1
|
Sato M, Dieckmann U, Sasaki A. Metapopulation heterogeneities in host mobility, productivity, and immunocompetency always increase virulence and infectiousness. Proc Natl Acad Sci U S A 2024; 121:e2309272121. [PMID: 39700140 DOI: 10.1073/pnas.2309272121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
The epidemiology and evolution of diseases unfold in populations that are rarely homogeneous. Instead, hosts infected by pathogens often form metapopulations, in which local populations connected by the movement of hosts experience different demographic and epidemiological conditions. Here, we develop a general theory of the evolution of pathogens in heterogeneous metapopulations. We reveal the following key insights into the evolution of pathogen virulence and infectiousness: (1) When the mobility (movement rate), productivity (birth rate and carrying capacity), or immunocompetency (immunity-loss rate) differ among local populations, this variance always increases pathogen virulence and infectiousness (2) The increment of pathogen virulence caused by such heterogeneity is approximately proportional to the variance of the corresponding heterogeneous local conditions (3) This increment can be expressed as the covariance between the local selection pressures and the local reproductive values experienced by the pathogen (4) The reason why heterogeneity always increases pathogen virulence is explained by the positive correlation of local selection pressures with reproductive values (5) Combinations of multiple independent heterogeneities further increase virulence and infectiousness, even more so when their covariances are positive. Our key findings robustly hold for different epidemiological frameworks - including SI, SIS, SIR, and SIRS models, with both density- and frequency-dependent transmission as well as with superinfection. They provide insights into the risks of growing pathogen infectiousness in a world in which heterogeneity - caused, e.g., by the concentration of human populations in urban areas - is rising.
Collapse
Affiliation(s)
- Masato Sato
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8561, Japan
| | - Ulf Dieckmann
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Tancha, Onna, Kunigami, Okinawa 904-0495, Japan
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
- Advancing Systems Analysis Program & Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| | - Akira Sasaki
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Tancha, Onna, Kunigami, Okinawa 904-0495, Japan
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
- Advancing Systems Analysis Program & Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| |
Collapse
|
2
|
Kabengele K, Turner WC, Turner PE, Ogbunugafor CB. A meta-analysis highlights the idiosyncratic nature of tradeoffs in laboratory models of virus evolution. Virus Evol 2024; 10:veae105. [PMID: 39717708 PMCID: PMC11665823 DOI: 10.1093/ve/veae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Different theoretical frameworks have been invoked to guide the study of virus evolution. Three of the more prominent ones are (i) the evolution of virulence, (ii) life history theory, and (iii) the generalism-specialism dichotomy. All involve purported tradeoffs between traits that define the evolvability and constraint of virus-associated phenotypes. However, as popular as these frameworks are, there is a surprising paucity of direct laboratory tests of the frameworks that support their utility as broadly applicable theoretical pillars that can guide our understanding of disease evolution. In this study, we conduct a meta-analysis of direct experimental evidence for these three frameworks across several widely studied virus-host systems: plant viruses, fungal viruses, animal viruses, and bacteriophages. We extracted 60 datasets from 28 studies and found a range of relationships between traits in different analysis categories (e.g., frameworks, virus-host systems). Our work demonstrates that direct evidence for relationships between traits is highly idiosyncratic and specific to the host-virus system and theoretical framework. Consequently, scientists researching viral pathogens from different taxonomic groups might reconsider their allegiance to these canons as the basis for expectation, explanation, or prediction. Future efforts could benefit from consistent definitions, and from developing frameworks that are compatible with the evidence and apply to particular biological and ecological contexts.
Collapse
Affiliation(s)
- Ketty Kabengele
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
| | - Wendy C Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, United States
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
- Microbiology Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| | - C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
- Public Health Modeling Unit, Yale School of Public Health 60 College Street , New Haven CT 06510, United States
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, United States
| |
Collapse
|
3
|
Leon A, Fleming-Davies A, Adelman J, Hawley D. Pathogen priming alters host transmission potential and predictors of transmissibility in a wild songbird species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619473. [PMID: 39484552 PMCID: PMC11526880 DOI: 10.1101/2024.10.21.619473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pathogen reinfections occur widely, but the extent to which reinfected hosts contribute to ongoing transmission is often unknown despite its implications for host-pathogen dynamics. House finches (Haemorhous mexicanus) acquire partial protection from initial exposure to the bacterial pathogen Mycoplasma gallisepticum (MG), with hosts readily reinfected with homologous or heterologous strains on short timescales. However, the extent to which reinfected hosts contribute to MG transmission has not been tested. We used three pathogen priming treatments- none, intermediate (repeated low-dose priming), or high (single high-dose priming)-to test how prior pathogen priming alters the likelihood of transmission to a cagemate during index bird reinfection with a homologous or heterologous MG strain. Relative to unprimed control hosts, the highest priming level strongly reduced maximum pathogen loads and transmission success of index birds during reinfections. Reinfections with the heterologous strain, previously shown to be more virulent and transmissible than the homologous strain used, resulted in higher pathogen loads within high-primed index birds, and showed higher overall transmission success regardless of host priming treatment. This suggests that inherent differences in strain transmissibility are maintained in primed hosts, leading to the potential for ongoing transmission during reinfections. Finally, among individuals, transmission was most likely from hosts harboring higher within-host pathogen loads, while associations between disease severity and transmission probability were dependent on a given bird's priming treatment. Overall, our results indicate that reinfections can result in ongoing transmission, particularly where reinfections result from heterologous and highly transmissible strains, with key implications for virulence evolution.
Collapse
Affiliation(s)
- A.E. Leon
- Department of Biological Sciences, Virginia Tech
| | | | - J.S. Adelman
- Department of Biological Sciences, University of Memphis
| | - D.M. Hawley
- Department of Biological Sciences, Virginia Tech
| |
Collapse
|
4
|
Godinho DP, Rodrigues LR, Lefèvre S, Magalhães S, Duncan AB. Coinfection accelerates transmission to new hosts despite no effects on virulence and parasite growth. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230139. [PMID: 38913066 PMCID: PMC11391289 DOI: 10.1098/rstb.2023.0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
One of the fundamental aims of ecological, epidemiological and evolutionary studies of host-parasite interactions is to unravel which factors affect parasite virulence. Theory predicts that virulence and transmission are correlated by a trade-off, as too much virulence is expected to hamper transmission owing to excessive host damage. Coinfections may affect each of these traits and/or their correlation. Here, we used inbred lines of the spider mite Tetranychus urticae to test how coinfection with T. evansi impacted virulence-transmission relationships at different conspecific densities. The presence of T. evansi on a shared host did not change the relationship between virulence (leaf damage) and the number of transmitting stages (i.e. adult daughters). The relationship between these traits was hump-shaped across densities, both in single and coinfections, which corresponds to a trade-off. Moreover, transmission to adjacent hosts increased in coinfection, but only at low T. urticae densities. Finally, we tested whether virulence and the number of daughters were correlated with measures of transmission to adjacent hosts, in single and coinfections at different conspecific densities. Traits were mostly independent, meaning that interspecific competitors may increase transmission without affecting virulence. Thus, coinfections may impact epidemiology and parasite trait evolution, but not necessarily the virulence-transmission trade-off.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Diogo P Godinho
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences; CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisboa, Portugal
- Current address, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal
| | - Leonor R Rodrigues
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences; CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisboa, Portugal
| | - Sophie Lefèvre
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences; CHANGE - Global Change and Sustainability Institute, University of Lisbon, Lisboa, Portugal
| | - Alison B Duncan
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
5
|
Carrasco JL, Ambrós S, Gutiérrez PA, Elena SF. Adaptation of turnip mosaic virus to Arabidopsis thaliana involves rewiring of VPg-host proteome interactions. Virus Evol 2024; 10:veae055. [PMID: 39091990 PMCID: PMC11291303 DOI: 10.1093/ve/veae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The outcome of a viral infection depends on a complex interplay between the host physiology and the virus, mediated through numerous protein-protein interactions. In a previous study, we used high-throughput yeast two-hybrid (HT-Y2H) to identify proteins in Arabidopsis thaliana that bind to the proteins encoded by the turnip mosaic virus (TuMV) genome. Furthermore, after experimental evolution of TuMV lineages in plants with mutations in defense-related or proviral genes, most mutations observed in the evolved viruses affected the VPg cistron. Among these mutations, D113G was a convergent mutation selected in many lineages across different plant genotypes, including cpr5-2 with constitutive expression of systemic acquired resistance. In contrast, mutation R118H specifically emerged in the jin1 mutant with affected jasmonate signaling. Using the HT-Y2H system, we analyzed the impact of these two mutations on VPg's interaction with plant proteins. Interestingly, both mutations severely compromised the interaction of VPg with the translation initiation factor eIF(iso)4E, a crucial interactor for potyvirus infection. Moreover, mutation D113G, but not R118H, adversely affected the interaction with RHD1, a zinc-finger homeodomain transcription factor involved in regulating DNA demethylation. Our results suggest that RHD1 enhances plant tolerance to TuMV infection. We also discuss our findings in a broad virus evolution context.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Pablo A Gutiérrez
- Laboratorio de Microbiología Industrial, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 65 Nro. 59A - 110, Medellín, Antioquia 050034, Colombia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
- The Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, United States
| |
Collapse
|
6
|
Ferrante L, Almeida ACL, Leão J, Steinmetz WAC, Vassão RC, Vilani RM, Tupinambás U, Fearnside PM. Misinformation Caused Increased Urban Mobility and the End of Social Confinement Before the Second Wave of COVID-19 in Amazonia. J Racial Ethn Health Disparities 2024; 11:1280-1285. [PMID: 37095286 PMCID: PMC10124928 DOI: 10.1007/s40615-023-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
Tendentious projections about COVID-19 in Brazil provided an appealing excuse for individuals and decision-makers to justify poor choices during a critical phase of the pandemic. The erroneous results likely contributed to premature resumption of in-person school classes and easing of restrictions on social contact, favoring the resurgence of COVID-19. In Manaus, the largest city in the Amazon region, the COVID-19 pandemic did not end in 2020 of its own accord, but rather rebounded in a disastrous second wave of the disease.
