1
|
Clement DT, Gallinson DG, Hamede RK, Jones ME, Margres MJ, McCallum H, Storfer A. Coevolution promotes the coexistence of Tasmanian devils and a fatal, transmissible cancer. Evolution 2024; 79:100-118. [PMID: 39382349 DOI: 10.1093/evolut/qpae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host-pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer. Although early ecological models predicted imminent devil extinction, diseased devil populations persist at low densities, and recent ecological models predict long-term devil persistence. Substantial evidence supports the evolution of both devils and DFTD, suggesting coevolution may also influence continued devil persistence. Thus, we developed an individual-based, eco-evolutionary model of devil-DFTD coevolution parameterized with nearly 2 decades of devil demography, DFTD epidemiology, and genome-wide association studies. We characterized potential devil-DFTD coevolutionary outcomes and predicted the effects of coevolution on devil persistence and devil-DFTD coexistence. We found a high probability of devil persistence over 50 devil generations (100 years) and a higher likelihood of devil-DFTD coexistence, with greater devil recovery than predicted by previous ecological models. These novel results add to growing evidence for long-term devil persistence and highlight the importance of eco-evolutionary modeling for emerging infectious diseases.
Collapse
Affiliation(s)
- Dale T Clement
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Dylan G Gallinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- CANECEV: Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Hamish McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Nathan, Queensland, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Hopken MW, Piaggio AJ, Abdo Z, Chipman RB, Mankowski CP, Nelson KM, Hilton MS, Thurber C, Tsuchiya MTN, Maldonado JE, Gilbert AT. Are rabid raccoons ( Procyon lotor) ready for the rapture? Determining the geographic origin of rabies virus-infected raccoons using RADcapture and microhaplotypes. Evol Appl 2023; 16:1937-1955. [PMID: 38143904 PMCID: PMC10739080 DOI: 10.1111/eva.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/06/2023] [Accepted: 10/18/2023] [Indexed: 12/26/2023] Open
Abstract
North America is recognized for the exceptional richness of rabies virus (RV) wildlife reservoir species. Management of RV is accomplished through vaccination targeting mesocarnivore reservoir populations, such as the raccoon (Procyon lotor) in Eastern North America. Raccoons are a common generalist species, and populations may reach high densities in developed areas, which can result in contact with humans and pets with potential exposures to the raccoon variant of RV throughout the eastern United States. Understanding the spatial movement of RV by raccoon populations is important for monitoring and refining strategies supporting the landscape-level control and local elimination of this lethal zoonosis. We developed a high-throughput genotyping panel for raccoons based on hundreds of microhaplotypes to identify population structure and genetic diversity relevant to rabies management programs. Throughout the eastern United States, we identified hierarchical population genetic structure with clusters that were connected through isolation-by-distance. We also illustrate that this genotyping approach can be used to support real-time management priorities by identifying the geographic origin of a rabid raccoon that was collected in an area of the United States that had been raccoon RV-free for 8 years. The results from this study and the utility of the microhaplotype panel and genotyping method will provide managers with information on raccoon ecology that can be incorporated into future management decisions.
Collapse
Affiliation(s)
- Matthew W. Hopken
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Antoinette J. Piaggio
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Richard B. Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Clara P. Mankowski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Kathleen M. Nelson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mikaela Samsel Hilton
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Christine Thurber
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mirian T. N. Tsuchiya
- Data Science Lab, Office of the Chief Information OfficerSmithsonian InstitutionWashingtonDCUSA
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Amy T. Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| |
Collapse
|
3
|
Robertson EP, Walsh DP, Martin J, Work TM, Kellogg CA, Evans JS, Barker V, Hawthorn A, Aeby G, Paul VJ, Walker BK, Kiryu Y, Woodley CM, Meyer JL, Rosales SM, Studivan M, Moore JF, Brandt ME, Bruckner A. Rapid prototyping for quantifying belief weights of competing hypotheses about emergent diseases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117668. [PMID: 36958278 DOI: 10.1016/j.jenvman.2023.117668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Emerging diseases can have devastating consequences for wildlife and require a rapid response. A critical first step towards developing appropriate management is identifying the etiology of the disease, which can be difficult to determine, particularly early in emergence. Gathering and synthesizing existing information about potential disease causes, by leveraging expert knowledge or relevant existing studies, provides a principled approach to quickly inform decision-making and management efforts. Additionally, updating the current state of knowledge as more information becomes available over time can reduce scientific uncertainty and lead to substantial improvement in the decision-making process and the application of management actions that incorporate and adapt to newly acquired scientific understanding. Here we present a rapid prototyping method for quantifying belief weights for competing hypotheses about the etiology of disease using a combination of formal expert elicitation and Bayesian hierarchical modeling. We illustrate the application of this approach for investigating the etiology of stony coral tissue loss disease (SCTLD) and discuss the opportunities and challenges of this approach for addressing emergent diseases. Lastly, we detail how our work may apply to other pressing management or conservation problems that require quick responses. We found the rapid prototyping methods to be an efficient and rapid means to narrow down the number of potential hypotheses, synthesize current understanding, and help prioritize future studies and experiments. This approach is rapid by providing a snapshot assessment of the current state of knowledge. It can also be updated periodically (e.g., annually) to assess changes in belief weights over time as scientific understanding increases. Synthesis and applications: The rapid prototyping approaches demonstrated here can be used to combine knowledge from multiple experts and/or studies to help with fast decision-making needed for urgent conservation issues including emerging diseases and other management problems that require rapid responses. These approaches can also be used to adjust belief weights over time as studies and expert knowledge accumulate and can be a helpful tool for adapting management decisions.
Collapse
Affiliation(s)
- Ellen P Robertson
- Contract Quantitative Ecologist, US Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, USA.
| | - Daniel P Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA.
| | - Julien Martin
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA.
| | - Thierry M Work
- U.S. Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA
| | - Christina A Kellogg
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - James S Evans
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | | | - Aine Hawthorn
- U.S. Geological Survey National Wildlife Health Center, Western Fisheries Research Center, Seattle, WA, USA
| | - Greta Aeby
- Smithsonian Marine Station, Fort Pierce, FL, USA
| | | | - Brian K Walker
- Nova Southeastern University, Halmos College of Arts and Sciences, Dania Beach, FL, USA
| | - Yasunari Kiryu
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, USA
| | - Cheryl M Woodley
- Hollings Marine Laboratory, Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration's National Ocean Service, Charleston, SC, USA
| | - Julie L Meyer
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, USA
| | - Stephanie M Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA; Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Michael Studivan
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA; Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Jennifer F Moore
- Moore Ecological Analysis and Management, LLC, Gainesville, FL, USA
| | - Marilyn E Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, USVI, USA
| | - Andrew Bruckner
- Florida Keys National Marine Sanctuary, NOAA, Key Largo, FL, USA
| |
Collapse
|
4
|
Carver S, Peters A, Richards SA. Model Integrated Disease Management to facilitate effective translatable solutions for wildlife disease issues. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott Carver
- Department of Biological Sciences University of Tasmania
| | - Andrew Peters
- School of Animal and Veterinary Sciences Charles Sturt University
| | | |
Collapse
|
5
|
The dynamics of disease mediated invasions by hosts with immune reproductive tradeoff. Sci Rep 2022; 12:4108. [PMID: 35260702 PMCID: PMC8904827 DOI: 10.1038/s41598-022-07962-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The modern world involves both increasingly frequent introduction of novel invasive animals into new habitat ranges and novel epidemic-causing pathogens into new host populations. Both of these phenomena have been well studied. Less well explored, however, is how the success of species invasions may themselves be affected by the pathogens they bring with them. In this paper, we construct a simple, modified Susceptible-Infected-Recovered model for a vector-borne pathogen affecting two annually reproducing hosts. We consider an invasion scenario in which a susceptible native host species is invaded by a disease-resistant species carrying a vector-borne infection. We assume the presence of abundant, but previously disease-free, competent vectors. We find that the success of invasion is critically sensitive to the infectivity of the pathogen. The more the pathogen is able to spread, the more fit the invasive host is in competition with the more vulnerable native species; the pathogen acts as a ‘wingman pathogen,’ enhancing the probability of invader establishment. While not surprising, we provide a quantitative predictive framework for the long-term outcomes from these important coupled dynamics in a world in which compound invasions of hosts and pathogens are increasingly likely.
