1
|
Xie K, Royer J, Rodriguez-Cruces R, Horwood L, Ngo A, Arafat T, Auer H, Sahlas E, Chen J, Zhou Y, Valk SL, Hong SJ, Frauscher B, Pana R, Bernasconi A, Bernasconi N, Concha L, Bernhardt BC. Temporal Lobe Epilepsy Perturbs the Brain-Wide Excitation-Inhibition Balance: Associations with Microcircuit Organization, Clinical Parameters, and Cognitive Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406835. [PMID: 39806576 DOI: 10.1002/advs.202406835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models. A broad decrease in the Hurst exponent is observed in pharmaco-resistant temporal lobe epilepsy (TLE), suggesting more excitable network dynamics. Connectome decoders point to temporolimbic and frontocentral cortices as plausible network epicenters of E/I imbalance. Furthermore, computational simulations reveal that enhancing cortical excitability in TLE reflects atypical increases in recurrent connection strength of local neuronal ensembles. Mixed cross-sectional and longitudinal analyses show stronger E/I ratio elevation in patients with longer disease duration, more frequent electroclinical seizures as well as interictal epileptic spikes, and worse cognitive functioning. Hurst exponent-informed classifiers discriminate patients from healthy controls with high accuracy (72.4% [57.5%-82.5%]). Replicated in an independent dataset, this work provides in vivo evidence of a macroscale shift in E/I balance in TLE patients and points to progressive functional imbalances that relate to cognitive decline.
Collapse
Affiliation(s)
- Ke Xie
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Linda Horwood
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Alexander Ngo
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Thaera Arafat
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Hans Auer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Ella Sahlas
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Judy Chen
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Yigu Zhou
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Sofie L Valk
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, 34126, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- Center for the Developing Brain, Child Mind Institute, New York City, NY, 10022, USA
| | - Birgit Frauscher
- Department of Neurology and Department of Biomedical Engineering, Duke University, Durham, NC, 27704, USA
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico, Queretaro, 76230, Mexico
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
2
|
Cabalo DG, DeKraker J, Royer J, Xie K, Tavakol S, Rodríguez-Cruces R, Bernasconi A, Bernasconi N, Weil A, Pana R, Frauscher B, Caciagli L, Jefferies E, Smallwood J, Bernhardt BC. Differential reorganization of episodic and semantic memory systems in epilepsy-related mesiotemporal pathology. Brain 2024; 147:3918-3932. [PMID: 39054915 PMCID: PMC11531848 DOI: 10.1093/brain/awae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Weil
- Research Centre, CHU St Justine, Montreal, QC H3T 1C5, Canada
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
3
|
Larivière S, Schaper FLWVJ, Royer J, Rodríguez-Cruces R, Xie K, DeKraker J, Ngo A, Sahlas E, Chen J, Tavakol S, Drew W, Morton-Dutton M, Warren AEL, Baratono SR, Rolston JD, Weng Y, Bernasconi A, Bernasconi N, Concha L, Zhang Z, Frauscher B, Bernhardt BC, Fox MD. Brain Networks for Cortical Atrophy and Responsive Neurostimulation in Temporal Lobe Epilepsy. JAMA Neurol 2024; 81:2824204. [PMID: 39348148 PMCID: PMC11555549 DOI: 10.1001/jamaneurol.2024.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Importance Drug-resistant temporal lobe epilepsy (TLE) has been associated with hippocampal pathology. Most surgical treatment strategies, including resection and responsive neurostimulation (RNS), focus on this disease epicenter; however, imaging alterations distant from the hippocampus, as well as emerging data from responsive neurostimulation trials, suggest conceptualizing TLE as a network disorder. Objective To assess whether brain networks connected to areas of atrophy in the hippocampus align with the topography of distant neuroimaging alterations and RNS response. Design, Setting, and Participants This retrospective case-control study was conducted between July 2009 and June 2022. Data collection for this multicenter, population-based study took place across 4 tertiary referral centers in Montréal, Canada; Querétaro, México; Nanjing, China; and Salt Lake City, Utah. Eligible patients were diagnosed with TLE according to International League Against Epilepsy criteria and received either neuroimaging or neuroimaging and RNS to the hippocampus. Patients with encephalitis, traumatic brain injury, or bilateral TLE were excluded. Main Outcomes and Measures Spatial alignment between brain network topographies. Results Of the 110 eligible patients, 94 individuals diagnosed with TLE were analyzed (51 [54%] female; mean [SD] age, 31.3 [10.9] years). Hippocampal thickness maps in TLE were compared to 120 healthy control individuals (66 [55%] female; mean [SD] age, 29.8 [9.5] years), and areas of atrophy were identified. Using an atlas of normative connectivity (n = 1000), 2 brain networks were identified that were functionally connected to areas of hippocampal atrophy. The first network was defined by positive correlations to temporolimbic, medial prefrontal, and parietal regions, whereas the second network by negative correlations to frontoparietal regions. White matter changes colocalized to the positive network (t93 = -3.82; P = 2.44 × 10-4). In contrast, cortical atrophy localized to the negative network (t93 = 3.54; P = 6.29 × 10-3). In an additional 38 patients (20 [53%] female; mean [SD] age, 35.8 [11.3] years) treated with RNS, connectivity between the stimulation site and atrophied regions within the negative network was associated with seizure reduction (t212 = -2.74; P = .007). Conclusions and Relevance The findings in this study indicate that distributed pathology in TLE may occur in brain networks connected to the hippocampal epicenter. Connectivity to these same networks was associated with improvement following RNS. A network approach to TLE may reveal therapeutic targets outside the traditional target in the hippocampus.
Collapse
Affiliation(s)
- Sara Larivière
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | | | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ella Sahlas
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - William Drew
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - Mae Morton-Dutton
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - Aaron E. L. Warren
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
- Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sheena R. Baratono
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - John D. Rolston
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
- Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Luis Concha
- Brain Connectivity Laboratory, Institute of Neurobiology, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, México
| | - Zhiqiang Zhang
- Department of Neurology, Neurosurgery, Psychiatry, and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| |
Collapse
|
4
|
Weber CF, Kebets V, Benkarim O, Lariviere S, Wang Y, Ngo A, Jiang H, Chai X, Park BY, Milham MP, Di Martino A, Valk S, Hong SJ, Bernhardt BC. Contracted functional connectivity profiles in autism. Mol Autism 2024; 15:38. [PMID: 39261969 PMCID: PMC11391747 DOI: 10.1186/s13229-024-00616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes. METHODS We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types. RESULTS Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores. LIMITATIONS Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts. CONCLUSIONS Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.
Collapse
Affiliation(s)
- Clara F Weber
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Valeria Kebets
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hongxiu Jiang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, USA
| | | | - Sofie Valk
- Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Xie H, Illapani VSP, Vezina LG, Gholipour T, Oluigbo C, Gaillard WD, Cohen NT. Mapping Functional Connectivity Signatures of Pharmacoresistant Focal Cortical Dysplasia-Related Epilepsy. Ann Neurol 2024. [PMID: 39192492 DOI: 10.1002/ana.27069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE To determine common network alterations in focal cortical dysplasia pharmacoresistant epilepsy (FCD-PRE) using functional connectivity analysis of resting-state functional magnetic resonance imaging (rsfMRI). METHODS This is a retrospective imaging cohort from Children's National Hospital (Washington, DC, USA) from January, 2011 to January, 2022. Patients with 3-T MRI-confirmed FCD-PRE underwent rsfMRI as part of routine clinical care. Patients were included if they were age 5-22 years at the time of the scan, and had a minimum of 18 months of follow-up. Healthy, typically-developing controls were included from Children's National Hospital (n = 16) and matched from Human Connectome Project-Development public dataset (n = 100). RESULTS A total of 42 FCD-PRE patients (20 M:22 F, aged 14.2 ± 4.1 years) and 116 healthy controls (56 M:60 F, aged 13.7 ± 3.3 years) with rsfMRI were included. Seed-based functional connectivity maps were generated for each FCD, and each seed was used to generate a patient-specific z-scored connectivity map on 116 controls. FCD-PRE patients had mutual altered connectivity in regions of dorsal attention, default mode, and control networks. Functional connectivity was diminished within the FCD dominant functional network, as well as in homotopic regions. Cluster specific connectivity patterns varied by pathological subtype. Higher FCD connectivity to the limbic network was associated with increased odds of Engel I outcome. INTERPRETATION This study demonstrates diminished functional connectivity patterns in FCD-PRE, which may represent a neuromarker for the disease, independent of FCD location, involving the dorsal attention, default mode, and control functional networks. Higher connectivity to the limbic network is associated with a seizure-free outcome. Future multicenter, prospective studies are needed to allow for much earlier detection of signatures of treatment-resistant epilepsy. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Hua Xie
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Venkata Sita Priyanka Illapani
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - L Gilbert Vezina
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Taha Gholipour
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Chima Oluigbo
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
6
|
Ngo A, Royer J, Rodriguez-Cruces R, Xie K, DeKraker J, Auer H, Tavakol S, Lam J, Schrader DV, Dudley RWR, Bernasconi A, Bernasconi N, Frauscher B, Lariviere S, Bernhardt BC. Associations of Cerebral Blood Flow Patterns With Gray and White Matter Structure in Patients With Temporal Lobe Epilepsy. Neurology 2024; 103:e209528. [PMID: 39008785 PMCID: PMC11314957 DOI: 10.1212/wnl.0000000000209528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/08/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neuroimaging studies in patients with temporal lobe epilepsy (TLE) show widespread brain network alterations beyond the mesiotemporal lobe. Despite the critical role of the cerebrovascular system in maintaining whole-brain structure and function, changes in cerebral blood flow (CBF) remain incompletely understood in the disease. Here, we studied whole-brain perfusion and vascular network alterations in TLE and assessed its associations with gray and white matter compromises and various clinical variables. METHODS We included individuals with and without pharmaco-resistant TLE who underwent multimodal 3T MRI, including arterial spin labelling, structural, and diffusion-weighted imaging. Using surface-based MRI mapping, we generated individualized cortico-subcortical profiles of perfusion, morphology, and microstructure. Linear models compared regional CBF in patients with controls and related alterations to morphological and microstructural metrics. We further probed interregional vascular networks in TLE, using graph theoretical CBF covariance analysis. The effects of disease duration were explored to better understand the progressive changes in perfusion. We assessed the utility of perfusion in separating patients with TLE from controls using supervised machine learning. RESULTS Compared with control participants (n = 38; mean ± SD age 34.8 ± 9.3 years; 20 females), patients with TLE (n = 24; mean ± SD age 35.8 ± 10.6 years; 12 females) showed widespread CBF reductions predominantly in fronto-temporal regions (Cohen d -0.69, 95% CI -1.21 to -0.16), consistent in a subgroup of patients who remained seizure-free after surgical resection of the seizure focus. Parallel structural profiling and network-based models showed that cerebral hypoperfusion may be partially constrained by gray and white matter changes (8.11% reduction in Cohen d) and topologically segregated from whole-brain perfusion networks (area under the curve -0.17, p < 0.05). Negative effects of progressive disease duration further targeted regional CBF profiles in patients (r = -0.54, 95% CI -0.77 to -0.16). Perfusion-derived classifiers discriminated patients from controls with high accuracy (71% [70%-82%]). Findings were robust when controlling for several methodological confounds. DISCUSSION Our multimodal findings provide insights into vascular contributions to TLE pathophysiology affecting and extending beyond mesiotemporal structures and highlight their clinical potential in epilepsy diagnosis. As our work was cross-sectional and based on a single site, it motivates future longitudinal studies to confirm progressive effects, ideally in a multicentric setting.
