1
|
Ciubotaru AD, Leferman CE, Ignat BE, Knieling A, Salaru DL, Turliuc DM, Foia LG, Dima L, Minea B, Hritcu LD, Cioroiu BI, Stoica L, Ciureanu IA, Ciobica AS, Stoica BA, Ghiciuc CM. Anti-Epileptic Activity of Mitocurcumin in a Zebrafish-Pentylenetetrazole (PTZ) Epilepsy Model. Pharmaceuticals (Basel) 2024; 17:1611. [PMID: 39770453 PMCID: PMC11678555 DOI: 10.3390/ph17121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Background/Objectives: Ongoing challenges in epilepsy therapy warrant research on alternative treatments that offer improved efficacy and reduced side effects. Designed to enhance mitochondrial targeting and increase bioavailability, mitocurcumin (MitoCur) was evaluated for the first time as an antiepileptic agent, with curcumin (Cur) and sodium valproate (VPA), a standard antiepileptic drug, included for comparison. This study investigated the effects on seizure onset, severity, and progression in a zebrafish model of pentylenetetrazole (PTZ)-induced seizures and measured the concentrations of the compounds in brain tissue. Methods: Zebrafish were pre-treated with MitoCur and Cur (both at 0.25 and 0.5 µM doses) and VPA (0.25 and 0.5 mM) and observed for four minutes to establish baseline locomotor behavior. Subsequently, the animals were exposed to a 5 mM PTZ solution for 10 min, during which seizure progression was observed and scored as follows: 1-increased swimming; 2-burst swimming, left and right movements; 3-circular movements; 4-clonic seizure-like behavior; 5-loss of body posture. The studied compounds were quantified in brain tissue through HPLC and LC-MS. Results: Compared to the control group, all treatments reduced the distance moved and the average velocity, without significant differences between compounds or doses. During PTZ exposure, seizure latencies revealed that all treatments effectively delayed seizure onset up to score 4, demonstrating efficacy in managing moderate seizure activity. Notably, MitoCur also provided significant protection against the most severe seizure score (score 5). Brain tissue uptake analysis indicated that MitoCur achieved higher concentrations in the brain compared to Cur, at both doses. Conclusions: These results highlight the potential of MitoCur as a candidate for seizure management.
Collapse
Affiliation(s)
- Alin Dumitru Ciubotaru
- Discipline of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (C.-E.L.); (C.M.G.)
- Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Neurology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania;
| | - Carmen-Ecaterina Leferman
- Discipline of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (C.-E.L.); (C.M.G.)
| | - Bogdan-Emilian Ignat
- Neurology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania;
- Discipline of Neurology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anton Knieling
- Discipline of Forensic Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
- Institute of Forensic Medicine, 4 Buna Vestire Street, 700455 Iasi, Romania
| | - Delia Lidia Salaru
- Institute of Cardiovascular Diseases, 50 Carol I Avenue, 700503 Iasi, Romania;
| | - Dana Mihaela Turliuc
- Discipline of Neurosurgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Liliana Georgeta Foia
- Discipline of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transylvania University of Brasov, 59 Nicolae Balcescu Street, 500019 Brasov, Romania;
| | - Bogdan Minea
- Discipline of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Bogdan Ionel Cioroiu
- Research Center for Oenology, Romanian Academy, Iasi Branch, 9 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Laura Stoica
- Discipline of Cell and Molecular Biology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Ioan-Adrian Ciureanu
- Department of Medical Informatics and Biostatistics, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 20A Carol I Avenue, 700505 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
| | - Bogdan Alexandru Stoica
- Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Discipline of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (C.-E.L.); (C.M.G.)
- St. Mary’s Emergency Children Hospital, 62 Vasile Lupu Street, 700309 Iasi, Romania
| |
Collapse
|
2
|
Chang BL, Walker MC, Kullmann DM, Schorge S. Deciphering temporal gene expression dynamics during epilepsy development using a rat model of focal neocortical epilepsy. Epilepsia 2024. [PMID: 39526997 DOI: 10.1111/epi.18169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Epilepsy involves significant changes in neural cells during epileptogenesis. Although the molecular mechanism of epileptogenesis remains obscure, changes in gene regulation play a crucial role in the evolution of epilepsy. This study aimed to compare changes in a subset of specific genes during epilepsy development, focusing on the period after the first spontaneous seizure, to identify critical time windows for targeting different regulators. METHODS Using a rat model of acquired focal neocortical epilepsy induced by tetanus toxin, we characterized gene expression at acute, subacute, and chronic stages (48-72 h, 2 weeks, and 30 days after first spontaneous seizure, respectively), focusing on genes' potential contribution to epilepsy progression. RESULTS We observed dynamic changes in the expression of these genes throughout the period after the first spontaneous seizure. Astrocytic reactions primarily occur early, before epilepsy is well established. Changes in Mtor (mammalian target of rapamycin) and Rest (repressor element 1 silencing transcription factor) signaling pathways are highly dynamic and correlated with the progression of epilepsy development. Ccl2 (chemokine C-C-motif ligand) is upregulated at the chronic stage, indicating activation of the neuroinflammatory pathway. Finally, Gabra5 (γ-aminobutyric acidergic signaling) is downregulated at the late stage after epilepsy is established. Surprisingly, changes in the expression of specific genes are linked to the time since the first seizure, rather than seizure frequency or duration. SIGNIFICANCE These results suggest that the regulation of specific genes is essentially stage-dependent during the development of epilepsy, highlighting the importance of targeting specific genes at appropriate stages of epilepsy development.
Collapse
Grants
- CMRPG3K1021 Chang Gung Memorial Hospital, Taipei, Taiwan
- CMRPG3L0661-2 Chang Gung Memorial Hospital, Taipei, Taiwan
- CMRPG3M1991-2 Chang Gung Memorial Hospital, Taipei, Taiwan
- CMRPG3P0131 Chang Gung Memorial Hospital, Taipei, Taiwan
- WT093205MA Wellcome Trust, Epilepsy Research UK
- MOST 108-2314-B-182A-153 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-182-079 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-182A-086 Ministry of Science and Technology, Taiwan
- MOST 110-2314-B-182-055 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Bao-Luen Chang
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| |
Collapse
|
3
|
Fang Q, Cai Y, Yang Y, Zhang J, Ke J, Luo J, Zheng Y, Zhang Z, Alidu ALJ, Wang Q, Huang X. Curcumin attenuated neuroinflammation via the TLR4/MyD88/NF-κB signaling way in the juvenile rat hippocampus following kainic acid-induced epileptic seizures. Metab Brain Dis 2024; 39:1387-1403. [PMID: 39292432 DOI: 10.1007/s11011-024-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2024] [Indexed: 09/19/2024]
Abstract
The study examined curcumin's impart on relieving neuroinflammation of juvenile rats in kainic acid (KA) induced epileptic seizures by inhibiting the TLR4/MyD88/NF-κB pathway. There were five groups: control, KA, KA + curcumin (KC), KA + oxcarbazepine (OXC) (KO), KA + curcumin + OXC (KCO) groups. KA was stereotactically injected into right hippocampus following intraperitoneal injection of curcumin or (and) OXC for seven days. The rats in the above groups were randomly divided into three subgroups (at 6 h, 24 h, and 72 h of KA administration) following the seizure degree assessed. The number of NeuN (+) neurons and GFAP (+) astrocytes was counted. The gene and protein levels of TLR4, MyD88, and NF-κB were detected. Compared with the KA group, the seizure latency was longer, and the incidence of status epilepticus (SE) was lower in the KC, KO, and KCO groups. The most significant changes were in the KCO group. At 72 h following KA injected, the number of neurons was the least, and the number of astrocytes was the most in the KA group. The number of neurons was the most and the number of astrocytes was the least in the KCO group. At 24 h, the mRNA and protein levels of TLR4, MyD88, and NF-κB in the KA group were the most. The above valves were the least in the KCO group. Therefore, curcumin could enhance anti-epileptic effect of OXC, protect injured neurons and reduce proliferated glial cells of the hippocampus of epileptic rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001.