Collapse
Affiliation(s)
- Lucas Ferrante
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil.
| | | | - Jeremias Leão
- Department of Statistics, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
| | | | - Ruth Camargo Vassão
- Retired from the Cell Biology Laboratory of the Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Rodrigo Machado Vilani
- Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Unaí Tupinambás
- Department of Internal Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Philip Martin Fearnside
- Departament of Environmental Dynamics, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| |
Collapse
|
7
|
Franz M, Regoes RR, Rolff J. How infection-triggered pathobionts influence virulence evolution. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230067. [PMID: 38497269 PMCID: PMC10945393 DOI: 10.1098/rstb.2023.0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/28/2023] [Indexed: 03/19/2024] Open
Abstract
Host-pathogen interactions can be influenced by the host microbiota, as the microbiota can facilitate or prevent pathogen infections. In addition, members of the microbiota can become virulent. Such pathobionts can cause co-infections when a pathogen infection alters the host immune system and triggers dysbiosis. Here we performed a theoretical investigation of how pathobiont co-infections affect the evolution of pathogen virulence. We explored the possibility that the likelihood of pathobiont co-infection depends on the evolving virulence of the pathogen. We found that, in contrast to the expectation from classical theory, increased virulence is not always selected for. For an increasing likelihood of co-infection with increasing pathogen virulence, we found scenario-specific selection for either increased or decreased virulence. Evolutionary changes, however, in pathogen virulence do not always translate into similar changes in combined virulence of the pathogen and the pathobiont. Only in one of the scenarios where pathobiont co-infection is triggered above a specific virulence level we found a reduction in combined virulence. This was not the case when the probability of pathobiont co-infection linearly increased with pathogen virulence. Taken together, our study draws attention to the possibility that host-microbiota interactions can be both the driver and the target of pathogen evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Mathias Franz
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Jens Rolff
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
8
|
Walsman JC, Lambe M, Stephenson JF. Associating with kin selects for disease resistance and against tolerance. Proc Biol Sci 2024; 291:20240356. [PMID: 38772422 DOI: 10.1098/rspb.2024.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Behavioural and physiological resistance are key to slowing epidemic spread. We explore the evolutionary and epidemic consequences of their different costs for the evolution of tolerance that trades off with resistance. Behavioural resistance affects social cohesion, with associated group-level costs, while the cost of physiological resistance accrues only to the individual. Further, resistance, and the associated reduction in transmission, benefit susceptible hosts directly, whereas infected hosts only benefit indirectly, by reducing transmission to kin. We therefore model the coevolution of transmission-reducing resistance expressed in susceptible hosts with resistance expressed in infected hosts, as a function of kin association, and analyse the effect on population-level outcomes. Using parameter values for guppies, Poecilia reticulata, and their gyrodactylid parasites, we find that: (1) either susceptible or infected hosts should invest heavily in resistance, but not both; (2) kin association drives investment in physiological resistance more strongly than in behavioural resistance; and (3) even weak levels of kin association can favour altruistic infected hosts that invest heavily in resistance (versus selfish tolerance), eliminating parasites. Overall, our finding that weak kin association affects the coevolution of infected and susceptible investment in both behavioural and physiological resistance suggests that kin selection may affect disease dynamics across systems.
Collapse
Affiliation(s)
- Jason C Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Earth Research Institute, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Madalyn Lambe
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Buckingham LJ, Ashby B. Coevolution of Age-Structured Tolerance and Virulence. Bull Math Biol 2024; 86:62. [PMID: 38662120 PMCID: PMC11045647 DOI: 10.1007/s11538-024-01292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hosts can evolve a variety of defences against parasitism, including resistance (which prevents or reduces the spread of infection) and tolerance (which protects against virulence). Some organisms have evolved different levels of tolerance at different life-stages, which is likely to be the result of coevolution with pathogens, and yet it is currently unclear how coevolution drives patterns of age-specific tolerance. Here, we use a model of tolerance-virulence coevolution to investigate how age structure influences coevolutionary dynamics. Specifically, we explore how coevolution unfolds when tolerance and virulence (disease-induced mortality) are age-specific compared to when these traits are uniform across the host lifespan. We find that coevolutionary cycling is relatively common when host tolerance is age-specific, but cycling does not occur when tolerance is the same across all ages. We also find that age-structured tolerance can lead to selection for higher virulence in shorter-lived than in longer-lived hosts, whereas non-age-structured tolerance always leads virulence to increase with host lifespan. Our findings therefore suggest that age structure can have substantial qualitative impacts on host-pathogen coevolution.
Collapse
Affiliation(s)
- Lydia J Buckingham
- Department of Mathematical Sciences, University of Bath, Bath, UK.
- Milner Centre for Evolution, University of Bath, Bath, UK.
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Milner Centre for Evolution, University of Bath, Bath, UK
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
- Pacific Institute on Pathogens, Pandemics and Society, Burnaby, BC, Canada
| |
Collapse
|
10
|
Northrup GR, White A, Parratt SR, Rozins C, Laine AL, Boots M. The evolutionary dynamics of hyperparasites. J Theor Biol 2024; 582:111741. [PMID: 38280543 DOI: 10.1016/j.jtbi.2024.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 01/29/2024]
Abstract
Evolutionary theory has typically focused on pairwise interactions, such as those between hosts and parasites, with relatively little work having been carried out on more complex interactions including hyperparasites: parasites of parasites. Hyperparasites are common in nature, with the chestnut blight fungus virus CHV-1 a well-known natural example, but also notably include the phages of important human bacterial diseases. We build a general modeling framework for the evolution of hyperparasites that highlights the central role that the ability of a hyperparasite to be transmitted with its parasite plays in their evolution. A key result is that hyperparasites which transmit with their parasite hosts (hitchhike) will be selected for lower virulence, trending towards hypermutualism or hypercommensalism. We examine the impact on the evolution of hyperparasite systems of a wide range of host and parasite traits showing, for example, that high parasite virulence selects for higher hyperparasite virulence resulting in reductions in parasite virulence when hyperparasitized. Furthermore, we show that acute parasite infection will also select for increased hyperparasite virulence. Our results have implications for hyperparasite research, both as biocontrol agents and for their role in shaping community ecology and evolution and moreover emphasize the importance of understanding evolution in the context of multitrophic interactions.
Collapse
Affiliation(s)
- Graham R Northrup
- Center for Computational Biology, College of Engineering, University of California, Berkeley, CA, USA.
| | - Andy White
- Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK; Department of Mathematics, Heriot-Watt University, Edinburgh, UK
| | - Steven R Parratt
- Department of Ecology, Evolution and Behaviour, University of Liverpool, Liverpool, UK
| | - Carly Rozins
- Department of Science and Technology Studies, Division of Natural Science, York University, Toronto, Ontario, Canada
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, CA, USA; Center for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, UK
| |
Collapse
|
11
|
Torstenson M, Shaw AK. Pathogen evolution following spillover from a resident to a migrant host population depends on interactions between host pace of life and tolerance to infection. J Anim Ecol 2024; 93:475-487. [PMID: 38462682 DOI: 10.1111/1365-2656.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Changes to migration routes and phenology create novel contact patterns among hosts and pathogens. These novel contact patterns can lead to pathogens spilling over between resident and migrant populations. Predicting the consequences of such pathogen spillover events requires understanding how pathogen evolution depends on host movement behaviour. Following spillover, pathogens may evolve changes in their transmission rate and virulence phenotypes because different strategies are favoured by resident and migrant host populations. There is conflict in current theoretical predictions about what those differences might be. Some theory predicts lower pathogen virulence and transmission rates in migrant populations because migrants have lower tolerance to infection. Other theoretical work predicts higher pathogen virulence and transmission rates in migrants because migrants have more contacts with susceptible hosts. We aim to understand how differences in tolerance to infection and host pace of life act together to determine the direction of pathogen evolution following pathogen spillover from a resident to a migrant population. We constructed a spatially implicit model in which we investigate how pathogen strategy changes following the addition of a migrant population. We investigate how differences in tolerance to infection and pace of life between residents and migrants determine the effect of spillover on pathogen evolution and host population size. When the paces of life of the migrant and resident hosts are equal, larger costs of infection in the migrants lead to lower pathogen transmission rate and virulence following spillover. When the tolerance to infection in migrant and resident populations is equal, faster migrant paces of life lead to increased transmission rate and virulence following spillover. However, the opposite can also occur: when the migrant population has lower tolerance to infection, faster migrant paces of life can lead to decreases in transmission rate and virulence. Predicting the outcomes of pathogen spillover requires accounting for both differences in tolerance to infection and pace of life between populations. It is also important to consider how movement patterns of populations affect host contact opportunities for pathogens. These results have implications for wildlife conservation, agriculture and human health.