Collapse
Affiliation(s)
- Alexander Ngo
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jessica Royer
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Raul Rodriguez-Cruces
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ke Xie
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jordan DeKraker
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hans Auer
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shahin Tavakol
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jack Lam
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dewi V Schrader
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Roy W R Dudley
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Andrea Bernasconi
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Neda Bernasconi
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Birgit Frauscher
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sara Lariviere
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Boris C Bernhardt
- From the Department of Neurology and Neurosurgery (A.N., J.R., R.R.-C., K.X., J.D., H.A., S.T., J.L., A.B., N.B., B.F., B.C.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec; Department of Pediatrics (D.V.S.), University of British Columbia, Vancouver; Department of Pediatric Surgery (R.W.R.D.), Montreal Children's Hospital, McGill University, Montreal, Québec, Canada; and Center for Brain Circuit Therapeutics (S.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Larivière S, Park BY, Royer J, DeKraker J, Ngo A, Sahlas E, Chen J, Rodríguez-Cruces R, Weng Y, Frauscher B, Liu R, Wang Z, Shafiei G, Mišić B, Bernasconi A, Bernasconi N, Fox MD, Zhang Z, Bernhardt BC. Connectome reorganization associated with temporal lobe pathology and its surgical resection. Brain 2024; 147:2483-2495. [PMID: 38701342 PMCID: PMC11224603 DOI: 10.1093/brain/awae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Bo-yong Park
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ella Sahlas
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ruoting Liu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zhengge Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bratislav Mišić
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
8
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
9
|
Bernasconi A, Gill RS, Bernasconi N. The use of automated and AI-driven algorithms for the detection of hippocampal sclerosis and focal cortical dysplasia. Epilepsia 2024. [PMID: 38642009 DOI: 10.1111/epi.17989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
In drug-resistant epilepsy, magnetic resonance imaging (MRI) plays a central role in detecting lesions as it offers unmatched spatial resolution and whole-brain coverage. In addition, the last decade has witnessed continued developments in MRI-based computer-aided machine-learning techniques for improved diagnosis and prognosis. In this review, we focus on automated algorithms for the detection of hippocampal sclerosis and focal cortical dysplasia, particularly in cases deemed as MRI negative, with an emphasis on studies with histologically validated data. In addition, we discuss imaging-derived prognostic markers, including response to anti-seizure medication, post-surgical seizure outcome, and cognitive reserves. We also highlight the advantages and limitations of these approaches and discuss future directions toward person-centered care.
Collapse
Affiliation(s)
- Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ravnoor S Gill
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Ntolkeras G, Makaram N, Bernabei M, De La Vega AC, Bolton J, Madsen JR, Stone SSD, Pearl PL, Papadelis C, Grant EP, Tamilia E. Interictal EEG source connectivity to localize the epileptogenic zone in patients with drug-resistant epilepsy: A machine learning approach. Epilepsia 2024; 65:944-960. [PMID: 38318986 PMCID: PMC11018464 DOI: 10.1111/epi.17898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVE To deconstruct the epileptogenic networks of patients with drug-resistant epilepsy (DRE) using source functional connectivity (FC) analysis; unveil the FC biomarkers of the epileptogenic zone (EZ); and develop machine learning (ML) models to estimate the EZ using brief interictal electroencephalography (EEG) data. METHODS We analyzed scalp EEG from 50 patients with DRE who had surgery. We reconstructed the activity (electrical source imaging [ESI]) of virtual sensors (VSs) across the whole cortex and computed FC separately for epileptiform and non-epileptiform EEG epochs (with or without spikes). In patients with good outcome (Engel 1a), four cortical regions were defined: EZ (resection) and three non-epileptogenic zones (NEZs) in the same and opposite hemispheres. Region-specific FC features in six frequency bands and three spatial ranges (long, short, inner) were compared between regions (Wilcoxon sign-rank). We developed ML classifiers to identify the VSs in the EZ using VS-specific FC features. Cross-validation was performed using good outcome data. Performance was compared with poor outcomes and interictal spike localization. RESULTS FC differed between EZ and NEZs (p < .05) during non-epileptiform and epileptiform epochs, showing higher FC in the EZ than its homotopic contralateral NEZ. During epileptiform epochs, the NEZ in the epileptogenic hemisphere showed higher FC than its contralateral NEZ. In good outcome patients, the ML classifiers reached 75% accuracy to the resection (91% sensitivity; 74% specificity; distance from EZ: 38 mm) using epileptiform epochs (gamma and beta frequency bands) and 62% accuracy using broadband non-epileptiform epochs, both outperforming spike localization (accuracy = 47%; p < .05; distance from EZ: 57 mm). Lower performance was seen in poor outcomes. SIGNIFICANCE We present an FC approach to extract EZ biomarkers from brief EEG data. Increased FC in various frequencies characterized the EZ during epileptiform and non-epileptiform epochs. FC-based ML models identified the resection better in good than poor outcome patients, demonstrating their potential for presurgical use in pediatric DRE.
Collapse
Affiliation(s)
- Georgios Ntolkeras
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Navaneethakrishna Makaram
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matteo Bernabei
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aime Cristina De La Vega
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Bolton
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scellig S D Stone
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health, Cook Children's Health Care System, Fort Worth, Texas, USA
| | - Ellen P Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Peraza JA, Salo T, Riedel MC, Bottenhorn KL, Poline JB, Dockès J, Kent JD, Bartley JE, Flannery JS, Hill-Bowen LD, Lobo RP, Poudel R, Ray KL, Robinson JL, Laird RW, Sutherland MT, de la Vega A, Laird AR. Methods for decoding cortical gradients of functional connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551505. [PMID: 37577598 PMCID: PMC10418206 DOI: 10.1101/2023.08.01.551505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a two-segment solution determined by a k-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Finally, we proposed a method for decoding additional components of the gradient decomposition. The current work aims to provide recommendations on best practices and flexible methods for gradient-based functional decoding of fMRI data.
Collapse
Affiliation(s)
- Julio A. Peraza
- Department of Physics, Florida International University, Miami, FL, USA
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jean-Baptiste Poline
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jérôme Dockès
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - James D. Kent
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Jessica S. Flannery
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Ranjita Poudel
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - Kimberly L. Ray
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Robert W. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | | | | | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| |
Collapse
|
12
|
Woodfield J, Braun KPJ, van Schooneveld MMJ, Bastin ME, Chin RFM. Efficient organisation of the contralateral hemisphere connectome is associated with improvement in intelligence quotient after paediatric epilepsy surgery. Epilepsy Behav 2023; 149:109521. [PMID: 37944287 DOI: 10.1016/j.yebeh.2023.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Aims of epilepsy surgery in childhood include optimising seizure control and facilitating cognitive development. Predicting which children will improve cognitively is challenging. We investigated the association of the pre-operative structural connectome of the contralateral non-operated hemisphere with improvement in intelligence quotient (IQ) post-operatively. METHODS Consecutive children who had undergone unilateral resective procedures for epilepsy at a single centre were retrospectively identified. We included those with pre-operative volume T1-weighted non-contrast brain magnetic resonance imaging (MRI), no visible contralateral MRI abnormalities, and both pre-operative and two years post-operative IQ assessment. The MRI of the hemisphere contralateral to the side of resection was anatomically parcellated into 34 cortical regions and the covariance of cortical thickness between regions was used to create binary and weighted group connectomes. RESULTS Eleven patients with a post-operative IQ increase of at least 10 points at two years were compared with twenty-four patients with no change in IQ score. Children who gained at least 10 IQ points post-operatively had a more efficiently structured contralateral hemisphere connectome with higher global efficiency (0.74) compared to those whose IQ did not change at two years (0.58, p = 0.014). This was consistent across thresholds and both binary and weighted networks. There were no statistically significant group differences in age, sex, age at onset of epilepsy, pre-operative IQ, mean cortical thickness, side or site of procedure, two year post-operative Engel scores or use of anti-seizure medications between the two groups. CONCLUSIONS Surgical procedures to reduce or stop seizures may allow children with an efficiently structured contralateral hemisphere to achieve their cognitive potential.
Collapse
Affiliation(s)
- Julie Woodfield
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Department of Clinical Neurosciences, NHS Lothian, Edinburgh, United Kingdom; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom.
| | - Kees P J Braun
- Department of Paediatric Neurology, University Medical Center Utrecht, Utrecht, the Netherlands; Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Monique M J van Schooneveld
- Department of Paediatric Psychology, Sector of Neuropsychology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard F M Chin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom; Royal Hospital for Children and Young People, NHS Lothian, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Chang AJ, Roth RW, Gong R, Gross RE, Harmsen I, Parashos A, Revell A, Davis KA, Bonilha L, Gleichgerrcht E. Network coupling and surgical treatment response in temporal lobe epilepsy: A proof-of-concept study. Epilepsy Behav 2023; 149:109503. [PMID: 37931391 PMCID: PMC10842155 DOI: 10.1016/j.yebeh.2023.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE This proof-of-concept study aimed to examine the overlap between structural and functional activity (coupling) related to surgical response. METHODS We studied intracranial rest and ictal stereoelectroencephalography (sEEG) recordings from 77 seizures in thirteen participants with temporal lobe epilepsy (TLE) who subsequently underwent resective/laser ablation surgery. We used the stereotactic coordinates of electrodes to construct functional (sEEG electrodes) and structural connectomes (diffusion tensor imaging). A Jaccard index was used to assess the similarity (coupling) between structural and functional connectivity at rest and at various intraictal timepoints. RESULTS We observed that patients who did not become seizure free after surgery had higher connectome coupling recruitment than responders at rest and during early and mid seizure (and visa versa). SIGNIFICANCE Structural networks provide a backbone for functional activity in TLE. The association between lack of seizure control after surgery and the strength of synchrony between these networks suggests that surgical intervention aimed to disrupt these networks may be ineffective in those that display strong synchrony. Our results, combined with findings of other groups, suggest a potential mechanism that explains why certain patients benefit from epilepsy surgery and why others do not. This insight has the potential to guide surgical planning (e.g., removal of high coupling nodes) following future research.
