1
|
De Henau M, Schins S, Colla C, van den Kerckhove E, van der Hulst R, Tuinder S. Are symptoms in pathologic scars related to nerve function or density? A scoping review. Burns 2024; 51:107280. [PMID: 39522137 DOI: 10.1016/j.burns.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Hypertrophic scars and keloids are forms of pathologic scarring that can give rise to pain and pruritus. The link between nerve function and nerve density and the symptoms in pathologic scars (PS) remains unclear. OBJECTIVE We aim to assess current knowledge on nerve function and nerve density in PS, and to explore a possible association between alterations in sensibility/nerve density and pathologic scar symptoms. METHODS A scoping review was conducted. After performing a systematic search using PubMed, Embase and Web-of-Science, relevant papers were selected and analyzed by 2 reviewers. Data was charted in tables in combination with a narrative summary of main findings. RESULTS Nineteen studies were included. Overall, functional sensibility in PS seems disturbed, with a higher frequency of allodynia and altered thermosensory thresholds, suggesting involvement of small fiber neuropathy. Nerve fiber density varied with the investigated skin layer and the used staining techniques, which implied limitations to compare findings from different studies. However, evidence suggests involvement of neuropeptides in the pathologic scar formation and symptomatology. CONCLUSIONS Wide heterogeneity between studies exists. Therefore, no firm conclusions can be formulated. However, evidence suggests involvement of the cutaneous nervous system by neurogenic inflammation in the pathophysiology of pathologic scars and their symptoms.
Collapse
Affiliation(s)
- M De Henau
- Department of Plastic and Reconstructive Surgery, Maastricht University Medical Center, Maastricht, P Debyelaan 25, 6229 HX Maastricht, The Netherlands; GROW school for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| | - S Schins
- Scannexus, Oxfordlaan 55, 6229 EV Maastricht, the Netherlands
| | - C Colla
- Department of Plastic and Reconstructive Surgery, Maastricht University Medical Center, Maastricht, P Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - E van den Kerckhove
- Department of Plastic and Reconstructive Surgery, Maastricht University Medical Center, Maastricht, P Debyelaan 25, 6229 HX Maastricht, The Netherlands; Department of Rehabilitation Sciences, FaBeR, KU Leuven, Gymnasium, 3001 Leuven, Belgium; Department of Physical Medicine and Rehabilitation and Burns Center, Universitaire Ziekenhuizen Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - R van der Hulst
- Department of Plastic and Reconstructive Surgery, Maastricht University Medical Center, Maastricht, P Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - S Tuinder
- Department of Plastic and Reconstructive Surgery, Maastricht University Medical Center, Maastricht, P Debyelaan 25, 6229 HX Maastricht, The Netherlands; GROW school for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
2
|
Moradikhah F, Farahani M, Shafiee A. Towards the development of sensation-enabled skin substitutes. Biomater Sci 2024; 12:4024-4044. [PMID: 38990154 DOI: 10.1039/d4bm00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Recent advances in cell and biofabrication technologies have contributed to the development of complex human organs. In particular, several skin substitutes are being generated using tissue engineering and regenerative medicine (TERM) technologies. However, recent studies mainly focus on the restoration of the dermis and epidermis layers rather than the regeneration of a fully functional innervated skin organ. Innervation is a critical step in functional tissue repair which has been overlooked in the current TERM studies. In the current study, we highlight the importance of sensation in the skin as the largest sensory organ in the human body. In large non-healing skin wounds, the skin sensation is severely diminished or completely lost and ultimately lead to chronic pain and wound healing process interruption. Current therapeutics for restoring skin sensation after trauma are limited. Recent regenerative medicine-based studies could successfully induce neural networks in skin substitutes, but the effectiveness of these technologies in enhancing sensory capability needs further investigation.
Collapse
Affiliation(s)
- Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
3
|
Zheng J, Park K, Jang J, Son D, Park J, Kim J, Yoo JE, You S, Kim IY. Utilizing stem cell-secreted molecules as a versatile toolbox for skin regenerative medicine. J Control Release 2024; 370:583-599. [PMID: 38729435 DOI: 10.1016/j.jconrel.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stem cells are recognized as an important target and tool in regenerative engineering. In this study, we explored the feasibility of engineering amniotic fluid-derived mesenchymal stem cell-secreted molecules (afMSC-SMs) as a versatile bioactive material for skin regenerative medicine applications in a time- and cost-efficient and straightforward manner. afMSC-SMs, obtained in powder form through ethanol precipitation, effectively contributed to preserving the self-renewal capacity and differentiation potential of primary human keratinocytes (pKCs) in a xeno-free environment, offering a potential alternative to traditional culture methods for their long-term in vitro expansion, and allowed them to reconstitute a fully stratified epithelium sheet on human dermal fibroblasts. Furthermore, we demonstrated the flexibility of afMSC-SMs in wound healing and hair regrowth through injectable hydrogel and nanogel-mediated transdermal delivery systems, respectively, expanding the pool of regenerative applications. This cell-free approach may offer several potential advantages, including streamlined manufacturing processes, scalability, controlled formulation, longer shelf lives, and mitigation of risks associated with living cell transplantation. Accordingly, afMSC-SMs could serve as a promising therapeutic toolbox for advancing cell-free regenerative medicine, simplifying their broad applicability in various clinical settings.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jihoon Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Daryeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junghyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jonggun Kim
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Jeong-Eun Yoo
- Institute of Regenerative Medicine, SL, Therapeutics Inc., Seoul 02841, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
