been deployed. Confidence in trend attribution requires that data and analyses used in all steps of the framework follow best practices reducing uncertainty at each step. We illustrate these steps with examples. This framework could strengthen the bridge between biodiversity science and policy and support effective actions to halt biodiversity loss and the impacts this has on ecosystems. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, McGill University, Montreal, Canada H3A 1B1
- Quebec Centre for Biodiversity Science, Montreal, Canada H3A 1B1
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Mary I O'Connor
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, Canada
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
16
|
Dornelas M, Chase JM, Gotelli NJ, Magurran AE, McGill BJ, Antão LH, Blowes SA, Daskalova GN, Leung B, Martins IS, Moyes F, Myers-Smith IH, Thomas CD, Vellend M. Looking back on biodiversity change: lessons for the road ahead. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220199. [PMID: 37246380 PMCID: PMC10225864 DOI: 10.1098/rstb.2022.0199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/24/2023] [Indexed: 05/30/2023] Open
Abstract
Estimating biodiversity change across the planet in the context of widespread human modification is a critical challenge. Here, we review how biodiversity has changed in recent decades across scales and taxonomic groups, focusing on four diversity metrics: species richness, temporal turnover, spatial beta-diversity and abundance. At local scales, change across all metrics includes many examples of both increases and declines and tends to be centred around zero, but with higher prevalence of declining trends in beta-diversity (increasing similarity in composition across space or biotic homogenization) and abundance. The exception to this pattern is temporal turnover, with changes in species composition through time observed in most local assemblages. Less is known about change at regional scales, although several studies suggest that increases in richness are more prevalent than declines. Change at the global scale is the hardest to estimate accurately, but most studies suggest extinction rates are probably outpacing speciation rates, although both are elevated. Recognizing this variability is essential to accurately portray how biodiversity change is unfolding, and highlights how much remains unknown about the magnitude and direction of multiple biodiversity metrics at different scales. Reducing these blind spots is essential to allow appropriate management actions to be deployed. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Maria Dornelas
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
- Guia Marine Laboratory, MARE, Faculdade de Ciencias da Universidade de Lisboa, Cascais 2750-374, Portugal
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany
- Department of Computer Sciences, Martin Luther University, Halle-Wittenberg 06099, Germany
| | | | - Anne E Magurran
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Laura H. Antão
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki,Finland
| | - Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany
- Department of Computer Sciences, Martin Luther University, Halle-Wittenberg 06099, Germany
| | - Gergana N. Daskalova
- International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| | - Brian Leung
- Department of Biology, McGill University, Montreal, Canada H3A 1B1
| | - Inês S. Martins
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Faye Moyes
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | | | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Mark Vellend
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- Département de biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
17
|
Sosa CC, Arenas C, García-Merchán VH. Human Population Density Influences Genetic Diversity of Two Rattus Species Worldwide: A Macrogenetic Approach. Genes (Basel) 2023; 14:1442. [PMID: 37510346 PMCID: PMC10379283 DOI: 10.3390/genes14071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
On a planet experiencing constant human population growth, it is necessary to explore the anthropogenic effects on the genetic diversity of species, and specifically invasive species. Using an analysis that integrates comparative phylogeography, urban landscape genetics, macrogenetics and a systematic review, we explore the worldwide genetic diversity of the human commensal and anthropogenic species Rattus rattus and Rattus norvegicus. Based on metadata obtained considering 35 selected studies related to observed heterozygosity, measured by nuclear molecular markers (microsatellites, Single Nucleotide Polymorphisms-SNPs-, restrictition site-associated DNA sequencing -RAD-Seq-), socioeconomic and mobility anthropogenic factors were used as predictors of genetic diversity of R. rattus and R. norvegicus, using the Gini index, principal component analysis and Random Forest Regression as analysis methodology. Population density was on average the best predictor of genetic diversity in the Rattus species analyzed, indicating that the species respond in a particular way to the characteristics present in urban environments because of a combination of life history characteristics and human-mediated migration and colonization processes. To create better management and control strategies for these rodents and their associated diseases, it is necessary to fill the existing information gap in urban landscape genetics studies with more metadata repositories, with emphasis on tropical and subtropical regions of the world.