Collapse
Affiliation(s)
- Allen J Chang
- College of Graduate Studies, Neuroscience Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca W Roth
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Ruxue Gong
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Irene Harmsen
- College of Graduate Studies, Neuroscience Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Alexandra Parashos
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew Revell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo Bonilha
- Department of Neurology, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
14
|
De Benedictis A, de Palma L, Rossi-Espagnet MC, Marras CE. Connectome-based approaches in pediatric epilepsy surgery: "State-of-the art" and future perspectives. Epilepsy Behav 2023; 149:109523. [PMID: 37944286 DOI: 10.1016/j.yebeh.2023.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Modern epilepsy science has overcome the traditional interpretation of a strict region-specific origin of epilepsy, highlighting the involvement of wider patterns of altered neuronal circuits. In selected cases, surgery may constitute a valuable option to achieve both seizure freedom and neurocognitive improvement. Although epilepsy is now considered as a brain network disease, the most relevant literature concerning the "connectome-based" epilepsy surgery mainly refers to adults, with a limited number of studies dedicated to the pediatric population. In this review, the Authors summarized the main current available knowledge on the relevance of WM surgical anatomy in epilepsy surgery, the post-surgical modifications of brain structural connectivity and the related clinical impact of such modifications within the pediatric context. In the last part, possible implications and future perspectives of this approach have been discussed, especially concerning the optimization of surgical strategies and the predictive value of the epilepsy network analysis for planning tailored approaches, with the final aim of improving case selection, presurgical planning, intraoperative management, and postoperative results.
Collapse
Affiliation(s)
| | - Luca de Palma
- Epilepsy and Movement Disorders Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | |
Collapse
|
15
|
Denis C, Dabbs K, Nair VA, Mathis J, Almane DN, Lakshmanan A, Nencka A, Birn RM, Conant L, Humphries C, Felton E, Raghavan M, DeYoe EA, Binder JR, Hermann B, Prabhakaran V, Bendlin BB, Meyerand ME, Boly M, Struck AF. T1-/T2-weighted ratio reveals no alterations to gray matter myelination in temporal lobe epilepsy. Ann Clin Transl Neurol 2023; 10:2149-2154. [PMID: 37872734 PMCID: PMC10647008 DOI: 10.1002/acn3.51653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 10/25/2023] Open
Abstract
Short-range functional connectivity in the limbic network is increased in patients with temporal lobe epilepsy (TLE), and recent studies have shown that cortical myelin content correlates with fMRI connectivity. We thus hypothesized that myelin may increase progressively in the epileptic network. We compared T1w/T2w gray matter myelin maps between TLE patients and age-matched controls and assessed relationships between myelin and aging. While both TLE patients and healthy controls exhibited increased T1w/T2w intensity with age, we found no evidence for significant group-level aberrations in overall myelin content or myelin changes through time in TLE.
Collapse
Affiliation(s)
- Colin Denis
- Department of NeurologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kevin Dabbs
- Department of NeurologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Veena A. Nair
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jedidiah Mathis
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Dace N. Almane
- Department of NeurologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Andrew Nencka
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Rasmus M. Birn
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Lisa Conant
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Colin Humphries
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Elizabeth Felton
- Department of NeurologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Manoj Raghavan
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Edgar A. DeYoe
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Jeffrey R. Binder
- Department of NeurologyMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Bruce Hermann
- Department of NeurologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Vivek Prabhakaran
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Mary E. Meyerand
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Mélanie Boly
- Department of NeurologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Aaron F. Struck
- Department of NeurologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- William S. Middleton Veterans Administration HospitalMadisonWisconsinUSA
| |
Collapse
|
16
|
Royer J, Larivière S, Rodriguez-Cruces R, Cabalo DG, Tavakol S, Auer H, Ngo A, Park BY, Paquola C, Smallwood J, Jefferies E, Caciagli L, Bernasconi A, Bernasconi N, Frauscher B, Bernhardt BC. Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy. Brain 2023; 146:3923-3937. [PMID: 37082950 PMCID: PMC10473569 DOI: 10.1093/brain/awad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.
Collapse
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bo-yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Casey Paquola
- Multiscale Neuroanatomy Lab, INM-1, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, MA 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
17
|
Tangsrivimol JA, Schonfeld E, Zhang M, Veeravagu A, Smith TR, Härtl R, Lawton MT, El-Sherbini AH, Prevedello DM, Glicksberg BS, Krittanawong C. Artificial Intelligence in Neurosurgery: A State-of-the-Art Review from Past to Future. Diagnostics (Basel) 2023; 13:2429. [PMID: 37510174 PMCID: PMC10378231 DOI: 10.3390/diagnostics13142429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been a significant surge in discussions surrounding artificial intelligence (AI), along with a corresponding increase in its practical applications in various facets of everyday life, including the medical industry. Notably, even in the highly specialized realm of neurosurgery, AI has been utilized for differential diagnosis, pre-operative evaluation, and improving surgical precision. Many of these applications have begun to mitigate risks of intraoperative and postoperative complications and post-operative care. This article aims to present an overview of the principal published papers on the significant themes of tumor, spine, epilepsy, and vascular issues, wherein AI has been applied to assess its potential applications within neurosurgery. The method involved identifying high-cited seminal papers using PubMed and Google Scholar, conducting a comprehensive review of various study types, and summarizing machine learning applications to enhance understanding among clinicians for future utilization. Recent studies demonstrate that machine learning (ML) holds significant potential in neuro-oncological care, spine surgery, epilepsy management, and other neurosurgical applications. ML techniques have proven effective in tumor identification, surgical outcomes prediction, seizure outcome prediction, aneurysm prediction, and more, highlighting its broad impact and potential in improving patient management and outcomes in neurosurgery. This review will encompass the current state of research, as well as predictions for the future of AI within neurosurgery.
Collapse
Affiliation(s)
- Jonathan A Tangsrivimol
- Division of Neurosurgery, Department of Surgery, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center and Jame Cancer Institute, Columbus, OH 43210, USA
| | - Ethan Schonfeld
- Department Biomedical Informatics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Michael Zhang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anand Veeravagu
- Stanford Neurosurgical Artificial Intelligence and Machine Learning Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timothy R Smith
- Department of Neurosurgery, Computational Neuroscience Outcomes Center (CNOC), Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA
| | - Roger Härtl
- Weill Cornell Medicine Brain and Spine Center, New York, NY 10022, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute (BNI), Phoenix, AZ 85013, USA
| | - Adham H El-Sherbini
- Faculty of Health Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Daniel M Prevedello
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center and Jame Cancer Institute, Columbus, OH 43210, USA
| | - Benjamin S Glicksberg
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chayakrit Krittanawong
- Cardiology Division, New York University Langone Health, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
18
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541934. [PMID: 37292996 PMCID: PMC10245853 DOI: 10.1101/2023.05.23.541934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations. We investigated a multisite cohort of 95 patients with pharmaco-resistant TLE and 95 healthy controls using state-of-the-art multimodal 3T magnetic resonance imaging (MRI). We quantified macroscale functional topographic organization using connectome dimensionality reduction techniques and estimated directional functional flow using generative models of effective connectivity. We observed atypical functional topographies in patients with TLE relative to controls, manifesting as reduced functional differentiation between sensory/motor networks and transmodal systems such as the default mode network, with peak alterations in bilateral temporal and ventromedial prefrontal cortices. TLE-related topographic changes were consistent in all three included sites and reflected reductions in hierarchical flow patterns between cortical systems. Integration of parallel multimodal MRI data indicated that these findings were independent of TLE-related cortical grey matter atrophy, but mediated by microstructural alterations in the superficial white matter immediately beneath the cortex. The magnitude of functional perturbations was robustly associated with behavioral markers of memory function. Overall, this work provides converging evidence for macroscale functional imbalances, contributing microstructural alterations, and their associations with cognitive dysfunction in TLE.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lorenzo Caciagli
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Brain Connectivity Laboratory, Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Lucas A, Mouchtaris S, Cornblath EJ, Sinha N, Caciagli L, Hadar P, Gugger JJ, Das S, Stein JM, Davis KA. Subcortical functional connectivity gradients in temporal lobe epilepsy. Neuroimage Clin 2023; 38:103418. [PMID: 37187042 PMCID: PMC10196948 DOI: 10.1016/j.nicl.2023.103418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND MOTIVATION Functional gradients have been used to study differences in connectivity between healthy and diseased brain states, however this work has largely focused on the cortex. Because the subcortex plays a key role in seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity gradients may help further elucidate differences between healthy brains and TLE, as well as differences between left (L)-TLE and right (R)-TLE. METHODS In this work, we calculated subcortical functional-connectivity gradients (SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in connectivity profiles of subcortical voxels to cortical gray matter voxels. We performed this analysis in 24 R-TLE patients and 31 L-TLE patients (who were otherwise matched for age, gender, disease specific characteristics, and other clinical variables), and 16 controls. To measure differences in SFGs between L-TLE and R-TLE, we quantified deviations in the average functional gradient distributions, as well as their variance, across subcortical structures. RESULTS We found an expansion, measured by increased variance, in the principal SFG of TLE relative to controls. When comparing the gradient across subcortical structures between L-TLE and R-TLE, we found that abnormalities in the ipsilateral hippocampal gradient distributions were significantly different between L-TLE and R-TLE. CONCLUSION Our results suggest that expansion of the SFG is characteristic of TLE. Subcortical functional gradient differences exist between left and right TLE and are driven by connectivity changes in the hippocampus ipsilateral to the seizure onset zone.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, United States; Department of Bioengineering, University of Pennsylvania, United States.
| | - Sofia Mouchtaris
- Department of Bioengineering, University of Pennsylvania, United States
| | - Eli J Cornblath
- Department of Neurology, University of Pennsylvania, United States
| | - Nishant Sinha
- Department of Neurology, University of Pennsylvania, United States
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, United States
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, United States
| | - James J Gugger
- Department of Neurology, University of Pennsylvania, United States
| | - Sandhitsu Das
- Department of Neurology, University of Pennsylvania, United States
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, United States
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, United States
| |
Collapse
|
20
|
Baciu M, O'Sullivan L, Torlay L, Banjac S. New insights for predicting surgery outcome in patients with temporal lobe epilepsy. A systematic review. Rev Neurol (Paris) 2023:S0035-3787(23)00884-6. [PMID: 37003897 DOI: 10.1016/j.neurol.2023.02.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Resective surgery is the treatment of choice for one-third of adult patients with focal, drug-resistant epilepsy. This procedure is associated with substantial clinical and cognitive risks. In clinical practice, there is no validated model for epilepsy surgery outcome prediction (ESOP). Meta-analyses on ESOP studies assessing prognostic factors report discrepancies in terms of study design. Our review aims to systematically investigate methodological and analytical aspects of studies predicting clinical and cognitive outcomes after temporal lobe epilepsy surgery. A systematic review of ESOP studies published between 2000 and 2022 from three databases (MEDLINE, Web of Science, and PsycINFO) was completed by following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. It yielded 4867 articles. Among them, 21 corresponded to our inclusion criteria and were therefore retained in the final review. The risk of bias was assessed using A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies (PROBAST). Data extracted from the 21 studies were analyzed using narrative synthesis and descriptive statistics. Our findings show an increase in the use of multimodal datasets and machine learning analyses in recent ESOP studies, although regression remained the most frequently used approach. We also identified a more frequent use of network notions in recent ESOP studies. Nevertheless, several methodological issues were noted, such as small sample sizes, lack of information on the follow-up period, variability in seizure outcome, and the definition of neuropsychological postoperative change. Of 21 studies, only one provided a clinical tool to anticipate the cognitive outcome after epilepsy surgery. We conclude that methodological issues should be overcome before we move towards more complete models to better predict clinical and cognitive outcomes after epilepsy surgery. Recommendations for future studies to harness the possibilities of multimodal datasets and data fusion, are provided. A stronger bridge between fundamental and clinical research may result in developing accessible clinical tools.