4
|
Chen Z, Ezzo M, Zondag B, Rakhshani F, Ma Y, Hinz B, Kumacheva E. Intrafibrillar Crosslinking Enables Decoupling of Mechanical Properties and Structure of a Composite Fibrous Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305964. [PMID: 37671420 DOI: 10.1002/adma.202305964] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/03/2023] [Indexed: 09/07/2023]
Abstract
The fibrous network of an extracellular matrix (ECM) possesses mechanical properties that convey critical biological functions in cell mechanotransduction. Engineered fibrous hydrogels show promise in emulating key aspects of ECM structure and functions. However, varying hydrogel mechanics without changing its architecture remains a challenge. A composite fibrous hydrogel is developed to vary gel stiffness without affecting its structure by controlling intrafibrillar crosslinking. The hydrogel is formed from aldehyde-modified cellulose nanocrystals and gelatin methacryloyl that provide the capability of intrafibrillar photocrosslinking. By varying the degree of gelatin functionalization with methacryloyl groups and/or photoirradiation time, the hydrogel's elastic modulus is changed by more than an order of magnitude, while preserving the same fiber diameter and pore size. The hydrogel is used to seed primary mouse lung fibroblasts and test the role of ECM stiffness on fibroblast contraction and activation. Increasing hydrogel stiffness by stronger intrafibrillar crosslinking results in enhanced fibroblast activation and increased fibroblast contraction force, yet at a reduced contraction speed. The developed approach enables the fabrication of biomimetic hydrogels with decoupled structural and mechanical properties, facilitating studies of ECM mechanics on tissue development and disease progression.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Benjamen Zondag
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Faeze Rakhshani
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Yingshan Ma
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| |
Collapse
|
5
|
Zhou Z, Li S, Gong X. Polydopamine Nanoparticles-Based Photothermal Effect Against Adhesion Formation in a Rat Model of Achilles Tendon Laceration Repair. Int J Nanomedicine 2023; 18:1765-1776. [PMID: 37038441 PMCID: PMC10082603 DOI: 10.2147/ijn.s393454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Background Adhesion formation after tendon surgery is a major obstacle to repair of tendon ruptures, and there is still no effective clinical anti-adhesion method. Myofibroblasts expressing α-smooth muscle actin (α-SMA) play a crucial role in adhered fibrous tissue. Heat shock protein (Hsp) 72 can selectively prevent the activation of c-Jun N-terminal kinase (JNK), which mediates the conversion from fibroblasts to myofibroblasts. The purpose of this study was to investigate for the first time whether polydopamine nanoparticles (PDA NPs)-based photothermal effect would attenuate adhesion formation in a rat model of Achilles tendon laceration repair. Materials and Methods Forty-five adult male Sprague-Dawley rats were randomly assigned to the photothermal group, the control group and the PDA NPs group (n = 15 per group). The primary outcome measure was the adhesion scores at two weeks after surgery according to the grading of Tang et al. The secondary outcomes included the expressions of Hsp 72, JNK, phosphorylated JNK and α-SMA, which were measured by immunohistochemistry or Western blot. Results The average adhesion score was significantly lower in the photothermal group (4.25 ± 0.21) than that in the control group (5.29 ± 0.12) (p = 0.005) and the PDA NPs group (5.29 ± 0.20) (p = 0.005). Relative to the control group and PDA NPs group, Hsp 72 in the photothermal group was significantly increased whereas α-SMA and p-JNK was significantly decreased, but JNK was not found to be different across the three groups. Conclusion The photothermal effect produced by PDA NPs could reduce tendon adhesion formation in rats by inhibiting myocyte fibrosis, which may have potential in developing endogenous heating for postsurgical tissue adhesions.
Collapse
Affiliation(s)
- Zekun Zhou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Shaoyan Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Correspondence: Xu Gong, Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China, Tel +86 13944099151, Email
| |
Collapse
|
6
|
Li S, Gong F, Zhou Z, Gong X. Combined Verapamil-Polydopamine Nanoformulation Inhibits Adhesion Formation in Achilles Tendon Injury Using Rat Model. Int J Nanomedicine 2023; 18:115-126. [PMID: 36636643 PMCID: PMC9831089 DOI: 10.2147/ijn.s377600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Topical verapamil has been demonstrated to reduce the fibroproliferative scar. Therefore, it was hypothesized that topical verapamil could reduce adhesion formation after tendon repair. The current study aimed to examine the effects of verapamil-loaded polydopamine nanoparticles (VP-PDA NPs) on the adhesion formation of Achilles tendon laceration and repair in a rat model. Methods We randomly assigned 72 male Sprague-Dawley rats to the control, the PDA NPs, and the VP-PDA NPs groups (n = 24 per group). The quality of tendon healing was evaluated by the maximal tensile strength four and six weeks after surgery. The degree of tendon adhesion was scored on days 4, 15, 29, and 43 after surgery. The expressions of transforming growth factor-beta 1 (TGF-β1), vimentin, α-smooth muscle actin (α-SMA), and collagens type I and III were detected through Western blotting or immunohistochemistry at four weeks after surgery. Results In vitro release tests revealed that 61.3% of verapamil was released from VP-PDA NPs in four weeks. There was a significant increase in average failure to load in the VP-PDA NPs group (89.27 ± 5.09 N) compared with the PDA NPs group (65.52 ± 2.04 N) (p = 0.003) and the control group (74.52 ± 4.24 N) (p = 0.029). Adhesion scores were significantly reduced in the VP-PDA NPs group at six weeks (3.175 ± 0.08) and four weeks (3.35 ± 0.25) compared with the other groups. Moreover, VP-PDA NPs significantly reduced the expression of vimentin, α-SMA, TGF-β1, and collagens type I and III. Conclusion These data suggest that VP-PDA NPs reduced adhesion formation and enhanced tendon healing during rat tendon injury. Since topical verapamil has been used in clinics without side effects, VP-PDA NPs would have direct translation implications. However, its anti-adhesive effects on intrasynovial tendon injury must be examined.