- Department of Pediatrics, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, Fujian Province, China, 350001.
| | - Yuehao Cai
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001
| | - Jiuyun Zhang
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001.
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China, 350001.
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, 134 East Street, Gulou District, Fuzhou, Fujian Province, China, 350001.
| | - Jun Ke
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China, 350001
| | - Jiewei Luo
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China, 350001
| | - Yujinglin Zheng
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Zhiyuan Zhang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Abdul-Latif Jijiri Alidu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Qiancheng Wang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Xinyi Huang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| |
Collapse
|
4
|
Ots HD, Anderson T, Sherrerd-Smith W, DelBianco J, Rasic G, Chuprin A, Toor Z, Fitch E, Ahuja K, Reid F, Musto AE. Scoping review of disease-modifying effect of drugs in experimental epilepsy. Front Neurol 2023; 14:1097473. [PMID: 36908628 PMCID: PMC9997527 DOI: 10.3389/fneur.2023.1097473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Epilepsy affects ~50 million people worldwide causing significant medical, financial, and sociologic concerns for affected patients and their families. To date, treatment of epilepsy is primarily symptomatic management because few effective preventative or disease-modifying interventions exist. However, recent research has identified neurobiological mechanisms of epileptogenesis, providing new pharmacologic targets to investigate. The current scientific evidence remains scattered across multiple studies using different model and experimental designs. The review compiles different models of anti-epileptogenic investigation and highlights specific compounds with potential epileptogenesis-modifying experimental drugs. It provides a platform for standardization of future epilepsy research to allow a more robust compound analysis of compounds with potential for epilepsy prevention. Methods PubMed, Ovid MEDLINE, and Web of Science were searched from 2007 to 2021. Studies with murine models of epileptogenesis and explicitly detailed experimental procedures were included in the scoping review. In total, 51 articles were selected from 14,983 and then grouped by five core variables: (1) seizure frequency, (2) seizure severity, (3) spontaneous recurrent seizures (SRS), (4) seizure duration, and (5) mossy fiber sprouting (MFS). The variables were differentiated based on experimental models including methods of seizure induction, treatment schedule and timeline of data collection. Data was categorized by the five core variables and analyzed by converting original treatment values to units of percent of its respective control. Results Discrepancies in current epileptogenesis models significantly complicate inter-study comparison of potential anti-epileptogenic interventions. With our analysis, many compounds showed a potential to reduce epileptogenic characteristics defined by the five core variables. WIN55,212-2, aspirin, rapamycin, 1400W, and LEV + BQ788 were identified compounds with the potential of effective anti-epileptic properties. Significance Our review highlights the need for consistent methodology in epilepsy research and provides a novel approach for future research. Inconsistent experimental designs hinder study comparison, slowing the progression of treatments for epilepsy. If the research community can optimize and standardize parameters such as methods of seizure induction, administration schedule, sampling time, and aniMal models, more robust meta-analysis and collaborative research would follow. Additionally, some compounds such as rapamycin, WIN 55,212-2, aspirin, 1400W, and LEV + BQ788 showed anti-epileptogenic modulation across multiple variables. We believe they warrant further study both individually and synergistically.
Collapse
Affiliation(s)
- Heather D Ots
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Taylor Anderson
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - John DelBianco
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Gordana Rasic
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anthony Chuprin
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Zeeshan Toor
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Elizabeth Fitch
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kripa Ahuja
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Faith Reid
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Alberto E Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States.,Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
5
|
Hyder Pottoo F, Salahuddin M, Khan FA, Albaqshi BT, Gomaa MS, Abdulla FS, AlHajri N, Alomary MN. Trio-Drug Combination of Sodium Valproate, Baclofen and Thymoquinone Exhibits Synergistic Anticonvulsant Effects in Rats and Neuro-Protective Effects in HEK-293 Cells. Curr Issues Mol Biol 2022; 44:4350-4366. [PMID: 36286014 PMCID: PMC9601194 DOI: 10.3390/cimb44100299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 10/04/2023] Open
Abstract
Epilepsy is a chronic brain disorder, with anti-epileptic drugs (AEDs) providing relief from hyper-excitability of neurons, but largely failing to restrain neurodegeneration. We investigated a progressive preclinical trial in rats, whereby the test drugs; sodium valproate (SVP; 150 and 300 mg/kg), baclofen (BFN; 5 and 10 mg/kg), and thymoquinone (THQ; 40 and 80 mg/kg) were administered (i.p, once/day for 15 days) alone, and as low dose combinations, and subsequently tested for antiseizure and neuroprotective potential using electrical stimulation of neurons by Maximal electroshock (MES). The seizure stages were monitored, and hippocampal levels of m-TOR, IL-1β, IL-6 were measured. Hippocampal histopathology was also performed. Invitro and Insilco studies were run to counter-confirm the results from rodent studies. We report the synergistic effect of trio-drug combination; SVP (150 mg/kg), BFN (5 mg/kg) and THQ (40 mg/kg) against generalized seizures. The Insilco results revealed that trio-drug combination binds the Akt active site as a supramolecular complex, which could have served as a delivery system that affects the penetration and the binding to the new target. The potential energy of the ternary complex in the Akt active site after dynamics simulation was found to be -370.426 Kcal/mol, while the supramolecular ternary complex alone was -38.732 Kcal/mol, with a potential energy difference of -331.694 Kcal/mol, which favors the supramolecular ternary complex at Akt active site binding. In addition, the said combination increased cell viability by 267% and reduced morphological changes induced by Pentylenetetrazol (PTZ) in HEK-293 cells, which indicates the neuroprotective property of said combination. To conclude, we are the first to report the anti-convulsant and neuroprotective potential of the trio-drug combination.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Batool Taleb Albaqshi
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatima S. Abdulla
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Noora AlHajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
6
|
Hwang K, Vaknalli RN, Addo-Osafo K, Vicente M, Vossel K. Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Front Aging Neurosci 2022; 14:903973. [PMID: 35923547 PMCID: PMC9340804 DOI: 10.3389/fnagi.2022.903973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Tau is a microtubule-associated protein known to bind and promote assembly of microtubules in neurons under physiological conditions. However, under pathological conditions, aggregation of hyperphosphorylated tau causes neuronal toxicity, neurodegeneration, and resulting tauopathies like Alzheimer's disease (AD). Clinically, patients with tauopathies present with either dementia, movement disorders, or a combination of both. The deposition of hyperphosphorylated tau in the brain is also associated with epilepsy and network hyperexcitability in a variety of neurological diseases. Furthermore, pharmacological and genetic targeting of tau-based mechanisms can have anti-seizure effects. Suppressing tau phosphorylation decreases seizure activity in acquired epilepsy models while reducing or ablating tau attenuates network hyperexcitability in both Alzheimer's and epilepsy models. However, it remains unclear whether tauopathy and epilepsy comorbidities are mediated by convergent mechanisms occurring upstream of epileptogenesis and tau aggregation, by feedforward mechanisms between the two, or simply by coincident processes. In this review, we investigate the relationship between tauopathies and seizure disorders, including temporal lobe epilepsy (TLE), post-traumatic epilepsy (PTE), autism spectrum disorder (ASD), Dravet syndrome, Nodding syndrome, Niemann-Pick type C disease (NPC), Lafora disease, focal cortical dysplasia, and tuberous sclerosis complex. We also explore potential mechanisms implicating the role of tau kinases and phosphatases as well as the mammalian target of rapamycin (mTOR) in the promotion of co-pathology. Understanding the role of these co-pathologies could lead to new insights and therapies targeting both epileptogenic mechanisms and cognitive decline.