Collapse
Affiliation(s)
- Chrystian C Sosa
- Evolution, Ecology and Conservation Research Group-EECO, Biology Program, Faculty of Basic Sciences and Technologies, Universidad del Quindío, Armenia 630004, Colombia
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana, Cali 7 #40-62, Bogotá 110311, Colombia
| | - Catalina Arenas
- Evolution, Ecology and Conservation Research Group-EECO, Biology Program, Faculty of Basic Sciences and Technologies, Universidad del Quindío, Armenia 630004, Colombia
| | - Víctor Hugo García-Merchán
- Evolution, Ecology and Conservation Research Group-EECO, Biology Program, Faculty of Basic Sciences and Technologies, Universidad del Quindío, Armenia 630004, Colombia
| |
Collapse
|
18
|
Exposito-Alonso M. Understanding local plant extinctions before it is too late: bridging evolutionary genomics with global ecology. THE NEW PHYTOLOGIST 2023; 237:2005-2011. [PMID: 36604850 DOI: 10.1111/nph.18718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Understanding evolutionary genomic and population processes within a species range is key to anticipating the extinction of plant species before it is too late. However, most models of biodiversity risk under global change do not account for the genetic variation and local adaptation of different populations. Population diversity is critical to understanding extinction because different populations may be more or less susceptible to global change and, if lost, would reduce the total diversity within a species. Two new modeling frameworks advance our understanding of extinction from a population and evolutionary angle: Rapid climate change-driven disruptions in population adaptation are predicted from associations between genomes and local climates. Furthermore, losses of population diversity from global land-use transformations are estimated by scaling relationships of species' genomic diversity with habitat area. Overall, these global eco-evolutionary methods advance the predictability - and possibly the preventability - of the ongoing extinction of plant species.
Collapse
Affiliation(s)
- Moi Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Snead AA, Clark RD. The Biological Hierarchy, Time, and Temporal 'Omics in Evolutionary Biology: A Perspective. Integr Comp Biol 2022; 62:1872-1886. [PMID: 36057775 DOI: 10.1093/icb/icac138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sequencing data-genomics, transcriptomics, epigenomics, proteomics, and metabolomics-have revolutionized biological research, enabling a more detailed study of processes, ranging from subcellular to evolutionary, that drive biological organization. These processes, collectively, are responsible for generating patterns of phenotypic variation and can operate over dramatically different timescales (milliseconds to billions of years). While researchers often study phenotypic variation at specific levels of biological organization to isolate processes operating at that particular scale, the varying types of sequence data, or 'omics, can also provide complementary inferences to link molecular and phenotypic variation to produce an integrated view of evolutionary biology, ranging from molecular pathways to speciation. We briefly describe how 'omics has been used across biological levels and then demonstrate the utility of integrating different types of sequencing data across multiple biological levels within the same study to better understand biological phenomena. However, single-time-point studies cannot evaluate the temporal dynamics of these biological processes. Therefore, we put forward temporal 'omics as a framework that can better enable researchers to study the temporal dynamics of target processes. Temporal 'omics is not infallible, as the temporal sampling regime directly impacts inferential ability. Thus, we also discuss the role the temporal sampling regime plays in deriving inferences about the environmental conditions driving biological processes and provide examples that demonstrate the impact of the sampling regime on biological inference. Finally, we forecast the future of temporal 'omics by highlighting current methodological advancements that will enable temporal 'omics to be extended across species and timescales. We extend this discussion to using temporal multi-omics to integrate across the biological hierarchy to evaluate and link the temporal dynamics of processes that generate phenotypic variation.
Collapse
Affiliation(s)
- Anthony A Snead
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - René D Clark
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
20
|
Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, Kyriazis CC, Lang PLM, Leventhal L, Nogues-Bravo D, Pagowski V, Ruffley M, Spence JP, Toro Arana SE, Weiß CL, Zess E. Genetic diversity loss in the Anthropocene. Science 2022; 377:1431-1435. [PMID: 36137047 DOI: 10.1126/science.abn5642] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anthropogenic habitat loss and climate change are reducing species' geographic ranges, increasing extinction risk and losses of species' genetic diversity. Although preserving genetic diversity is key to maintaining species' adaptability, we lack predictive tools and global estimates of genetic diversity loss across ecosystems. We introduce a mathematical framework that bridges biodiversity theory and population genetics to understand the loss of naturally occurring DNA mutations with decreasing habitat. By analyzing genomic variation of 10,095 georeferenced individuals from 20 plant and animal species, we show that genome-wide diversity follows a mutations-area relationship power law with geographic area, which can predict genetic diversity loss from local population extinctions. We estimate that more than 10% of genetic diversity may already be lost for many threatened and nonthreatened species, surpassing the United Nations' post-2020 targets for genetic preservation.