Collapse
Affiliation(s)
- Shaoyan Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Fengyan Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Zekun Zhou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Correspondence: Xu Gong, Department of Hand and Podiatric Surgery, Orthopedics center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China, Tel +86-13944099151, Email
| |
Collapse
|
7
|
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol 2023; 15:a041231. [PMID: 36123034 PMCID: PMC9808581 DOI: 10.1101/cshperspect.a041231] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.
Collapse
Affiliation(s)
- Ronen Schuster
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
8
|
4-Aminopyridine Induces Nerve Growth Factor to Improve Skin Wound Healing and Tissue Regeneration. Biomedicines 2022; 10:biomedicines10071649. [PMID: 35884953 PMCID: PMC9313269 DOI: 10.3390/biomedicines10071649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
The discovery of ways to enhance skin wound healing is of great importance due to the frequency of skin lesions. We discovered that 4-aminopyridine (4-AP), a potassium channel blocker approved by the FDA for improving walking ability in multiple sclerosis, greatly enhances skin wound healing. Benefits included faster wound closure, restoration of normal-appearing skin architecture, and reinnervation. Hair follicle neogenesis within the healed wounds was increased, both histologically and by analysis of K15 and K17 expression. 4-AP increased levels of vimentin (fibroblasts) and alpha-smooth muscle actin (α-SMA, collagen-producing myofibroblasts) in the healed dermis. 4-AP also increased neuronal regeneration with increased numbers of axons and S100+ Schwann cells (SCs), and increased expression of SRY-Box Transcription Factor 10 (SOX10). Treatment also increased levels of transforming growth factor-β (TGF-β), substance P, and nerve growth factor (NGF), important promoters of wound healing. In vitro studies demonstrated that 4-AP induced nerve growth factor and enhanced proliferation and migration of human keratinocytes. Thus, 4-AP enhanced many of the key attributes of successful wound healing and offers a promising new approach to enhance skin wound healing and tissue regeneration.
Collapse
|
9
|
Lebonvallet N, Fluhr JW, Le Gall-Ianotto C, Leschiera R, Talagas M, Reux A, Bataille A, Brun C, Oddos T, Pennec JP, Carré JL, Misery L. A re-innervated in vitro skin model of non-histaminergic itch and skin neurogenic inflammation: PAR2-, TRPV1- and TRPA1-agonist induced functionality. SKIN HEALTH AND DISEASE 2021; 1:e66. [PMID: 35663777 PMCID: PMC9060135 DOI: 10.1002/ski2.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
Background Skin, and epidermis, is innervated by sensory nerve fibres. Interactions between them and signal transduction are only partially elucidated in physiological/pathological conditions, especially in pruritus. Objectives To study the mechanisms involved in pruritus in vitro, we developed a skin explant model re‐innervated by sensory neurons. Methods This model is based on the co‐culture of human skin explants and sensory neurons from dorsal root ganglia of rats. Innervation and the expression of protease activated receptor 2 (PAR2), transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin one (TRPA1) was analysed by immunostaining. The response of the model to TRPV1, PAR2 and TRPA1 agonists was analysed by patch‐clamp, qPCR and enzyme‐linked immunosorbent assay. Results After 5 days of re‐innervating nerve fibres was evidenced in the epidermis. Re‐innervation was correlated with decrease of epidermal thickness and the number of apoptotic cells in the tissue. The major actors of non‐histaminergic itch (PAR‐2, thymic stromal lymphopoietin [TSLP], TSLP‐R, TRPA1 and TRPV1) were expressed in neurons and/or epidermal cells of skin explants. After topical exposure of TRPV1‐(Capsaicin), TRPA1‐(Polygodial) and PAR2‐agonist (SLIGKV‐NH2) activation of reinnervating neurons could be shown in patch‐clamp analysis. The release of TSLP was increased with capsaicin or SLIGKV but decreased with polygodial. Release of CGRP was increased by capsaicin and polygodial but decreased with SLIGKV. Activation by SLIGKV showed a decrease of VEGF; polygodial induced an increase of TSLP, Tumour necrosis factor (TNF) and nerve growth factor and capsaicin lead to a decrease of sema3 and TNF expression. Conclusion The present model is suitable for studying itch and neurogenic inflammation pathways in vitro. We observed that activation of TRPV1, TRPA1 and PAR‐2 leads to different response profiles in re‐innervated skin explants.