Collapse
Affiliation(s)
- M Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - L O'Sullivan
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - L Torlay
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France
| | - S Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France.
| |
Collapse
|
21
|
Wang Y, Royer J, Park BY, Vos de Wael R, Larivière S, Tavakol S, Rodriguez-Cruces R, Paquola C, Hong SJ, Margulies DS, Smallwood J, Valk SL, Evans AC, Bernhardt BC. Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain. Cereb Cortex 2023; 33:1782-1798. [PMID: 35596951 PMCID: PMC9977370 DOI: 10.1093/cercor/bhac172] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. METHODS We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. RESULTS Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. CONCLUSIONS By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.
Collapse
Affiliation(s)
- Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Department of Data Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Integrative Neuroscience and Cognition Centre, University of Paris and CRNS, INCC - UMR 8002, Rue des Saint-Pères 75006, Paris
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, 62 Arch Street, Humphrey Hall, Room 232 Kingston, Ontario K7L 3N6, Canada
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A. Leipzig D-04103, Germany.,Institute of Systems Neuroscience, Heinrich Heine University, Moorenstr. 5, Düsseldorf 40225, Germany
| | - Alan C Evans
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
22
|
Xie K, Royer J, Lariviere S, Rodriguez-Cruces R, de Wael RV, Park BY, Auer H, Tavakol S, DeKraker J, Abdallah C, Caciagli L, Bassett DS, Bernasconi A, Bernasconi N, Frauscher B, Concha L, Bernhardt BC. Atypical intrinsic neural timescales in temporal lobe epilepsy. Epilepsia 2023; 64:998-1011. [PMID: 36764677 DOI: 10.1111/epi.17541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is the most common pharmacoresistant epilepsy in adults. Here we profiled local neural function in TLE in vivo, building on prior evidence that has identified widespread structural alterations. Using resting-state functional magnetic resonance imaging (rs-fMRI), we mapped the whole-brain intrinsic neural timescales (INT), which reflect temporal hierarchies of neural processing. Parallel analysis of structural and diffusion MRI data examined associations with TLE-related structural compromise. Finally, we evaluated the clinical utility of INT. METHODS We studied 46 patients with TLE and 44 healthy controls from two independent sites, and mapped INT changes in patients relative to controls across hippocampal, subcortical, and neocortical regions. We examined region-specific associations to structural alterations and explored the effects of age and epilepsy duration. Supervised machine learning assessed the utility of INT for identifying patients with TLE vs controls and left- vs right-sided seizure onset. RESULTS Relative to controls, TLE showed marked INT reductions across multiple regions bilaterally, indexing faster changing resting activity, with strongest effects in the ipsilateral medial and lateral temporal regions, and bilateral sensorimotor cortices as well as thalamus and hippocampus. Findings were similar, albeit with reduced effect sizes, when correcting for structural alterations. INT reductions in TLE increased with advancing disease duration, yet findings differed from the aging effects seen in controls. INT-derived classifiers discriminated patients vs controls (balanced accuracy, 5-fold: 76% ± 2.65%; cross-site, 72%-83%) and lateralized the focus in TLE (balanced accuracy, 5-fold: 96% ± 2.10%; cross-site, 95%-97%), with high accuracy and cross-site generalizability. Findings were consistent across both acquisition sites and robust when controlling for motion and several methodological confounds. SIGNIFICANCE Our findings demonstrate atypical macroscale function in TLE in a topography that extends beyond mesiotemporal epicenters. INT measurements can assist in TLE diagnosis, seizure focus lateralization, and monitoring of disease progression, which emphasizes promising clinical utility.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Data Science, Inha University, Incheon, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lorenzo Caciagli
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dani S Bassett
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Luis Concha
- Brain Connectivity Laboratory, Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Juriquilla, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Gholipour T, DeMarco A, You X, Englot DJ, Turkeltaub PE, Koubeissi MZ, Gaillard WD, Morgan VL. Functional anomaly mapping lateralizes temporal lobe epilepsy with high accuracy in individual patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.05.23285034. [PMID: 36798218 PMCID: PMC9934715 DOI: 10.1101/2023.02.05.23285034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mesial temporal lobe epilepsy (mTLE) is associated with variable dysfunction beyond the temporal lobe. We used functional anomaly mapping (FAM), a multivariate machine learning approach to resting state fMRI analysis to measure subcortical and cortical functional aberrations in patients with mTLE. We also examined the value of individual FAM in lateralizing the hemisphere of seizure onset in mTLE patients. Methods: Patients and controls were selected from an existing imaging and clinical database. After standard preprocessing of resting state fMRI, time-series were extracted from 400 cortical and 32 subcortical regions of interest (ROIs) defined by atlases derived from functional brain organization. Group-level aberrations were measured by contrasting right (RTLE) and left (LTLE) patient groups to controls in a support vector regression models, and tested for statistical reliability using permutation analysis. Individualized functional anomaly maps (FAMs) were generated by contrasting individual patients to the control group. Half of patients were used for training a classification model, and the other half for estimating the accuracy to lateralize mTLE based on individual FAMs. Results: Thirty-two right and 14 left mTLE patients (33 with evidence of hippocampal sclerosis on MRI) and 94 controls were included. At group levels, cortical regions affiliated with limbic and somatomotor networks were prominent in distinguishing RTLE and LTLE from controls. At individual levels, most TLE patients had high anomaly in bilateral mesial temporal and medial parietooccipital default mode regions. A linear support vector machine trained on 50% of patients could accurately lateralize mTLE in remaining patients (median AUC =1.0 [range 0.97-1.0], median accuracy = 96.87% [85.71-100Significance: Functional anomaly mapping confirms widespread aberrations in function, and accurately lateralizes mTLE from resting state fMRI. Future studies will evaluate FAM as a non-invasive localization method in larger datasets, and explore possible correlations with clinical characteristics and disease course.
Collapse
|
24
|
Li Z, Jiang C, Gao Q, Xiang W, Qi Z, Peng K, Lin J, Wang W, Deng B, Wang W. The relationship between the interictal epileptiform discharge source connectivity and cortical structural couplings in temporal lobe epilepsy. Front Neurol 2023; 14:1029732. [PMID: 36846133 PMCID: PMC9948620 DOI: 10.3389/fneur.2023.1029732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Objective The objective of this study was to explore the relation between interictal epileptiform discharge (IED) source connectivity and cortical structural couplings (SCs) in temporal lobe epilepsy (TLE). Methods High-resolution 3D-MRI and 32-sensor EEG data from 59 patients with TLE were collected. Principal component analysis was performed on the morphological data on MRI to obtain the cortical SCs. IEDs were labeled from EEG data and averaged. The standard low-resolution electromagnetic tomography analysis was performed to locate the source of the average IEDs. Phase-locked value was used to evaluate the IED source connectivity. Finally, correlation analysis was used to compare the IED source connectivity and the cortical SCs. Results The features of the cortical morphology in left and right TLE were similar across four cortical SCs, which could be mainly described as the default mode network, limbic regions, connections bilateral medial temporal, and connections through the ipsilateral insula. The IED source connectivity at the regions of interest was negatively correlated with the corresponding cortical SCs. Significance The cortical SCs were confirmed to be negatively related to IED source connectivity in patients with TLE as detected with MRI and EEG coregistered data. These findings suggest the important role of intervening IEDs in treating TLE.
Collapse
Affiliation(s)
- Zhensheng Li
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Che Jiang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Quwen Gao
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wei Xiang
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zijuan Qi
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Kairun Peng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jian Lin
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wei Wang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingmei Deng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China,Bingmei Deng ✉
| | - Weimin Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China,*Correspondence: Weimin Wang ✉
| |
Collapse
|
25
|
Lucas A, Mouchtaris S, Cornblath EJ, Sinha N, Caciagli L, Hadar P, Gugger JJ, Das S, Stein JM, Davis KA. Subcortical Functional Connectivity Gradients in Temporal Lobe Epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.08.23284313. [PMID: 36711498 PMCID: PMC9882434 DOI: 10.1101/2023.01.08.23284313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background and Motivation Functional gradients have been used to study differences in connectivity between healthy and diseased brain states, however this work has largely focused on the cortex. Because the subcortex plays a key role in seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity gradients may help further elucidate differences between healthy brains and TLE, as well as differences between left (L)-TLE and right (R)-TLE. Methods In this work, we calculated subcortical functional-connectivity gradients (SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in connectivity profiles of subcortical voxels to cortical gray matter voxels. We performed this analysis in 23 R-TLE patients and 32 L-TLE patients (who were otherwise matched for age, gender, disease specific characteristics, and other clinical variables), and 16 controls. To measure differences in SFGs between L-TLE and R-TLE, we quantified deviations in the average functional gradient distributions, as well as their variance, across subcortical structures. Results We found an expansion, measured by increased variance, in the principal SFG of TLE relative to controls. When comparing the gradient across subcortical structures between L-TLE and R-TLE, we found that abnormalities in the ipsilateral hippocampal gradient distributions were significantly different between L-TLE and R-TLE. Conclusion Our results suggest that expansion of the SFG is characteristic of TLE. Subcortical functional gradient differences exist between left and right TLE and are driven by connectivity changes in the hippocampus ipsilateral to the seizure onset zone.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | | | | | | | | | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital
| | | | | | - Joel M Stein
- Department of Radiology, University of Pennsylvania
| | - Kathryn A Davis
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
- Department of Neurology, University of Pennsylvania
- Department of Neurology, Massachusetts General Hospital
- Department of Radiology, University of Pennsylvania
| |
Collapse
|
26
|
He X, Caciagli L, Parkes L, Stiso J, Karrer TM, Kim JZ, Lu Z, Menara T, Pasqualetti F, Sperling MR, Tracy JI, Bassett DS. Uncovering the biological basis of control energy: Structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy. SCIENCE ADVANCES 2022; 8:eabn2293. [PMID: 36351015 PMCID: PMC9645718 DOI: 10.1126/sciadv.abn2293] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/22/2022] [Indexed: 05/11/2023]
Abstract
Network control theory is increasingly used to profile the brain's energy landscape via simulations of neural dynamics. This approach estimates the control energy required to simulate the activation of brain circuits based on structural connectome measured using diffusion magnetic resonance imaging, thereby quantifying those circuits' energetic efficiency. The biological basis of control energy, however, remains unknown, hampering its further application. To fill this gap, investigating temporal lobe epilepsy as a lesion model, we show that patients require higher control energy to activate the limbic network than healthy volunteers, especially ipsilateral to the seizure focus. The energetic imbalance between ipsilateral and contralateral temporolimbic regions is tracked by asymmetric patterns of glucose metabolism measured using positron emission tomography, which, in turn, may be selectively explained by asymmetric gray matter loss as evidenced in the hippocampus. Our investigation provides the first theoretical framework unifying gray matter integrity, metabolism, and energetic generation of neural dynamics.