Collapse
|
7
|
Drion CM, Kooijman L, Chan D, Berkhout J, van Vliet EA, Wadman WJ, Gorter JA. No persistent effects of intracerebral curcumin administration on seizure progression and neuropathology in the kindling rat model for temporal lobe epilepsy. Epilepsy Res 2022; 181:106873. [DOI: 10.1016/j.eplepsyres.2022.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/03/2022]
|
8
|
Benameur T, Giacomucci G, Panaro MA, Ruggiero M, Trotta T, Monda V, Pizzolorusso I, Lofrumento DD, Porro C, Messina G. New Promising Therapeutic Avenues of Curcumin in Brain Diseases. Molecules 2021; 27:236. [PMID: 35011468 PMCID: PMC8746812 DOI: 10.3390/molecules27010236] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Curcumin, the dietary polyphenol isolated from Curcuma longa (turmeric), is commonly used as an herb and spice worldwide. Because of its bio-pharmacological effects curcumin is also called "spice of life", in fact it is recognized that curcumin possesses important proprieties such as anti-oxidant, anti-inflammatory, anti-microbial, antiproliferative, anti-tumoral, and anti-aging. Neurodegenerative diseases such as Alzheimer's Diseases, Parkinson's Diseases, and Multiple Sclerosis are a group of diseases characterized by a progressive loss of brain structure and function due to neuronal death; at present there is no effective treatment to cure these diseases. The protective effect of curcumin against some neurodegenerative diseases has been proven by in vivo and in vitro studies. The current review highlights the latest findings on the neuroprotective effects of curcumin, its bioavailability, its mechanism of action and its possible application for the prevention or treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy;
| | - Maria Antonietta Panaro
- Biotechnologies and Biopharmaceutics, Department of Biosciences, University of Bari, 70125 Bari, Italy; (M.A.P.); (M.R.)
| | - Melania Ruggiero
- Biotechnologies and Biopharmaceutics, Department of Biosciences, University of Bari, 70125 Bari, Italy; (M.A.P.); (M.R.)
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
| | - Vincenzo Monda
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
- Unit of Dietetic and Sport Medicine, Section of Human Physiology, Department of Experimental Medicine, Luigi Vanvitelli University of Campania, 81100 Naples, Italy
| | - Ilaria Pizzolorusso
- Child and Adolescent Neuropsychiatry Unit, Department of Mental Health, ASL Foggia, 71121 Foggia, Italy;
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, 73100 Lecce, Italy;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (T.T.); (V.M.); (G.M.)
| |
Collapse
|
9
|
Barker‐Haliski M, Knox K, Zierath D, Koneval Z, Metcalf C, Wilcox KS, White HS. Development of an antiepileptogenesis drug screening platform: Effects of everolimus and phenobarbital. Epilepsia 2021; 62:1677-1688. [PMID: 34080183 PMCID: PMC8260451 DOI: 10.1111/epi.16955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The kainic acid (KA)-induced status epilepticus (SE) model in rats is a well-defined model of epileptogenesis. This model closely recapitulates many of the clinical and pathological characteristics of human temporal lobe epilepsy (TLE) that arise following SE or another neurological insult. Spontaneous recurrent seizures (SRS) in TLE can present after a latent period following a neurological insult (traumatic brain injury, SE event, viral infection, etc.). Moreover, this model is suitable for preclinical studies to evaluate the long-term process of epileptogenesis and screen putative disease-modifying/antiepileptogenic agents. The burden of human TLE is highly variable, similar to the post-KA SE rat model. In this regard, this model may have broad translational relevance. This report thus details the pharmacological characterization and methodological refinement of a moderate-throughput drug screening program using the post-KA-induced SE model of epileptogenesis in male Sprague Dawley rats to identify potential agents that may prevent or modify the burden of SRS. Specifically, we sought to demonstrate whether our protocol could prevent the development of SRS or lead to a reduced frequency/severity of SRS. METHODS Rats were administered either everolimus (2-3 mg/kg po) beginning 1, 2, or 24 h after SE onset, or phenobarbital (60 mg/kg ip) beginning 1 h after SE onset. All treatments were administered once/day for 5-7 days. Rats in all studies (n = 12/treatment dose/study) were then monitored intermittently by video-electroencephalography (2 weeks on, 2 weeks off, 2 weeks on epochs) to determine latency to onset of SRS and disease burden. RESULTS Although no adverse side effects were observed in our studies, no treatment significantly modified disease or prevented the presentation of SRS by 6 weeks after SE onset. SIGNIFICANCE Neither phenobarbital nor everolimus administered at several time points after SE onset prevented the development of SRS. Nonetheless, we demonstrate a practical and moderate-throughput screen for potential antiepileptogenic agents in a rat model of TLE.
Collapse
Affiliation(s)
| | - Kevin Knox
- Department of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | | | - Zachery Koneval
- Department of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Cameron Metcalf
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUtahUSA
| | - Karen S. Wilcox
- Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUtahUSA
| | - H. Steve White
- Department of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
10
|
Curcumin: A Review of Its Effects on Epilepsy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:363-373. [PMID: 34331701 DOI: 10.1007/978-3-030-56153-6_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Central nervous system (CNS) diseases pose an enormous healthcare burden, at both an individual and a societal level. Epilepsy has now become one of the most prevalent CNS disorders. Pharmaceutical drugs prescribed for epilepsy often have serious side effects and, for this reason, attention has turned to the use of medicinal plants. Curcumin (diferuloylmethane) is a major component of Curcuma longa and exhibits various pharmacological effects, including anti-inflammatory, antioxidant, and immunoregulatory properties. Here, we have reviewed the literature relating specifically to the antiepileptic effects of curcumin. The evidence suggests a protective effect of curcumin in the control of epileptic seizures, together with a protective effect on the relief of memory impairment, which may stem from its influence on monoamine levels in the brain.
Collapse
|
11
|
Bojja SL, Medhi B, Anand S, Bhatia A, Joshi R, Minz RW. Metformin ameliorates the status epilepticus- induced hippocampal pathology through possible mTOR modulation. Inflammopharmacology 2021; 29:137-151. [PMID: 33386490 DOI: 10.1007/s10787-020-00782-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
The initial precipitating injury such as SE progresses to chronic epilepsy through multiple epileptogenic processes. Early epileptogenic events are generally characterized by neuroinflammation, neurodegeneration and abnormal neurogenesis in the hippocampus. Metformin has exhibited anti-inflammatory and neuroprotective properties in numerous studies. The current study attempts to investigate the effect of metformin on seizure-induced inflammation and neuronal degeneration, and the involvement of the mTOR pathway. Status epilepticus (SE) was induced in male Wistar rats with systemic administration of Lithium (127 mg/kg) and Pilocarpine (30 mg/kg). In test rats, Metformin 100 mg/kg or 200 mg/kg was administered orally for 7 days, followed by SE induction. Results indicate that metformin did not alter the SE profile significantly which was evident by the behavioural scoring and electroencephalogram (EEG) recordings. However, metformin 200 mg/kg attenuated the SE-induced glial activation (p < 0.01), up regulated mRNA levels of proinflammatory cytokines (p < 0.001) and chemokines (p < 0.001) and enhanced BBB permeability (p < 0.05). In addition, metformin ameliorated the insult-induced region-specific neuronal damage (p < 0.01) and restored the hippocampal neuronal density. Metformin significantly inhibited phosphorylated S6 ribosomal protein (phospho-S6rp) (p < 0.05), thus demonstrating that the beneficial effects might be partly mediated by the mTOR pathway. The study thus reiterates that mTOR signalling is one of the mechanisms involved in inflammation and neurodegeneration in early epileptogenesis following SE.