Collapse
|
6
|
Benedict BM, Barboza PS. Adverse effects of Diptera flies on northern ungulates:
Rangifer
,
Alces
, and
Bison. Mamm Rev 2022. [DOI: 10.1111/mam.12287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bridgett M. Benedict
- Department of Ecology and Conservation Biology Texas A&M University 2258 TAMU, 534 John Kimbrough Blvd College Station TX77843USA
| | - Perry S. Barboza
- Department of Ecology and Conservation Biology Texas A&M University 2258 TAMU, 534 John Kimbrough Blvd College Station TX77843USA
- Department of Rangelands Wildlife and Fisheries Management Texas A&M University 2258 TAMU, 534 John Kimbrough Blvd College Station TX77843USA
| |
Collapse
|
7
|
Hardy BM, Muths E, Koons DN. Context-dependent variation in persistence of host populations in the face of disease. J Anim Ecol 2022; 91:282-286. [PMID: 35112351 DOI: 10.1111/1365-2656.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
Research Highlight: Valenzuela-Sánchez, A., Azat, C., Cunningham, A. A., Delgado, S., Bacigalupe, L. D., Beltrand, J., Serrano, J. M., Sentenac, H., Haddow, N., Toledo, V., Schmidt, B. R., & Cayuela, H. (2022). Interpopulation differences in male reproductive effort drive the population dynamics of a host exposed to an emerging fungal pathogen. Journal of Animal Ecology, 00, 1- 12. https://doi.org/10.1111/1365-2656.13603. Understanding the nuances of population persistence in the face of a stressor can help predict extinction risk and guide conservation actions. However, the exact mechanisms driving population stability may not always be known. In this paper, Valenzuela-Sánchez et al. (2022) integrate long-term mark-recapture data, focal measurements of reproductive effort, a population matrix model and inferences on life-history variation to reveal differences in demographic response to disease in a susceptible frog species (Rhinoderma darwinii). Valenzuela-Sánchez et al. found that demographic compensation via recruitment explained the positive population growth rate in their high disease prevalence population whereas the low disease prevalence population did not compensate and thus had decreasing population growth. Compensatory recruitment was likely due to the high probability of males brooding, and the high number of brooded larvae in the high prevalence population compared to low prevalence and disease-free populations. Valenzuela-Sánchez et al. also document faster generation times in the high prevalence population, which may indicate a faster life history that may be contributing to the population's ability to compensate for reduced survival. Lastly, the authors find a positive relationship between disease prevalence and the proportion of juveniles in a given population that suggest that there may be a threshold for disease prevalence that triggers increased reproductive effort. Altogether, their study provides novel support for increased reproductive effort as the pathway for compensatory recruitment leading to increasing population growth despite strong negative effects of disease on adult survival. Their results also caution the overgeneralization of the effects of stressors (e.g. disease) on population dynamics, where context-dependent responses may differ among host populations of a given species.
Collapse
Affiliation(s)
- Bennett M Hardy
- Department of Fish, Wildlife and Conservation Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - David N Koons
- Department of Fish, Wildlife and Conservation Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
8
|
Fischer NM, Altewischer A, Ranpal S, Dool S, Kerth G, Puechmaille SJ. Population genetics as a tool to elucidate pathogen reservoirs: Lessons from Pseudogymnoascus destructans, the causative agent of White-Nose disease in bats. Mol Ecol 2021; 31:675-690. [PMID: 34704285 DOI: 10.1111/mec.16249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Emerging infectious diseases pose a major threat to human, animal, and plant health. The risk of species-extinctions increases when pathogens can survive in the absence of the host. Environmental reservoirs can facilitate this. However, identifying such reservoirs and modes of infection is often highly challenging. In this study, we investigated the presence and nature of an environmental reservoir for the ascomycete fungus Pseudogymnoascus destructans, the causative agent of White-Nose disease. Using 18 microsatellite markers, we determined the genotypic differentiation between 1497 P. destructans isolates collected from nine closely situated underground sites where bats hibernate (i.e., hibernacula) in Northeastern Germany. This approach was unique in that it ensured that every isolate and resulting multilocus genotype was not only present, but also viable and therefore theoretically capable of infecting a bat. The distinct distribution of multilocus genotypes across hibernacula demonstrates that each hibernaculum has an essentially unique fungal population. This would be expected if bats become infected in their hibernaculum (i.e., the site they spend winter in to hibernate) rather than in other sites visited before they start hibernating. In one hibernaculum, both the walls and the hibernating bats were sampled at regular intervals over five consecutive winter seasons (1062 isolates), revealing higher genotypic richness on walls compared to bats and a stable frequency of multilocus genotypes over multiple winters. This clearly implicates hibernacula walls as the main environmental reservoir of the pathogen, from which bats become reinfected annually during the autumn.
Collapse
Affiliation(s)
- Nicola M Fischer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,Institut des Sciences de l'Évolution Montpellier (ISEM), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Andrea Altewischer
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Surendra Ranpal
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Serena Dool
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,CBGP, INRAE, CIRAD, IRD, Institut Agro, University of Montpellier, Montpellier, France
| | - Gerald Kerth
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Sebastien J Puechmaille
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,Institut des Sciences de l'Évolution Montpellier (ISEM), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
9
|
Smart carnivores think twice: Red fox delays scavenging on conspecific carcasses to reduce parasite risk. Appl Anim Behav Sci 2021; 243:105462. [PMID: 34602687 PMCID: PMC8464160 DOI: 10.1016/j.applanim.2021.105462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023]
Abstract
The recent SARS-CoV-2 epidemic has highlighted the need to prevent emerging and re-emerging diseases, which means that we must approach the study of diseases from a One Health perspective. The study of pathogen transmission in wildlife is challenging, but it is unquestionably key to understand how epidemiological interactions occur at the wildlife-domestic-human interface. In this context, studying parasite avoidance behaviours may provide essential insights on parasite transmission, host-parasite coevolution, and energy flow through food-webs. However, the strategies of avoiding trophically transmitted parasites in mammalian carnivores have received little scientific attention. Here, we explore the behaviour of red foxes (Vulpes vulpes) and other mammalian carnivores at conspecific and heterospecific carnivore carcasses using videos recorded by camera traps. We aim to determine 1) the factors influencing the probability of foxes to practice cannibalism, and 2) whether the scavenging behaviour of foxes differ when facing conspecific vs. heterospecific carcasses. We found that red foxes were generally reluctant to consume mesocarnivore carrion, especially of conspecifics. When recorded, consumption by foxes was delayed several days (heterospecific carcasses) or weeks (conspecific carcasses) after carcass detection. Other mammalian scavengers showed a similar pattern. Also, meat-borne parasite transmission from wild carnivore carcasses to domestic dogs and cats was highly unlikely. Our findings challenge the widespread assumption that cannibalistic or intra-specific scavenging is a major transmission route for Trichinella spp. and other meat-borne parasites, especially for the red fox. Overall, our results suggest that the feeding decisions of scavengers are probably shaped by two main contrasting forces, namely the nutritional reward provided by carrion of phylogenetically similar species and the risk of acquiring meat-borne parasites shared with these species. This study illustrates how the detailed monitoring of carnivore behaviour is essential to assess the epidemiological role of these hosts in the maintenance and dispersion of parasites of public and animal health relevance.