Collapse
Affiliation(s)
- Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.,Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Tom R Booker
- Department of Zoology, University of British Columbia, Vancouver, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Lucas Czech
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Lauren Gillespie
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.,Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Shannon Hateley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | | | - Laura Leventhal
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.,Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Nogues-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Megan Ruffley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jeffrey P Spence
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sebastian E Toro Arana
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.,Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Clemens L Weiß
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Erin Zess
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
21
|
CaliPopGen: A genetic and life history database for the fauna and flora of California. Sci Data 2022; 9:380. [PMID: 35790740 PMCID: PMC9256587 DOI: 10.1038/s41597-022-01479-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
CaliPopGen is a database of population genetic data for native and naturalized eukaryotic species in California, USA. It summarizes the published literature (1985–2020) for 5,453 unique populations with genetic data from more than 187,394 individuals and 448 species (513 species plus subspecies) across molecular markers including allozymes, RFLPs, mtDNA, microsatellites, nDNA, and SNPs. Terrestrial habitats accounted for the majority (46.4%) of the genetic data. Taxonomic groups with the greatest representation were Magnoliophyta (20.31%), Insecta (13.4%), and Actinopterygii (12.85%). CaliPopGen also reports life-history data for most included species to enable analyses of the drivers of genetic diversity across the state. The large number of populations and wide taxonomic breadth will facilitate explorations of ecological patterns and processes across the varied geography of California. CaliPopGen covers all terrestrial and marine ecoregions of California and has a greater density of species and georeferenced populations than any previously published population genetic database. It is thus uniquely suited to inform conservation management at the regional and state levels across taxonomic groups. Measurement(s) | genetic variation | Technology Type(s) | DNA sequencing | Factor Type(s) | Kingdom • Phylum • TaxonGroup • MarkerType • SampleSize • GeneTarget • NumMarkers • YearStart • YearEnd • PopName • LongitudeDD • LatitudeDD • CoordError • HabitatType • Lifespan • Fecundity • LifetimeReprodOutput • AgeSexMat • NumBreedingEvents • ReprodMode • BodyLength • AdultMass • CANativeStatus • CESAStatus • SSCStatus • ESAStatus • LifeCycle • AdultHeight • SelfCompatibility • MonoeciousDioecious • Asexual • PollinationMode • SeedDispMode • MassPerSeed • CAEndemicStatus | Sample Characteristic - Organism | eukaryota | Sample Characteristic - Location | California |
Collapse
|
22
|
Crossley MS, Latimer CE, Kennedy CM, Snyder WE. Past and recent farming degrades aquatic insect genetic diversity. Mol Ecol 2022. [PMID: 35771845 DOI: 10.1111/mec.16590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Recent declines in once-common species are triggering concern that an environmental crisis point has been reached. Yet, the lack of long abundance time series data for most species can make it difficult to attribute these changes to anthropogenic causes, and to separate them from normal cycles. Genetic diversity, on the other hand, is sensitive to past and recent environmental changes, and reflects a measure of a populations' potential to adapt to future stressors. Here, we consider whether patterns of genetic diversity among aquatic insects can be linked to historical and recent patterns of land use change. We collated mitochondrial cytochrome c oxidase subunit I (COI) variation for >700 aquatic insect species across the United States, where patterns of agricultural expansion and intensification have been documented since the 1800s. We found that genetic diversity was lowest in regions where cropland was historically (pre-1950) most extensive, suggesting a legacy of past environmental harm. Genetic diversity further declined where cropland has since expanded, even after accounting for climate and sampling effects. Notably though, genetic diversity also appeared to rebound where cropland has diminished. Our study suggests that genetic diversity at the community level can be a powerful tool to infer potential population declines and rebounds over longer time spans than is typically possible with ecological data. For the aquatic insects that we considered, patterns of land use many decades ago appear to have left long-lasting damage to genetic diversity that could threaten evolutionary responses to rapid global change.
Collapse
Affiliation(s)
- Michael S Crossley
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | | | - Christina M Kennedy
- Global Protect Oceans, Lands and Waters Program, The Nature Conservancy, Fort Collins, CO, USA
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
23
|
Hunt DAGA, DiBattista JD, Hendry AP. Effects of insularity on genetic diversity within and among natural populations. Ecol Evol 2022; 12:e8887. [PMID: 35571757 PMCID: PMC9077629 DOI: 10.1002/ece3.8887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022] Open
Abstract
We conducted a quantitative literature review of genetic diversity (GD) within and among populations in relation to categorical population size and isolation (together referred to as "insularity"). Using populations from within the same studies, we were able to control for between-study variation in methodology, as well as demographic and life histories of focal species. Contrary to typical expectations, insularity had relatively minor effects on GD within and among populations, which points to the more important role of other factors in shaping evolutionary processes. Such effects of insularity were sometimes seen-particularly in study systems where GD was already high overall. That is, insularity influenced GD in a study system when GD was high even in non-insular populations of the same study system-suggesting an important role for the "scope" of influences on GD. These conclusions were more robust for within population GD versus among population GD, although several biases might underlie this difference. Overall, our findings indicate that population-level genetic assumptions need to be tested rather than assumed in nature, particularly for topics underlying current conservation management practices.