Collapse
Affiliation(s)
- Martha Torstenson
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
12
|
Gutiérrez-Ramos NA, Acevedo MA. Higher body condition with infection by Haemoproteus parasites in Bananaquits ( Coereba flaveola). PeerJ 2024; 12:e16361. [PMID: 38563018 PMCID: PMC10984167 DOI: 10.7717/peerj.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/05/2023] [Indexed: 04/04/2024] Open
Abstract
Parasite transmission is a heterogenous process in host-parasite interactions. This heterogeneity is particularly apparent in vector-borne parasite transmission where the vector adds an additional level of complexity. Haemosporidian parasites, a widespread protist, cause a malaria-like disease in birds globally, but we still have much to learn about the consequences of infection to hosts' health. In the Caribbean, where malarial parasites are endemic, studying host-parasites interactions may give us important insights about energetic trade-offs involved in malarial parasites infections in birds. In this study, we tested the consequences of Haemoproteus infection on the Bananaquit, a resident species of Puerto Rico. We also tested for potential sources of individual heterogeneity in the consequences of infection such as host age and sex. To quantify the consequences of infection to hosts' health we compared three complementary body condition indices between infected and uninfected individuals. Our results showed that Bananaquits infected by Haemoproteus had higher body condition than uninfected individuals. This result was consistent among the three body condition indices. Still, we found no clear evidence that this effect was mediated by host age or sex. We discuss a set of non-mutually exclusive hypotheses that may explain this pattern including metabolic syndrome, immunological responses leading to host tolerance or resistance to infection, and potential changes in consumption rates. Overall, our results suggest that other mechanisms, may drive the consequences of avian malarial infection.
Collapse
Affiliation(s)
| | - Miguel A. Acevedo
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
13
|
Kürschner T, Scherer C, Radchuk V, Blaum N, Kramer‐Schadt S. Resource asynchrony and landscape homogenization as drivers of virulence evolution: The case of a directly transmitted disease in a social host. Ecol Evol 2024; 14:e11065. [PMID: 38380064 PMCID: PMC10877554 DOI: 10.1002/ece3.11065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Throughout the last decades, the emergence of zoonotic diseases and the frequency of disease outbreaks have increased substantially, fuelled by habitat encroachment and vectors overlapping with more hosts due to global change. The virulence of pathogens is one key trait for successful invasion. In order to understand how global change drivers such as habitat homogenization and climate change drive pathogen virulence evolution, we adapted an established individual-based model of host-pathogen dynamics. Our model simulates a population of social hosts affected by a directly transmitted evolving pathogen in a dynamic landscape. Pathogen virulence evolution results in multiple strains in the model that differ in their transmission capability and lethality. We represent the effects of global change by simulating environmental changes both in time (resource asynchrony) and space (homogenization). We found an increase in pathogenic virulence and a shift in strain dominance with increasing landscape homogenization. Our model further indicated that lower virulence is dominant in fragmented landscapes, although pulses of highly virulent strains emerged under resource asynchrony. While all landscape scenarios favoured co-occurrence of low- and high-virulent strains, the high-virulence strains capitalized on the possibility for transmission when host density increased and were likely to become dominant. With asynchrony likely to occur more often due to global change, our model showed that a subsequent evolution towards lower virulence could lead to some diseases becoming endemic in their host populations.
Collapse
Affiliation(s)
- Tobias Kürschner
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Cédric Scherer
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Niels Blaum
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Stephanie Kramer‐Schadt
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of EcologyTechnische Universität BerlinBerlinGermany
| |
Collapse
|
14
|
Aulsebrook LC, Wong BBM, Hall MD. Pharmaceutical pollution alters the cost of bacterial infection and its relationship to pathogen load. Proc Biol Sci 2024; 291:20231273. [PMID: 38196353 PMCID: PMC10777164 DOI: 10.1098/rspb.2023.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
The relationship between pathogen proliferation and the cost of infection experienced by a host drives the ecology and evolution of host-pathogen dynamics. While environmental factors can shape this relationship, there is currently limited knowledge on the consequences of emerging contaminants, such as pharmaceutical pollutants, on the relationship between a pathogen's growth within the host and the damage it causes, termed its virulence. Here, we investigated how exposure to fluoxetine (Prozac), a commonly detected psychoactive pollutant, could alter this key relationship using the water flea Daphnia magna and its bacterial pathogen Pasteuria ramosa as a model system. Across a variety of fluoxetine concentrations, we found that fluoxetine shaped the damage a pathogen caused, such as the reduction in fecundity or intrinsic growth experienced by infected individuals, but with minimal change in average pathogen spore loads. Instead, fluoxetine modified the relationship between the degree of pathogen proliferation and its virulence, with both the strength of this trade-off and the component of host fitness most affected varying by fluoxetine concentration and host genotype. Our study underscores the potential for pharmaceutical pollution to modify the virulence of an invading pathogen, as well as the fundamental trade-off between host and pathogen fitness, even at the trace amounts increasingly found in natural waterways.
Collapse
Affiliation(s)
- Lucinda C. Aulsebrook
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Bob B. M. Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
15
|
Chen MY, Haney CH. It takes a plant village to raise a microbiome. Cell Host Microbe 2023; 31:1956-1958. [PMID: 38096789 DOI: 10.1016/j.chom.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
In this issue of Cell Host and Microbe, Meyer et al. explore the effects of host history on the inheritance of the plant microbiome. They find that transmission from the same plant species resulted in microbiota specialization, while transmission from a different species resulted in host generalism.
Collapse
Affiliation(s)
- Melissa Y Chen
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver BC, Canada
| | - Cara H Haney
- Department of Biological Sciences, The University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
16
|
Sunagawa J, Park H, Kim KS, Komorizono R, Choi S, Ramirez Torres L, Woo J, Jeong YD, Hart WS, Thompson RN, Aihara K, Iwami S, Yamaguchi R. Isolation may select for earlier and higher peak viral load but shorter duration in SARS-CoV-2 evolution. Nat Commun 2023; 14:7395. [PMID: 37989736 PMCID: PMC10663562 DOI: 10.1038/s41467-023-43043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
During the COVID-19 pandemic, human behavior change as a result of nonpharmaceutical interventions such as isolation may have induced directional selection for viral evolution. By combining previously published empirical clinical data analysis and multi-level mathematical modeling, we find that the SARS-CoV-2 variants selected for as the virus evolved from the pre-Alpha to the Delta variant had earlier and higher peak in viral load dynamics but a shorter duration of infection. Selection for increased transmissibility shapes the viral load dynamics, and the isolation measure is likely to be a driver of these evolutionary transitions. In addition, we show that a decreased incubation period and an increased proportion of asymptomatic infection are also positively selected for as SARS-CoV-2 mutated to adapt to human behavior (i.e., Omicron variants). The quantitative information and predictions we present here can guide future responses in the potential arms race between pandemic interventions and viral evolution.
Collapse
Affiliation(s)
- Junya Sunagawa
- Department of Advanced Transdisciplinary Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Scientific Computing, Pukyong National University, Busan, South Korea
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Sooyoun Choi
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Lucia Ramirez Torres
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Joohyeon Woo
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yong Dam Jeong
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - William S Hart
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Robin N Thompson
- Mathematical Institute, University of Oxford, Oxford, UK
- Mathematics Institute, University of Warwick, Coventry, UK
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan.
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan.
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
- Science Groove Inc, Fukuoka, Japan.
| | - Ryo Yamaguchi
- Department of Advanced Transdisciplinary Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Metz JAJ, Boldin B. Immunity-driven evolution of virulence and diversity in respiratory diseases. Evolution 2023; 77:2392-2408. [PMID: 37592809 DOI: 10.1093/evolut/qpad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
The time-honored paradigm in the theory of virulence evolution assumes a positive relation between infectivity and harmfulness. However, the etiology of respiratory diseases yields a negative relation, with diseases of the lower respiratory tract being less infective and more harmful. We explore the evolutionary consequences in a simple model incorporating cross-immunity between disease strains that diminishes with their distance in the respiratory tract, assuming that docking rate follows the match between the local mix of cell surface types and the pathogen's surface and cross-immunity the similarity of the pathogens' surfaces. The assumed relation between fitness components causes virulent strains infecting the lower airways to evolve to milder more transmissible variants. Limited cross-immunity, generally, causes a readiness to diversify that increases with host population density. In respiratory diseases that diversity will be highest in the upper respiratory tract. More tentatively, emerging respiratory diseases are likely to start low and virulent, to evolve up, and become milder. Our results extend to a panoply of realistic generalizations of the disease's ecology to including additional epitope axes. These extensions allow us to apply our results quantitatively to elucidate the differences in diversification between rhino- and coronavirus caused common colds.
Collapse
Affiliation(s)
- Johan A J Metz
- Advancing Systems Analysis Program, International Institute of Applied Systems Analysis (IIASA), Laxenburg, Austria
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Netherlands Centre for Biodiversity, Naturalis, Leiden, The Netherlands
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Japan
| | - Barbara Boldin
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| |
Collapse
|
18
|
Zinck CB, Raveendram Thampy P, Uhlemann EME, Adam H, Wachter J, Suchan D, Cameron ADS, Rego ROM, Brisson D, Bouchard C, Ogden NH, Voordouw MJ. Variation among strains of Borrelia burgdorferi in host tissue abundance and lifetime transmission determine the population strain structure in nature. PLoS Pathog 2023; 19:e1011572. [PMID: 37607182 PMCID: PMC10473547 DOI: 10.1371/journal.ppat.1011572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/01/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023] Open
Abstract
Pathogen life history theory assumes a positive relationship between pathogen load in host tissues and pathogen transmission. Empirical evidence for this relationship is surprisingly rare due to the difficulty of measuring transmission for many pathogens. The comparative method, where a common host is experimentally infected with a set of pathogen strains, is a powerful approach for investigating the relationships between pathogen load and transmission. The validity of such experimental estimates of strain-specific transmission is greatly enhanced if they can predict the pathogen population strain structure in nature. Borrelia burgdorferi is a multi-strain, tick-borne spirochete that causes Lyme disease in North America. This study used 11 field-collected strains of B. burgdorferi, a rodent host (Mus musculus, C3H/HeJ) and its tick vector (Ixodes scapularis) to determine the relationship between pathogen load in host tissues and lifetime host-to-tick transmission (HTT). Mice were experimentally infected via tick bite with 1 of 11 strains. Lifetime HTT was measured by infesting mice with I. scapularis larval ticks on 3 separate occasions. The prevalence and abundance of the strains in the mouse tissues and the ticks were determined by qPCR. We used published databases to obtain estimates of the frequencies of these strains in wild I. scapularis tick populations. Spirochete loads in ticks and lifetime HTT varied significantly among the 11 strains of B. burgdorferi. Strains with higher spirochete loads in the host tissues were more likely to infect feeding larval ticks, which molted into nymphal ticks that had a higher probability of B. burgdorferi infection (i.e., higher HTT). Our laboratory-based estimates of lifetime HTT were predictive of the frequencies of these strains in wild I. scapularis populations. For B. burgdorferi, the strains that establish high abundance in host tissues and that have high lifetime transmission are the strains that are most common in nature.