Collapse
Affiliation(s)
- Sree Lalitha Bojja
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, MAHE, Manipal, Karnataka, 576104, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shashi Anand
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
12
|
|
13
|
MacCallum PE, Blundell J. The mTORC1 inhibitor rapamycin and the mTORC1/2 inhibitor AZD2014 impair the consolidation and persistence of contextual fear memory. Psychopharmacology (Berl) 2020; 237:2795-2808. [PMID: 32601986 DOI: 10.1007/s00213-020-05573-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
RATIONALE The mechanistic target of rapamycin (mTOR) kinase mediates various long-lasting forms of synaptic and behavioural plasticity. However, there is little information concerning the temporal pattern of mTOR activation and susceptibility to pharmacological intervention during consolidation of contextual fear memory. Moreover, the contribution of both mTOR complex 1 and 2 together or the mTOR complex 1 downstream effector p70S6K (S6K1) to consolidation of contextual fear memory is unknown. OBJECTIVE Here, we tested whether different timepoints of vulnerability to rapamycin, a first generation mTOR complex 1 inhibitor, exist for contextual fear memory consolidation and persistence. We also sought to characterize the effects of dually inhibiting mTORC1/2 as well as S6K1 on fear memory formation and persistence. METHODS Rapamycin was injected systemically to mice immediately, 3 h, or 12 h after contextual fear conditioning, and retention was measured at different timepoints thereafter. To determine the effects of a single injection of the dual mTROC1/2 inhibitor AZD2014 after learning on memory consolidation and persistence, a dose-response experiment was carried out. Memory formation and persistence was also assessed in response to the S6K1 inhibitor PF-4708671. RESULTS A single systemic injection of rapamycin immediately or 3 h, but not 12 h, after learning impaired the formation and persistence of contextual fear memory. AZD2014 was found, with limitations, to dose-dependently attenuate memory consolidation and persistence at the highest dose tested (50 mg/kg). In contrast, PF-4708671 had no effect on consolidation or persistence. CONCLUSION Our results indicate the need to further understand the role of mTORC1/2 kinase activity in the molecular mechanisms underlying memory processing and also demonstrate that the effects of mTORC1 inhibition at different timepoints well after learning on memory consolidation and persistence.
Collapse
Affiliation(s)
- Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
14
|
Schmitt C, Lechanteur A, Cossais F, Bellefroid C, Arnold P, Lucius R, Held-Feindt J, Piel G, Hattermann K. Liposomal Encapsulated Curcumin Effectively Attenuates Neuroinflammatory and Reactive Astrogliosis Reactions in Glia Cells and Organotypic Brain Slices. Int J Nanomedicine 2020; 15:3649-3667. [PMID: 32547020 PMCID: PMC7259452 DOI: 10.2147/ijn.s245300] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction The polyphenolic spice and food coloring ingredient curcumin has beneficial effects in a broad variety of inflammatory diseases. Amongst them, curcumin has been shown to attenuate microglia reaction and prevent from glial scar formation in spinal cord and brain injuries. Methods We developed a protocol for the efficient encapsulation of curcumin as a model for anti-inflammatory drugs yielding long-term stable, non-toxic liposomes with favorable physicochemical properties. Subsequently, we evaluate the effects of liposomal curcumin in experimental models for neuroinflammation and reactive astrogliosis. Results We could show that liposomal curcumin can efficiently reduce the reactivity of human microglia and astrocytes and preserve tissue integrity of murine organotypic cortex slices. Discussion and Perspective In perspective, we want to administer this curcumin formulation in brain implant coatings to prevent neuroinflammation and glial scar formation as foreign body responses of the brain towards implanted materials.
Collapse
Affiliation(s)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | | - Coralie Bellefroid
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | - Philipp Arnold
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Ralph Lucius
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Kiel D-24105, Germany
| | - Geraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | |
Collapse
|
15
|
Abstract
Objectives: The beneficial effects of many substances have been discovered because of regular dietary consumption. This is also the case with curcumin, whose effects have been known for more than 4,000 years in Eastern countries such as China and India. A curcumin-rich diet has been known to counteract many human diseases, including cancer and diabetes, and has been shown to reduce inflammation. The effect of a curcumin treatment for neurological diseases, such as spinal muscular atrophy; Alzheimer's disease; Parkinson's disease; amyotrophic lateral sclerosis; multiple sclerosis; and others, has only recently been brought to the attention of researchers and the wider population.Methods: In this paper, we summarise the studies on this natural product, from its isolation two centuries ago to its characterisation a century later.Results: We describe its role in the treatment of neurological diseases, including its cellular and common molecular mechanisms, and we report on the clinical trials of curcumin with healthy people and patients.Discussion: Commenting on the different approaches adopted by the efforts made to increase its bioavailability.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Daniele Bottai
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
17
|
Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res 2020; 161:106282. [PMID: 32036255 DOI: 10.1016/j.eplepsyres.2020.106282] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
18
|
Gericke B, Brandt C, Theilmann W, Welzel L, Schidlitzki A, Twele F, Kaczmarek E, Anjum M, Hillmann P, Löscher W. Selective inhibition of mTORC1/2 or PI3K/mTORC1/2 signaling does not prevent or modify epilepsy in the intrahippocampal kainate mouse model. Neuropharmacology 2019; 162:107817. [PMID: 31654704 DOI: 10.1016/j.neuropharm.2019.107817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/23/2022]
Abstract
Dysregulation of the PI3K/Akt/mTOR pathway has been implicated in several brain disorders, including epilepsy. Rapamycin and similar compounds inhibit mTOR. complex 1 and have been reported to decrease seizures, delay seizure development, or prevent epileptogenesis in different animal models of genetic or acquired epilepsies. However, data for acquired epilepsy are inconsistent, which, at least in part, may be due to the poor brain penetration and long brain persistence of rapamycin and the fact that it blocks only one of the two cellular mTOR complexes. Here we examined the antiepileptogenic or disease-modifying effects of two novel, brain-permeable and well tolerated 1,3,5-triazine derivatives, the ATP-competitive mTORC1/2 inhibitor PQR620 and the dual pan-PI3K/mTORC1/2 inhibitor PQR530 in the intrahippocampal kainate mouse model, in which spontaneous seizures develop after status epilepticus (SE). Following kainate injection, the two compounds were administered over 2 weeks at doses previously been shown to block mTORC1/2 or PI3K/mTORC1/2 in the mouse brain. When spontaneous seizures were recorded by continuous (24/7) video-EEG recording starting 6 weeks after termination of treatment, no effects on incidence or frequency of seizures were observed. Drug treatment suppressed the epilepsy-induced activation of the PI3K/Akt/mTOR pathway in the hippocampus, but granule cell dispersion in the dentate gyrus was not prevented. When epilepsy-associated behavioral alterations were determined 12-14 weeks after kainate, mice pretreated with PQR620 or PQR530 exhibited reduced anxiety-related behavior in the light-dark box, indicating a disease-modifying effect. Overall, the data indicate that mTORC1/C2 or PI3K/mTORC1/C2 inhibition may not be an antiepileptogenic strategy for SE-induced epilepsy.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wiebke Theilmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Lisa Welzel
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Muneeb Anjum
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
19
|
Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2019; 167:107605. [PMID: 30980836 DOI: 10.1016/j.neuropharm.2019.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
A variety of acute brain insults can induce epileptogenesis, a complex process that results in acquired epilepsy. Despite advances in understanding mechanisms of epileptogenesis, there is currently no approved treatment that prevents the development or progression of epilepsy in patients at risk. The current concept of epileptogenesis assumes a window of opportunity following acute brain insults that allows intervention with preventive treatment. Recent results suggest that injury-induced epileptogenesis can be a much more rapid process than previously thought, suggesting that the 'therapeutic window' may only be open for a brief period, as in stroke therapy. However, experimental data also suggest a second, possibly delayed process ("secondary epileptogenesis") that influences the progression and refractoriness of the epileptic state over time, allowing interfering with this process even after onset of epilepsy. In this review, both methodological issues in preclinical drug development and novel targets for antiepileptogenesis will be discussed. Several promising drugs that either prevent epilepsy (antiepileptogenesis) or slow epilepsy progression and alleviate cognitive or behavioral comorbidities of epilepsy (disease modification) have been described in recent years, using diverse animal models of acquired epilepsy. Promising agents include TrkB inhibitors, losartan, statins, isoflurane, anti-inflammatory and anti-oxidative drugs, the SV2A modulator levetiracetam, and epigenetic interventions. Research on translational target validity and on prognostic biomarkers that can be used to stratify patients (or experimental animals) at high risk of developing epilepsy will hopefully soon lead to proof-of-concept clinical trials with the most promising drugs, which will be essential to make prevention of epilepsy a reality. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
20
|
Leite Góes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: Potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev 2019; 98:122-134. [PMID: 30629979 PMCID: PMC7023906 DOI: 10.1016/j.neubiorev.2019.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Mesial Temporal Lobe Epilepsy (mTLE) characterized by progressive development of complex partial seizures originating from the hippocampus is the most prevalent and refractory type of epilepsy. One of the remarkable features of mTLE is the rhythmic pattern of occurrence of spontaneous seizures, implying a dependence on the endogenous clock system for seizure threshold. Conversely, circadian rhythms are affected by epilepsy too. Comprehending how the circadian system and seizures interact with each other is essential for understanding the pathophysiology of epilepsy as well as for developing innovative therapies that are efficacious for better seizure control. In this review, we confer how the temporal dysregulation of the circadian clock in the hippocampus combined with multiple uncoupled oscillators could lead to periodic seizure occurrences and comorbidities. Unraveling these associations with additional research would help in developing chronotherapy for mTLE, based on the chronobiology of spontaneous seizures. Notably, differential dosing of antiepileptic drugs over the circadian period and/or strategies that resynchronize biological rhythms may substantially improve the management of seizures in mTLE patients.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | | | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.