Collapse
Affiliation(s)
- David A. G. A. Hunt
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Joseph D. DiBattista
- Australian Museum Research InstituteAustralian MuseumSydneyNew South WalesAustralia
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
24
|
Hoban S, Archer FI, Bertola LD, Bragg JG, Breed MF, Bruford MW, Coleman MA, Ekblom R, Funk WC, Grueber CE, Hand BK, Jaffé R, Jensen E, Johnson JS, Kershaw F, Liggins L, MacDonald AJ, Mergeay J, Miller JM, Muller-Karger F, O'Brien D, Paz-Vinas I, Potter KM, Razgour O, Vernesi C, Hunter ME. Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. Biol Rev Camb Philos Soc 2022; 97:1511-1538. [PMID: 35415952 PMCID: PMC9545166 DOI: 10.1111/brv.12852] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Biodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well‐being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources. Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within‐species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technological advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv) Effective Population Size (Ne). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modeling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large‐scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species' long‐term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.
Collapse
Affiliation(s)
- Sean Hoban
- Center for Tree Science, The Morton Arboretum, 4100 Illinois Rt 53, Lisle, IL, 60532, USA
| | - Frederick I Archer
- Southwest Fisheries Science Center, NOAA/NMFS, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Laura D Bertola
- City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, University Drive, Bedford Park, SA, 5042, Australia
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff, CF10 3AX, Wales, UK
| | - Melinda A Coleman
- Department of Primary Industries, New South Wales Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Blekholmsterrassen 36, Stockholm, SE-106 48, Sweden
| | - W Chris Funk
- Department of Biology, Graduate Degree in Ecology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523-1878, USA
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Carslaw Building, Sydney, NSW, 2006, Australia
| | - Brian K Hand
- Flathead Lake Biological Station, 32125 Bio Station Ln, Polson, MT, 59860, USA
| | - Rodolfo Jaffé
- Exponent, 15375 SE 30th Place, Suite 250, Bellevue, WA, 98007, USA
| | - Evelyn Jensen
- School of Natural and Environmental Sciences, Newcastle University, Agriculture Building, Newcastle Upon Tyne, NE1 7RU, UK
| | - Jeremy S Johnson
- Department of Environmental Studies, Prescott College, 220 Grove Avenue, Prescott, AZ, 86303, USA
| | - Francine Kershaw
- Natural Resources Defense Council, 40 West 20th Street, New York, NY, 10011, USA
| | - Libby Liggins
- School of Natural Sciences, Massey University, Ōtehā Rohe campus, Gate 4 Albany Highway, Auckland, Aotearoa, 0745, New Zealand
| | - Anna J MacDonald
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium.,Aquatic Ecology, Evolution and Conservation, KULeuven, Charles Deberiotstraat 32, box 2439, 3000, Leuven, Belgium
| | - Joshua M Miller
- Department of Biological Sciences, MacEwan University, 10700 104 Avenue, Edmonton, AB, T5J 4S2, Canada
| | - Frank Muller-Karger
- College of Marine Science, University of South Florida, 140 7th Avenue South, Saint Petersburg, Florida, 33701, USA
| | - David O'Brien
- NatureScot, Great Glen House, Leachkin Road, Inverness, IV3 8NW, UK
| | - Ivan Paz-Vinas
- Laboratoire Evolution et Diversité Biologique, Université de Toulouse, CNRS, IRD, UPS, UMR-5174 EDB, 118 route de Narbonne, Toulouse, 31062, France
| | - Kevin M Potter
- Department of Forestry and Environmental Resources, North Carolina State University, 3041 Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Orly Razgour
- Biosciences, University of Exeter, Streatham Campus, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, Via E. Mach, 1, San Michele all'Adige, 38010, (TN), Italy
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, USA
| |
Collapse
|
25
|
Car C, Gilles A, Armant O, Burraco P, Beaugelin‐Seiller K, Gashchak S, Camilleri V, Cavalié I, Laloi P, Adam‐Guillermin C, Orizaola G, Bonzom J. Unusual evolution of tree frog populations in the Chernobyl exclusion zone. Evol Appl 2022; 15:203-219. [PMID: 35233243 PMCID: PMC8867709 DOI: 10.1111/eva.13282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the ubiquity of pollutants in the environment, their long-term ecological consequences are not always clear and still poorly studied. This is the case concerning the radioactive contamination of the environment following the major nuclear accident at the Chernobyl nuclear power plant. Notwithstanding the implications of evolutionary processes on the population status, few studies concern the evolution of organisms chronically exposed to ionizing radiation in the Chernobyl exclusion zone. Here, we examined genetic markers for 19 populations of Eastern tree frog (Hyla orientalis) sampled in the Chernobyl region about thirty years after the nuclear power plant accident to investigate microevolutionary processes ongoing in local populations. Genetic diversity estimated from nuclear and mitochondrial markers showed an absence of genetic erosion and higher mitochondrial diversity in tree frogs from the Chernobyl exclusion zone compared to other European populations. Moreover, the study of haplotype network permitted us to decipher the presence of an independent recent evolutionary history of Chernobyl exclusion zone's Eastern tree frogs caused by an elevated mutation rate compared to other European populations. By fitting to our data a model of haplotype network evolution, we suspected that Eastern tree frog populations in the Chernobyl exclusion zone have a high mitochondrial mutation rate and small effective population sizes. These data suggest that Eastern tree frog populations might offset the impact of deleterious mutations because of their large clutch size, but also question the long-term impact of ionizing radiation on the status of other species living in the Chernobyl exclusion zone.