Collapse
Affiliation(s)
- Christopher B. Zinck
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Prasobh Raveendram Thampy
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Eva-Maria E. Uhlemann
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Danae Suchan
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Andrew D. S. Cameron
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine Bouchard
- Public Health Risk Sciences, National Microbiology Laboratory, Public Health Agency of Canada, St Hyacinthe, Quebec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
| | - Nicholas H. Ogden
- Public Health Risk Sciences, National Microbiology Laboratory, Public Health Agency of Canada, St Hyacinthe, Quebec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
- Centre de recherche en santé publique (CReSP), Université de Montréal, Montreal, QC, Canada
| | - Maarten J. Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
19
|
Gül E, Bakkeren E, Salazar G, Steiger Y, Abi Younes A, Clerc M, Christen P, Fattinger SA, Nguyen BD, Kiefer P, Slack E, Ackermann M, Vorholt JA, Sunagawa S, Diard M, Hardt WD. The microbiota conditions a gut milieu that selects for wild-type Salmonella Typhimurium virulence. PLoS Biol 2023; 21:e3002253. [PMID: 37651408 PMCID: PMC10499267 DOI: 10.1371/journal.pbio.3002253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Salmonella Typhimurium elicits gut inflammation by the costly expression of HilD-controlled virulence factors. This inflammation alleviates colonization resistance (CR) mediated by the microbiota and thereby promotes pathogen blooms. However, the inflamed gut-milieu can also select for hilD mutants, which cannot elicit or maintain inflammation, therefore causing a loss of the pathogen's virulence. This raises the question of which conditions support the maintenance of virulence in S. Typhimurium. Indeed, it remains unclear why the wild-type hilD allele is dominant among natural isolates. Here, we show that microbiota transfer from uninfected or recovered hosts leads to rapid clearance of hilD mutants that feature attenuated virulence, and thereby contributes to the preservation of the virulent S. Typhimurium genotype. Using mouse models featuring a range of microbiota compositions and antibiotic- or inflammation-inflicted microbiota disruptions, we found that irreversible disruption of the microbiota leads to the accumulation of hilD mutants. In contrast, in models with a transient microbiota disruption, selection for hilD mutants was prevented by the regrowing microbiota community dominated by Lachnospirales and Oscillospirales. Strikingly, even after an irreversible microbiota disruption, microbiota transfer from uninfected donors prevented the rise of hilD mutants. Our results establish that robust S. Typhimurium gut colonization hinges on optimizing its manipulation of the host: A transient and tempered microbiota perturbation is favorable for the pathogen to both flourish in the inflamed gut and also minimize loss of virulence. Moreover, besides conferring CR, the microbiota may have the additional consequence of maintaining costly enteropathogen virulence mechanisms.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Guillem Salazar
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Melanie Clerc
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland
- Botnar Research Centre for Child Health, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Noh S, Larson ER, Covitz RM, Chen A, Mazumder PR, Peck RF, Hamilton MC, Dettmann RA. Facultative symbiont virulence determines horizontal transmission rate without host strain specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528903. [PMID: 36824889 PMCID: PMC9949114 DOI: 10.1101/2023.02.16.528903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In facultative symbioses, only a fraction of hosts are associated with a symbiont. Understanding why specific host and symbiont strains are associated can inform us of the evolutionary forces affecting facultative symbioses. Possibilities include ongoing host-symbiont coevolution driven by reciprocal selection, or priority effects that are neutral in respect to the host-symbiont interaction. We hypothesized that ongoing host-symbiont coevolution would lead to higher fitness estimates for naturally co-occurring (native) host and symbiont combinations compared to nonnative combinations. We used the Dictyostelium discoideum - Paraburkholderia bonniea system to test this hypothesis. P. bonniea features a reduced genome size relative to another Paraburkholderia symbiont of D. discoideum, indicating a significant history of coevolution with its host. Facultative symbionts may experience continued genome reduction if coevolution is ongoing, or their genome size may have reached a stable state if the symbiosis has also stabilized. Our work demonstrates that ongoing coevolution is unlikely for D. discoideum and P. bonniea. The system instead represents a stable facultative symbiosis. Specifically associated host and symbiont strains in this system are the result of priority effects, and presently unassociated hosts are simply uncolonized. We find evidence for a virulence-transmission trade-off without host strain specificity, and identify candidate virulence factors in the genomes of P. bonniea strains that may contribute to variation in benevolence.
Collapse
Affiliation(s)
- Suegene Noh
- Biology Department, Colby College, Waterville, Maine, USA
| | | | - Rachel M. Covitz
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Anna Chen
- Biology Department, Colby College, Waterville, Maine, USA
| | | | - Ron F. Peck
- Biology Department, Colby College, Waterville, Maine, USA
| | - Marisa C. Hamilton
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Robert A. Dettmann
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Isibor PO, Onwaeze OO, Kayode-Edwards II, Agbontaen DO, Ifebem-Ezima IAM, Bilewu O, Onuselogu C, Akinniyi AP, Obafemi YD, Oniha MI. Investigating and combatting the key drivers of viral zoonoses in Africa: an analysis of eight epidemics. BRAZ J BIOL 2023; 84:e270857. [PMID: 37531478 DOI: 10.1590/1519-6984.270857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/02/2023] [Indexed: 08/04/2023] Open
Abstract
Investigating the interplay of factors that result in a viral zoonotic outbreak is difficult, though it is increasingly important. As anthropogenic influences shift the delicate balance of ecosystems, new zoonoses emerge in humans. Sub-Saharan Africa is a notable hotspot for zoonotic disease due to abundant competent mammalian reservoir hosts. Furthermore, poverty, corruption, and an overreliance on natural resources play considerable roles in depleting biological resources, exacerbating the population's susceptibility. Unsurprisingly, viral zoonoses have emerged in Africa, including HIV/AIDS, Ebola, Avian influenza, Lassa fever, Zika, and Monkeypox. These diseases are among the principal causes of death in endemic areas. Though typically distinct in their manifestations, viral zoonoses are connected by underlying, definitive factors. This review summarises vital findings on viral zoonoses in Africa using nine notable case studies as a benchmark for future studies. We discuss the importance of ecological recuperation and protection as a central strategy to control zoonotic diseases. Emphasis was made on moderating key drivers of zoonotic diseases to forestall future pandemics. This is in conjunction with attempts to redirect efforts from reactive to pre-emptive through a multidisciplinary "one health" approach.
Collapse
Affiliation(s)
- P O Isibor
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O O Onwaeze
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - I I Kayode-Edwards
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - D O Agbontaen
- University of South Wales, Department of Public Health, Pontypridd, United Kingdom
| | - I-A M Ifebem-Ezima
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O Bilewu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - C Onuselogu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - A P Akinniyi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - Y D Obafemi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - M I Oniha
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| |
Collapse
|
22
|
Lindsay RJ, Holder PJ, Talbot NJ, Gudelj I. Metabolic efficiency reshapes the seminal relationship between pathogen growth rate and virulence. Ecol Lett 2023; 26:896-907. [PMID: 37056166 PMCID: PMC10947253 DOI: 10.1111/ele.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
A cornerstone of classical virulence evolution theories is the assumption that pathogen growth rate is positively correlated with virulence, the amount of damage pathogens inflict on their hosts. Such theories are key for incorporating evolutionary principles into sustainable disease management strategies. Yet, empirical evidence raises doubts over this central assumption underpinning classical theories, thus undermining their generality and predictive power. In this paper, we identify a key component missing from current theories which redefines the growth-virulence relationship in a way that is consistent with data. By modifying the activity of a single metabolic gene, we engineered strains of Magnaporthe oryzae with different nutrient acquisition and growth rates. We conducted in planta infection studies and uncovered an unexpected non-monotonic relationship between growth rate and virulence that is jointly shaped by how growth rate and metabolic efficiency interact. This novel mechanistic framework paves the way for a much-needed new suite of virulence evolution theories.