Collapse
Affiliation(s)
- N Lebonvallet
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - J W Fluhr
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France.,Department of Dermatology Charité Universitätsmedizin Berlin Germany
| | - C Le Gall-Ianotto
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - R Leschiera
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - M Talagas
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - A Reux
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - A Bataille
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - C Brun
- Johnson & Johnson Santé Beauté France Val de Reuil France
| | - T Oddos
- Johnson & Johnson Santé Beauté France Val de Reuil France
| | - J-P Pennec
- Optimisation des Régulations PHYsiologiques Université de Bretagne Occidentale Brest France
| | - J-L Carré
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| | - L Misery
- Laboratoire Interactions Epithéliums Neurones Université de Bretagne Occidentale Brest France
| |
Collapse
|
10
|
Lucas K, Todd P, Ness BM. A Multi-Systems Approach to Human Movement after ACL Reconstruction: The Integumentary System. Int J Sports Phys Ther 2021; 17:74-80. [PMID: 35024207 PMCID: PMC8720252 DOI: 10.26603/001c.29454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Postoperative management of anterior cruciate ligament (ACL) reconstruction has traditionally focused on the evaluation and intervention of musculoskeletal components such as range of motion and patients' reports of function. The integumentary system can provide early indications that rehabilitation may be prolonged due to protracted or poor healing of the incision sites. Full evaluation of the reconstruction over time, including direction of the incisions, appearance of surgical sites, level of residual innervation, and health of the individual should be considered when determining time-based goals and plans for returning an athlete to activity. Skin care techniques should be used to minimize strain and promote wound healing at the surgical sites, which in turn allows for implementation of other interventions that target other body systems such as locomotion, strength training, and cardiopulmonary conditioning. The integration of the integumentary system with cardiovascular, neurological, and muscular systems is required for a successful return to activity. A multi-physiologic systems approach may provide a unique viewpoint when aiming to attain a greater appreciation of the integumentary system and its integration with other body systems following ACL reconstruction. The purpose of this clinical commentary is to discuss integumentary considerations within a multi-physiologic systems approach to human movement after ACL reconstruction, including an anatomical review, key elements of assessment, and integrated intervention strategies. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- Kathryn Lucas
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville; Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville
| | - Patricia Todd
- Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Pediatric Dermatology
| | - Brandon M Ness
- Doctor of Physical Therapy Program, Tufts University School of Medicine
| |
Collapse
|
11
|
Ge S, Khachemoune A. The Importance of Cutaneous Innervation in Wound Healing: From Animal Studies to Clinical Applications. INT J LOW EXTR WOUND 2021:15347346211045022. [PMID: 34533075 DOI: 10.1177/15347346211045022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The skin is a neuroimmunoendocrine organ that regularly undergoes injury and repair. The complex process of wound healing relies heavily on the cutaneous nervous system. Despite the observation that wound healing deficiencies cause significant morbidity and mortality for patients with nervous dysfunction across many disciplinaries, the role of cutaneous innervation in wound repair has not been well elucidated. In a previous article, we learned the basics of cutaneous neuroanatomy and the important neuropeptides involved in the wound healing process. Currently, we aim to synthesize the basics with observations from animal models and human studies for a more comprehensive understanding of nervous system involvement in cutaneous wound healing. We have demonstrated in this review, the importance of the cutaneous nervous system in each phase of wound healing through basic science research, animal experiments, and human studies.
Collapse
Affiliation(s)
| | - Amor Khachemoune
- Veterans Affairs Medical Center, Brooklyn, NY, USA.,SUNY Downstate, Brooklyn, NY, USA
| |
Collapse
|
12
|
Abstract
Scar is a common way of healing after tissue injury. The poor scar healing will not only cause dysfunction of tissues and organs but also affect the appearance of the patients’ body surface, which causes the pressure of life and spirit to the patients. However, the formation of scar tissue is an extremely complex process and its mechanism is not fully understood. At present, there is no treatment method to eliminate scars completely. Fibroblasts are the most abundant cells in the dermis, which have the ability to synthesize and remodel extracellular matrix (ECM). Myofibroblasts actively participate in the wound healing process and influence the outcome. Therefore, both of them play important roles in wound healing and scar formation. Adipose tissue-derived stem cells (ADSCs) are pluripotent stem cells that can act on target cells by paracrine. Adipose tissue stem cell-derived exosomes (ADSC-Exos) are important secretory substances of ADSCs. They are nanomembrane vesicles that can transport a variety of cellular components and fuse with target cells. In this review, we will discuss the effects of ADSCs and ADSC-Exos on the behavior of fibroblasts and myofibroblasts during wound healing and scarring stage in combination with recent studies.
Collapse
|
13
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
14
|
Wang M, Huang X, Zheng H, Tang Y, Zeng K, Shao L, Li L. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. J Control Release 2021; 337:236-247. [PMID: 34273419 DOI: 10.1016/j.jconrel.2021.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Internal and external factors cause various types of wounds on the skin. Infections, nonhealing chronic wounds, and aesthetic and functional recovery all cause challenges for clinicians. The development of nanotechnology in biomedicine has brought many new materials, methods and therapeutic targets for the treatment of wounds, which are believed to have great prospects. In this work, the nanomaterials applied in different stages to promote wound healing and systematically expounded their mechanisms were reviewed. Then, the difficulties and defects of the present research and suggested methods for improvement were pointed out. Moreover, based on the current application status of nanomaterials in wound treatment, some new ideas for subsequent studies were proposed and the feasibility of intelligent healing by real-time monitoring, precision regulation, and signal transmission between electronic signals and human nerve signals in the future were discussed. This review will provide valuable directions and spark new thoughts for researchers.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Huanxin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingmei Tang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
15
|
Laloze J, Fiévet L, Desmoulière A. Adipose-Derived Mesenchymal Stromal Cells in Regenerative Medicine: State of Play, Current Clinical Trials, and Future Prospects. Adv Wound Care (New Rochelle) 2021; 10:24-48. [PMID: 32470315 PMCID: PMC7698876 DOI: 10.1089/wound.2020.1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Significance: Wound healing is a complex process involving pain and inflammation, where innervation plays a central role. Managing wound healing and pain remains an important issue, especially in pathologies such as excessive scarring (often leading to fibrosis) or deficient healing, leading to chronic wounds. Recent Advances: Advances in therapies using mesenchymal stromal cells offer new insights for treating indications that previously lacked options. Adipose-derived mesenchymal stromal cells (AD-MSCs) are now being used to a much greater extent in clinical trials for regenerative medicine. However, to be really valid, these randomized trials must imperatively follow strict guidelines such as consolidated standards of reporting trials (CONSORT) statement. Indeed, AD-MSCs, because of their paracrine activities and multipotency, have potential to cure degenerative and/or inflammatory diseases. Combined with their relatively easy access (from adipose tissue) and proliferation capacity, AD-MSCs represent an excellent candidate for allogeneic treatments. Critical Issues: The success of AD-MSC therapy may depend on the robustness of the biological functions of AD-MSCs, which requires controlling source heterogeneity and production processes, and development of biomarkers that predict desired responses. Several studies have investigated the effect of AD-MSCs on innervation, wound repair, or pain management separately, but systematic evaluation of how those effects could be combined is lacking. Future Directions: Future studies that explore how AD-MSC therapy can be used to treat difficult-to-heal wounds, underlining the need to thoroughly characterize the cells used, and standardization of preparation processes are needed. Finally, how this a priori easy-to-use cell therapy treatment fits into clinical management of pain, improvement of tissue healing, and patient quality of life, all need to be explored.