Collapse
|
10
|
Applying Population Viability Analysis to Inform Genetic Rescue That Preserves Locally Unique Genetic Variation in a Critically Endangered Mammal. DIVERSITY 2021. [DOI: 10.3390/d13080382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic rescue can reduce the extinction risk of inbred populations, but it has the poorly understood risk of ‘genetic swamping’—the replacement of the distinctive variation of the target population. We applied population viability analysis (PVA) to identify translocation rates into the inbred lowland population of Leadbeater’s possum from an outbred highland population that would alleviate inbreeding depression and rapidly reach a target population size (N) while maximising the retention of locally unique neutral genetic variation. Using genomic kinship coefficients to model inbreeding in Vortex, we simulated genetic rescue scenarios that included gene pool mixing with genetically diverse highland possums and increased the N from 35 to 110 within ten years. The PVA predicted that the last remaining population of lowland Leadbeater’s possum will be extinct within 23 years without genetic rescue, and that the carrying capacity at its current range is insufficient to enable recovery, even with genetic rescue. Supplementation rates that rapidly increased population size resulted in higher retention (as opposed to complete loss) of local alleles through alleviation of genetic drift but reduced the frequency of locally unique alleles. Ongoing gene flow and a higher N will facilitate natural selection. Accordingly, we recommend founding a new population of lowland possums in a high-quality habitat, where population growth and natural gene exchange with highland populations are possible. We also recommend ensuring gene flow into the population through natural dispersal and/or frequent translocations of highland individuals. Genetic rescue should be implemented within an adaptive management framework, with post-translocation monitoring data incorporated into the models to make updated predictions.
Collapse
|
11
|
Golas BD, Goodell B, Webb CT. Host adaptation to novel pathogen introduction: Predicting conditions that promote evolutionary rescue. Ecol Lett 2021; 24:2238-2255. [PMID: 34310798 DOI: 10.1111/ele.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 06/09/2021] [Indexed: 02/02/2023]
Abstract
Novel pathogen introduction can have drastic consequences for naive host populations, and outcomes can be difficult to predict. Evolutionary rescue (ER) provides a foundation for understanding whether hosts are driven to extinction or survive via adaptation. Currently, patterns of host population dynamics alongside evidence of adaptation are used to infer ER. However, the gap between established ER theory and complexity inherent in natural systems makes interpreting empirical patterns difficult because they can be confounded with ecological drivers of survival under current theory. To bridge this gap, we expand ER theory to include biological selective agents, such as pathogens. We find birth processes to be more important than previously theorised in determining ER potential. We employ a novel framework evaluating ER potential within natural systems and gain ability to identify system characteristics that make ER possible. Identifying these characteristics allows a shift from retrospective observation to a predictive mindset, and our findings suggest that ER occurrence may be more limited than previously thought. We use the plague system of Yersinia pestis infecting Cynomys ludovicianus (black-tailed prairie dogs) and Spermophilus beecheyi (California ground squirrels) as a case study.
Collapse
|
12
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
13
|
Benítez-Malvido J, Rodríguez-Alvarado G, Álvarez-Añorve M, Ávila-Cabadilla LD, del-Val E, Lira-Noriega A, Gregorio-Cipriano R. Antagonistic Interactions Between Fusaria Species and Their Host Plants Are Influenced by Host Taxonomic Distance: A Case Study From Mexico. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.615857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interactions between cultivated and wild plants with their fungal pathogens have strong ecological, evolutionary and economic implications. Antagonistic interactions, however, have been scantily studied in an applied context by using ecological networks, phylogeny and spatial ecology concurrently. In this study, we describe for the first time, the topological structure of plant-fungi networks involving species of the genus Fusarium and their native and introduced (exotic) cultivated host plants in Mexico. For this, we based our study on a recent database describing the attack on 75 native and introduced plant species, including 35 species of the genus Fusarium. Host plant species varied in their degree of phylogenetical relatedness (Monocots and Dicots) and spatial geographical distribution. Therefore, we also tested whether or not plant-Fusarium networks are phylogenetically structured and highlighted the spatial correlation between pathogens and their host plants across the country. In general, the pathogen-plant network is more specialized and compartmentalized in closely related taxa. Closely related hosts are more likely to share the same pathogenic Fusarium species. Host plants are present in different ecosystems and climates, with regions having more cultivated plant species presenting the highest number of fusaria pathogens. From an economic standpoint, different species of the same taxonomic family may be more susceptible to being attacked by the same species of Fusarium, whereas from an ecological standpoint the movement of pathogens may expose wild and cultivated plants to new diseases. Our study highlights the relevance of interaction intimacy in structuring trophic relationships between plants and fusaria species in native and introduced species. Furthermore, we show that the analytical tools regarding host distribution and phylogeny could permit a rapid assessment of which plant species in a region are most likely to be attacked by a given fusaria.
Collapse
|
14
|
IKUSHIMA S, ANDO M, ASANO M, SUZUKI M. Application of long-term collected data for conservation: Spatio-temporal patterns of mortality in Japanese serow. J Vet Med Sci 2021; 83:349-357. [PMID: 33342964 PMCID: PMC7972871 DOI: 10.1292/jvms.20-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/05/2020] [Indexed: 11/30/2022] Open
Abstract
Monitoring the mortality of wildlife provides basic demographic information to support management plan preparation. The utility of mortality records for conservation measures was investigated in the Japanese serow, focusing on temporal trends and spatial distribution. Using the mortality records of Japanese serow from 2006 to 2018 in Gifu prefecture, cause-specific mortality was categorized into five groups (disease, accident, vehicle collision, parapoxvirus infection, and unknown), and the sex ratios were examined. A state space model was used to analyze the time series for the monthly mortalities, and kernel estimation was used for the spatial distribution of the parapoxvirus infection. Land cover type around the detection point was also reported. Disease, accident, and vehicle collision mortality were similar, and 30% of mortality was of anthropogenic origin. The number of mortality records for males was higher, and the larger home range of males could account for this. The state space model showed moderate increases in monthly mortalities over time and a seasonal variation with the highest level in spring and lowest in winter. Land cover analysis demonstrated a temporal increase in the proportion of human settlement areas, suggesting the change of the Japanese serow habitat. The proximity of Japanese serow to human settlements contributed to increase in mortality records. The point pattern analysis indicated spatial clustering for parapoxvirus infection in the area where an epidemic had occurred in the past. Several measures are recommended; however, mortality records can help develop improved conservation plan.
Collapse
Affiliation(s)
- Shiori IKUSHIMA
- The United Graduate School of Veterinary Sciences, Gifu
University, 1-1 Yanagito, Gifu, Gifu 501-1193, Japan
| | - Masaki ANDO
- Faculty of Applied Biological Sciences, Gifu University, 1-1
Yanagito, Gifu, Gifu 501-1193, Japan
| | - Makoto ASANO
- Faculty of Applied Biological Sciences, Gifu University, 1-1
Yanagito, Gifu, Gifu 501-1193, Japan
| | - Masatsugu SUZUKI
- Faculty of Applied Biological Sciences, Gifu University, 1-1
Yanagito, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
15
|
Russell RE, DiRenzo GV, Szymanski JA, Alger KE, Grant EHC. Principles and Mechanisms of Wildlife Population Persistence in the Face of Disease. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Yi X, Donner DM, Marquardt PE, Palmer JM, Jusino MA, Frair J, Lindner DL, Latch EK. Major histocompatibility complex variation is similar in little brown bats before and after white-nose syndrome outbreak. Ecol Evol 2020; 10:10031-10043. [PMID: 33005361 PMCID: PMC7520216 DOI: 10.1002/ece3.6662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/28/2022] Open
Abstract
White-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans (Pd), has driven alarming declines in North American hibernating bats, such as little brown bat (Myotis lucifugus). During hibernation, infected little brown bats are able to initiate anti-Pd immune responses, indicating pathogen-mediated selection on the major histocompatibility complex (MHC) genes. However, such immune responses may not be protective as they interrupt torpor, elevate energy costs, and potentially lead to higher mortality rates. To assess whether WNS drives selection on MHC genes, we compared the MHC DRB gene in little brown bats pre- (Wisconsin) and post- (Michigan, New York, Vermont, and Pennsylvania) WNS (detection spanning 2014-2015). We genotyped 131 individuals and found 45 nucleotide alleles (27 amino acid alleles) indicating a maximum of 3 loci (1-5 alleles per individual). We observed high allelic admixture and a lack of genetic differentiation both among sampling sites and between pre- and post-WNS populations, indicating no signal of selection on MHC genes. However, post-WNS populations exhibited decreased allelic richness, reflecting effects from bottleneck and drift following rapid population declines. We propose that mechanisms other than adaptive immunity are more likely driving current persistence of little brown bats in affected regions.