Collapse
Affiliation(s)
| | | | - Nicholas J. Talbot
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Ivana Gudelj
- Biosciences and Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
23
|
Al-Ghafli H, Barribeau SM. Double trouble: trypanosomatids with two hosts have lower infection prevalence than single host trypanosomatids. Evol Med Public Health 2023; 11:202-218. [PMID: 37404250 PMCID: PMC10317189 DOI: 10.1093/emph/eoad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/21/2023] [Indexed: 07/06/2023] Open
Abstract
Trypanosomatids are a diverse family of protozoan parasites, some of which cause devastating human and livestock diseases. There are two distinct infection life cycles in trypanosomatids; some species complete their entire life cycle in a single host (monoxenous) while others infect two hosts (dixenous). Dixenous trypanosomatids are mostly vectored by insects, and the human trypanosomatid diseases are caused mainly by vectored parasites. While infection prevalence has been described for subsets of hosts and trypanosomatids, little is known about whether monoxenous and dixenous trypanosomatids differ in infection prevalence. Here, we use meta-analyses to synthesise all published evidence of trypanosomatid infection prevalence for the last two decades, encompassing 931 unique host-trypansomatid systems. In examining 584 studies that describe infection prevalence, we find, strikingly, that monoxenous species are two-fold more prevalent than dixenous species across all hosts. We also find that dixenous trypanosomatids have significantly lower infection prevalence in insects than their non-insect hosts. To our knowledge, these results reveal for the first time, a fundamental difference in infection prevalence according to host specificity where vectored species might have lower infection prevalence as a result of a potential 'jack of all trades, master of none' style trade-off between the vector and subsequent hosts.
Collapse
Affiliation(s)
- Hawra Al-Ghafli
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Seth M Barribeau
- Corresponding author. Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, UK. E-mail:
| |
Collapse
|
24
|
Hasik AZ, King KC, Hawlena H. Interspecific host competition and parasite virulence evolution. Biol Lett 2023; 19:20220553. [PMID: 37130550 PMCID: PMC10734695 DOI: 10.1098/rsbl.2022.0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Virulence, the harm to hosts caused by parasite infection, can be selected for by several ecological factors acting synergistically or antagonistically. Here, we focus on the potential for interspecific host competition to shape virulence through such a network of effects. We first summarize how host natural mortality, body mass changes, population density and community diversity affect virulence evolution. We then introduce an initial conceptual framework highlighting how these host factors, which change during host competition, may drive virulence evolution via impacts on life-history trade-offs. We argue that the multi-faceted nature of both interspecific host competition and virulence evolution still requires consideration and experimentation to disentangle contrasting mechanisms. It also necessitates a differential treatment for parasites with various transmission strategies. However, such a comprehensive approach focusing on the role of interspecific host competition is essential to understand the processes driving the evolution of virulence in a tangled bank.
Collapse
Affiliation(s)
- Adam Z. Hasik
- Jacob Blaustein Center for
Scientific Cooperation, Ben-Gurion University of the
Negev, 8499000 Midreshet Ben-Gurion,
Israel
| | - Kayla C. King
- Department of Biology,
University of Oxford, 11a Mansfield Road,
Oxford OX1 3SZ, UK
| | - Hadas Hawlena
- Mitrani Department of Desert
Ecology, Swiss Institute for Dryland Environmental and Energy Research, The
Jacob Blaustein Institutes for Desert Research, Ben-Gurion
University of the Negev, 849900 Midreshet Ben-Gurion,
Israel
| |
Collapse
|
25
|
Kun Á, Hubai AG, Král A, Mokos J, Mikulecz BÁ, Radványi Á. Do pathogens always evolve to be less virulent? The virulence–transmission trade-off in light of the COVID-19 pandemic. Biol Futur 2023:10.1007/s42977-023-00159-2. [PMID: 37002448 PMCID: PMC10066022 DOI: 10.1007/s42977-023-00159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
AbstractThe direction the evolution of virulence takes in connection with any pathogen is a long-standing question. Formerly, it was theorized that pathogens should always evolve to be less virulent. As observations were not in line with this theoretical outcome, new theories emerged, chief among them the transmission–virulence trade-off hypotheses, which predicts an intermediate level of virulence as the endpoint of evolution. At the moment, we are very much interested in the future evolution of COVID-19’s virulence. Here, we show that the disease does not fulfill all the assumptions of the hypothesis. In the case of COVID-19, a higher viral load does not mean a higher risk of death; immunity is not long-lasting; other hosts can act as reservoirs for the virus; and death as a consequence of viral infection does not shorten the infectious period. Consequently, we cannot predict the short- or long-term evolution of the virulence of COVID-19.
Collapse
|
26
|
Kennedy DA. Death is overrated: the potential role of detection in driving virulence evolution. Proc Biol Sci 2023; 290:20230117. [PMID: 36987649 PMCID: PMC10050922 DOI: 10.1098/rspb.2023.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
A common assumption in the evolution of virulence theory literature is that pathogens transmit better when they exploit their host more heavily, but by doing so, they impose a greater risk of killing their host, thus truncating infectious periods and reducing their own opportunities for transmission. Here, I derive an equation for the magnitude of this cost in terms of the infection fatality rate, and in doing so, I show that there are many cases where mortality costs are too small to plausibly constrain increases in host exploitation by pathogens. I propose that pathogen evolution may often be constrained by detection costs, whereby hosts alter their behaviour when infection is detectable, and thus reduce pathogen opportunities for onward transmission. I then derive an inequality to illustrate when mortality costs or detection costs impose stronger constraints on pathogen evolution, and I use empirical data from the literature to demonstrate that detection costs are frequently large in both human and animal populations. Finally, I give examples of how evolutionary predictions can change depending on whether costs of host exploitation are borne out through mortality or detection.
Collapse
Affiliation(s)
- David A. Kennedy
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Hector TE, Gehman ALM, King KC. Infection burdens and virulence under heat stress: ecological and evolutionary considerations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220018. [PMID: 36744570 PMCID: PMC9900716 DOI: 10.1098/rstb.2022.0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/17/2022] [Indexed: 02/07/2023] Open
Abstract
As a result of global change, hosts and parasites (including pathogens) are experiencing shifts in their thermal environment. Despite the importance of heat stress tolerance for host population persistence, infection by parasites can impair a host's ability to cope with heat. Host-parasite eco-evolutionary dynamics will be affected if infection reduces host performance during heating. Theory predicts that within-host parasite burden (replication rate or number of infecting parasites per host), a key component of parasite fitness, should correlate positively with virulence-the harm caused to hosts during infection. Surprisingly, however, the relationship between within-host parasite burden and virulence during heating is often weak. Here, we describe the current evidence for the link between within-host parasite burden and host heat stress tolerance. We consider the biology of host-parasite systems that may explain the weak or absent link between these two important host and parasite traits during hot conditions. The processes that mediate the relationship between parasite burden and host fitness will be fundamental in ecological and evolutionary responses of host and parasites in a warming world. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- T. E. Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - A.-L. M. Gehman
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC Canada, V0N 1M0
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC Canada, V6T 1Z4
| | - K. C. King
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
28
|
Xu Z, Wei D, Zeng Q, Zhang H, Sun Y, Demongeot J. More or less deadly? A mathematical model that predicts SARS-CoV-2 evolutionary direction. Comput Biol Med 2023; 153:106510. [PMID: 36630829 PMCID: PMC9816089 DOI: 10.1016/j.compbiomed.2022.106510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
SARS-CoV-2 has caused tremendous deaths globally. It is of great value to predict the evolutionary direction of SARS-CoV-2. In this paper, we proposed a novel mathematical model that could predict the evolutionary trend of SARS-CoV-2. We focus on the mutational effects on viral assembly capacity. A robust coarse-grained mathematical model is constructed to simulate the virus dynamics in the host body. Both virulence and transmissibility can be quantified in this model. A delicate equilibrium point that optimizes the transmissibility can be numerically obtained. Based on this model, the virulence of SARS-CoV-2 might further decrease, accompanied by an enhancement of transmissibility. However, this trend is not continuous; its virulence will not disappear but remains at a relatively stable range. A virus assembly model which simulates the virus packing process is also proposed. It can be explained why a few mutations would lead to a significant divergence in clinical performance, both in the overall particle formation quantity and virulence. This research provides a novel mathematical attempt to elucidate the evolutionary driving force in RNA virus evolution.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, 253023, China.
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qiangcheng Zeng
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Yinghui Sun
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700, La Tronche, France.