Collapse
Affiliation(s)
- Jérôme Laloze
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
- Department of Maxillo-Facial and Reconstructive Surgery and Stomatology, University Hospital Dupuytren, Limoges, France
| | - Loïc Fiévet
- STROMALab, Etablissement Français du Sang (EFS)-Occitanie, INSERM 1031, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, University of Toulouse, Toulouse, France
| | - Alexis Desmoulière
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
| |
Collapse
|
16
|
Contreras KM, Caillaud M, Neddenriep B, Bagdas D, Roberts JL, Ulker E, White AB, Aboulhosn R, Toma W, Khalefa T, Adel A, Mann JA, Damaj MI. Deficit in voluntary wheel running in chronic inflammatory and neuropathic pain models in mice: Impact of sex and genotype. Behav Brain Res 2020; 399:113009. [PMID: 33181181 DOI: 10.1016/j.bbr.2020.113009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Patients with chronic pain report decreased general activity and emotional distress. Therefore, the development of various animal models that encompass different aspects of pain are crucial for the discovery of genetic differences and the assessment of novel analgesics to improve quality of life. C57BL/6J and DBA/2J mice received unilateral intraplantar injections of 100 % CFA, paclitaxel, or CCI surgery to compare their distance traveled in a voluntary wheel running assay, paw edema diameter, and mechanical sensitivity. Mechanical withdrawal thresholds were lower in both strains of mice that received CFA when compared to their vehicle. However, a decrease in distance traveled was observed in CFA-treated C57BL/6J but not DBA/2J mice. In a separate group, chemotherapy agent paclitaxel 8 mg/kg, i.p. was administered to both strains of mice to induce CIPN which was confirmed by lower mechanical thresholds in paclitaxel-treated mice compared to vehicle-treated mice. Only female C57BL/6J mice showed attenuation of distance traveled following treatment, whereas male C57BL/6J and DBA/2J mice did not. Lastly, C57BL/6J mice underwent chronic constriction injury (CCI) or sham surgery to observe the impact of another chronic neuropathic pain model in wheel running assay. CCI mice showed a gradual decrease in mechanical withdrawal threshold and a decrease in distance traveled compared to sham 5 days following the procedure. Comparing these chronic inflammatory and neuropathic pain models in different mouse strains may help us better understand genetic differences underlying pain perception and its impact on reflexive and nonreflexive outcome measures.
Collapse
Affiliation(s)
- Katherine M Contreras
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA.
| | - Martial Caillaud
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Bradley Neddenriep
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine. Yale University, New Haven, CT, 06520, USA
| | - Jane L Roberts
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Esad Ulker
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Alyssa B White
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Raneem Aboulhosn
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Wisam Toma
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Tala Khalefa
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Ahd Adel
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Jared A Mann
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| |
Collapse
|
17
|
Stoica AE, Grumezescu AM, Hermenean AO, Andronescu E, Vasile BS. Scar-Free Healing: Current Concepts and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2179. [PMID: 33142891 PMCID: PMC7693882 DOI: 10.3390/nano10112179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Every year, millions of people develop scars due to skin injuries after trauma, surgery, or skin burns. From the beginning of wound healing development, scar hyperplasia, and prolonged healing time in wound healing have been severe problems. Based on the difference between adult and fetal wound healing processes, many promising therapies have been developed to decrease scar formation in skin wounds. Currently, there is no good or reliable therapy to cure or prevent scar formation. This work briefly reviews the engineering methods of scarless wound healing, focusing on regenerative biomaterials and different cytokines, growth factors, and extracellular components in regenerative wound healing to minimize skin damage cell types, and scar formation.
Collapse
Affiliation(s)
- Alexandra Elena Stoica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
| | - Anca Oana Hermenean
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310025 Arad, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (A.M.G.); (E.A.)