Collapse
Affiliation(s)
- Clément Car
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - André Gilles
- UMR RECOVERINRAEAix‐Marseille Université, Centre Saint‐CharlesMarseilleFrance
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Pablo Burraco
- Animal EcologyDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Institute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | - Sergey Gashchak
- Chornobyl Center for Nuclear SafetyRadioactive Waste and RadioecologySlavutychUkraine
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Patrick Laloi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | | | - Germán Orizaola
- IMIB‐Biodiversity Research Institute (Univ. Oviedo‐CSIC‐Princip. Asturias)Universidad de OviedoMieres‐AsturiasSpain
- Department Biology Organisms and SystemsZoology UnitUniversity of OviedoOviedo‐AsturiasSpain
| | - Jean‐Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| |
Collapse
|
26
|
Fan P, Fjeldså J, Liu X, Dong Y, Chang Y, Qu Y, Song G, Lei F. An approach for estimating haplotype diversity from sequences with unequal lengths. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ping Fan
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate GLOBE Institute University of Copenhagen Copenhagen Denmark
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Yafei Dong
- College of Life Sciences Shaanxi Normal University Xi’an China
| | - Yongbin Chang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
27
|
Abstract
The rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation. Here, we review the history of this rapidly growing field, highlight knowledge gaps and future directions, and provide guidelines for further research.
Collapse
|
28
|
Edwards SV, Robin V, Ferrand N, Moritz C. The evolution of comparative phylogeography: putting the geography (and more) into comparative population genomics. Genome Biol Evol 2021; 14:6339579. [PMID: 34347070 PMCID: PMC8743039 DOI: 10.1093/gbe/evab176] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Comparative population genomics is an ascendant field using genomic comparisons between species to draw inferences about forces regulating genetic variation. Comparative phylogeography, by contrast, focuses on the shared lineage histories of species codistributed geographically and is decidedly organismal in perspective. Comparative phylogeography is approximately 35 years old, and, by some metrics, is showing signs of reduced growth. Here, we contrast the goals and methods of comparative population genomics and comparative phylogeography and argue that comparative phylogeography offers an important perspective on evolutionary history that succeeds in integrating genomics with landscape evolution in ways that complement the suprageographic perspective of comparative population genomics. Focusing primarily on terrestrial vertebrates, we review the history of comparative phylogeography, its milestones and ongoing conceptual innovations, its increasingly global focus, and its status as a bridge between landscape genomics and the process of speciation. We also argue that, as a science with a strong “sense of place,” comparative phylogeography offers abundant “place-based” educational opportunities with its focus on geography and natural history, as well as opportunities for collaboration with local communities and indigenous peoples. Although comparative phylogeography does not yet require whole-genome sequencing for many of its goals, we conclude that it nonetheless plays an important role in grounding our interpretation of genetic variation in the fundamentals of geography and Earth history.