Collapse
Affiliation(s)
- Xiaosong He
- Department of Psychology, School of Humanities and Social Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- UCL Queen Square Institute of Neurology, Queen Square, London, UK
- MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire, UK
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Teresa M. Karrer
- Personalized Health Care, Product Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhixin Lu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tommaso Menara
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | | | - Joseph I. Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Psychiatry, and Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
27
|
Sugano H, Iimura Y, Suzuki H, Tamrakar S, Mitsuhashi T, Higo T, Ueda T, Nishioka K, Karagiozov K, Nakajima M. Can intraoperative electrocorticography be used to minimize the extent of resection in patients with temporal lobe epilepsy associated with hippocampal sclerosis? J Neurosurg 2022; 137:419-426. [PMID: 34861650 DOI: 10.3171/2021.9.jns211925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tailored surgery to extensively resect epileptogenic lesions using intraoperative electrocorticography (ioECoG) may improve seizure outcomes. However, resection of large areas is associated with decreased memory function postoperatively. The authors assessed whether ioECoG could provide useful information on how to minimize the focus resection and obtain better seizure outcomes without memory deterioration. They examined the postoperative seizure-free period and memory alteration in a retrospective cohort of patients with mesial temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS) in whom the extent of removal was determined using ioECoG findings. METHODS The authors enrolled 82 patients with TLE associated with HS who were treated surgically. Transsylvian amygdalohippocampectomy was indicated as the first step. When visual inspection identified interictal epileptic discharges from the lateral temporal lobe on ioECoG, anterior temporal lobectomy (ATL) was eventually performed. The patients were divided into the selective amygdalohippocampectomy (SA, n = 40) and ATL (n = 42) groups. Postoperative seizure outcomes were assessed at 1, 2, 3, 5, and 7 years postoperatively using the International League Against Epilepsy classification. The Kaplan-Meier survival analysis was applied to evaluate the period of seizure recurrence between the SA and ATL groups. Factors attributed to seizure recurrence were analyzed using the Cox proportional hazards model, and they were as follows: epileptic focal laterality; age at seizure onset (< 10 or ≥ 10 years old); seizure frequency (more than weekly or less than weekly seizures); history of focal to bilateral tonic-clonic seizure; infectious etiology; and surgical procedure. The Wechsler Memory Scale-Revised was used to evaluate memory function pre- and postoperatively. RESULTS Seizure outcomes were significantly worse in the SA group than in the ATL group at 2 years postoperatively (p = 0.045). The International League Against Epilepsy class 1 outcomes at 7 years postoperatively in the SA and ATL groups were 63% and 81%, respectively. Kaplan-Meier analysis showed that seizure recurred significantly earlier in the SA group than in the ATL group (p = 0.031). The 2-way ANOVA analysis was used to compare the SA and ATL groups in each memory category, and revealed that there was no significant difference regardless of the side of surgery. CONCLUSIONS Visual assessment of ioECoG cannot be used as an indicator to minimize epileptic focus resection in patients with TLE associated with HS. ATL is more effective in obtaining seizure-free outcomes; however, both ATL and SA can preserve memory function.
Collapse
|
28
|
Charlebois CM, Anderson DN, Johnson KA, Philip BJ, Davis TS, Newman BJ, Peters AY, Arain AM, Dorval AD, Rolston JD, Butson CR. Patient-specific structural connectivity informs outcomes of responsive neurostimulation for temporal lobe epilepsy. Epilepsia 2022; 63:2037-2055. [PMID: 35560062 PMCID: PMC11265293 DOI: 10.1111/epi.17298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Responsive neurostimulation is an effective therapy for patients with refractory mesial temporal lobe epilepsy. However, clinical outcomes are variable, few patients become seizure-free, and the optimal stimulation location is currently undefined. The aim of this study was to quantify responsive neurostimulation in the mesial temporal lobe, identify stimulation-dependent networks associated with seizure reduction, and determine if stimulation location or stimulation-dependent networks inform outcomes. METHODS We modeled patient-specific volumes of tissue activated and created probabilistic stimulation maps of local regions of stimulation across a retrospective cohort of 22 patients with mesial temporal lobe epilepsy. We then mapped the network stimulation effects by seeding tractography from the volume of tissue activated with both patient-specific and normative diffusion-weighted imaging. We identified networks associated with seizure reduction across patients using the patient-specific tractography maps and then predicted seizure reduction across the cohort. RESULTS Patient-specific stimulation-dependent connectivity was correlated with responsive neurostimulation effectiveness after cross-validation (p = .03); however, normative connectivity derived from healthy subjects was not (p = .44). Increased connectivity from the volume of tissue activated to the medial prefrontal cortex, cingulate cortex, and precuneus was associated with greater seizure reduction. SIGNIFICANCE Overall, our results suggest that the therapeutic effect of responsive neurostimulation may be mediated by specific networks connected to the volume of tissue activated. In addition, patient-specific tractography was required to identify structural networks correlated with outcomes. It is therefore likely that altered connectivity in patients with epilepsy may be associated with the therapeutic effect and that utilizing patient-specific imaging could be important for future studies. The structural networks identified here may be utilized to target stimulation in the mesial temporal lobe and to improve seizure reduction for patients treated with responsive neurostimulation.
Collapse
Affiliation(s)
- Chantel M. Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Daria Nesterovich Anderson
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Kara A. Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Brian J. Philip
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Tyler. S. Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Blake J. Newman
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Angela Y. Peters
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Amir M. Arain
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Alan D. Dorval
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Christopher R. Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Larivière S, Royer J, Rodríguez-Cruces R, Paquola C, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Yasuda CL, Bonilha L, Gleichgerrcht E, Focke NK, Domin M, von Podewills F, Langner S, Rummel C, Wiest R, Martin P, Kotikalapudi R, O'Brien TJ, Sinclair B, Vivash L, Desmond PM, Lui E, Vaudano AE, Meletti S, Tondelli M, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Winston GP, Griffin A, Singh A, Tiwari VK, Kreilkamp BAK, Lenge M, Guerrini R, Hamandi K, Foley S, Rüber T, Weber B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Severino M, Striano P, Tortora D, Kaestner E, Hatton SN, Vos SB, Caciagli L, Duncan JS, Whelan CD, Thompson PM, Sisodiya SM, Bernasconi A, Labate A, McDonald CR, Bernasconi N, Bernhardt BC. Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression. Nat Commun 2022; 13:4320. [PMID: 35896547 PMCID: PMC9329287 DOI: 10.1038/s41467-022-31730-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | | | - Antonio Gambardella
- Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy
- Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Niels K Focke
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewills
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Soenke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Patricia M Desmond
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Elaine Lui
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Primary Care Department, Azienda Sanitaria Locale di Modena, Modena, Italy
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Colin P Doherty
- Department of Neurology, St James' Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Magdalena Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mario Mascalchi
- Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy
| | - Mira Semmelroch
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rhys H Thomas
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hamid Soltanian-Zadeh
- Contol and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China
| | - Gavin P Winston
- Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Aoife Griffin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | | | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Khalid Hamandi
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Whales, Cardiff, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Theodor Rüber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J A Carr
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eugenio Abela
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mark P Richardson
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, US
| | | | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Erik Kaestner
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Sean N Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Christopher D Whelan
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Angelo Labate
- Neurology, BIOMORF Dipartment, University of Messina, Messina, Italy
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
30
|
Park BY, Paquola C, Bethlehem RAI, Benkarim O, Mišić B, Smallwood J, Bullmore ET, Bernhardt BC. Adolescent development of multiscale structural wiring and functional interactions in the human connectome. Proc Natl Acad Sci U S A 2022; 119:e2116673119. [PMID: 35776541 PMCID: PMC9271154 DOI: 10.1073/pnas.2116673119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/30/2022] [Indexed: 01/03/2023] Open
Abstract
Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Data Science, Inha University, Incheon, 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Richard A. I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | | | - Bratislav Mišić
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
31
|
Liu ZQ, Vázquez-Rodríguez B, Spreng RN, Bernhardt BC, Betzel RF, Misic B. Time-resolved structure-function coupling in brain networks. Commun Biol 2022; 5:532. [PMID: 35654886 PMCID: PMC9163085 DOI: 10.1038/s42003-022-03466-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/09/2022] [Indexed: 12/23/2022] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in systems neuroscience. Modern accounts assume a single global structure-function relationship that persists over time. Here we study structure-function coupling from a dynamic perspective, and show that it is regionally heterogeneous. We use a temporal unwrapping procedure to identify moment-to-moment co-fluctuations in neural activity, and reconstruct time-resolved structure-function coupling patterns. We find that patterns of dynamic structure-function coupling are region-specific. We observe stable coupling in unimodal and transmodal cortex, and dynamic coupling in intermediate regions, particularly in insular cortex (salience network) and frontal eye fields (dorsal attention network). Finally, we show that the variability of a region’s structure-function coupling is related to the distribution of its connection lengths. Collectively, our findings provide a way to study structure-function relationships from a dynamic perspective. Temporal unwrapping analysis of diffusion weighted MRI connectivity and functional MRI scans reveals that the coupling between structure and function in the human brain is regionally heterogeneous and provides a framework to evaluate these relationships from a dynamic perspective.