| |
Collapse
|
21
|
Drion CM, Kooijman L, Aronica E, van Vliet EA, Wadman WJ, Chameau P, Gorter JA. Curcumin reduces development of seizurelike events in the hippocampal-entorhinal cortex slice culture model for epileptogenesis. Epilepsia 2019; 60:605-614. [PMID: 30747999 DOI: 10.1111/epi.14667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Inhibition of the mammalian target of rapamycin (mTOR) pathway could be antiepileptogenic in temporal lobe epilepsy (TLE), possibly via anti-inflammatory actions. We studied effects of the mTOR inhibitor rapamycin and the anti-inflammatory compound curcumin-also reported to inhibit the mTOR pathway-on epileptogenesis and inflammation in an in vitro organotypic hippocampal-entorhinal cortex slice culture model. METHODS Brain slices containing hippocampus and entorhinal cortex were obtained from 6-day-old rat pups and maintained in culture for up to 3 weeks. Rapamycin or curcumin was added to the culture medium from day 2 in vitro onward. Electrophysiological recordings revealed epileptiformlike activity that developed over 3 weeks. RESULTS In week 3, spontaneous seizurelike events (SLEs) could be detected using whole cell recordings from CA1 principal neurons. The percentage of recorded CA1 neurons displaying SLEs was lower in curcumin-treated slice cultures compared to vehicle-treated slices (25.8% vs 72.5%), whereas rapamycin did not reduce SLE occurrence significantly (52%). Western blot for phosphorylated-S6 (pS6) and phosphorylated S6K confirmed that rapamycin inhibited the mTOR pathway, whereas curcumin only lowered pS6 expression at one phosphorylation site. Real-time quantitative polymerase chain reaction results indicated a trend toward lower expression of inflammatory markers IL-1β and IL-6 and transforming growth factor β after 3 weeks of treatment with rapamycin and curcumin compared to vehicle. SIGNIFICANCE Our results show that curcumin suppresses SLEs in the combined hippocampal-entorhinal cortex slice culture model and suggest that its antiepileptogenic effects should be further investigated in experimental models of TLE.
Collapse
Affiliation(s)
- Cato M Drion
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieneke Kooijman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wytse J Wadman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Pascal Chameau
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
23
|
Kumar V, Prakash C, Singh R, Sharma D. Curcumin's antiepileptic effect, and alterations in Na v1.1 and Na v1.6 expression in iron-induced epilepsy. Epilepsy Res 2018; 150:7-16. [PMID: 30605865 DOI: 10.1016/j.eplepsyres.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
The present study was carried out to evaluate: the antiepileptic effect of dietary curcumin, and the effect of epileptic state and curcumin on the molecular expression of voltage-activated Na+ channel subtypes Nav1.1 and Nav1.6 in the iron-induced experimental epilepsy in the rat. Rats were divided into four groups; Group I (control rats), Group II (epileptic rats), Group III (curcumin-fed epileptic rats), and Group IV (curcumin-fed rats). Curcumin was fed chronically to rats approximately at the dose of 100 mg/kg body wt. The animals were made epileptic by intracortical injection of FeCl3. The mRNA and protein expressions of Nav1.1 and Nav1.6 were examined by RT-PCR analysis and immuno-histochemistry. Results showed a significant increase (upregulation) in the expression of both Nav1.1 and Nav1.6 with seizure activity in the cortex and hippocampus of epileptic rats. Epileptic rats fed with curcumin showed a marked decrease in epileptiform activity, and reduced mRNA and protein levels of Nav1.1. It appears that the antiepileptic action of curcumin may be associated with the downregulation of Nav1.1 in the cortex.
Collapse
Affiliation(s)
- Vikas Kumar
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rameshwar Singh
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
24
|
Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L. Is Mossy Fiber Sprouting a Potential Therapeutic Target for Epilepsy? Front Neurol 2018; 9:1023. [PMID: 30555406 PMCID: PMC6284045 DOI: 10.3389/fneur.2018.01023] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress to secondary generalized seizures. Morphological alterations in hippocampal sclerosis are well defined. Among them, hippocampal sclerosis is characterized by prominent cell loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber sprouting in seizure generation and hippocampal excitability and discuss the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy).
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jackeline Malheiros
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
25
|
Brandt C, Hillmann P, Noack A, Römermann K, Öhler LA, Rageot D, Beaufils F, Melone A, Sele AM, Wymann MP, Fabbro D, Löscher W. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology 2018; 140:107-120. [PMID: 30081001 DOI: 10.1016/j.neuropharm.2018.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The mTOR signaling pathway has emerged as a possible therapeutic target for epilepsy. Clinical trials have shown that mTOR inhibitors such as everolimus reduce seizures in tuberous sclerosis complex patients with intractable epilepsy. Furthermore, accumulating preclinical data suggest that mTOR inhibitors may have anti-seizure or anti-epileptogenic actions in other types of epilepsy. However, the chronic use of rapalogs such as everolimus is limited by poor tolerability, particularly by immunosuppression, poor brain penetration and induction of feedback loops which might contribute to their limited therapeutic efficacy. Here we describe two novel, brain-permeable and well tolerated small molecule 1,3,5-triazine derivatives, the catalytic mTORC1/C2 inhibitor PQR620 and the dual pan-PI3K/mTOR inhibitor PQR530. These derivatives were compared with the mTORC1 inhibitors rapamycin and everolimus as well as the anti-seizure drugs phenobarbital and levetiracetam. The anti-seizure potential of these compounds was determined by evaluating the electroconvulsive seizure threshold in normal and epileptic mice. Rapamycin and everolimus only poorly penetrated into the brain (brain:plasma ratio 0.0057 for rapamycin and 0.016 for everolimus). In contrast, the novel compounds rapidly entered the brain, reaching brain:plasma ratios of ∼1.6. Furthermore, they significantly decreased phosphorylation of S6 ribosomal protein in the hippocampus of normal and epileptic mice, demonstrating effective mTOR inhibition. PQR620 and PQR530 significantly increased seizure threshold at tolerable doses. The effect of PQR620 was more marked in epileptic vs. nonepileptic mice, matching the efficacy of levetiracetam. Overall, the novel compounds described here have the potential to overcome the disadvantages of rapalogs for treatment of epilepsy and mTORopathies directly connected to mutations in the mTOR signaling cascade.