Collapse
Affiliation(s)
- Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Vv Robin
- Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati, Andhra Pradesh, 517507, India
| | - Nuno Ferrand
- CIBIO/InBIO, Laboratório Associado, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Portugal
| | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
29
|
Habrich AK, Lawrence ER, Fraser DJ. Varying genetic imprints of road networks and human density in North American mammal populations. Evol Appl 2021; 14:1659-1672. [PMID: 34178111 PMCID: PMC8210797 DOI: 10.1111/eva.13232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022] Open
Abstract
Road networks and human density are major factors contributing to habitat fragmentation and loss, isolation of wildlife populations, and reduced genetic diversity. Terrestrial mammals are particularly sensitive to road networks and encroachment by human populations. However, there are limited assessments of the impacts of road networks and human density on population-specific nuclear genetic diversity, and it remains unclear how these impacts are modulated by life-history traits. Using generalized linear mixed models and microsatellite data from 1444 North American terrestrial mammal populations, we show that taxa with large home range sizes, dense populations, and large body sizes had reduced nuclear genetic diversity with increasing road impacts and human density, but the overall influence of life-history traits was generally weak. Instead, we observed a high degree of genus-specific variation in genetic responses to road impacts and human density. Human density negatively affected allelic diversity or heterozygosity more than road networks (13 vs. 5-7 of 25 assessed genera, respectively); increased road networks and human density also positively affected allelic diversity and heterozygosity in 15 and 6-9 genera, respectively. Large-bodied, human-averse species were generally more negatively impacted than small, urban-adapted species. Genus-specific responses to habitat fragmentation by ongoing road development and human encroachment likely depend on the specific capability to (i) navigate roads as either barriers or movement corridors, and (ii) exploit resource-rich urban environments. The nonuniform genetic response to roads and human density highlights the need to implement efforts to mitigate the risk of vehicular collisions, while also facilitating gene flow between populations of particularly vulnerable taxa.
Collapse
Affiliation(s)
- Andrew K. Habrich
- Department of BiologyConcordia UniversityMontrealQuebecCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | | | - Dylan J. Fraser
- Department of BiologyConcordia UniversityMontrealQuebecCanada
| |
Collapse
|
30
|
Des Roches S, Pendleton LH, Shapiro B, Palkovacs EP. Conserving intraspecific variation for nature's contributions to people. Nat Ecol Evol 2021; 5:574-582. [PMID: 33649544 DOI: 10.1038/s41559-021-01403-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
The rapid loss of intraspecific variation is a hidden biodiversity crisis. Intraspecific variation, which includes the genomic and phenotypic diversity found within and among populations, is threatened by local extinctions, abundance declines, and anthropogenic selection. However, biodiversity assessments often fail to highlight this loss of diversity within species. We review the literature on how intraspecific variation supports critical ecological functions and nature's contributions to people (NCP). Results show that the main categories of NCP (material, non-material, and regulating) are supported by intraspecific variation. We highlight new strategies that are needed to further explore these connections and to make explicit the value of intraspecific variation for NCP. These strategies will require collaboration with local and Indigenous groups who possess critical knowledge on the relationships between intraspecific variation and ecosystem function. New genomic methods provide a promising set of tools to uncover hidden variation. Urgent action is needed to document, conserve, and restore the intraspecific variation that supports nature and people. Thus, we propose that the maintenance and restoration of intraspecific variation should be raised to a major global conservation objective.
Collapse
Affiliation(s)
- Simone Des Roches
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, USA.,School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, USA
| | - Linwood H Pendleton
- Centre for the Fourth Industrial Revolution - Ocean, Lysaker, Norway.,Ifremer, CNRS, UMR 6308, AMURE, IUEM University of Western Brittany, Plouzané, France.,Global Change Institute, University of Queensland, Brisbane, Queensland, Australia.,Duke University, Durham, NC, USA
| | - Beth Shapiro
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, CA, USA
| | - Eric P Palkovacs
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
31
|
Paz-Vinas I, Jensen EL, Bertola LD, Breed MF, Hand BK, Hunter ME, Kershaw F, Leigh DM, Luikart G, Mergeay J, Miller JM, Van Rees CB, Segelbacher G, Hoban S. Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecol Lett 2021; 24:1282-1284. [PMID: 33749962 DOI: 10.1111/ele.13732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 11/30/2022]
Abstract
Millette et al. (Ecology Letters, 2020, 23:55-67) reported no consistent worldwide anthropogenic effects on animal genetic diversity using repurposed mitochondrial DNA sequences. We reexamine data from this study, describe genetic marker and scale limitations which might lead to misinterpretations with conservation implications, and provide advice to improve future macrogenetic studies.