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
18
|
Hayes AJ, Melrose J. Electro‐Stimulation, a Promising Therapeutic Treatment Modality for Tissue Repair: Emerging Roles of Sulfated Glycosaminoglycans as Electro‐Regulatory Mediators of Intrinsic Repair Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub Cardiff School of Biosciences Cardiff University Cardiff Wales CF10 3AX UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory Kolling Institute Northern Sydney Local Health District Faculty of Medicine and Health University of Sydney Royal North Shore Hospital St. Leonards NSW 2065 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
19
|
Nakagomi T, Tanaka Y, Nakagomi N, Matsuyama T, Yoshimura S. How Long Are Reperfusion Therapies Beneficial for Patients after Stroke Onset? Lessons from Lethal Ischemia Following Early Reperfusion in a Mouse Model of Stroke. Int J Mol Sci 2020; 21:ijms21176360. [PMID: 32887241 PMCID: PMC7504064 DOI: 10.3390/ijms21176360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke caused by cerebral artery occlusion induces neurological deficits because of cell damage or death in the central nervous system. Given the recent therapeutic advances in reperfusion therapies, some patients can now recover from an ischemic stroke with no sequelae. Currently, reperfusion therapies focus on rescuing neural lineage cells that survive in spite of decreases in cerebral blood flow. However, vascular lineage cells are known to be more resistant to ischemia/hypoxia than neural lineage cells. This indicates that ischemic areas of the brain experience neural cell death but without vascular cell death. Emerging evidence suggests that if a vascular cell-mediated healing system is present within ischemic areas following reperfusion, the therapeutic time window can be extended for patients with stroke. In this review, we present our comments on this subject based upon recent findings from lethal ischemia following reperfusion in a mouse model of stroke.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Correspondence: ; Tel.: +81-798-45-6821; Fax: +81-798-45-6823
| | - Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Shinichi Yoshimura
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| |
Collapse
|
20
|
Acidic Phospholipase A2-Peptide Derivative Modulates Oxidative Status and Microstructural Reorganization of Scar Tissue after Cutaneous Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8273986. [PMID: 32733589 PMCID: PMC7369679 DOI: 10.1155/2020/8273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
From in vitro and in vivo models, the proliferative and healing potential of an acidic phospholipase A2 (LAPLA2) from Lachesis muta venom was investigated. The LAPLA2 proliferative activity was evaluated on fibroblasts and keratinocytes cultured, and the antioxidant and regenerative potential of LAPLA2 was analyzed in a murine model. The animal study consisted of four groups: C (negative control): 0.9% NaCl; SS (positive control): 1% silver sulfadiazine; L1 group: 0.5% LAPLA2; and L2 group: 0.25% LAPLA2. Wounds were topically treated daily for 12 days, and scar tissue samples were collected every 4 days. In vitro, LAPLA2 stimulated marked time-dependent cell proliferation. In vivo, it increased the antioxidant activity of superoxide dismutase (SOD) and catalase (CAT) and decreased malondialdehyde (MDA) and carbonyl protein (CP) levels in scar tissue treated with LAPLA2 at 0.5%. This peptide was effective in stimulating cellular proliferation, neoangiogenesis, type I and III collagen deposition, and maturation in a time-dependent-way, reducing the time required for wound closure. Our results indicated that LAPLA2 presented a remarkable potential in improving the oxidative status and microstructural reorganization of the scar tissue by stimulation of cellularity, angiogenesis, colagenogenesis, and wound contraction, suggesting that the peptide could be a potential candidate for a new healing drug.
Collapse
|
21
|
Ulker E, Caillaud M, Patel T, White A, Rashid D, Alqasem M, Lichtman AH, Bryant CD, Damaj MI. C57BL/6 substrain differences in formalin-induced pain-like behavioral responses. Behav Brain Res 2020; 390:112698. [PMID: 32428630 PMCID: PMC7375808 DOI: 10.1016/j.bbr.2020.112698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Substantial evidence from preclinical models of pain suggests that basal and noxious nociceptive sensitivity, as well as antinociceptive responses to drugs, show significant heritability. Individual differences to these responses have been observed across species from rodents to humans. The use of closely related C57BL/6 inbred mouse substrains can facilitate gene mapping of acute nociceptive behaviors in preclinical pain models. In this study, we investigated behavioral differences between C57BL/6 J (B6 J) and C57BL/6 N (B6 N) substrains in the formalin test, a widely used tonic inflammatory pain model, using a battery of pain-related phenotypes, including reflexive tests, nesting, voluntary wheel running, sucrose preference and anxiety-like behavior in the light/dark test at two different time points (1-h and 24-h). Our results show that these substrains did not differ in reflexive thermal and mechanical responses at the 1-h time point. However, B6 N substrain mice showed increased sensitivity to spontaneous pain-like behaviors. In addition, B6 N substrain continued to show higher levels of mechanical hypersensitivity compared to controls at 24-h. indicating that mechanical hypersensitivity is a more persistent pain-related phenotype induced by formalin. Finally, no sex differences were observed in our outcome measures. Our results provide a comprehensive behavioral testing paradigm in response to an inflammatory agent for future mouse genetic studies in pain.
Collapse
Affiliation(s)
- Esad Ulker
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | - Martial Caillaud
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Trusha Patel
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Alyssa White
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Danyal Rashid
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Mashael Alqasem
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
22
|
Thyroxine restores severely impaired cutaneous re-epithelialisation and angiogenesis in a novel preclinical assay for studying human skin wound healing under "pathological" conditions ex vivo. Arch Dermatol Res 2020; 313:181-192. [PMID: 32572565 PMCID: PMC7935818 DOI: 10.1007/s00403-020-02092-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/14/2020] [Accepted: 03/28/2020] [Indexed: 01/18/2023]
Abstract
Impaired cutaneous wound healing remains a major healthcare challenge. The enormity of this challenge is compounded by the lack of preclinical human skin wound healing models that recapitulate selected key factors underlying impaired healing, namely hypoxia/poor tissue perfusion, oxidative damage, defective innervation, and hyperglycaemia. Since organ-cultured human skin already represents a denervated and impaired perfusion state, we sought to further mimic “pathological” wound healing conditions by culturing experimentally wounded, healthy full-thickness frontotemporal skin from three healthy female subjects for three days in either serum-free supplemented Williams’ E medium or in unsupplemented medium under “pathological” conditions (i.e. hypoxia [5% O2], oxidative damage [10 mM H2O2], absence of insulin, excess glucose). Under these “pathological” conditions, dermal–epidermal split formation and dyskeratosis were prominent in organ-cultured human skin, and epidermal reepithelialisation was significantly impaired (p < 0.001), associated with reduced keratinocyte proliferation (p < 0.001), cytokeratin 6 expression (p < 0.001) and increased apoptosis (p < 0.001). Moreover, markers of intracutaneous angiogenesis (CD31 immunoreactivity and the number of of CD31 positive cells and CD31 positive vessel lumina) were significantly reduced. Since we had previously shown that thyroxine promotes wound healing in healthy human skin ex vivo, we tested whether this in principle also occurs under “pathological” wound healing conditions. Indeed, thyroxine administration sufficed to rescue re-epithelialisation (p < 0.001) and promoted both epidermal keratinocyte proliferation (p < 0.01) and angiogenesis in terms of CD31 immunoreactivity and CD31 positive cells under “pathological” conditions (p < 0.001) ex vivo. This demonstrates the utility of this pragmatic short-term ex vivo model, which recapitulates some key parameters of impaired human skin wound healing, for the preclinical identification of promising wound healing promoters.