| |
Collapse
|
29
|
Hawley DM, Thomason CA, Aberle MA, Brown R, Adelman JS. High virulence is associated with pathogen spreadability in a songbird-bacterial system. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220975. [PMID: 36686556 PMCID: PMC9832288 DOI: 10.1098/rsos.220975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/19/2022] [Indexed: 06/11/2023]
Abstract
How directly transmitted pathogens benefit from harming hosts is key to understanding virulence evolution. It is recognized that pathogens benefit from high within-host loads, often associated with virulence. However, high virulence may also directly augment spread of a given amount of pathogen, here termed 'spreadability'. We used house finches and the conjunctival pathogen Mycoplasma gallisepticum to test whether two components of virulence-the severity of conjunctival inflammation and behavioural morbidity produced-predict pathogen spreadability. We applied ultraviolet powder around the conjunctiva of finches that were inoculated with pathogen treatments of distinct virulence and measured within-flock powder spread, our proxy for 'spreadability'. When compared to uninfected controls, birds infected with a high-virulence, but not low-virulence, pathogen strain, spread significantly more powder to flockmates. Relative to controls, high-virulence treatment birds both had more severe conjunctival inflammation-which potentially facilitated powder shedding-and longer bouts on feeders, which serve as fomites. However, food peck rates and displacements with flockmates were lowest in high-virulence treatment birds relative to controls, suggesting inflammatory rather than behavioural mechanisms likely drive augmented spreadability at high virulence. Our results suggest that inflammation associated with virulence can facilitate pathogen spread to conspecifics, potentially favouring virulence evolution in this system and others.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
| | - Courtney A. Thomason
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
| | - Matt A. Aberle
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
| | - Richard Brown
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0131, USA
| | - James S. Adelman
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
30
|
Leung C, Khong KW, Chan KH, Lacerda MVG, Frank CHM. Difference in clinical features of SARS-CoV-2 in pediatric patients before and after emergence of P.1. Pediatr Res 2023; 93:176-182. [PMID: 35418598 PMCID: PMC9006205 DOI: 10.1038/s41390-022-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The P.1 variant is a Variant of Concern announced by the WHO. The present work aimed to characterize the clinical features of pediatric patients with SARS-CoV-2 before and after the emergence of P.1. METHODS This is a cohort study. Data of symptomatic patients younger than 18 years diagnosed with COVID-19 by PCR tests registered in Painel COVID-19 Amazonas were analyzed. RESULTS A total of 4080 symptomatic pediatric patients were identified in the database between March 2020 and July 2021, of which 1654 were categorized as pre-P.1 and 978 as P.1-dominant cases, based on the prevalence of P.1 of >90% in the North Region, Brazil. Lower case-fatality rate was observed in non-infants infected during the P.1-dominant period (0.9% vs. 2.2%). In general, patients infected during the P.1-dominant period had less fever (70.8% vs. 74.2%) and less lower respiratory tract symptoms (respiratory distress: 11.8% vs. 18.9%, dyspnea: 27.9% vs. 34.5%) yet higher prevalence of neurological symptoms, headache for example (42.8% vs. 5.9%). CONCLUSIONS The prevalence of symptoms of COVID-19 can differ across different periods of variant dominance. Lower prevalence of fever during the P.1-dominant period may reduce the effectiveness of symptom-based screening in public premises where laboratory diagnostic tests are not available. IMPACT The prevalence rate of symptoms of SARS-CoV-2 infection can differ among different variants. The present work documents the difference in the clinical features of SARS-CoV-2 in patients aged below 18 years before and after the emergence of P.1, the first study of its kind. Unlike previous studies that focus solely on hospitalized cases, the present work considers both mild and severe cases. While non-infants had a lower fatality rate, lower prevalence of fever associated with the emergence of P.1 may reduce the effectiveness of symptom-based screening in public premises where laboratory diagnostic tests are not available.
Collapse
Affiliation(s)
- Char Leung
- School of Clinical Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK. .,Deakin University, Burwood, VIC, Australia.
| | - Ka-Wah Khong
- grid.194645.b0000000121742757Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Hung Chan
- grid.194645.b0000000121742757State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Marcus Vinicius Guimarães Lacerda
- grid.418153.a0000 0004 0486 0972Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas Brazil ,grid.418068.30000 0001 0723 0931Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas Brazil
| | | |
Collapse
|
31
|
Uchiumi Y, Sato M, Sasaki A. Evolutionary double suicide in symbiotic systems. Ecol Lett 2023; 26:87-98. [PMID: 36331163 DOI: 10.1111/ele.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 08/31/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Mutualism is thought to face a threat of coextinction cascade because the loss of a member species could lead to the extinction of the other member. Despite this common emphasis on the perils of such knock-on effect, hitherto, the evolutionary causes leading to extinction have been less emphasised. Here, we examine how extinction could be triggered in mutualism and whether an evolutionary response to partner loss could prevent collateral extinctions, by theoretically examining the coevolution of the host exploitation by symbionts and host dependence on symbiosis. Our model reveals that mutualism is more vulnerable to co-extinction through adaptive evolution (evolutionary double suicide) than parasitism. Additionally, it shows that the risk of evolutionary double suicide rarely promotes the backward evolution to an autonomous (non-symbiotic) state. Our results provide a new perspective on the evolutionary fragility of mutualism and the rarity of observed evolutionary transitions from mutualism to parasitism.
Collapse
Affiliation(s)
- Yu Uchiumi
- Department of Evolutionary Studies of Biosystems, The Graduate University of Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan.,Department of Liberal Arts, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Masato Sato
- Department of Evolutionary Studies of Biosystems, The Graduate University of Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Akira Sasaki
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan.,Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| |
Collapse
|
32
|
Toohey JM, Otero L, Flores Siaca IG, Acevedo MA. Identifying individual and spatial drivers of heterogeneous transmission and virulence of malaria in Caribbean anoles. Ecosphere 2022. [DOI: 10.1002/ecs2.4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- John M. Toohey
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Luisa Otero
- Department of Biology University of Puerto Rico San Juan Puerto Rico USA
| | | | - Miguel A. Acevedo
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
- Department of Biology University of Puerto Rico San Juan Puerto Rico USA
| |
Collapse
|
33
|
Andreasen V, Dwyer G. Seasonality and the Coexistence of Pathogen Strains. Am Nat 2022; 201:639-658. [PMID: 37130239 DOI: 10.1086/723490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AbstractHost-pathogen models usually explain the coexistence of pathogen strains by invoking population structure, meaning host or pathogen variation across space or individuals; most models, however, neglect the seasonal variation typical of host-pathogen interactions in nature. To determine the extent to which seasonality can drive pathogen coexistence, we constructed a model in which seasonal host reproduction fuels annual epidemics, which are in turn followed by interepidemic periods with no transmission, a pattern seen in many host-pathogen interactions in nature. In our model, a pathogen strain with low infectiousness and high interepidemic survival can coexist with a strain with high infectiousness and low interepidemic survival: seasonality thus permits coexistence. This seemingly simple type of coexistence can be achieved through two very different pathogen strategies, but understanding these strategies requires novel mathematical analyses. Standard analyses show that coexistence can occur if the competing strains differ in terms of R0, the number of new infections per infectious life span in a completely susceptible population. A novel mathematical method of analyzing transient dynamics, however, allows us to show that coexistence can also occur if one strain has a lower R0 than its competitor but a higher initial fitness λ0, the number of new infections per unit time in a completely susceptible population. This second strategy allows coexisting pathogens to have quite similar phenotypes, whereas coexistence that depends on differences in R0 values requires that coexisting pathogens have very different phenotypes. Our novel analytic method suggests that transient dynamics are an overlooked force in host-pathogen interactions.
Collapse
|
34
|
Zinck CB, Thampy PR, Rego ROM, Brisson D, Ogden NH, Voordouw M. Borrelia burgdorferi strain and host sex influence pathogen prevalence and abundance in the tissues of a laboratory rodent host. Mol Ecol 2022; 31:5872-5888. [PMID: 36112076 DOI: 10.1111/mec.16694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/13/2023]
Abstract
Experimental infections with different pathogen strains give insight into pathogen life history traits. The purpose of the present study was to compare variation in tissue infection prevalence and spirochete abundance among strains of Borrelia burgdorferi in a rodent host (Mus musculus, C3H/HeJ). Male and female mice were experimentally infected via tick bite with one of 12 strains. Ear tissue biopsies were taken at days 29, 59 and 89 postinfection, and seven tissues were collected at necropsy. The presence and abundance of spirochetes in the mouse tissues were measured by quantitative polymerase chain reaction. To determine the frequencies of our strains in nature, their multilocus sequence types were matched to published data sets. For the infected mice, 56.6% of the tissues were infected with B. burgdorferi. The mean spirochete load in the mouse necropsy tissues varied 4.8-fold between the strains. The mean spirochete load in the ear tissue biopsies decreased rapidly over time for some strains. The percentage of infected tissues in male mice (65.4%) was significantly higher compared to female mice (50.5%). The mean spirochete load in the seven tissues was 1.5× higher in male mice compared to female mice; this male bias was 15.3× higher in the ventral skin. Across the 11 strains, the mean spirochete loads in the infected mouse tissues were positively correlated with the strain-specific frequencies in their tick vector populations. The study suggests that laboratory-based estimates of pathogen abundance in host tissues can predict the strain composition of this important tick-borne pathogen in nature.
Collapse
Affiliation(s)
- Christopher B Zinck
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Prasobh Raveendran Thampy
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryan O M Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas H Ogden
- Public Health Risk Sciences, National Microbiology Laboratory, Public Health Agency of Canada, St Hyacinthe, Quebec, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, and Centre de Recherche en Santé Publique (CReSP), Université de Montréal, Montreal, Quebec, Canada
| | - Maarten Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
35
|
Infection with a Recently Discovered Gammaherpesvirus Variant in European Badgers, Meles meles, is Associated with Higher Relative Viral Loads in Blood. Pathogens 2022; 11:pathogens11101154. [PMID: 36297210 PMCID: PMC9606972 DOI: 10.3390/pathogens11101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens infecting most animals. Although host immunity continually coevolves to combat virulence, viral variants with enhanced transmissibility or virulence occasionally emerge, resulting in disease burdens in host populations. Mustelid gammaherpesvirus 1 (MusGHV-1) is the only herpesvirus species identified thus far in European badgers, Meles meles. No MusGHV-1 associated pathomorbidity has been reported, but reactivation of MusGHV-1 in genital tracts is linked to impaired female reproductive success. An analysis of a short sequence from the highly conserved DNA polymerase (DNApol) gene previously identified two variants in a single host population. Here we compared genetic variance in blood samples from 66 known individuals of this same free-ranging badger population using a partial sequence comprising 2874 nucleotides of the DNApol gene, among which we identified 15 nucleotide differences resulting in 5 amino acid differences. Prevalence was 86% (59/66) for the common and 17% (11/66) for the novel variant, with 6% (4/66) of badgers presenting with coinfection. MusGHV-1 variants were distributed unevenly across the population, with individuals infected with the novel genotype clustered in 3 of 25 contiguous social groups. Individuals infected with the novel variant had significantly higher MusGHV-1 viral loads in their blood (p = 0.002) after adjusting for age (juveniles > adults, p < 0.001) and season (summer > spring and autumn, p = 0.005; mixed-effect linear regression), likely indicating higher virulence of the novel variant. Further genome-wide analyses of MusGHV-1 host resistance genes and host phenotypic variations are required to clarify the drivers and sequelae of this new MusGHV-1 variant.