Collapse
Affiliation(s)
- Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | - Andreas Noack
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Leon A Öhler
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Denise Rageot
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Anna Melone
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexander M Sele
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
26
|
Drion CM, van Scheppingen J, Arena A, Geijtenbeek KW, Kooijman L, van Vliet EA, Aronica E, Gorter JA. Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo - in search of potential anti-epileptogenic strategies for temporal lobe epilepsy. J Neuroinflammation 2018; 15:212. [PMID: 30037344 PMCID: PMC6056921 DOI: 10.1186/s12974-018-1247-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies in various rodent epilepsy models have suggested that mammalian target of rapamycin (mTOR) inhibition with rapamycin has anti-epileptogenic potential. Since treatment with rapamycin produces unwanted side effects, there is growing interest to study alternatives to rapamycin as anti-epileptogenic drugs. Therefore, we investigated curcumin, the main component of the natural spice turmeric. Curcumin is known to have anti-inflammatory and anti-oxidant effects and has been reported to inhibit the mTOR pathway. These properties make it a potential anti-epileptogenic compound and an alternative for rapamycin. Methods To study the anti-epileptogenic potential of curcumin compared to rapamycin, we first studied the effects of both compounds on mTOR activation, inflammation, and oxidative stress in vitro, using cell cultures of human fetal astrocytes and the neuronal cell line SH-SY5Y. Next, we investigated the effects of rapamycin and intracerebrally applied curcumin on status epilepticus (SE)—induced inflammation and oxidative stress in hippocampal tissue, during early stages of epileptogenesis in the post-electrical SE rat model for temporal lobe epilepsy (TLE). Results Rapamycin, but not curcumin, suppressed mTOR activation in cultured astrocytes. Instead, curcumin suppressed the mitogen-activated protein kinase (MAPK) pathway. Quantitative real-time PCR analysis revealed that curcumin, but not rapamycin, reduced the levels of inflammatory markers IL-6 and COX-2 in cultured astrocytes that were challenged with IL-1β. In SH-SY5Y cells, curcumin reduced reactive oxygen species (ROS) levels, suggesting anti-oxidant effects. In the post-SE rat model, however, treatment with rapamycin or curcumin did not suppress the expression of inflammatory and oxidative stress markers 1 week after SE. Conclusions These results indicate anti-inflammatory and anti-oxidant properties of curcumin, but not rapamycin, in vitro. Intracerebrally applied curcumin modified the MAPK pathway in vivo at 1 week after SE but failed to produce anti-inflammatory or anti-oxidant effects. Future studies should be directed to increasing the bioavailability of curcumin (or related compounds) in the brain to assess its anti-epileptogenic potential in vivo. Electronic supplementary material The online version of this article (10.1186/s12974-018-1247-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C M Drion
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J van Scheppingen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Arena
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - K W Geijtenbeek
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - L Kooijman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - E A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - J A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Dhir A. Curcumin in epilepsy disorders. Phytother Res 2018; 32:1865-1875. [PMID: 29917276 DOI: 10.1002/ptr.6125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/01/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
Abstract
Curcumin, a principal curcuminoid present in turmeric, has an antioxidant, anti-inflammatory and neuroprotective properties. Preclinical studies have indicated its beneficial effect for the treatment of epilepsy disorders. The molecule has an anti-seizure potential in preclinical studies, including chemical and electrical models of acute and chronic epilepsy. Curcumin also possesses an anti-epileptogenic activity as it reduces spontaneous recurrent seizures severity in a kainate model of temporal lobe epilepsy. The antioxidant and anti-inflammatory nature of curcumin might be responsible for its observed anti-seizure effects; nevertheless, the exact mechanism is not yet clear. The poor availability of curcumin to the brain limits its use in clinics. The application of nanoliposome and liposome technologies has been tested to enhance its brain availability and penetrability. Unfortunately, there are no randomized, double-blinded controlled clinical trials validating the use of curcumin in epilepsy. The present article analyzes different preclinical evidence illustrating the effect of curcumin in seizure models. The review encourages carrying out clinical trials in this important area of research. In conclusion, curcumin might be beneficial in patients with epilepsy disorders, if its bioavailability issues are resolved.
Collapse
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of Medicine, University of California, Davis, CA, 95817
| |
Collapse
|
28
|
Godale CM, Danzer SC. Signaling Pathways and Cellular Mechanisms Regulating Mossy Fiber Sprouting in the Development of Epilepsy. Front Neurol 2018; 9:298. [PMID: 29774009 PMCID: PMC5943493 DOI: 10.3389/fneur.2018.00298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 02/04/2023] Open
Abstract
The sprouting of hippocampal dentate granule cell axons, termed mossy fibers, into the dentate inner molecular layer is one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy. Decades of research in animal models have revealed that mossy fiber sprouting creates de novo recurrent excitatory connections in the hippocampus, fueling speculation that the pathology may drive temporal lobe epileptogenesis. Conducting definitive experiments to test this hypothesis, however, has been challenging due to the difficulty of dissociating this sprouting from the many other changes occurring during epileptogenesis. The field has been largely driven, therefore, by correlative data. Recently, the development of powerful transgenic mouse technologies and the discovery of novel drug targets has provided new tools to assess the role of mossy fiber sprouting in epilepsy. We can now selectively manipulate hippocampal granule cells in rodent epilepsy models, providing new insights into the granule cell subpopulations that participate in mossy fiber sprouting. The cellular pathways regulating this sprouting are also coming to light, providing new targets for pharmacological intervention. Surprisingly, many investigators have found that blocking mossy fiber sprouting has no effect on seizure occurrence, while seizure frequency can be reduced by treatments that have no effect on this sprouting. These results raise new questions about the role of mossy fiber sprouting in epilepsy. Here, we will review these findings with particular regard to the contributions of new granule cells to mossy fiber sprouting and the regulation of this sprouting by the mTOR signaling pathway.
Collapse
Affiliation(s)
- Christin M Godale
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
29
|
Micronization potentiates curcumin's anti-seizure effect and brings an important advance in epilepsy treatment. Sci Rep 2018; 8:2645. [PMID: 29422541 PMCID: PMC5805781 DOI: 10.1038/s41598-018-20897-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is one of the most common neurological diseases, and current antiepileptic drugs fail to suppress seizure occurrence in around one third of epileptic patients. Curcumin is a phytochemical with promising effects on epilepsy treatment. However, its application has been hindered by its low bioavailability. In order to improve curcumin’s anti-seizure properties, increasing its bioavailability, here we proposed to micronize the compound through supercritical carbon dioxide processing, a suitable green chemistry technique to prepare and modify material properties. Here we investigated the anti-seizure potential of the classical antiepileptic drug valproate, curcumin in its natural state, and micronized curcumin in a PTZ-induced seizure model in zebrafish (Danio rerio). Concerning seizure development, valproate, curcumin and micronized curcumin showed protective effects, slowing seizure development both in larvae and adult animals. Nevertheless, considering the occurrence of the tonic-clonic seizure stage, only valproate and micronized curcumin reduced it, both in larvae and adult zebrafish, unlike non-processed curcumin. Our obtained results are very promising, since micronized curcumin showed effects that are similar to a classic antiepileptic drug, reducing seizure occurrence and slowing seizure progression.