Collapse
Affiliation(s)
- Xueling Yi
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| | - Deahn M. Donner
- Northern Research StationUSDA Forest ServiceRhinelanderWIUSA
| | | | | | - Michelle A. Jusino
- Northern Research StationUSDA Forest ServiceMadisonWIUSA
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
| | - Jacqueline Frair
- Roosevelt Wild Life StationSUNY College of Environmental Science and ForestrySyracuseNYUSA
| | | | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| |
Collapse
|
17
|
Seeber PA, Kuzmina TA, Greenwood AD, East ML. Effects of life history stage and climatic conditions on fecal egg counts in plains zebras (Equus quagga) in the Serengeti National Park. Parasitol Res 2020; 119:3401-3413. [PMID: 32780185 PMCID: PMC7505882 DOI: 10.1007/s00436-020-06836-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022]
Abstract
In wildlife, endoparasite burden can be affected by host life history stage, environmental conditions, host abundance, and parasite co-infections. We tested the effects of these factors on gastrointestinal parasite infection in plains zebras (Equus quagga) in the Serengeti ecosystem, Tanzania, using fecal egg counts of two nematode families (Strongylidae and Ascarididae) and the presence/absence of cestode (Anoplocephalidae) eggs. We predicted higher egg counts of Strongylidae and Ascarididae, and increased likelihood of Anoplocephalidae infection in individuals (1) during energetically costly life history stages when resource allocation to immune processes may decrease and in young zebras after weaning because of increased uptake of infective stages with forage, (2) when climatic conditions facilitate survival of infective stages, (3) when large zebra aggregations increase forage contamination with infective stages, and (4) in individuals co-infected with more than one parasite group as this may indicate reduced immune competence. Strongylidae egg counts were higher, and the occurrence of Anoplocephalidae eggs was more likely in bachelors than in band stallions, whereas Ascarididae egg counts were higher in band stallions. Strongylidae and Ascarididae egg counts were not increased in lactating females. Strongylidae egg counts were higher in subadults than in foals. Regardless of sex and age, Ascarididae infections were more likely under wet conditions. Co-infections did not affect Strongylidae egg counts. Ascarididae egg counts in adult females were higher when individuals were co-infected with Anoplocephalidae. We present evidence that parasite burdens in plains zebras are affected by life history stage, environmental conditions, and co-infection.
Collapse
Affiliation(s)
- Peter A Seeber
- Limnological Institute, University of Konstanz, Constance, Germany. .,Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.
| | - Tetiana A Kuzmina
- Department of Parasitology, I. I. Schmalhausen Institute of Zoology, NAS of Ukraine, Bogdan Khmelnytsky Street, 15, Kyiv, 01030, Ukraine
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Marion L East
- Department of Evolutionary Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
18
|
Hamede R, Owen R, Siddle H, Peck S, Jones M, Dujon AM, Giraudeau M, Roche B, Ujvari B, Thomas F. The ecology and evolution of wildlife cancers: Applications for management and conservation. Evol Appl 2020; 13:1719-1732. [PMID: 32821279 PMCID: PMC7428810 DOI: 10.1111/eva.12948] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ecological and evolutionary concepts have been widely adopted to understand host-pathogen dynamics, and more recently, integrated into wildlife disease management. Cancer is a ubiquitous disease that affects most metazoan species; however, the role of oncogenic phenomena in eco-evolutionary processes and its implications for wildlife management and conservation remains undeveloped. Despite the pervasive nature of cancer across taxa, our ability to detect its occurrence, progression and prevalence in wildlife populations is constrained due to logistic and diagnostic limitations, which suggests that most cancers in the wild are unreported and understudied. Nevertheless, an increasing number of virus-associated and directly transmissible cancers in terrestrial and aquatic environments have been detected. Furthermore, anthropogenic activities and sudden environmental changes are increasingly associated with cancer incidence in wildlife. This highlights the need to upscale surveillance efforts, collection of critical data and developing novel approaches for studying the emergence and evolution of cancers in the wild. Here, we discuss the relevance of malignant cells as important agents of selection and offer a holistic framework to understand the interplay of ecological, epidemiological and evolutionary dynamics of cancer in wildlife. We use a directly transmissible cancer (devil facial tumour disease) as a model system to reveal the potential evolutionary dynamics and broader ecological effects of cancer epidemics in wildlife. We provide further examples of tumour-host interactions and trade-offs that may lead to changes in life histories, and epidemiological and population dynamics. Within this framework, we explore immunological strategies at the individual level as well as transgenerational adaptations at the population level. Then, we highlight the need to integrate multiple disciplines to undertake comparative cancer research at the human-domestic-wildlife interface and their environments. Finally, we suggest strategies for screening cancer incidence in wildlife and discuss how to integrate ecological and evolutionary concepts in the management of current and future cancer epizootics.
Collapse
Affiliation(s)
- Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Rachel Owen
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Hannah Siddle
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Sarah Peck
- Wildlife Veterinarian, Veterinary Register of TasmaniaSouth HobartTas.Australia
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Mathieu Giraudeau
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Benjamin Roche
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| |
Collapse
|
19
|
Teffer AK, Hinch S, Miller K, Jeffries K, Patterson D, Cooke S, Farrell A, Kaukinen KH, Li S, Juanes F. Cumulative Effects of Thermal and Fisheries Stressors Reveal Sex-Specific Effects on Infection Development and Early Mortality of Adult Coho Salmon ( Oncorhynchus kisutch). Physiol Biochem Zool 2020; 92:505-529. [PMID: 31397628 DOI: 10.1086/705125] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multiple stressors are commonly encountered by wild animals, but their cumulative effects are poorly understood, especially regarding infection development. We conducted a holding study with repeated gill and blood sampling to characterize the effects of cumulative stressors on infection development in adult coho salmon. Treatments included chronic thermal stress (15°C vs. 10°C) and acute gill net entanglement with an air exposure (simulating fisheries bycatch release). The potential loadings of 35 infectious agents and the expression of 17 host immune genes were quantified using high-throughput quantitative polymerase chain reaction, while host physiology was characterized with chemical analysis of blood. Temporal increases in infectious agent richness and loads were concurrent with decreased expression of immune genes in fish sampled in the river. In the laboratory, mortality was minimal in cool water regardless of fishery treatment (<15%). Elevated water temperature under laboratory conditions increased mortality of males and females (8% and 28% mortality, respectively, delayed by >1 wk) and enhanced mortality associated with handling and biopsy (∼40% both sexes). Experimental gillnetting at high temperature further enhanced female mortality (73%). Fish held at high temperature demonstrated heavier infectious agent loads, osmoregulatory impairment, suppressed female maturation, and upregulation of inflammatory and extracellular immune genes. At high temperature, heavy Parvicapsula minibicornis loads were associated with premature mortality. Females exhibited physiological impairment from both stressors after 1 wk, and infection burdens correlated poorly with immune gene regulation compared with males. Cumulative effects of multiple stressors on female mortality are likely a function of physiological impairment and enhanced infections at high temperature.
Collapse
|
20
|
What do we know about parasites of wildlife in high biodiversity areas with anthropogenic disturbance? The special case of Mexico. Anim Health Res Rev 2019; 19:155-161. [DOI: 10.1017/s1466252318000087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe continual rise of anthropogenic disturbance of ecosystems has been associated with an increasing incidence of emerging diseases. The largest amount of data on emerging diseases relates to bacterial and viral pathogens, but there is a lack of parasite data, especially from wildlife. Monitoring wildlife parasitic diseases should be considered a priority, especially in high biodiversity regions with strong anthropogenic impacts, like Mexico, where the wildlife/livestock/human interface is associated with increased risk of disease transmission. Mexico belongs to the top-ten megadiverse countries and is located between two biogeographic regions. This situation makes Mexico a favourable region for the spillover of animal pathogens to human beings, causing pandemics, such as the one recently caused by influenza virus A (H1N1). The current state of knowledge of Mexican wildlife parasites is scarce and focuses mainly in Neotropical fauna. Moreover, this knowledge is heterogeneous for different parasite groups, especially concerning their pathologic effects and epidemiology. The goals of this review are to compile information on Mexican wildlife parasites and to identify knowledge gaps in order to stimulate research on pending epidemiological, public health, ecological and pathological areas, and to encourage the creation of more specialized groups from the perspective of the One-Health concept.