Collapse
|
32
|
Morgan VL, Sainburg LE, Johnson GW, Janson A, Levine KK, Rogers BP, Chang C, Englot DJ. Presurgical temporal lobe epilepsy connectome fingerprint for seizure outcome prediction. Brain Commun 2022; 4:fcac128. [PMID: 35774185 PMCID: PMC9237708 DOI: 10.1093/braincomms/fcac128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 01/19/2023] Open
Abstract
Temporal lobe epilepsy presents a unique situation where confident clinical localization of the seizure focus does not always result in a seizure-free or favourable outcome after mesial temporal surgery. In this work, magnetic resonance imaging derived functional and structural whole-brain connectivity was used to compute a network fingerprint that captures the connectivity profile characteristics that are common across a group of nine of these patients with seizure-free outcome. The connectivity profile was then computed for 38 left-out patients with the hypothesis that similarity to the fingerprint indicates seizure-free surgical outcome. Patient profile distance to the fingerprint was compared with 1-year seizure outcome and standard clinical parameters. Distance to the fingerprint was higher for patients with Engel III-IV 1-year outcome compared with those with Engel Ia, Ib-d, and II outcome (Kruskal-Wallis, P < 0.01; Wilcoxon rank-sum p corr <0.05 Bonferroni-corrected). Receiver operator characteristic analysis revealed 100% sensitivity and 90% specificity in identifying patients with Engel III-IV outcome based on distance to the fingerprint in the left-out patients. Furthermore, distance to the fingerprint was not related to any individual clinical parameter including age at scan, duration of disease, total seizure frequency, presence of mesial temporal sclerosis, lateralizing ictal, interictal scalp electroencephalography, invasive stereo-encephalography, or positron emission tomography. And two published algorithms utilizing multiple clinical measures for predicting seizure outcome were not related to distance to the fingerprint, nor predictive of seizure outcome in this cohort. The functional and structural connectome fingerprint provides quantitative, clinically interpretable and significant information not captured by standard clinical assessments alone or in combinations. This automated and simple method may improve patient-specific prediction of seizure outcome in patients with a clinically identified focus in the mesial temporal lobe.
Collapse
Affiliation(s)
- Victoria L Morgan
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, R0102 MCN, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Lucas E Sainburg
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, R0102 MCN, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Graham W Johnson
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, R0102 MCN, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Andrew Janson
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, R0102 MCN, Nashville, TN 37232, USA
| | - Kaela K Levine
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, R0102 MCN, Nashville, TN 37232, USA
| | - Baxter P Rogers
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, R0102 MCN, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Catie Chang
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, R0102 MCN, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Dario J Englot
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, R0102 MCN, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
33
|
Sinha N, Johnson GW, Davis KA, Englot DJ. Integrating Network Neuroscience Into Epilepsy Care: Progress, Barriers, and Next Steps. Epilepsy Curr 2022; 22:272-278. [PMID: 36285209 PMCID: PMC9549227 DOI: 10.1177/15357597221101271] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Drug resistant epilepsy is a disorder involving widespread brain network
alterations. Recently, many groups have reported neuroimaging and
electrophysiology network analysis techniques to aid medical
management, support presurgical planning, and understand postsurgical
seizure persistence. While these approaches may supplement standard
tests to improve care, they are not yet used clinically or influencing
medical or surgical decisions. When will this change? Which approaches
have shown the most promise? What are the barriers to translating them
into clinical use? How do we facilitate this transition? In this
review, we will discuss progress, barriers, and next steps regarding
the integration of brain network analysis into the medical and
presurgical pipeline.
Collapse
Affiliation(s)
- Nishant Sinha
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Graham W. Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathryn A. Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
34
|
Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, Braun U, Trimmel K, Vos SB, Sidhu MK, Thompson PJ, Baxendale S, Winston GP, Duncan JS, Bassett DS, Koepp MJ, Bernhardt BC. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain 2022; 146:935-953. [PMID: 35511160 PMCID: PMC9976988 DOI: 10.1093/brain/awac150] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Correspondence to: Lorenzo Caciagli, MD, PhD Department of Bioengineering University of Pennsylvania, 240 Skirkanich Hall 210 South 33rd Street, Philadelphia, PA 19104, USA E-mail: ;
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Department of Neurology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Epilepsy Unit, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Urs Braun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Centre for Medical Image Computing, University College London, London, UK,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK,Department of Medicine, Division of Neurology, Queen’s University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK,MRI Unit, Epilepsy Society,Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Dani S Bassett
- Correspondence may also be addressed to: Dani S. Bassett, PhD E-mail:
| | | | | |
Collapse
|
35
|
Mo J, Zhang J, Hu W, Shao X, Sang L, Zheng Z, Zhang C, Wang Y, Wang X, Liu C, Zhao B, Zhang K. Neuroimaging gradient alterations and epileptogenic prediction in focal cortical dysplasia Ⅲa. J Neural Eng 2022; 19. [PMID: 35405671 DOI: 10.1088/1741-2552/ac6628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/10/2022] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Focal cortical dysplasia Type Ⅲa (FCD Ⅲa) is a highly prevalent temporal lobe epilepsy but the seizure outcomes are not satisfactory after epilepsy surgery. Hence, quantitative neuroimaging, epileptogenic alterations, as well as their values in guiding surgery are worth exploring. METHODS We examined 69 patients with pathologically verified FCD Ⅲa using multimodal neuroimaging and stereoelectroencephalography (SEEG). Among them, 18 received postoperative imaging which showed the extent of surgical resection and 9 underwent SEEG implantation. We also explored neuroimaging gradient alterations along with the distance to the temporal pole. Subsequently, the machine learning regression model was employed to predict whole-brain epileptogenicity. Lastly, the correlation between neuroimaging or epileptogenicity and surgical cavities was assessed. RESULTS FCD Ⅲa displayed neuroimaging gradient alterations on the temporal neocortex, morphology-signal intensity decoupling, low similarity of intra-morphological features and high similarity of intra-signal intensity features. The support vector regression model was successfully applied at the whole-brain level to calculate the continuous epileptogenic value at each vertex (mean-squared error = 13.8 ± 9.8). CONCLUSION Our study investigated the neuroimaging gradient alterations and epileptogenicity of FCD Ⅲa, along with their potential values in guiding suitable resection range and in predicting postoperative seizure outcomes. The conclusions from this study may facilitate an accurate presurgical examination of FCD Ⅲa. However, further investigation including a larger cohort is necessary to confirm the results.
Collapse
Affiliation(s)
- Jiajie Mo
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Jianguo Zhang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Wenhan Hu
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Xiaoqiu Shao
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Lin Sang
- Peking University First Hospital Fengtai Hospital, No. 99 South 4th Fengtai Road, Fengtai District, Beijing, 100070, CHINA
| | - Zhong Zheng
- Peking University First Hospital Fengtai Hospital, No. 99 South 4th Fengtai Road, Fengtai District, Beijing, 100070, CHINA
| | - Chao Zhang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Yao Wang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Xiu Wang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Chang Liu
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Baotian Zhao
- Beijing Tiantan Hospital, , Beijing, 100070, CHINA
| | - Kai Zhang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| |
Collapse
|
36
|
Johnson GW, Doss DJ, Englot DJ. Network dysfunction in pre and postsurgical epilepsy: connectomics as a tool and not a destination. Curr Opin Neurol 2022; 35:196-201. [PMID: 34799514 PMCID: PMC8891078 DOI: 10.1097/wco.0000000000001008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Patients with focal drug-resistant epilepsy (DRE) sometimes continue to have seizures after surgery. Recently, there is increasing interest in using advanced network analyses (connectomics) to better understand this problem. Connectomics has changed the way researchers and clinicians view DRE, but it must be applied carefully in a hypothesis-driven manner to avoid spurious results. This review will focus on studies published in the last 18 months that have thoughtfully used connectomics to advance our fundamental understanding of network dysfunction in DRE - hopefully for the eventual direct benefit to patient care. RECENT FINDINGS Impactful recent findings have centered on using patient-specific differences in network dysfunction to predict surgical outcome. These works span functional and structural connectivity and include the modalities of functional and diffusion magnetic resonance imaging (MRI) and electrophysiology. Using functional MRI, many groups have described an increased functional segregation outside of the surgical resection zone in patients who fail surgery. Using electrophysiology, groups have reported network characteristics of resected tissue that suggest whether a patient will respond favorably to surgery. SUMMARY If we can develop accurate models to outline functional and structural network characteristics that predict failure of standard surgical approaches, then we can not only improve current clinical decision-making; we can also begin developing alternative treatments including network approaches to improve surgical success rates.
Collapse
Affiliation(s)
- Graham W. Johnson
- Department of Biomedical Engineering at Vanderbilt University
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center
| | - Derek J. Doss
- Department of Biomedical Engineering at Vanderbilt University
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center
| | - Dario J. Englot
- Department of Biomedical Engineering at Vanderbilt University
- Vanderbilt University Institute of Imaging Science at Vanderbilt University Medical Center
- Department of Neurological Surgery
- Department of Neurology
- Department of Radiology and Radiological Sciences at Vanderbilt University Medical Center
| |
Collapse
|
37
|
Luckett PH, Maccotta L, Lee JJ, Park KY, Dosenbach NU, Ances BM, Hogan RE, Shimony JS, Leuthardt EC. Deep learning resting state fMRI lateralization of temporal lobe epilepsy. Epilepsia 2022; 63:1542-1552. [PMID: 35320587 DOI: 10.1111/epi.17233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Localization of focal epilepsy is critical for surgical treatment of refractory seizures. There remains a great need for non-invasive techniques to localize seizures for surgical decision-making. We investigate the use of deep learning using resting state functional MRI (RS-fMRI) to identify the hemisphere of seizure onset in temporal lobe epilepsy (TLE) patients. METHODS 2132 healthy controls and 32 pre-operative TLE patients were studied. All participants underwent structural MRI and RS-fMRI. Healthy control data was used to generate training samples for a 3D convolutional neural network (3DCNN). RS-fMRI was synthetically altered in randomly lateralized regions in the healthy control participants. The model was then trained to classify the hemisphere containing synthetic noise. Finally, the model was tested on TLE patients to assess its performance for detecting biological seizure-onset zones, and gradient-weighted class activation mapping (Grad-CAM) identified the strongest predictive regions. RESULTS The 3DCNN classified healthy control hemispheres known to contain synthetic noise with 96% accuracy, and TLE hemispheres clinically identified to be seizure onset zones with 90.6% accuracy. Grad-CAM identified a range of temporal, frontal, parietal, and subcortical regions that were strong anatomical predictors of the seizure onset zone, while the resting state networks which colocalized with Grad-CAM results included default mode, medial temporal, and dorsal attention networks. Lastly, in an analysis of a subset of patients with post-surgical outcomes, the 3DCNN leveraged a more focal set of regions to achieve classification in patients with Engel class > 1 compared to Engel class 1. SIGNIFICANCE Non-invasive techniques capable of localizing the seizure-onset zone could improve pre-surgical planning in patients with intractable epilepsy. We have demonstrated the ability of deep learning to identify the correct hemisphere of the seizure onset zone in TLE patients using RS-fMRI with high accuracy. This approach represents a novel technique of seizure lateralization that could improve preoperative surgical planning.