Collapse
|
36
|
mSphere
of Influence: There’s More to (a Pathogen’s) Life than Growing Fast. mSphere 2022; 7:e0027722. [PMID: 35862792 PMCID: PMC9429926 DOI: 10.1128/msphere.00277-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nina Wale works in the field of infectious disease evolution and ecology. In this mSphere of Influence article, she reflects on how the paper by Roller and Schmidt, “The physiology and ecological implications of efficient growth” (B. R. Roller and T. M. Schmidt, ISME J 9:1481–1487, 2015,
https://doi.org/10.1038/ismej.2014.235
) broadened her thinking about how microbes acquire and allocate resources and, in so doing, set her research on pathogen virulence evolution in a new direction.
Collapse
|
37
|
Torres-Sánchez M, Villate J, McGrath-Blaser S, Longo AV. Panzootic chytrid fungus exploits diverse amphibian host environments through plastic infection strategies. Mol Ecol 2022; 31:4558-4570. [PMID: 35796691 DOI: 10.1111/mec.16601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
While some pathogens are limited to single species, others can colonize many hosts, likely contributing to the emergence of novel disease outbreaks. Despite this biodiversity threat, traits associated with host niche expansions are not well understood in multi-host pathogens. Here, we aimed to uncover functional machinery driving multi-host invasion by focusing on Batrachochytrium dendrobatidis (Bd), a pathogen that infects the skin of hundreds of amphibians worldwide. We performed a meta-analysis of Bd gene expression using data from published infection experiments and newly generated profiles. We analyzed Bd transcriptomic landscapes across the skin of 14 host species, reconstructed Bd isolates phylogenetic relationships, and inferred the origin and evolutionary history of differentially expressed genes under a phylogenetic framework comprising other 12 zoosporic fungi. Bd displayed plastic infection strategies when challenged by hosts with different disease susceptibility. Our analyses identified sets of differentially expressed genes under host environments with similar infection outcome. We stressed nutritional immunity and gene silencing as important processes required to overcome challenging skin environments in less susceptible hosts. Overall, Bd genes expressed during amphibian skin exploitation have arisen mainly via gene duplications with great family expansions, increasing the gene copy events previously described for this fungal species. Finally, we provide a comprehensive gene dataset that can be used to further examine eco-evolutionary hypotheses for this host-pathogen system. Our study supports the idea that host environments exert contrasting selective pressures, such that gene expression plasticity could be one of the evolutionary keys leading to the success of multi-host pathogens.
Collapse
Affiliation(s)
| | - Jennifer Villate
- Department of Biology, University of Florida, 32611, Gainesville, FL
| | | | - Ana V Longo
- Department of Biology, University of Florida, 32611, Gainesville, FL
| |
Collapse
|
38
|
Fofana AM, Hurford A. Parasite-induced shifts in host movement may explain the transient coexistence of high- and low-pathogenic disease strains. J Evol Biol 2022; 35:1072-1086. [PMID: 35789020 DOI: 10.1111/jeb.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
Abstract
Many parasites induce decreased host movement, known as lethargy, which can impact disease spread and the evolution of virulence. Mathematical models have investigated virulence evolution when parasites cause host death, but disease-induced decreased host movement has received relatively less attention. Here, we consider a model where, due to the within-host parasite replication rate, an infected host can become lethargic and shift from a moving to a resting state, where it can die. We find that when the lethargy and disease-induced mortality costs to the parasites are not high, then evolutionary bistability can arise, and either moderate or high virulence can evolve depending on the initial virulence and the magnitude of mutation. These results suggest, firstly, the coexistence of strains with different virulence, which may explain the transient coexistence of low- and high-pathogenic strains of avian influenza viruses, and secondly, that medical interventions to treat the symptoms of lethargy or prevent disease-induced host deaths can result in a large jump in virulence and the rapid evolution of high virulence. In complement to existing results that show bistability when hosts are heterogeneous at the population level, we show that evolutionary bistability may arise due to transmission heterogeneity at the individual host level.
Collapse
Affiliation(s)
- Abdou Moutalab Fofana
- Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Amy Hurford
- Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
39
|
Navarro R, Ambrós S, Butković A, Carrasco JL, González R, Martínez F, Wu B, Elena SF. Defects in Plant Immunity Modulate the Rates and Patterns of RNA Virus Evolution. Virus Evol 2022; 8:veac059. [PMID: 35821716 PMCID: PMC9272744 DOI: 10.1093/ve/veac059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/13/2022] Open
Abstract
It is assumed that host genetic variability for susceptibility to infection conditions virus evolution. Differences in host susceptibility can drive a virus to diversify into strains that track different defense alleles (e.g. antigenic diversity) or to infect only the most susceptible genotypes. Here, we have studied how variability in host defenses determines the evolutionary fate of a plant RNA virus. We performed evolution experiments with Turnip mosaic potyvirus in Arabidopsis thaliana mutants that had disruptions in infection-response signaling pathways or in genes whose products are essential for potyvirus infection. Plant genotypes were classified into five phenogroups according to their response to infection. We found that evolution proceeded faster in more restrictive hosts than in more permissive ones. Most of the phenotypic differences shown by the ancestral virus across host genotypes were removed after evolution, suggesting the combined action of selection and chance. When all evolved viral lineages were tested in all plant genotypes used in the experiments, we found compelling evidences that the most restrictive plant genotypes selected for more generalist viruses, while more permissive genotypes selected for more specialist viruses. Sequencing the genomes of the evolved viral lineages, we found that selection targeted the multifunctional genome-linked protein VPg in most host genotypes. Overall, this work illustrates how different host defenses modulate the rates and extent of virus evolution.
Collapse
Affiliation(s)
- Rebeca Navarro
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - José L Carrasco
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Fernando Martínez
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Beilei Wu
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València) , Paterna, 46182 València, Spain
- The Santa Fe Institute , Santa Fe NM87501, USA
| |
Collapse
|
40
|
Affiliation(s)
- Veronika Bernhauerová
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
41
|
McLeod DV, Gandon S. Effects of epistasis and recombination between vaccine-escape and virulence alleles on the dynamics of pathogen adaptation. Nat Ecol Evol 2022; 6:786-793. [PMID: 35437006 DOI: 10.1038/s41559-022-01709-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
Pathogen adaptation to public health interventions such as vaccination may take tortuous routes and involve multiple mutations at different locations in the pathogen genome, acting on distinct phenotypic traits. Yet how these multi-locus adaptations jointly evolve is poorly understood. Here we consider the joint evolution of two adaptations: pathogen escape from the vaccine-induced immune response and adjustments to pathogen virulence affecting transmission or clearance. We elucidate the role played by epistasis and recombination, with an emphasis on the different protective effects of vaccination. We show that vaccines blocking infection, reducing transmission and/or increasing clearance generate positive epistasis between the vaccine-escape and virulence alleles, favouring strains that carry both mutations, whereas vaccines reducing virulence mortality generate negative epistasis, favouring strains that carry either mutation but not both. High rates of recombination can affect these predictions. If epistasis is positive, frequent recombination can prevent the transient build-up of more virulent escape strains. If epistasis is negative, frequent recombination between loci can create an evolutionary bistability, favouring whichever adaptation is more accessible. Our work provides a timely alternative to the variant-centred perspective on pathogen adaptation and captures the effect of different types of vaccine on the interference between multiple adaptive mutations.
Collapse
Affiliation(s)
- David V McLeod
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France. .,Institute of Ecology and Evolution, Universität Bern, Bern, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| |
Collapse
|
42
|
Walsman JC, Janecka MJ, Clark DR, Kramp RD, Rovenolt F, Patrick R, Mohammed RS, Konczal M, Cressler CE, Stephenson JF. Shoaling guppies evade predation but have deadlier parasites. Nat Ecol Evol 2022; 6:945-954. [PMID: 35618818 DOI: 10.1038/s41559-022-01772-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost-benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence-transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.
Collapse
Affiliation(s)
- Jason C Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mary J Janecka
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David R Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachael D Kramp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faith Rovenolt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Regina Patrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan S Mohammed
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.,Biology Department, Thompson Biology Lab, Williams College, Williamstown, MA, USA
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Sallinen S, Susi H, Halliday F, Laine AL. Altered within- and between-host transmission under coinfection underpin parasite co-occurrence patterns in the wild. Evol Ecol 2022; 37:131-151. [PMID: 36785621 PMCID: PMC9911512 DOI: 10.1007/s10682-022-10182-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Interactions among parasite species coinfecting the same host individual can have far reaching consequences for parasite ecology and evolution. How these within-host interactions affect epidemics may depend on two non-exclusive mechanisms: parasite growth and reproduction within hosts, and parasite transmission between hosts. Yet, how these two mechanisms operate under coinfection, and how sensitive they are to the composition of the coinfecting parasite community, remains poorly understood. Here, we test the hypothesis that the relationship between within- and between-host transmission of the fungal pathogen, Phomopsis subordinaria, is affected by co-occurring parasites infecting the host plant, Plantago lanceolata. We conducted a field experiment manipulating the parasite community of transmission source plants, then tracked P. subordinaria within-host transmission, as well as between-host transmission to naïve recipient plants. We find that coinfection with the powdery mildew pathogen, Podosphaera plantaginis, causes increased between-host transmission of P. subordinaria by affecting the number of infected flower stalks in the source plants, resulting from altered auto-infection. In contrast, coinfection with viruses did not have an effect on either within- or between-host transmission. We then analyzed data on the occurrence of P. subordinaria in 2018 and the powdery mildew in a multi-year survey data set from natural host populations to test whether the positive association predicted by our experimental results is evident in field epidemiological data. Consistent with our experimental findings, we observed a positive association in the occurrence of P. subordinaria and historical powdery mildew persistence. Jointly, our experimental and epidemiological results suggest that within- and between-host transmission of P. subordinaria depends on the identity of coinfecting parasites, with potentially far-reaching effects on disease dynamics and parasite co-occurrence patterns in wild populations. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10182-9.