Collapse
|
21
|
Cook CN, Sgrò CM. Understanding managers' and scientists' perspectives on opportunities to achieve more evolutionarily enlightened management in conservation. Evol Appl 2018; 11:1371-1388. [PMID: 30151046 PMCID: PMC6099810 DOI: 10.1111/eva.12631] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/08/2018] [Indexed: 01/04/2023] Open
Abstract
Despite wide acceptance that conservation could benefit from greater attention to principles and processes from evolutionary biology, little attention has been given to quantifying the degree to which relevant evolutionary concepts are being integrated into management practices. There has also been increasing discussion of the potential reasons for a lack of evolutionarily enlightened management, but no attempts to understand the challenges from the perspective of those making management decisions. In this study, we asked conservation managers and scientists for their views on the importance of a range of key evolutionary concepts, the degree to which these concepts are being integrated into management, and what would need to change to support better integration into management practices. We found that while managers recognize the importance of a wide range of evolutionary concepts for conservation outcomes, they acknowledge these concepts are rarely incorporated into management. Managers and scientists were in strong agreement about the range of barriers that need to be overcome, with a lack of knowledge reported as the most important barrier to better integration of evolutionary biology into conservation decision-making. Although managers tended to be more focused on the need for more training in evolutionary biology, scientists reported greater engagement between managers and evolutionary biologists as most important to achieve the necessary change. Nevertheless, the challenges appear to be multifaceted, and several are outside the control of managers, suggesting solutions will need to be multidimensional.
Collapse
Affiliation(s)
- Carly N. Cook
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
22
|
Ahmad F, Debes PV, Palomar G, Vasemägi A. Association mapping reveals candidate loci for resistance and anaemic response to an emerging temperature-driven parasitic disease in a wild salmonid fish. Mol Ecol 2018; 27:1385-1401. [PMID: 29411465 DOI: 10.1111/mec.14509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
Even though parasitic infections are often costly or deadly for the host, we know very little which genes influence parasite susceptibility and disease severity. Proliferative kidney disease is an emerging and, at elevated water temperatures, potentially deadly disease of salmonid fishes that is caused by the myxozoan parasite Tetracapsuloides bryosalmonae. By screening >7.6 K SNPs in 255 wild brown trout (Salmo trutta) and combining association mapping and Random Forest approaches, we identified several candidate genes for both the parasite resistance (inverse of relative parasite load; RPL) and the severe anaemic response to the parasite. The strongest RPL-associated SNP mapped to a noncoding region of the congeneric Atlantic salmon (S. salar) chromosome 10, whereas the second strongest RPL-associated SNP mapped to an intronic region of PRICKLE2 gene, which is a part of the planar cell polarity signalling pathway involved in kidney development. The top SNP associated with anaemia mapped to the intron of the putative PRKAG2 gene. The human ortholog of this gene has been associated with haematocrit and other blood-related traits, making it a prime candidate influencing parasite-triggered anaemia in brown trout. Our findings demonstrate the power of association mapping to pinpoint genomic regions and potential causative genes underlying climate change-driven parasitic disease resistance and severity. Furthermore, this work illustrates the first steps towards dissecting genotype-phenotype links in a wild fish population using closely related genome information.
Collapse
Affiliation(s)
- F Ahmad
- Department of Biology, University of Turku, Turku, Finland
| | - P V Debes
- Department of Biology, University of Turku, Turku, Finland.,Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - G Palomar
- Research Unit of Biodiversity (UO-CSIC-PA), Mieres, Asturias, Spain.,Department of Biology of Organisms and Systems, University of Oviedo, Oviedo, Asturias, Spain
| | - A Vasemägi
- Department of Biology, University of Turku, Turku, Finland.,Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
23
|
Navaud O, Barbacci A, Taylor A, Clarkson JP, Raffaele S. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens. Mol Ecol 2018; 27:1309-1323. [PMID: 29421852 PMCID: PMC5900718 DOI: 10.1111/mec.14523] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023]
Abstract
The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae, a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events and host range variation during the evolution of this family. Variations in diversification rate during the evolution of the Sclerotiniaceae define three major macro-evolutionary regimes with contrasted proportions of species infecting a broad range of hosts. Host-parasite cophylogenetic analyses pointed towards parasite radiation on distant hosts long after host speciation (host jump or duplication events) as the dominant mode of association with plants in the Sclerotiniaceae. The intermediate macro-evolutionary regime showed a low diversification rate, high frequency of duplication events and the highest proportion of broad host range species. Our findings suggest that the emergence of broad host range fungal pathogens results largely from host jumps, as previously reported for oomycete parasites, probably combined with low speciation rates. These results have important implications for our understanding of fungal parasites evolution and are of particular relevance for the durable management of disease epidemics.
Collapse
Affiliation(s)
- Olivier Navaud
- LIPM, Université de Toulouse, INRA, CNRSCastanet‐TolosanFrance
| | - Adelin Barbacci
- LIPM, Université de Toulouse, INRA, CNRSCastanet‐TolosanFrance
| | - Andrew Taylor
- Warwick Crop CentreSchool of Life SciencesUniversity of WarwickCoventryUK
| | - John P. Clarkson
- Warwick Crop CentreSchool of Life SciencesUniversity of WarwickCoventryUK
| | | |
Collapse
|
24
|
Talbot B, Vonhof MJ, Broders HG, Fenton MB, Keyghobadi N. Population structure in two geographically sympatric and congeneric ectoparasites (Cimex adjunctus and Cimex lectularius) in the North American Great Lakes region. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2017-0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Subdivided populations can be described by different models of population structure that reflect population organization, dynamics, and connectivity. We used genetic data to investigate population structure in two geographically sympatric, congeneric species of generalist ectoparasites of warm-blooded animals. We characterized the spatial genetic structure of the eastern bat bug (Cimex adjunctus Barber, 1939), an understudied and fairly abundant species, using microsatellite markers at a spatial scale representing contemporary dispersal of the species. We found seven genetic clusters, global [Formula: see text] of 0.2, 33% of genetic variation among sites, and nonsignificant isolation-by-distance. We compared these results with the common bed bug (Cimex lectularius L., 1758), a closely related but conversely well-known species, in the same geographic area. We found stronger genetic structuring in C. lectularius than in C. adjunctus, with 11 genetic clusters, [Formula: see text] of 0.7, 57% of genetic variation among sites, and significant but weak isolation-by-distance (R2 = 0.09). These results suggest that while both species can be described as having classic metapopulation structure, C. adjunctus leans more towards a patchy population and C. lectularius leans more towards a nonequilibrium metapopulation. The difference in population structure between these species may be attributable to differences in movement potential and extinction–colonization dynamics.
Collapse
Affiliation(s)
- Benoit Talbot
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Maarten J. Vonhof
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5410, USA
| | - Hugh G. Broders
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - M. Brock Fenton
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Nusha Keyghobadi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
25
|
Auld SKJR, Brand J. Simulated climate change, epidemic size, and host evolution across host-parasite populations. GLOBAL CHANGE BIOLOGY 2017; 23:5045-5053. [PMID: 28544153 DOI: 10.1111/gcb.13769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Climate change is causing warmer and more variable temperatures as well as physical flux in natural populations, which will affect the ecology and evolution of infectious disease epidemics. Using replicate seminatural populations of a coevolving freshwater invertebrate-parasite system (host: Daphnia magna, parasite: Pasteuria ramosa), we quantified the effects of ambient temperature and population mixing (physical flux within populations) on epidemic size and population health. Each population was seeded with an identical suite of host genotypes and dose of parasite transmission spores. Biologically reasonable increases in environmental temperature caused larger epidemics, and population mixing reduced overall epidemic size. Mixing also had a detrimental effect on host populations independent of disease. Epidemics drove parasite-mediated selection, leading to a loss of host genetic diversity, and mixed populations experienced greater evolution due to genetic drift over the season. These findings further our understanding of how diversity loss will reduce the host populations' capacity to respond to changes in selection, therefore stymying adaptation to further environmental change.