Collapse
Affiliation(s)
- Patrick H Luckett
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis
| | - Luigi Maccotta
- Department of Neurology, Washington University School of Medicine, St. Louis
| | - John J Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis
| | - Ki Yun Park
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis
| | - Nico Uf Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St. Louis
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine, St. Louis
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis
| |
Collapse
|
38
|
Gholipour T, You X, Stufflebeam SM, Loew M, Koubeissi MZ, Morgan VL, Gaillard WD. Common functional connectivity alterations in focal epilepsies identified by machine learning. Epilepsia 2022; 63:629-640. [PMID: 34984672 PMCID: PMC9022014 DOI: 10.1111/epi.17160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study was undertaken to identify shared functional network characteristics among focal epilepsies of different etiologies, to distinguish epilepsy patients from controls, and to lateralize seizure focus using functional connectivity (FC) measures derived from resting state functional magnetic resonance imaging (MRI). METHODS Data were taken from 103 adult and 65 pediatric focal epilepsy patients (with or without lesion on MRI) and 109 controls across four epilepsy centers. We used three whole-brain FC measures: parcelwise connectivity matrix, mean FC, and degree of FC. We trained support vector machine models with fivefold cross-validation (1) to distinguish patients from controls and (2) to lateralize the hemisphere of seizure onset in patients. We reported the regions and connections with the highest importance from each model as the common FC differences between the compared groups. RESULTS FC measures related to the default mode and limbic networks had higher importance relative to other networks for distinguishing epilepsy patients from controls. In lateralization models, regions related to somatosensory, visual, default mode, and basal ganglia showed higher importance. The epilepsy versus control classification model trained using a 400-parcel connectivity matrix achieved a median testing accuracy of 75.6% (median area under the curve [AUC] = .83) in repeated independent testing. Lateralization accuracy using the 400-parcel connectivity matrix reached a median accuracy of 64.0% (median AUC = .69). SIGNIFICANCE Machine learning models revealed common FC alterations in a heterogeneous group of patients with focal epilepsies. The distribution of the most altered regions supports the hypothesis that shared functional alteration exists beyond the seizure onset zone and its epileptic network. We showed that FC measures can distinguish patients from controls, and further lateralize focal epilepsies. Future studies are needed to confirm these findings by using larger numbers of epilepsy patients.
Collapse
Affiliation(s)
- Taha Gholipour
- Department of Neurology, George Washington University, Washington, District of Columbia, USA.,Center for Neuroscience, Children's National Hospital, Washington, District of Columbia, USA.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Xiaozhen You
- Center for Neuroscience, Children's National Hospital, Washington, District of Columbia, USA
| | - Steven M Stufflebeam
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Murray Loew
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia, USA
| | - Mohamad Z Koubeissi
- Department of Neurology, George Washington University, Washington, District of Columbia, USA
| | | | - William D Gaillard
- Department of Neurology, George Washington University, Washington, District of Columbia, USA.,Center for Neuroscience, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
39
|
Rodriguez-Cruces R, Royer J, Larivière S, Bassett DS, Caciagli L, Bernhardt BC. Multimodal connectome biomarkers of cognitive and affective dysfunction in the common epilepsies. Netw Neurosci 2022; 6:320-338. [PMID: 35733426 PMCID: PMC9208009 DOI: 10.1162/netn_a_00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/02/2022] [Indexed: 11/05/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological conditions, traditionally defined as a disorder of recurrent seizures. Cognitive and affective dysfunction are increasingly recognized as core disease dimensions and can affect patient well-being, sometimes more than the seizures themselves. Connectome-based approaches hold immense promise for revealing mechanisms that contribute to dysfunction and to identify biomarkers. Our review discusses emerging multimodal neuroimaging and connectomics studies that highlight network substrates of cognitive/affective dysfunction in the common epilepsies. We first discuss work in drug-resistant epilepsy syndromes, that is, temporal lobe epilepsy, related to mesiotemporal sclerosis (TLE), and extratemporal epilepsy (ETE), related to malformations of cortical development. While these are traditionally conceptualized as ‘focal’ epilepsies, many patients present with broad structural and functional anomalies. Moreover, the extent of distributed changes contributes to difficulties in multiple cognitive domains as well as affective-behavioral challenges. We also review work in idiopathic generalized epilepsy (IGE), a subset of generalized epilepsy syndromes that involve subcortico-cortical circuits. Overall, neuroimaging and network neuroscience studies point to both shared and syndrome-specific connectome signatures of dysfunction across TLE, ETE, and IGE. Lastly, we point to current gaps in the literature and formulate recommendations for future research. Epilepsy is increasingly recognized as a network disorder characterized by recurrent seizures as well as broad-ranging cognitive difficulties and affective dysfunction. Our manuscript reviews recent literature highlighting brain network substrates of cognitive and affective dysfunction in common epilepsy syndromes, namely temporal lobe epilepsy secondary to mesiotemporal sclerosis, extratemporal epilepsy secondary to malformations of cortical development, and idiopathic generalized epilepsy syndromes arising from subcortico-cortical pathophysiology. We discuss prior work that has indicated both shared and distinct brain network signatures of cognitive and affective dysfunction across the epilepsy spectrum, improves our knowledge of structure-function links and interindividual heterogeneity, and ultimately aids screening and monitoring of therapeutic strategies.
Collapse
Affiliation(s)
- Raul Rodriguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Royer J, Bernhardt BC, Larivière S, Gleichgerrcht E, Vorderwülbecke BJ, Vulliémoz S, Bonilha L. Epilepsy and brain network hubs. Epilepsia 2022; 63:537-550. [DOI: 10.1111/epi.17171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Ezequiel Gleichgerrcht
- Department of Neurology Medical University of South Carolina Charleston South Carolina USA
| | - Bernd J. Vorderwülbecke
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
- Department of Neurology Epilepsy Center Berlin‐Brandenburg Charité–Universitätsmedizin Berlin Berlin Germany
| | - Serge Vulliémoz
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
| | | |
Collapse
|
41
|
Sollee J, Tang L, Igiraneza AB, Xiao B, Bai HX, Yang L. Artificial Intelligence for Medical Image Analysis in Epilepsy. Epilepsy Res 2022; 182:106861. [DOI: 10.1016/j.eplepsyres.2022.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
|
42
|
Lee HM, Fadaie F, Gill R, Caldairou B, Sziklas V, Crane J, Hong SJ, Bernhardt BC, Bernasconi A, Bernasconi N. Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification. Brain 2021; 145:897-908. [PMID: 34849619 DOI: 10.1093/brain/awab425] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/14/2022] Open
Abstract
In drug-resistant temporal lobe epilepsy (TLE), precise predictions of drug response, surgical outcome, and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant "one-size-fits-all" group-level analytical approaches that does not allow parsing inter-individual variations along the disease spectrum. Conversely, analyzing inter-patient heterogeneity is increasingly recognized as a step towards person-centered care. Here, we utilized unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features (cortical thickness, hippocampal volume, FLAIR, T1/FLAIR, diffusion parameters) representing whole-brain patterns of structural pathology in 82 TLE patients. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically-verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor-1), bilateral paralimbic and hippocampal gliosis (Factor-2), bilateral neocortical atrophy (Factor-3), bilateral white matter microstructural alterations (Factor-4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug-response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is likely determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.
Collapse
Affiliation(s)
- Hyo Min Lee
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Fatemeh Fadaie
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Ravnoor Gill
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Viviane Sziklas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Joelle Crane
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research Institute for Basic Science, Department of Biomedical Engineering, Sungkyunkwan University Suwon South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Sala-Padro J, Miró J, Rodriguez-Fornells A, Rifa-Ros X, Plans G, Santurino M, Falip M, Càmara E. Mapping connectivity fingerprints for presurgical evaluation of temporal lobe epilepsy. BMC Neurol 2021; 21:442. [PMID: 34758783 PMCID: PMC8579661 DOI: 10.1186/s12883-021-02469-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background Surgery may render temporal lobe epilepsy (TLE) patients seizure-free. However, TLE is a heterogenous entity and surgical prognosis varies between patients. Network-based biomarkers have been shown to be altered in TLE patients and hold promise for classifying TLE subtypes and improving pre-surgical prognosis. The aim of the present study is to investigate a network-based biomarker, the weighted degree of connectivity (wDC), on an individual level, and its relation to TLE subtypes and surgical prognosis. Methods Thirty unilateral TLE patients undergoing the same surgical procedure (anterior temporal resection) and 18 healthy controls were included. All patients were followed-up in the same center for a mean time of 6.85 years and classified as seizure-free (SF) and non seizure-free (non-SF). Using pre-surgical resting state functional MRI, whole brain wDC values for patients and controls were calculated. Then, we divided both temporal lobes in three Regions-of-interest (ROIs) -mesial, pole and lateral- as these areas are known to behave differently in seizure onset and propagation, delimiting different TLE profiles. The wDC values for the defined ROIs of each individual patient were compared with the healthy group. Results After surgery, 14 TLE patients remained SF. As a group, patients had higher wDC than controls in both the temporal pole (p < 0.05) as well as in the mesial regions (p < 0.002) of the to-be-resected temporal lobe. When comparing between SF and non-SF patients, a step-wise binary logistic regression model including all the ROIs, showed that having an increased wDC of the temporal pole (p < 0.05) and the mesial area (p < 0.05) of the to-be-resected temporal lobe was associated with seizure freedom long-term after surgery. Conclusions This study provides a network-based presurgical biomarker that could pave the way towards personalized prediction. In patients with TLE undergoing anterior temporal resections, having an increased wDC at rest could be a signature of the epileptogenic area, and could help identifying those patients who would benefit most from surgery.