Collapse
Affiliation(s)
- Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Fletcher Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| |
Collapse
|
44
|
Gutierrez SO, Minchella DJ, Bernal XE. Survival of the sickest: selective predation differentially modulates ecological and evolutionary disease dynamics. OIKOS 2022. [DOI: 10.1111/oik.09126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Ximena E. Bernal
- Dept of Biology, Purdue Univ. West Lafayette IN USA
- Smithsonian Tropical Research Inst. Panama Republic of Panama
| |
Collapse
|
45
|
Ke L, Yan WY, Zhang LZ, Zeng ZJ, Evans JD, Huang Q. Honey Bee Habitat Sharing Enhances Gene Flow of the Parasite Nosema ceranae. MICROBIAL ECOLOGY 2022; 83:1105-1111. [PMID: 34342699 DOI: 10.1007/s00248-021-01827-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Host-parasite co-evolution is a process of reciprocal, adaptive genetic change. In natural conditions, parasites can shift to other host species, given both host and parasite genotypes allow this. Even though host-parasite co-evolution has been extensively studied both theoretically and empirically, few studies have focused on parasite gene flow between native and novel hosts. Nosema ceranae is a native parasite of the Asian honey bee Apis cerana, which infects epithelial cells of mid-guts. This parasite successfully switched to the European honey bee Apis mellifera, where high virulence has been reported. In this study, we used the parasite N. ceranae and both honey bee species as model organisms to study the impacts of two-host habitat sharing on parasite diversity and virulence. SNVs (Single Nucleotide Variants) were identified from parasites isolated from native and novel hosts from sympatric populations, as well as novel hosts from a parapatric population. Parasites isolated from native hosts showed the highest levels of polymorphism. By comparing the parasites isolated from novel hosts between sympatric and parapatric populations, habitat sharing with the native host significantly enhanced parasite diversity, suggesting there is continuing gene flow of parasites between the two host species in sympatric populations.
Collapse
Affiliation(s)
- Li Ke
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China
| | - Wei Yu Yan
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China
| | - Li Zhen Zhang
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China
| | - Zhi Jiang Zeng
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, BARC-East Building 306, Beltsville, MD, 20705, USA
| | - Qiang Huang
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China.
| |
Collapse
|
46
|
Armitage SA, Genersch E, McMahon DP, Rafaluk-Mohr C, Rolff J. Tripartite interactions: how immunity, microbiota and pathogens interact and affect pathogen virulence evolution. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100871. [PMID: 34999035 DOI: 10.1016/j.cois.2021.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The bipartite interactions between insect hosts and their bacterial gut microbiota, or their bacterial pathogens, are empirically and theoretically well-explored. However, direct, and indirect tripartite interactions will also likely occur inside a host. These interactions will almost certainly affect the trajectory of pathogen virulence evolution, an area that is currently under researched. The interactions within tripartite associations can be competitive, that is, exploitative-competition, interference-competition or apparent-competition. Competitive interactions will be significantly influenced by non-competitive effects, for example, immunopathology, immunosuppression, and microbiota-mediated tolerance. Considering a combination of these interactions and effects, will enable an increased understanding of the evolution of pathogen virulence. This new perspective allows us to identify several novel research questions, which we hope will be a useful framework for future research.
Collapse
Affiliation(s)
- Sophie Ao Armitage
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany.
| | - Elke Genersch
- Institute for Bee Research, Friedrich-Engels-Straße 32, 16540 Hohen Neuendorf, Germany; Institute of Microbiology and Epizootics, Faculty of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany; Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
| | - Charlotte Rafaluk-Mohr
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
| | - Jens Rolff
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
47
|
Susi H, Sallinen S, Laine A. Coinfection with a virus constrains within-host infection load but increases transmission potential of a highly virulent fungal plant pathogen. Ecol Evol 2022; 12:e8673. [PMID: 35342557 PMCID: PMC8928890 DOI: 10.1002/ece3.8673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
The trade-off between within-host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life-history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross-kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within-host infection rate and transmission potential. The strains differed in the measured life-history traits and their correlations. Moreover, we found that under virus coinfection, within-host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within-host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within-host and between-host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between-hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within-host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade-off between within-host infection load and transmission may be strain specific, and that the pathogen life-history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Suvi Sallinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
48
|
The non-pharmaceutical interventions may affect the advantage in transmission of mutated variants during epidemics: A conceptual model for COVID-19. J Theor Biol 2022; 542:111105. [PMID: 35331730 PMCID: PMC8934756 DOI: 10.1016/j.jtbi.2022.111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
As the COVID-19 pandemic continues, genetic mutations in SARS-CoV-2 emerge, and some of them are found more contagious than the previously identified strains, acting as the major mechanism for many large-scale epidemics. The transmission advantage of mutated variants is widely believed as an innate biological feature that is difficult to be altered by artificial factors. In this study, we explore how non-pharmaceutical interventions (NPI) may affect transmission advantage. A two-strain compartmental epidemic model is proposed and simulated to investigate the biological mechanism of the relationships among different NPIs, the changes in transmissibility of each strain and transmission advantage. Although the NPIs are effective in flattening the epidemic curve, we demonstrate that NPIs probably lead to a decline in transmission advantage, which is likely to occur if the NPIs become intensive. Our findings uncover the mechanistic relationship between NPIs and transmission advantage dynamically, and highlight the important role of NPIs not only in controlling the intensity of epidemics but also in slowing or even containing the growth of the proportion of variants.
Collapse
|
49
|
Cruz V, Cruz-Pantoja O, Tremblay R, Acevedo M. Animal trait variation at the within-individual level: erythrocyte size variation and malaria infection in a tropical lizard. PeerJ 2022; 10:e12761. [PMID: 35228904 PMCID: PMC8881909 DOI: 10.7717/peerj.12761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
High levels of within-individual variation (WIV) in reiterative components in plants such as leaves, flowers, and fruits have been shown to increase individual fitness by multiple mechanisms including mediating interactions with natural enemies. This relationship between WIV and fitness has been studied almost exclusively in plant systems. While animals do not exhibit conspicuous reiterative components, they have traits that can vary at the individual level such as erythrocyte size. It is currently unknown if WIV in animals can influence individual fitness by mediating the outcome of interactions with natural enemies as it has been shown in plants. To address this issue, we tested for a relationship between WIV in erythrocyte size, hemoparasite infection status, and body condition (a proxy for fitness) in a Caribbean anole lizard. We quantified the coefficient of variation of adult erythrocytes size in $n = 95$ infected and $n = 107$ non-infected lizards. We found higher degrees of erythrocyte size variation in infected lizards than in non-infected individuals. However, we found no significant relationship between infection status or erythrocyte size variation, and lizard body condition. These results suggest that higher WIV in erythrocyte size in infected lizards is not necessarily adaptive but likely a consequence of the host response to infection. Many hemoparasites destroy their host cells as part of their life cycle. To compensate, the host lizard may respond by increasing production of erythrocytes resulting in higher WIV. Our results emphasize the need to better understand the role of within-animal variation as a neglected driver or consequence of ecological and evolutionary interactions.
Collapse
Affiliation(s)
- Virnaliz Cruz
- School of Natural Resources & Environment, University of Florida, Gainesville, FL, United States of America,Department of Environmental Science, Universidad de Puerto Rico, Rio Pidras, Puerto Rico, United States of America
| | - Omar Cruz-Pantoja
- Department of Computer Science, Universidad de Puerto Rico, Recinto de Rio Pidras, San Juan, Puerto Rico, United States of America
| | - Raymond Tremblay
- Department of Biology, Universidad de Puerto Rico, Humacao, Puerto Rico, United States of America
| | - Miguel Acevedo
- School of Natural Resources & Environment, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
50
|
Loo SL, Tanaka MM. The role of a programmatic immune response on the evolution of pathogen traits. J Theor Biol 2022; 534:110962. [PMID: 34822803 DOI: 10.1016/j.jtbi.2021.110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022]
Abstract
In modelling pathogen evolution during epidemics, it is important to understand the interactions between within-host infection dynamics and between-host pathogen transmission. Multiscale models often assume an immune response that is highly responsive to pathogen dynamics. Empirical evidence, however, suggests that the immune response in acute infections is triggered and programmatic. This leads to somewhat more predictable infection trajectories where transition times and, consequently, the infectious window are non-exponentially distributed. Here, we develop a within-host model where the immune response is triggered by pathogen growth but otherwise develops independently, and use this to obtain analytic expressions for the infectious period and peak pathogen load. This allows us to model the basic reproductive number in terms of explicit functional relationships among within-host traits including the growth rate of the pathogen. We find that the dependence of pathogen load and the infectious window on within-host parameters constrains the evolution of the pathogen growth rate. At low growth rate, selection favours a higher pathogen load and therefore increasing pathogen growth rate. At high growth rates, selection for a longer infectious window trades off against selection against the effects of virulence. At intermediate growth rates the basic reproductive number is relatively insensitive to changes in the growth rate. The resulting "flat" region of the pathogen fitness landscape is due to the stability of the programmatic immune response in clearing the infection.
Collapse
Affiliation(s)
- Sara L Loo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|