Collapse
Affiliation(s)
- Stuart K J R Auld
- Biological & Environmental Sciences, University of Stirling, Stirling, UK
| | - June Brand
- Biological & Environmental Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
26
|
Bank vole immunoheterogeneity may limit Nephropatia Epidemica emergence in a French non-endemic region. Parasitology 2017; 145:393-407. [PMID: 28931451 DOI: 10.1017/s0031182017001548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ecoevolutionary processes affecting hosts, vectors and pathogens are important drivers of zoonotic disease emergence. In this study, we focused on nephropathia epidemica (NE), which is caused by Puumala hantavirus (PUUV) whose natural reservoir is the bank vole, Myodes glareolus. We questioned the possibility of NE emergence in a French region that is considered to be NE-free but that is adjacent to a NE-endemic region. We first confirmed the epidemiology of these two regions and we demonstrated the absence of spatial barriers that could have limited dispersal, and consequently, the spread of PUUV into the NE-free region. We next tested whether regional immunoheterogeneity could impact PUUV chances to circulate and persist in the NE-free region. We showed that bank voles from the NE-free region were sensitive to experimental PUUV infection. We observed high levels of immunoheterogeneity between individuals and also between regions. Antiviral gene expression (Tnf and Mx2) reached higher levels in bank voles from the NE-free region. During experimental infections, anti-PUUV antibody production was higher in bank voles from the NE-endemic region. These results indicated a lower susceptibility to PUUV for bank voles from this NE-free region, which might limit PUUV persistence and therefore, the risk of NE.
Collapse
|
27
|
Wilber MQ, Knapp RA, Toothman M, Briggs CJ. Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a load-dependent amphibian disease. Ecol Lett 2017; 20:1169-1181. [PMID: 28745026 DOI: 10.1111/ele.12814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/12/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023]
Abstract
While disease-induced extinction is generally considered rare, a number of recently emerging infectious diseases with load-dependent pathology have led to extinction in wildlife populations. Transmission is a critical factor affecting disease-induced extinction, but the relative importance of transmission compared to load-dependent host resistance and tolerance is currently unknown. Using a combination of models and experiments on an amphibian species suffering extirpations from the fungal pathogen Batrachochytrium dendrobatidis (Bd), we show that while transmission from an environmental Bd reservoir increased the ability of Bd to invade an amphibian population and the extinction risk of that population, Bd-induced extinction dynamics were far more sensitive to host resistance and tolerance than to Bd transmission. We demonstrate that this is a general result for load-dependent pathogens, where non-linear resistance and tolerance functions can interact such that small changes in these functions lead to drastic changes in extinction dynamics.
Collapse
Affiliation(s)
- Mark Q Wilber
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Roland A Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, 93546, USA
| | - Mary Toothman
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Cheryl J Briggs
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
28
|
Debes PV, Gross R, Vasemägi A. Quantitative Genetic Variation in, and Environmental Effects on, Pathogen Resistance and Temperature-Dependent Disease Severity in a Wild Trout. Am Nat 2017; 190:244-265. [PMID: 28731797 DOI: 10.1086/692536] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Health after pathogen contact varies among individuals because of differences in pathogen load (which is limited by resistance) and disease severity in response to pathogen load (which is limited by tolerance). To understand pathogen-induced host evolution, it is critical to know not only the relative contributions of nongenetic and genetic variation to resistance and tolerance but also how they change environmentally. We quantified nongenetic and genetic variation in parasite load and the associated temperature-dependent disease among trout siblings from two rivers. We detected a genetic variance for parasite load 6.6 times as large in the colder river. By contrast, genetic variance for disease traits tended to be larger in the warmer river, where the disease was manifested more severely. The relationships between disease severity and pathogen load (tolerance) exhibited plateaus at low pathogen load and stronger steepening slopes at high pathogen load in the warmer river. Our study demonstrates the environmental influence on disease severity, nongenetic and genetic variance for health-damage-limiting host abilities, and the shape of tolerance curves. Environmental variability is predicted to govern the presence and intensity of selection, change the relative contributions of nongenetic and genetic variance, and therefore hamper evolution toward more resistant and tolerant hosts.
Collapse
|
29
|
Brown JS, Staňková K. Game theory as a conceptual framework for managing insect pests. CURRENT OPINION IN INSECT SCIENCE 2017; 21:26-32. [PMID: 28822485 DOI: 10.1016/j.cois.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
For over 100 years it has been recognized that insect pests evolve resistance to chemical pesticides. More recently, managers have advocated restrained use of pesticides, crop rotation, the use of multiple pesticides, and pesticide-free sanctuaries as resistance management practices. Game theory provides a conceptual framework for combining the resistance strategies of the insects and the control strategies of the pest manager into a unified conceptual and modelling framework. Game theory can contrast an ecologically enlightened application of pesticides with an evolutionarily enlightened one. In the former case the manager only considers ecological consequences whereas the latter anticipates the evolutionary response of the pests. Broader applications of this game theory approach include anti-biotic resistance, fisheries management and therapy resistance in cancer.
Collapse
Affiliation(s)
- Joel S Brown
- Integrated Mathematical Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA; Department of Biological Sciences, 845 W. Taylor St., University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Kateřina Staňková
- Department of Data Science and Knowledge Engineering, P.O. Box 616, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
30
|
Groner ML, Rogers LA, Bateman AW, Connors BM, Frazer LN, Godwin SC, Krkošek M, Lewis MA, Peacock SJ, Rees EE, Revie CW, Schlägel UE. Lessons from sea louse and salmon epidemiology. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2015.0203. [PMID: 26880836 DOI: 10.1098/rstb.2015.0203] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host-parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources.
Collapse
Affiliation(s)
- Maya L Groner
- Department of Health Management, Centre for Veterinary and Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - Luke A Rogers
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Andrew W Bateman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Salmon Coast Field Station, Simoom Sound, British Columbia, Canada V0P 1S0
| | - Brendan M Connors
- Salmon Coast Field Station, Simoom Sound, British Columbia, Canada V0P 1S0 ESSA Technologies Ltd, Vancouver, British Columbia, Canada V6H 3H4 School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - L Neil Frazer
- Salmon Coast Field Station, Simoom Sound, British Columbia, Canada V0P 1S0 Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Sean C Godwin
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Martin Krkošek
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 Salmon Coast Field Station, Simoom Sound, British Columbia, Canada V0P 1S0
| | - Mark A Lewis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
| | - Stephanie J Peacock
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Erin E Rees
- Department of Health Management, Centre for Veterinary and Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - Crawford W Revie
- Department of Health Management, Centre for Veterinary and Epidemiological Research, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - Ulrike E Schlägel
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
| |
Collapse
|
31
|
Petit EJ, Puechmaille SJ. Will reduced host connectivity curb the spread of a devastating epidemic? Mol Ecol 2016; 24:5491-4. [PMID: 26769309 DOI: 10.1111/mec.13406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023]
Abstract
The white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, is threatening the cave-dwelling bat fauna of North America by killing individuals by the thousands in hibernacula each winter since its appearance in New York State less than ten years ago. Epidemiological models predict that WNS will reach the western coast of the USA by 2035, potentially eliminating most populations of susceptible bat species in its path (Frick et al. 2015; O'Regan et al. 2015). These models were built and validated using distributional data from the early years of the epidemic, which spread throughout eastern North America following a route driven by cave density and winter severity (Maher et al. 2012). In this issue of Molecular Ecology, Wilder et al. (2015) refine these findings by showing that connectivity among host populations, as assessed by population genetic markers, is crucial in determining the spread of the pathogen. Because host connectivity is much reduced in the hitherto disease free western half of North America, Wilder et al. make the reassuring prediction that the disease will spread more slowly west of the Great Plains.