Collapse
|
30
|
Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother 2018; 18:185-201. [DOI: 10.1080/14737175.2018.1428562] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
- Child Neurology Unit, Neuroscience and Neurorehabilitation Department, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
31
|
Lopes F, Keita ÅV, Saxena A, Reyes JL, Mancini NL, Al Rajabi A, Wang A, Baggio CH, Dicay M, van Dalen R, Ahn Y, Carneiro MBH, Peters NC, Rho JM, MacNaughton WK, Girardin SE, Jijon H, Philpott DJ, Söderholm JD, McKay DM. ER-stress mobilization of death-associated protein kinase-1-dependent xenophagy counteracts mitochondria stress-induced epithelial barrier dysfunction. J Biol Chem 2018; 293:3073-3087. [PMID: 29317503 DOI: 10.1074/jbc.ra117.000809] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome contributes to inflammatory bowel disease (IBD), in which bacteria can be present within the epithelium. Epithelial barrier function is decreased in IBD, and dysfunctional epithelial mitochondria and endoplasmic reticulum (ER) stress have been individually associated with IBD. We therefore hypothesized that the combination of ER and mitochondrial stresses significantly disrupt epithelial barrier function. Here, we treated human colonic biopsies, epithelial colonoids, and epithelial cells with an uncoupler of oxidative phosphorylation, dinitrophenol (DNP), with or without the ER stressor tunicamycin and assessed epithelial barrier function by monitoring internalization and translocation of commensal bacteria. We also examined barrier function and colitis in mice exposed to dextran sodium sulfate (DSS) or DNP and co-treated with DAPK6, an inhibitor of death-associated protein kinase 1 (DAPK1). Contrary to our hypothesis, induction of ER stress (i.e. the unfolded protein response) protected against decreased barrier function caused by the disruption of mitochondrial function. ER stress did not prevent DNP-driven uptake of bacteria; rather, specific mobilization of the ATF6 arm of ER stress and recruitment of DAPK1 resulted in enhanced autophagic killing (xenophagy) of bacteria. Of note, epithelia with a Crohn's disease-susceptibility mutation in the autophagy gene ATG16L1 exhibited less xenophagy. Systemic delivery of the DAPK1 inhibitor DAPK6 increased bacterial translocation in DSS- or DNP-treated mice. We conclude that promoting ER stress-ATF6-DAPK1 signaling in transporting enterocytes counters the transcellular passage of bacteria evoked by dysfunctional mitochondria, thereby reducing the potential for metabolic stress to reactivate or perpetuate inflammation.
Collapse
Affiliation(s)
- Fernando Lopes
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Åsa V Keita
- the Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Linköping 581 83, Sweden, and
| | - Alpana Saxena
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Jose Luis Reyes
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Nicole L Mancini
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Ala Al Rajabi
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Arthur Wang
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Cristiane H Baggio
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Michael Dicay
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | - Rob van Dalen
- the Departments of Laboratory Medicine and Pathobiology and
| | - Younghee Ahn
- the Departments of Pediatrics, Clinical Neurosciences, and Physiology and Pharmacology and
| | - Matheus B H Carneiro
- the Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Nathan C Peters
- the Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Jong M Rho
- the Departments of Pediatrics, Clinical Neurosciences, and Physiology and Pharmacology and
| | - Wallace K MacNaughton
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| | | | - Humberto Jijon
- Medicine, Calvin, Joan, and Phoebe Snyder Institute for Chronic Diseases, and
| | - Dana J Philpott
- Immunology, University of Toronto, Toronto, Ontario M5S1A1, Canada
| | - Johan D Söderholm
- the Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Linköping 581 83, Sweden, and
| | - Derek M McKay
- From the Gastrointestinal Research Group, Departments of Physiology and Pharmacology and
| |
Collapse
|
32
|
Klein P, Dingledine R, Aronica E, Bernard C, Blümcke I, Boison D, Brodie MJ, Brooks-Kayal AR, Engel J, Forcelli PA, Hirsch LJ, Kaminski RM, Klitgaard H, Kobow K, Lowenstein DH, Pearl PL, Pitkänen A, Puhakka N, Rogawski MA, Schmidt D, Sillanpää M, Sloviter RS, Steinhäuser C, Vezzani A, Walker MC, Löscher W. Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia 2018; 59:37-66. [PMID: 29247482 PMCID: PMC5993212 DOI: 10.1111/epi.13965] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | | | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Christophe Bernard
- Aix Marseille Univ, Inserm, INS, Instit Neurosci Syst, Marseille, 13005, France
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Martin J Brodie
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, UK
| | - Amy R Brooks-Kayal
- Division of Neurology, Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Children's Hospital Colorado, Aurora, CO, USA
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jerome Engel
- Departments of Neurology, Neurobiology, and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | | | | | | | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michael A Rogawski
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Matti Sillanpää
- Departments of Child Neurology and General Practice, University of Turku and Turku University Hospital, Turku, Finland
| | - Robert S Sloviter
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Institute for Pharmacological Research, Milan,, Italy
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
33
|
de Almeida AA, Gomes da Silva S, Lopim GM, Vannucci Campos D, Fernandes J, Cabral FR, Arida RM. Physical exercise alters the activation of downstream proteins related to BDNF-TrkB signaling in male Wistar rats with epilepsy. J Neurosci Res 2017; 96:911-920. [DOI: 10.1002/jnr.24196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Alexandre Aparecido de Almeida
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
- Instituto Federal Goiano (IF Goiano), Campus Ceres; Ceres Brazil
| | - Sérgio Gomes da Silva
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Universidade de Mogi das Cruzes; Mogi das Cruzes Brazil
| | | | | | - Jansen Fernandes
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
| | - Francisco Romero Cabral
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Faculdade de Ciências Médicas da Santa Casa de São Paulo; São Paulo Brazil
| | - Ricardo Mario Arida
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
34
|
miR-96 attenuates status epilepticus-induced brain injury by directly targeting Atg7 and Atg16L1. Sci Rep 2017; 7:10270. [PMID: 28860495 PMCID: PMC5579030 DOI: 10.1038/s41598-017-10619-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
Status epilepticus (SE) can cause brain damage and lead to neural dysfunction. Developing novel targets for SE therapy and diagnosis is important and necessary. Previously, we found several differentially expressed microRNAs (miRNAs) in the developing hippocampus following SE, including the autophagy-related miR-96. In the present study, we employed immunofluorescence staining and Western blot analysis to assess the expression of autophagy-related 7 (Atg7) and Atg16L1 and the status of autophagosome formation in the hippocampus of immature rats with SE. Additional in vivo intervention was also performed to investigate the potential therapeutic function of miR-96 in developing rats with SE. We found that Atg7 and Atg16L1 were up-regulated in the neurons after SE, together with an increase in autophagosome formation. Meanwhile, overexpression of miR-96 significantly prevented brain damage in SE rats by inhibiting Atg7 and Atg16L1 expression and autophagosome formation in the hippocampus. Furthermore, Rapamycin negated miR-96 mediated brain injury attenuation through inducing autophagosome formation. Our study indicates that miR-96 might be a potential target for therapy of pediatric SE.