Collapse
Affiliation(s)
- Ivan Paz-Vinas
- Laboratoire Evolution & Diversité Biologique, Centre National pour la Recherche Scientifique, Institut de Recherche pour le Développement, Université de Toulouse, UPS, CNRS, IRD, UMR 5174, 118 route de Narbonne, Toulouse, 31062, France.,Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, UPS, CNRS, INP, UMR 5245, 118 route de Narbonne, Toulouse, 31062, France
| | - Evelyn L Jensen
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem St, New Haven, CT, 06520, USA
| | - Laura D Bertola
- City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Brian K Hand
- Flathead Lake Biological Station, 32125 Bio Station Ln, Polson, MT, 59860, USA
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st St, Gainesville, FL, 32653, USA
| | - Francine Kershaw
- Natural Resources Defense Council, 40 West 20th Street, New York, NY, 10011, USA
| | - Deborah M Leigh
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Gordon Luikart
- Flathead Lake Biological Station, 32125 Bio Station Ln, Polson, MT, 59860, USA
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Gaverstraat 4, Geraardsbergen, 9500, Belgium.,Aquatic Ecology, Evolution and Conservation, KULeuven, Charles Deberiotstraat 32, box 2439, Leuven, 3000, Belgium
| | - Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Charles B Van Rees
- Flathead Lake Biological Station, 32125 Bio Station Ln, Polson, MT, 59860, USA
| | - Gernot Segelbacher
- Chair of Wildlife Ecology and Management, University Freiburg, Tennenbacher Str. 4, Freiburg, D-79106, Germany
| | - Sean Hoban
- Center for Tree Science, The Morton Arboretum, 4100 Illinois Rt 53, Lisle, 60532, USA
| |
Collapse
|
32
|
Millette KL, Fugère V, Debyser C, Greiner A, Chain FJJ, Gonzalez A. Refining analyses of existing data sets is valuable for macrogenetics: a response to Paz-Vinas, Jensen et al., (2021). Ecol Lett 2021; 24:1285-1286. [PMID: 33749965 DOI: 10.1111/ele.13733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022]
Abstract
Paz-Vinas, Jensen et al. (2021) comment on data and methodological limits of Millette, Fugère, Debyser et al. (2020)-some affect a small proportion of our data sets and analyses and others need to be tackled more generally. These points do not refute our main conclusion of no strong signal of human impacts on COI variation globally.
Collapse
Affiliation(s)
| | - Vincent Fugère
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivieres, QC, Canada
| | - Chloé Debyser
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Ariel Greiner
- Department of Ecology & Evolution, University of Toronto, Toronto, ON, Canada
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts at Lowell, Lowell, MA, USA
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, QC, Canada.,Quebec Centre for Biodiversity Science, Montreal, QC, Canada
| |
Collapse
|
33
|
|
34
|
Blondel L, Paterson IG, Bentzen P, Hendry AP. Resistance and resilience of genetic and phenotypic diversity to "black swan" flood events: A retrospective analysis with historical samples of guppies. Mol Ecol 2021; 30:1017-1028. [PMID: 33346935 DOI: 10.1111/mec.15782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 01/05/2023]
Abstract
Rare extreme "black swan" disturbances can impact ecosystems in many ways, such as destroying habitats, depleting resources, and causing high mortality. In rivers, for instance, exceptional floods that occur infrequently (e.g., so-called "50-year floods") can strongly impact the abundance of fishes and other aquatic organisms. Beyond such ecological effects, these floods could also impact intraspecific diversity by elevating genetic drift or dispersal and by imposing strong selection, which could then influence the population's ability to recover from disturbance. And yet, natural systems might be resistant (show little change) or resilient (show rapid recovery) even to rare extreme events - perhaps as a result of selection due to past events. We considered these possibilities in two rivers where native guppies experienced two extreme floods - one in 2005 and another in 2016. For each river, we selected four sites and used archived "historical" samples to compare levels of genetic and phenotypic diversity before vs. after floods. Genetic diversity was represented by 33 neutral microsatellite markers, and phenotypic diversity was represented by body length and male melanic (black) colour. We found that genetic diversity and population structure was mostly "resistant" to even these extreme floods; whereas the larger impacts on phenotypic diversity were short-lived, suggesting additional "resilience". We discuss the determinants of these two outcomes for guppies facing floods, and then consider the general implications for the resistance and resilience of intraspecific variation to black swan disturbances.