Collapse
Affiliation(s)
- Eric J Petit
- INRA, Agrocampus-Ouest, UMR Ecologie et Santé des Ecosystèmes, 65 rue de St-Brieuc, 35042 Rennes cedex, France
| | - Sebastien J Puechmaille
- Zoological Institute & Museum, Ernst-Moritz-Arndt University, Johann Sebastian Bach-Str. 11/12, 17489 Greifswald, Germany.,UCD School of Biology and Environmental Science, University College Dublin, Belfield, D4 Dublin, Ireland
| |
Collapse
|
32
|
Evans JA, Lankau RA, Davis AS, Raghu S, Landis DA. Soil-mediated eco-evolutionary feedbacks in the invasive plant Alliaria petiolata. Funct Ecol 2016; 30:1053-1061. [PMID: 31423041 PMCID: PMC6686332 DOI: 10.1111/1365-2435.12685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/15/2016] [Indexed: 01/10/2023]
Abstract
Ecological and evolutionary processes historically have been assumed to operate on significantly different time-scales. We know now from theory and work in experimental and model systems that these processes can feed back on each other on mutually relevant time-scales.Here, we present evidence of a soil-mediated eco-evolutionary feedback on the population dynamics of an invasive biennial plant, Alliaria petiolata.As populations age, natural selection drives down production of A. petiolata's important antimycorrhizal allelochemical, sinigrin. This occurs due to density-dependent selection on sinigrin, which is favoured under interspecific, but disfavoured under intraspecific, competition.We show that population stochastic growth rates (λS) and plant densities are positively related to sinigrin concentration measured in seedling roots. This interaction is mediated by sinigrin's positive effect on seedling and summer survival, which are important drivers of λS.Together, these illustrate how the evolution of a trait shaped by natural selection can influence the ecology of a species over a period of just years to decades, altering its trajectory of population growth and interactions with the species in the soil and plant communities it invades.Our findings confirm the predictions that eco-evolutionary feedbacks occur in natural populations. Furthermore, they improve our conceptual framework for projecting future population growth by linking the variation in plant demography to a critical competitive trait (sinigrin) whose selective advantages decrease as populations age.
Collapse
Affiliation(s)
- Jeffrey A Evans
- USDA-ARS Global Change and Photosynthesis Research Unit University of Illinois Turner Hall 1102 S. Goodwin Ave. Urbana-Champaign IL 61801 USA
| | - Richard A Lankau
- Department of Plant Biology 2502 Miller Plant Sciences The University of Georgia Athens GA 30602 USA
- Present address: Department of Plant Pathology University of Wisconsin-Madison Russell Labs Building 1630 Linden Drive Madison WI 53706 USA
| | - Adam S Davis
- USDA-ARS Global Change and Photosynthesis Research Unit University of Illinois Turner Hall 1102 S. Goodwin Ave. Urbana-Champaign IL 61801 USA
| | - S Raghu
- CSIRO & USDA-ARS Australian Biological Control Laboratory GPO Box 2583 Brisbane Qld 4001 Australia
| | - Douglas A Landis
- Center for Integrated Plant Systems Lab 578 Wilson Road, Room 204 East Lansing MI 48824 USA
| |
Collapse
|
33
|
Kelly E, Phillips BL. Targeted gene flow for conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:259-267. [PMID: 26332195 DOI: 10.1111/cobi.12623] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/23/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.
Collapse
Affiliation(s)
- Ella Kelly
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ben L Phillips
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
34
|
Bradley PW, Gervasi SS, Hua J, Cothran RD, Relyea RA, Olson DH, Blaustein AR. Differences in sensitivity to the fungal pathogen Batrachochytrium dendrobatidis among amphibian populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2015; 29:1347-1356. [PMID: 26219571 DOI: 10.1111/cobi.12566] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 01/27/2015] [Accepted: 02/22/2015] [Indexed: 05/22/2023]
Abstract
Contributing to the worldwide biodiversity crisis are emerging infectious diseases, which can lead to extirpations and extinctions of hosts. For example, the infectious fungal pathogen Batrachochytrium dendrobatidis (Bd) is associated with worldwide amphibian population declines and extinctions. Sensitivity to Bd varies with species, season, and life stage. However, there is little information on whether sensitivity to Bd differs among populations, which is essential for understanding Bd-infection dynamics and for formulating conservation strategies. We experimentally investigated intraspecific differences in host sensitivity to Bd across 10 populations of wood frogs (Lithobates sylvaticus) raised from eggs to metamorphosis. We exposed the post-metamorphic wood frogs to Bd and monitored survival for 30 days under controlled laboratory conditions. Populations differed in overall survival and mortality rate. Infection load also differed among populations but was not correlated with population differences in risk of mortality. Such population-level variation in sensitivity to Bd may result in reservoir populations that may be a source for the transmission of Bd to other sensitive populations or species. Alternatively, remnant populations that are less sensitive to Bd could serve as sources for recolonization after epidemic events.
Collapse
Affiliation(s)
- Paul W Bradley
- Environmental Sciences Graduate Program, Oregon State University, 104 Wilkinson Hall, Corvallis, OR, 97331, U.S.A
| | - Stephanie S Gervasi
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620, U.S.A
| | - Jessica Hua
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN, 47907, U.S.A
| | - Rickey D Cothran
- Department of Biological Sciences, Southwestern Oklahoma University, 100 Campus Drive, Weatherford, OK, 73096, U.S.A
| | - Rick A Relyea
- Department of Biological Sciences, BT2115, Rensselaer Polytechnic Institute, Troy, NY, 12180, U.S.A
| | - Deanna H Olson
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, U.S.A
| | - Andrew R Blaustein
- Environmental Sciences Graduate Program, Oregon State University, 104 Wilkinson Hall, Corvallis, OR, 97331, U.S.A
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, 97331, U.S.A
| |
Collapse
|
35
|
Maslo B, Fefferman NH. A case study of bats and white-nose syndrome demonstrating how to model population viability with evolutionary effects. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2015; 29:1176-1185. [PMID: 25808080 DOI: 10.1111/cobi.12485] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Ecological factors generally affect population viability on rapid time scales. Traditional population viability analyses (PVA) therefore focus on alleviating ecological pressures, discounting potential evolutionary impacts on individual phenotypes. Recent studies of evolutionary rescue (ER) focus on cases in which severe, environmentally induced population bottlenecks trigger a rapid evolutionary response that can potentially reverse demographic threats. ER models have focused on shifting genetics and resulting population recovery, but no one has explored how to incorporate those findings into PVA. We integrated ER into PVA to identify the critical decision interval for evolutionary rescue (DIER) under which targeted conservation action should be applied to buffer populations undergoing ER against extinction from stochastic events and to determine the most appropriate vital rate to target to promote population recovery. We applied this model to little brown bats (Myotis lucifugus) affected by white-nose syndrome (WNS), a fungal disease causing massive declines in several North American bat populations. Under the ER scenario, the model predicted that the DIER period for little brown bats was within 11 years of initial WNS emergence, after which they stabilized at a positive growth rate (λ = 1.05). By comparing our model results with population trajectories of multiple infected hibernacula across the WNS range, we concluded that ER is a potential explanation of observed little brown bat population trajectories across multiple hibernacula within the affected range. Our approach provides a tool that can be used by all managers to provide testable hypotheses regarding the occurrence of ER in declining populations, suggest empirical studies to better parameterize the population genetics and conservation-relevant vital rates, and identify the DIER period during which management strategies will be most effective for species conservation.
Collapse
Affiliation(s)
- Brooke Maslo
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, U.S.A
- Rutgers Cooperative Extension, New Jersey Agricultural Experiment Station, Rutgers, The State University of New Jersey, 88 Lipman Drive, New Brunswick, NJ, 08901, U.S.A
| | - Nina H Fefferman
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, U.S.A
- The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS), Rutgers, The State University of New Jersey, 96 Frelinghuysen Road, Piscataway, NJ, 08854, U.S.A
| |
Collapse
|
36
|
Vander Wal E, Garant D, Pelletier F. Evolutionary perspectives on wildlife disease: concepts and applications. Evol Appl 2014; 7:715-22. [PMID: 25469154 PMCID: PMC4227853 DOI: 10.1111/eva.12179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022] Open
Abstract
Wildlife disease has the potential to cause significant ecological, socioeconomic, and health impacts. As a result, all tools available need to be employed when host-pathogen dynamics merit conservation or management interventions. Evolutionary principles, such as evolutionary history, phenotypic and genetic variation, and selection, have the potential to unravel many of the complex ecological realities of infectious disease in the wild. Despite this, their application to wildlife disease ecology and management remains in its infancy. In this article, we outline the impetus behind applying evolutionary principles to disease ecology and management issues in the wild. We then introduce articles from this special issue on Evolutionary Perspectives on Wildlife Disease: Concepts and Applications, outlining how each is exemplar of a practical wildlife disease challenge that can be enlightened by applied evolution. Ultimately, we aim to bring new insights to wildlife disease ecology and its management using tools and techniques commonly employed in evolutionary ecology.