Collapse
|
35
|
Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D, Koh S, Löscher W, Louboutin JP, Mishto M, Norwood BA, Palma E, Poulter MO, Terrone G, Vezzani A, Kaminski RM. Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 2017; 58 Suppl 3:27-38. [PMID: 28675563 DOI: 10.1111/epi.13783] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience University of Amsterdam, Amsterdam, The Netherlands.,SEIN-Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Sebastian Bauer
- Department of Neurology, Philipps University, Marburg, Germany.,Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University, Frankfurt am Main, Germany
| | - Yuri Bozzi
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Raymond Dingledine
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience University of Amsterdam, Amsterdam, The Netherlands
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, U.S.A
| | - Sookyong Koh
- Department of Pediatrics, Emory University, Atlanta, Georgia, U.S.A
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Jean-Pierre Louboutin
- Department of Basic Medical Sciences, University of the West Indies, Kingston, Jamaica.,Gene Therapy Program, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Michele Mishto
- Charite University Medicine Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Braxton A Norwood
- Department of Neurology, Philipps University, Marburg, Germany.,Neuroscience Division, Expesicor LLC, Kalispell, Montana, U.S.A
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy
| | - Michael O Poulter
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Gaetano Terrone
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | |
Collapse
|
36
|
Akt Inhibitor Perifosine Prevents Epileptogenesis in a Rat Model of Temporal Lobe Epilepsy. Neurosci Bull 2017; 34:283-290. [PMID: 28786074 DOI: 10.1007/s12264-017-0165-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
Accumulating data have revealed that abnormal activity of the mTOR (mammalian target of rapamycin) pathway plays an important role in epileptogenesis triggered by various factors. We previously reported that pretreatment with perifosine, an inhibitor of Akt (also called protein kinase B), abolishes the rapamycin-induced paradoxical increase of S6 phosphorylation in a rat model induced by kainic acid (KA). Since Akt is an upstream target in the mTOR signaling pathway, we set out to determine whether perifosine has a preventive effect on epileptogenesis. Here, we explored the effect of perifosine on the model of temporal epilepsy induced by KA in rats and found that pretreatment with perifosine had no effect on the severity or duration of the KA-induced status epilepticus. However, perifosine almost completely inhibited the activation of p-Akt and p-S6 both acutely and chronically following the KA-induced status epilepticus. Perifosine pretreatment suppressed the KA-induced neuronal death and mossy fiber sprouting. The frequency of spontaneous seizures was markedly decreased in rats pretreated with perifosine. Accordingly, rats pretreated with perifosine showed mild impairment in cognitive functions. Collectively, this study provides novel evidence in a KA seizure model that perifosine may be a potential drug for use in anti-epileptogenic therapy.
Collapse
|
37
|
Broekaart DWM, van Scheppingen J, Geijtenbeek KW, Zuidberg MRJ, Anink JJ, Baayen JC, Mühlebner A, Aronica E, Gorter JA, van Vliet EA. Increased expression of (immuno)proteasome subunits during epileptogenesis is attenuated by inhibition of the mammalian target of rapamycin pathway. Epilepsia 2017. [DOI: 10.1111/epi.13823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Diede W. M. Broekaart
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Karlijne W. Geijtenbeek
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Mark R. J. Zuidberg
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Jasper J. Anink
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Johannes C. Baayen
- Department of Neurosurgery; VU University Medical Center; Vrije Universiteit; Amsterdam The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Swammerdam Institute for Life Sciences; Center for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
| | - Jan A. Gorter
- Swammerdam Institute for Life Sciences; Center for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
| | - Erwin A. van Vliet
- Department of (Neuro)Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
38
|
Aminirad A, Mousavi SE, Fakhraei N, Mousavi SM, Rezayat SM. The role of nitric oxide in anticonvulsant effect of nanocurcumine on pentylenetetrazole-induced seizure in mice. Neurosci Lett 2017; 651:226-231. [PMID: 28501696 DOI: 10.1016/j.neulet.2017.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/16/2017] [Accepted: 05/09/2017] [Indexed: 01/08/2023]
Abstract
A plant alkaloid obtained from Curcuma longa, curcumin possesses anti-oxidant and anti-inflammatory effects. Nanoformulations have been developed for preclinical studies which demonstrate enhanced therapeutic efficacy. Effect of acute intraperitoneal (i.p.) administration of curcumin C3 complex nanoparticles [1,5, 10, 20, 40, 80mg/kg, (i.p.)] 75min prior to PTZ, on clonic seizure thresholds induced by intravenous infusion of pentylenetetrazole (PTZ) 0.5% was investigated in comparison with curcumin (40 and 80mg/kg, i.p.) in male mice. Moreover, to clarify the probable role of NO in the anticonvulsant property of nanocurcumin, non-effective doses of l-arginine (l-Arg), a NO donor; 7-nitroindazole, 7-NI, a preferential neuronal NO synthase inhibitor; L-NAME, a non-selective NO synthase inhibitor and aminoguanidine (AG), a selective inducible NO synthase inhibitor (iNOS), in combination with nanocurcumin (80mg/kg, i.p.), 15-30min before it were employed. RESULTS While curcumin did not show any anticonvulsant effect, nanocurcumin revealed dose-dependent anticonvulsant property at the doses 20, 40 and 80mg/kg, P<0.01, P<0.01 and P<0.001, respectively. l-Arg (30 and 60mg/kg) dose-dependently reversed the anticonvulsant effect of the most effective nanocurcumin dose (80mg/kg), P<0.01 and P<0.001, respectively. On the other hand, L-NAME (3 and 10mg/kg, i.p.) markedly potentiated the sub effective dose of nanocurcumin (10mg/kg), P<0.01 and P<0.001, respectively. Similarly, AG (50 and 100mg/kg, i.p.) profoundly augmented the seizure thresholds of nanocurcumin (10mg/kg), P<0.01 and P<0.001, respectively. In addition, 7-NI (10, 30 and 60mg/kg, i.p.) failed to influence the responses. CONCLUSION These data may support excess of NO production following PTZ infusion probably resulting from iNOS source. Consequently, nanocurcumin probably down regulated NO. To conclude, nanocurcumin showed anticonvulsant effect. Furthermore, this effect was reversed following l-arginine as an external NO precursor. However, both the non-selective NOS inhibitor and selective iNOS inhibitor increased the thresholds. It is evident that nanocurcumin may influence the seizure thresholds at least in part through a decrease in NO.
Collapse
Affiliation(s)
- Alireza Aminirad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nahid Fakhraei
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | | | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of mTOR. Neuroscience 2017; 341:112-153. [PMID: 27889578 DOI: 10.1016/j.neuroscience.2016.11.017] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/17/2023]
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that controls several important aspects of mammalian cell function. mTOR activity is modulated by various intra- and extracellular factors; in turn, mTOR changes rates of translation, transcription, protein degradation, cell signaling, metabolism, and cytoskeleton dynamics. mTOR has been repeatedly shown to participate in neuronal development and the proper functioning of mature neurons. Changes in mTOR activity are often observed in nervous system diseases, including genetic diseases (e.g., tuberous sclerosis complex, Pten-related syndromes, neurofibromatosis, and Fragile X syndrome), epilepsy, brain tumors, and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease). Neuroscientists only recently began deciphering the molecular processes that are downstream of mTOR that participate in proper function of the nervous system. As a result, we are gaining knowledge about the ways in which aberrant changes in mTOR activity lead to various nervous system diseases. In this review, we provide a comprehensive view of mTOR in the nervous system, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of mTOR to nervous system diseases.
Collapse
Affiliation(s)
- Katarzyna Switon
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw 04-730, Poland
| | | | - Justyna Zmorzynska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland.
| |
Collapse
|
40
|
Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. Eur J Cell Biol 2017; 96:154-163. [PMID: 28153412 DOI: 10.1016/j.ejcb.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/20/2022] Open
Abstract
Inositol and inositol-containing compounds have signalling and regulatory roles in many cellular processes, suggesting that inositol imbalance may lead to wide-ranging changes in cellular functions. Indeed, changes in inositol-dependent signalling have been implicated in various diseases and cellular functions such as autophagy, and these changes have often been proposed as therapeutic targets. However, few studies have highlighted the links between inositol depletion and the downstream effects on inositol phosphates and phosphoinositides in disease states. For this research, many advances have employed simple model systems that include the social amoeba D. discoideum and the yeast S. cerevisiae, since these models enable a range of experimental approaches that are not possible in mammalian models. In this review, we discuss recent findings initiated in simple model systems and translated to higher model organisms where the effect of altered inositol, inositol phosphate and phosphoinositide levels impact on bipolar disorder, Alzheimer disease, epilepsy and autophagy.
Collapse
|