Collapse
|
23
|
Hu J, Chen Y, Huang Y, Su Y. Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblats transition via inhibiting the TGF-β1/Smad 2/3 signaling pathway. Exp Mol Pathol 2020; 115:104468. [PMID: 32445750 DOI: 10.1016/j.yexmp.2020.104468] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Exosomes originated from mesenchymal stem cells (MSCs) benefit wound healing. This study investigated effects of exosomes originated from human umbilical cord MSCs (hUC-MSCs) on dermal fibroblasts-myofibroblasts transition via the TGF-β1/Smad2/3 signaling pathway. METHODS Firstly, hUC-MSCs were collected and identified. Alizarin red, oil red O staining and toluidine blue staining were used to determine the osteogenic, adipogenic and chondrogenic differentiation abilities of hUC-MSCs. Then exosomes from hUC-MSCs were extracted and identified. To figure out the roles of exosomes and TGF-β1 in dermal fibroblasts-myofibroblasts transition, dermal fibroblasts were treated with TGF-β1 or/and exosomes at different concentrations. RT-qPCR, Western blot analyses were employed to examine levels of Collagen I, Collagen III, α-smooth muscle actin (α-SMA), and Smad2/3 phosphorylation, and immunofluorescence was employed to test α-SMA content and the localization and nucleation of Smad2/3 protein in cells. RESULTS hUC-MSCs and exosomes were successfully cultured and extracted. Levels of Collagen I, Collagen III, α-SMA, and Smad2/3, and Smad2/3 phosphorylation in fibroblasts treated with exosomes decreased markedly. After treatment with exosomes and TGF-β1 together, levels of Collagen I, Collagen III, α-SMA, and Smad2/3, and Smad2/3 phosphorylation in fibroblasts decreased significantly as compared to TGF-β1-treated fibroblasts. Exosome treatment reduced the entry of Smad2/3 into fibroblasts. CONCLUSION Our data suggested that hUC-MSCs-derived exosomes could inhibit dermal fibroblasts-myofibroblasts transition by inhibiting the TGF-β1/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Jian Hu
- Department of Burn and Plastic Surgery, the People's Hospital of Bao'an Shenzhen, Shenzhen 518101, PR China
| | - Yuanwen Chen
- Department of Burn and Plastic Surgery, the People's Hospital of Bao'an Shenzhen, Shenzhen 518101, PR China
| | - Yubin Huang
- Department of Burn and Plastic Surgery, the People's Hospital of Bao'an Shenzhen, Shenzhen 518101, PR China
| | - Yongsheng Su
- Department of Burn and Plastic Surgery, the People's Hospital of Bao'an Shenzhen, Shenzhen 518101, PR China.
| |
Collapse
|
24
|
Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp JC, Poli SD, Rosas IO, Kaminski N, Matthay MA, Wolters PJ, Sheppard D. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun 2020; 11:1920. [PMID: 32317643 PMCID: PMC7174390 DOI: 10.1038/s41467-020-15647-5] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/20/2020] [Indexed: 01/18/2023] Open
Abstract
Collagen-producing cells maintain the complex architecture of the lung and drive pathologic scarring in pulmonary fibrosis. Here we perform single-cell RNA-sequencing to identify all collagen-producing cells in normal and fibrotic lungs. We characterize multiple collagen-producing subpopulations with distinct anatomical localizations in different compartments of murine lungs. One subpopulation, characterized by expression of Cthrc1 (collagen triple helix repeat containing 1), emerges in fibrotic lungs and expresses the highest levels of collagens. Single-cell RNA-sequencing of human lungs, including those from idiopathic pulmonary fibrosis and scleroderma patients, demonstrate similar heterogeneity and CTHRC1-expressing fibroblasts present uniquely in fibrotic lungs. Immunostaining and in situ hybridization show that these cells are concentrated within fibroblastic foci. We purify collagen-producing subpopulations and find disease-relevant phenotypes of Cthrc1-expressing fibroblasts in in vitro and adoptive transfer experiments. Our atlas of collagen-producing cells provides a roadmap for studying the roles of these unique populations in homeostasis and pathologic fibrosis.
Collapse
Affiliation(s)
- Tatsuya Tsukui
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kai-Hui Sun
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - John R Wilson-Kanamori
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sergio D Poli
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan O Rosas
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Bray ER, Chéret J, Yosipovitch G, Paus R. Schwann cells as underestimated, major players in human skin physiology and pathology. Exp Dermatol 2019; 29:93-101. [DOI: 10.1111/exd.14060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Eric R. Bray
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Miami Itch Center University of Miami Miller School of Medicine Miami FL USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research University of Manchester Manchester UK
| |
Collapse
|
26
|
Rocher M, Robert PY, Desmoulière A. The myofibroblast, biological activities and roles in eye repair and fibrosis. A focus on healing mechanisms in avascular cornea. Eye (Lond) 2019; 34:232-240. [PMID: 31767967 DOI: 10.1038/s41433-019-0684-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 02/08/2023] Open
Abstract
Tissue healing is one of the mysteries of modern medicine. Healing involves complex processes and many cellular types, amongst which the myofibroblast plays a major role. In the eye, when needed, myofibroblasts can be found from the cornea to the retina, derived from a wide variety of different cells, and aimed at effectively repairing tissue damage. Myofibroblast differentiation requires transforming growth factor (TGF)-β1, the presence of specific extracellular matrix components such as the ED-A domain of fibronectin, and mechanical tension. Control of this process may, in some cases, be abnormal leading to development of fibrotic tissue, which alters and compromises the integrity of the original tissue. The eye is no exception to this rule with normal visual function, a highly demanding process, only possible in a fully integrated organ. The cornea, a transparent protective tissue and first dioptre of the eye, has the particularity of being entirely avascular and very richly innervated under normal physiological conditions. However, these anatomical features do not prevent it from developing myofibroblasts in the event of a deep corneal lesion. Activated by growth factors such as TGF-β1 and platelet-derived growth factor from the aqueous humour, tears or corneal epithelial cells, myofibroblasts can cause corneal scarring, sometimes with devastating consequences. Understanding the factors involved in healing and its signalling pathways, will potentially enable us to control corneal healing in the future, and thus avoid fibrotic ocular surface disease and the blindness that this may induce. Currently, this issue is the subject of very active research and development with the aim of discovering new antifibrotic therapies.