Collapse
Affiliation(s)
- Eric Vander Wal
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Dany Garant
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Fanie Pelletier
- Département de biologie, Université de SherbrookeSherbrooke, QC, Canada
| |
Collapse
|
37
|
Harrigan RJ, Sedano R, Chasar AC, Chaves JA, Nguyen JT, Whitaker A, Smith TB. New host and lineage diversity of avian haemosporidia in the northern Andes. Evol Appl 2014; 7:799-811. [PMID: 25469161 PMCID: PMC4227860 DOI: 10.1111/eva.12176] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/25/2014] [Indexed: 12/22/2022] Open
Abstract
The northern Andes, with their steep elevational and climate gradients, are home to an exceptional diversity of flora and fauna, particularly rich in avian species that have adapted to divergent ecological conditions. With this diversity comes the opportunity for parasites to exploit a wide breadth of avian hosts. However, little research has focused on examining the patterns of prevalence and lineage diversity of avian parasites in the Andes. Here, we screened a total of 428 birds from 19 species (representing nine families) and identified 133 infections of avian haemosporidia (31%), including lineages of Plasmodium, Haemoproteus, and Leucocytozoon. We document a higher prevalence of haemosporidia at higher elevations and lower temperatures, as well as an overall high diversity of lineages in the northern Andes, including the first sequences of haemosporidians reported in hummingbirds (31 sequences found in 11 species within the family Trochilidae). Double infections were distinguished using PHASE, which enables the separation of distinct parasite lineages. Results suggest that the ecological heterogeneity of the northern Andes that has given rise to a rich diversity of avian hosts may also be particularly conducive to parasite diversification and specialization.
Collapse
Affiliation(s)
- Ryan J Harrigan
- Center for Tropical Research, Institute of the
Environment and Sustainability, University of CaliforniaLos Angeles, CA, USA
| | - Raul Sedano
- Escuela de Biología, Universidad Industrial de
SantanderBucaramanga, Colombia
| | - Anthony C Chasar
- Center for Tropical Research, Institute of the
Environment and Sustainability, University of CaliforniaLos Angeles, CA, USA
| | - Jaime A Chaves
- Department of Biology, University of MiamiCoral Gables, FL, USA
- Universidad San Francisco de Quito, USFQ, Colegio de
Ciencias Biológicas y Ambientales, y Extensión Galápagos, Campus
CumbayáCasilla, Ecuador
| | - Jennifer T Nguyen
- Department of Ecology and Evolutionary Biology,
University of CaliforniaLos Angeles, CA, USA
| | - Alexis Whitaker
- Department of Ecology and Evolutionary Biology,
University of CaliforniaLos Angeles, CA, USA
| | - Thomas B Smith
- Center for Tropical Research, Institute of the
Environment and Sustainability, University of CaliforniaLos Angeles, CA, USA
- Department of Ecology and Evolutionary Biology,
University of CaliforniaLos Angeles, CA, USA
| |
Collapse
|
38
|
Simon JA, Marrotte RR, Desrosiers N, Fiset J, Gaitan J, Gonzalez A, Koffi JK, Lapointe FJ, Leighton PA, Lindsay LR, Logan T, Milord F, Ogden NH, Rogic A, Roy-Dufresne E, Suter D, Tessier N, Millien V. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol Appl 2014; 7:750-64. [PMID: 25469157 PMCID: PMC4227856 DOI: 10.1111/eva.12165] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/05/2014] [Indexed: 12/15/2022] Open
Abstract
Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250–500 km by 2050 – a rate of 3.5–11 km per year – and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution.
Collapse
Affiliation(s)
- Julie A Simon
- Redpath Museum, McGill University Montreal, QC, Canada
| | - Robby R Marrotte
- Redpath Museum, McGill University Montreal, QC, Canada ; Department of Biology, McGill University Montreal, QC, Canada
| | - Nathalie Desrosiers
- Ministère du Développement Durable, de l'Environnement, de la Faune et des Parcs du Québec City, QC, Canada
| | - Jessica Fiset
- Département des Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | - Jorge Gaitan
- Redpath Museum, McGill University Montreal, QC, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University Montreal, QC, Canada
| | - Jules K Koffi
- Zoonoses Division, Centre for Food-Borne, Environmental & Zoonotic Infectious Diseases, Public Health Agency of Canada Saint-Hyacinthe, QC, Canada
| | | | - Patrick A Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Lindsay R Lindsay
- Zoonoses & Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada Winnipeg, MB, Canada
| | | | - Francois Milord
- Institut National de Santé Publique du Québec Longueuil, QC, Canada
| | - Nicholas H Ogden
- Groupe de recherche en épidémiologie des zoonoses et santé publique Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Anita Rogic
- Redpath Museum, McGill University Montreal, QC, Canada ; Département des Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | | | - Daniel Suter
- Redpath Museum, McGill University Montreal, QC, Canada
| | - Nathalie Tessier
- Département des Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | | |
Collapse
|
39
|
Rioux Paquette S, Talbot B, Garant D, Mainguy J, Pelletier F. Modelling the dispersal of the two main hosts of the raccoon rabies variant in heterogeneous environments with landscape genetics. Evol Appl 2014; 7:734-49. [PMID: 25469156 PMCID: PMC4227855 DOI: 10.1111/eva.12161] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/22/2014] [Indexed: 12/25/2022] Open
Abstract
Predicting the geographic spread of wildlife epidemics requires knowledge about the movement patterns of disease hosts or vectors. The field of landscape genetics provides valuable approaches to study dispersal indirectly, which in turn may be used to understand patterns of disease spread. Here, we applied landscape genetic analyses and spatially explicit models to identify the potential path of raccoon rabies spread in a mesocarnivore community. We used relatedness estimates derived from microsatellite genotypes of raccoons and striped skunks to investigate their dispersal patterns in a heterogeneous landscape composed predominantly of agricultural, forested and residential areas. Samples were collected in an area covering 22 000 km2 in southern Québec, where the raccoon rabies variant (RRV) was first detected in 2006. Multiple regressions on distance matrices revealed that genetic distance among male raccoons was strictly a function of geographic distance, while dispersal in female raccoons was significantly reduced by the presence of agricultural fields. In skunks, our results suggested that dispersal is increased in edge habitats between fields and forest fragments in both males and females. Resistance modelling allowed us to identify likely dispersal corridors used by these two rabies hosts, which may prove especially helpful for surveillance and control (e.g. oral vaccination) activities.
Collapse
Affiliation(s)
| | - Benoit Talbot
- Département de biologie, Université de Sherbrooke Sherbrooke, QC, Canada ; Canada Research Chair in Evolutionary Demography and Conservation, Département de biologie, Université de Sherbrooke Sherbrooke, QC, Canada
| | - Dany Garant
- Département de biologie, Université de Sherbrooke Sherbrooke, QC, Canada
| | - Julien Mainguy
- Direction générale de l'expertise sur la faune et ses habitats, Direction de la biodiversité et des maladies de la faune, Ministère du Développement durable, de l'Environnement, de la Faune et des Parcs Québec, QC, Canada
| | - Fanie Pelletier
- Département de biologie, Université de Sherbrooke Sherbrooke, QC, Canada ; Canada Research Chair in Evolutionary Demography and Conservation, Département de biologie, Université de Sherbrooke Sherbrooke, QC, Canada
| |
Collapse
|