Collapse
Affiliation(s)
- Jacint Sala-Padro
- Epilepsy Unit, Hospital de Bellvitge, Barcelona, Spain.,Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08097, Barcelona, Spain
| | - Júlia Miró
- Epilepsy Unit, Hospital de Bellvitge, Barcelona, Spain.,Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08097, Barcelona, Spain
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08097, Barcelona, Spain.,Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, 08097, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| | - Xavier Rifa-Ros
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08097, Barcelona, Spain.,Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, 08097, Barcelona, Spain
| | - Gerard Plans
- Epilepsy Unit, Hospital de Bellvitge, Barcelona, Spain
| | | | - Mercè Falip
- Epilepsy Unit, Hospital de Bellvitge, Barcelona, Spain
| | - Estela Càmara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08097, Barcelona, Spain. .,Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, 08097, Barcelona, Spain.
| |
Collapse
|
44
|
Machine learning models for decision support in epilepsy management: A critical review. Epilepsy Behav 2021; 123:108273. [PMID: 34507093 DOI: 10.1016/j.yebeh.2021.108273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE There remain major challenges for the clinician in managing patients with epilepsy effectively. Choosing anti-seizure medications (ASMs) is subject to trial and error. About one-third of patients have drug-resistant epilepsy (DRE). Surgery may be considered for selected patients, but time from diagnosis to surgery averages 20 years. We reviewed the potential use of machine learning (ML) predictive models as clinical decision support tools to help address some of these issues. METHODS We conducted a comprehensive search of Medline and Embase of studies that investigated the application of ML in epilepsy management in terms of predicting ASM responsiveness, predicting DRE, identifying surgical candidates, and predicting epilepsy surgery outcomes. Original articles addressing these 4 areas published in English between 2000 and 2020 were included. RESULTS We identified 24 relevant articles: 6 on ASM responsiveness, 3 on DRE prediction, 2 on identifying surgical candidates, and 13 on predicting surgical outcomes. A variety of potential predictors were used including clinical, neuropsychological, imaging, electroencephalography, and health system claims data. A number of different ML algorithms and approaches were used for prediction, but only one study utilized deep learning methods. Some models show promising performance with areas under the curve above 0.9. However, most were single setting studies (18 of 24) with small sample sizes (median number of patients 55), with the exception of 3 studies that utilized large databases and 3 studies that performed external validation. There was a lack of standardization in reporting model performance. None of the models reviewed have been prospectively evaluated for their clinical benefits. CONCLUSION The utility of ML models for clinical decision support in epilepsy management remains to be determined. Future research should be directed toward conducting larger studies with external validation, standardization of reporting, and prospective evaluation of the ML model on patient outcomes.
Collapse
|
45
|
Moody JF, Adluru N, Alexander AL, Field AS. The Connectomes: Methods of White Matter Tractography and Contributions of Resting State fMRI. Semin Ultrasound CT MR 2021; 42:507-522. [PMID: 34537118 DOI: 10.1053/j.sult.2021.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A comprehensive mapping of the structural and functional circuitry of the brain is a major unresolved problem in contemporary neuroimaging research. Diffusion-weighted and functional MRI have provided investigators with the capability to assess structural and functional connectivity in-vivo, driven primarily by methods of white matter tractography and resting-state fMRI, respectively. These techniques have paved the way for the construction of the functional and structural connectomes, which are quantitative representations of brain architecture as neural networks, comprised of nodes and edges. The connectomes, typically depicted as matrices or graphs, possess topological properties that inherently characterize the strength, efficiency, and organization of the connections between distinct brain regions. Graph theory, a general mathematical framework for analyzing networks, can be implemented to derive metrics from the connectomes that are sensitive to changes in brain connectivity associated with age, sex, cognitive function, and disease. These quantities can be assessed at either the global (whole brain) or local levels, allowing for the identification of distinct regional connectivity hubs and associated localized brain networks, which together serve crucial roles in establishing the structural and functional architecture of the brain. As a result, structural and functional connectomes have each been employed to study the brain circuitry underlying early brain development, neuroplasticity, developmental disorders, psychopathology, epilepsy, aging, neurodegenerative disorders, and traumatic brain injury. While these studies have yielded important insights into brain structure, function, and pathology, a precise description of the innate relationship between functional and structural networks across the brain remains unachieved. To date, connectome research has merely scratched the surface of potential clinical applications and related characterizations of brain-wide connectivity. Continued advances in diffusion and functional MRI acquisition, the delineation of functional and structural networks, and the quantification of neural network properties in specific brain regions, will be invaluable to future progress in neuroimaging science.
Collapse
Affiliation(s)
- Jason F Moody
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI; Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI; Department of Radiology, University of Wisconsin-Madison, Madison, WI
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI; Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Aaron S Field
- Department of Radiology, University of Wisconsin-Madison, Madison, WI.
| |
Collapse
|
46
|
Peixoto-Santos JE, Blumcke I. Neuropathology of the 21st century for the Latin American epilepsy community. Seizure 2021; 90:51-59. [DOI: 10.1016/j.seizure.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
|
47
|
Wang X, Hu T, Yang Q, Jiao D, Yan Y, Liu L. Graph-theory based degree centrality combined with machine learning algorithms can predict response to treatment with antiepileptic medications in children with epilepsy. J Clin Neurosci 2021; 91:276-282. [PMID: 34373040 DOI: 10.1016/j.jocn.2021.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of the current study is to detect changes of graph-theory-based degree centrality (DC) and their relationship with the clinical treatment effects of anti-epileptic drugs (AEDs) for patients with childhood absence epilepsy (CAE) using resting-state functional MRI (RS-fMRI). METHODS RS-fMRI data from 35 CAE patients were collected and compared with findings from 35 age and gender matched healthy controls (HCs). The patients were treated with AEDs for 46.03 weeks before undergoing a second RS-fMRI scan. RESULTS CAE children at baseline showed increased DC in thalamus, postcentral and precentral and reduced DC in medial frontal cortex, superior frontal cortex, middle temporal cortex, angular and precuneus. However, those abnormalities showed a clear renormalization after AEDs treatments. We then explored the viability of graph-theory-based degree centrality to accurately classify effectiveness to AEDs. Support Vector Machine analysis using leave-one-out cross-validation achieved a correct classification rate of 84.22% [sensitivity 78.76%, specificity 89.65%, and area under the receiver operating characteristic curve (AUC) 0.96] for differentiating effective subjects from ineffective subjects. Brain areas that contributed most to the classification model were mainly located within the right thalamus, bilateral middle temporal gyrus, right medial frontal gyrus, right inferior frontal gyrus, left precuneus, bilateral angular right precentral and left postcentral. Furthermore, the DC change within the bilateral angular are positively correlated with the symptom improvements after AEDs treatment. CONCLUSION These findings suggest that graph-theory-based measures, such as DC, combined with machine-learning algorithms, can provide crucial insights into pathophysiological mechanisms and the effectiveness of AEDs.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Tian Hu
- Department of Radiology, Yanan University Affiliated Hospital, China
| | - Qi Yang
- Department of Radiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, China
| | - Dongmei Jiao
- Department of Internal Medicine, The Second Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, China
| | - Yibing Yan
- Department of Pediatrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Libo Liu
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China.
| |
Collapse
|
48
|
Sone D, Beheshti I. Clinical Application of Machine Learning Models for Brain Imaging in Epilepsy: A Review. Front Neurosci 2021; 15:684825. [PMID: 34239413 PMCID: PMC8258163 DOI: 10.3389/fnins.2021.684825] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent and disabling seizures. An increasing number of clinical and experimental applications of machine learning (ML) methods for epilepsy and other neurological and psychiatric disorders are available. ML methods have the potential to provide a reliable and optimal performance for clinical diagnoses, prediction, and personalized medicine by using mathematical algorithms and computational approaches. There are now several applications of ML for epilepsy, including neuroimaging analyses. For precise and reliable clinical applications in epilepsy and neuroimaging, the diverse ML methodologies should be examined and validated. We review the clinical applications of ML models for brain imaging in epilepsy obtained from a PubMed database search in February 2021. We first present an overview of typical neuroimaging modalities and ML models used in the epilepsy studies and then focus on the existing applications of ML models for brain imaging in epilepsy based on the following clinical aspects: (i) distinguishing individuals with epilepsy from healthy controls, (ii) lateralization of the temporal lobe epilepsy focus, (iii) the identification of epileptogenic foci, (iv) the prediction of clinical outcomes, and (v) brain-age prediction. We address the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, The Jikei University School of Medicine, Tokyo, Japan.,Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
49
|
Vos de Wael R, Royer J, Tavakol S, Wang Y, Paquola C, Benkarim O, Eichert N, Larivière S, Xu T, Misic B, Smallwood J, Valk SL, Bernhardt BC. Structural Connectivity Gradients of the Temporal Lobe Serve as Multiscale Axes of Brain Organization and Cortical Evolution. Cereb Cortex 2021; 31:5151-5164. [PMID: 34148082 PMCID: PMC8491677 DOI: 10.1093/cercor/bhab149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The temporal lobe is implicated in higher cognitive processes and is one of the regions that underwent substantial reorganization during primate evolution. Its functions are instantiated, in part, by the complex layout of its structural connections. Here, we identified low-dimensional representations of structural connectivity variations in human temporal cortex and explored their microstructural underpinnings and associations to macroscale function. We identified three eigenmodes which described gradients in structural connectivity. These gradients reflected inter-regional variations in cortical microstructure derived from quantitative magnetic resonance imaging and postmortem histology. Gradient-informed models accurately predicted macroscale measures of temporal lobe function. Furthermore, the identified gradients aligned closely with established measures of functional reconfiguration and areal expansion between macaques and humans, highlighting their potential role in shaping temporal lobe function throughout primate evolution. Findings were replicated in several datasets. Our results provide robust evidence for three axes of structural connectivity in human temporal cortex with consistent microstructural underpinnings and contributions to large-scale brain network function.
Collapse
Affiliation(s)
- Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Yezhou Wang
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, NY 10022, USA
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Boris C Bernhardt
- Address correspondence to Boris C. Bernhardt, McConnell Brain Imaging Centre, Montreal Neurological Institute (NW-256), McGill University, 3801 Rue University, Montréal, QC H3A2B4, Canada.
| |
Collapse
|
50
|
Morgan VL, Johnson GW, Cai LY, Landman BA, Schilling KG, Englot DJ, Rogers BP, Chang C. MRI network progression in mesial temporal lobe epilepsy related to healthy brain architecture. Netw Neurosci 2021; 5:434-450. [PMID: 34189372 PMCID: PMC8233120 DOI: 10.1162/netn_a_00184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/11/2021] [Indexed: 11/04/2022] Open
Abstract
We measured MRI network progression in mesial temporal lobe epilepsy (mTLE) patients as a function of healthy brain architecture. Resting-state functional MRI and diffusion-weighted MRI were acquired in 40 unilateral mTLE patients and 70 healthy controls. Data were used to construct region-to-region functional connectivity, structural connectivity, and streamline length connectomes per subject. Three models of distance from the presumed seizure focus in the anterior hippocampus in the healthy brain were computed using the average connectome across controls. A fourth model was defined using regions of transmodal (higher cognitive function) to unimodal (perceptual) networks across a published functional gradient in the healthy brain. These models were used to test whether network progression in patients increased when distance from the anterior hippocampus or along a functional gradient in the healthy brain decreases. Results showed that alterations of structural and functional networks in mTLE occur in greater magnitude in regions of the brain closer to the seizure focus based on healthy brain topology, and decrease as distance from the focus increases over duration of disease. Overall, this work provides evidence that changes across the brain in focal epilepsy occur along healthy brain architecture.
Collapse
Affiliation(s)
- Victoria L. Morgan
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Graham W. Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leon Y. Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A. Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Kurt G. Schilling
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dario J. Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P. Rogers
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|