Collapse
Affiliation(s)
- Léa Blondel
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| | - Ian G Paterson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
35
|
Riginos C, Crandall ED, Liggins L, Gaither MR, Ewing RB, Meyer C, Andrews KR, Euclide PT, Titus BM, Therkildsen NO, Salces-Castellano A, Stewart LC, Toonen RJ, Deck J. Building a global genomics observatory: Using GEOME (the Genomic Observatories Metadatabase) to expedite and improve deposition and retrieval of genetic data and metadata for biodiversity research. Mol Ecol Resour 2020; 20:1458-1469. [PMID: 33031625 DOI: 10.1111/1755-0998.13269] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
Genetic data represent a relatively new frontier for our understanding of global biodiversity. Ideally, such data should include both organismal DNA-based genotypes and the ecological context where the organisms were sampled. Yet most tools and standards for data deposition focus exclusively either on genetic or ecological attributes. The Genomic Observatories Metadatabase (GEOME: geome-db.org) provides an intuitive solution for maintaining links between genetic data sets stored by the International Nucleotide Sequence Database Collaboration (INSDC) and their associated ecological metadata. GEOME facilitates the deposition of raw genetic data to INSDCs sequence read archive (SRA) while maintaining persistent links to standards-compliant ecological metadata held in the GEOME database. This approach facilitates findable, accessible, interoperable and reusable data archival practices. Moreover, GEOME enables data management solutions for large collaborative groups and expedites batch retrieval of genetic data from the SRA. The article that follows describes how GEOME can enable genuinely open data workflows for researchers in the field of molecular ecology.
Collapse
Affiliation(s)
- Cynthia Riginos
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Eric D Crandall
- Department of Biology and Chemistry, California State University, Seaside, CA, USA.,Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Libby Liggins
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Michelle R Gaither
- Department of Biology, Genomics and Bioinformatics Cluster, The University of Central Florida, Orlando, FL, USA
| | | | - Christopher Meyer
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Kimberly R Andrews
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| | - Peter T Euclide
- Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, WI, USA
| | - Benjamin M Titus
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | | | - Antonia Salces-Castellano
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Santa Cruz de Tenerife, Spain
| | | | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - John Deck
- University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
36
|
Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat Commun 2020; 11:2557. [PMID: 32444801 PMCID: PMC7244709 DOI: 10.1038/s41467-020-16449-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/30/2020] [Indexed: 11/08/2022] Open
Abstract
Knowledge of global patterns of biodiversity, ranging from intraspecific genetic diversity (GD) to taxonomic and phylogenetic diversity, is essential for identifying and conserving the processes that shape the distribution of life. Yet, global patterns of GD and its drivers remain elusive. Here we assess existing biodiversity theories to explain and predict the global distribution of GD in terrestrial mammal assemblages. We find a strong positive covariation between GD and interspecific diversity, with evolutionary time, reflected in phylogenetic diversity, being the best predictor of GD. Moreover, we reveal the negative effect of past rapid climate change and the positive effect of inter-annual precipitation variability in shaping GD. Our models, explaining almost half of the variation in GD globally, uncover the importance of deep evolutionary history and past climate stability in accumulating and maintaining intraspecific diversity, and constitute a crucial step towards reducing the Wallacean shortfall for an important dimension of biodiversity. The drivers of genetic diversity (GD) are poorly understood at the global scale. Here the authors show, for terrestrial mammals, that within-species GD covaries with phylogenetic diversity and is higher in locations with more stable past climates. They also interpolate GD for data-poor locations such as the tropics.
Collapse
|
37
|
Schmidt C, Domaratzki M, Kinnunen RP, Bowman J, Garroway CJ. Continent-wide effects of urbanization on bird and mammal genetic diversity. Proc Biol Sci 2020; 287:20192497. [PMID: 32019443 PMCID: PMC7031673 DOI: 10.1098/rspb.2019.2497] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/13/2020] [Indexed: 11/12/2022] Open
Abstract
Urbanization and associated environmental changes are causing global declines in vertebrate populations. In general, population declines of the magnitudes now detected should lead to reduced effective population sizes for animals living in proximity to humans and disturbed lands. This is a cause for concern because effective population sizes set the rate of genetic diversity loss due to genetic drift, the rate of increase in inbreeding and the efficiency with which selection can act on beneficial alleles. We predicted that the effects of urbanization should decrease effective population size and genetic diversity, and increase population-level genetic differentiation. To test for such patterns, we repurposed and reanalysed publicly archived genetic datasets for North American birds and mammals. After filtering, we had usable raw genotype data from 85 studies and 41 023 individuals, sampled from 1008 locations spanning 41 mammal and 25 bird species. We used census-based urban-rural designations, human population density and the Human Footprint Index as measures of urbanization and habitat disturbance. As predicted, mammals sampled in more disturbed environments had lower effective population sizes and genetic diversity, and were more genetically differentiated from those in more natural environments. There were no consistent relationships detectable for birds. This suggests that, in general, mammal populations living near humans may have less capacity to respond adaptively to further environmental changes, and be more likely to suffer from effects of inbreeding.
Collapse
Affiliation(s)
- C. Schmidt
- Department Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - M. Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - R. P. Kinnunen
- Department Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - J. Bowman
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9 L 0G2
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada K9 J 8M5
| | - C. J. Garroway
- Department Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|