Collapse
Affiliation(s)
- Maxime Rocher
- Department of Ophthalmology, Limoges University Hospital, F-87000, Limoges, France
| | - Pierre-Yves Robert
- Department of Ophthalmology, Limoges University Hospital, F-87000, Limoges, France
| | - Alexis Desmoulière
- Department of Physiology and EA 6309, Faculties of Medicine and Pharmacy, University of Limoges, F-87000, Limoges, France.
| |
Collapse
|
27
|
Vidal Yucha SE, Tamamoto KA, Kaplan DL. The importance of the neuro-immuno-cutaneous system on human skin equivalent design. Cell Prolif 2019; 52:e12677. [PMID: 31441145 PMCID: PMC6869210 DOI: 10.1111/cpr.12677] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
The skin is a highly complex organ, responsible for sensation, protection against the environment (pollutants, foreign proteins, infection) and thereby linked to the immune and sensory systems in the neuro-immuno-cutaneous (NIC) system. Cutaneous innervation is a key part of the peripheral nervous system; therefore, the skin should be considered a sensory organ and an important part of the central nervous system, an 'active interface' and the first connection of the body to the outside world. Peripheral nerves are a complex class of neurons within these systems, subsets of functions are conducted, including mechanoreception, nociception and thermoception. Epidermal and dermal cells produce signalling factors (such as cytokines or growth factors), neurites influence skin cells (such as via neuropeptides), and peripheral nerves have a role in both early and late stages of the inflammatory response. One way this is achieved, specifically in the cutaneous system, is through neuropeptide release and signalling, especially via substance P (SP), neuropeptide Y (NPY) and nerve growth factor (NGF). Cutaneous, neuronal and immune cells play a central role in many conditions, including psoriasis, atopic dermatitis, vitiligo, UV-induced immunosuppression, herpes and lymphomas. Therefore, it is critical to understand the connections and interplay between the peripheral nervous system and the skin and immune systems, the NIC system. Relevant in vitro tissue models based on human skin equivalents can be used to gain insight and to address impact across research and clinical needs.
Collapse
Affiliation(s)
- Sarah E Vidal Yucha
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Kasey A Tamamoto
- Department of Chemistry, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
28
|
Feng Y, Sun ZL, Liu SY, Wu JJ, Zhao BH, Lv GZ, Du Y, Yu S, Yang ML, Yuan FL, Zhou XJ. Direct and Indirect Roles of Macrophages in Hypertrophic Scar Formation. Front Physiol 2019; 10:1101. [PMID: 31555142 PMCID: PMC6724447 DOI: 10.3389/fphys.2019.01101] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic scars are pathological scars that result from abnormal responses to trauma, and could cause serious functional and cosmetic disability. To date, no optimal treatment method has been established. A variety of cell types are involved in hypertrophic scar formation after wound healing, but the underlying molecular mechanisms and cellular origins of hypertrophic scars are not fully understood. Macrophages are major effector cells in the immune response after tissue injury that orchestrates the process of wound healing. Depending on the local microenvironment, macrophages undergo marked phenotypic and functional changes at different stages during scar pathogenesis. This review intends to summarize the direct and indirect roles of macrophages during hypertrophic scar formation. The in vivo depletion of macrophages or blocking their signaling reduces scar formation in experimental models, thereby establishing macrophages as positive regulatory cells in the skin scar formation. In the future, a significant amount of attention should be given to molecular and cellular mechanisms that cause the phenotypic switch of wound macrophages, which may provide novel therapeutic targets for hypertrophic scars.
Collapse
Affiliation(s)
- Yi Feng
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Department of Pharmacy, Medical College, Yangzhou University, Yangzhou, China
| | - Zi-Li Sun
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Si-Yu Liu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Bin-Hong Zhao
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Guo-Zhong Lv
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yong Du
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Shun Yu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Ming-Lie Yang
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Feng-Lai Yuan
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Xiao-Jin Zhou
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| |
Collapse
|
29
|
Abstract
Wound healing is one of the most complex biological processes in an organism. It proceeds in three consecutive stages: the exudative, the proliferative, and the reparative phase. For a better understanding of new treatment possibilities, knowledge of the fundamental principles of these phases is required. Depending on the extent, location, bacterial colonization, and stage of a wound, it is important to find the appropriate treatment modality. In the present article, the basic principles of wound healing and disruptive factors are described in preparation for the next part on modern treatment modalities.
Collapse
|
30
|
Xue C, Lin X, Zhang J, Zeng Y, Chen X. β‐Elemene suppresses the proliferation of human airway granulation fibroblasts via attenuation of TGF‐β/Smad signaling pathway. J Cell Biochem 2019; 120:16553-16566. [PMID: 31104326 DOI: 10.1002/jcb.28915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Cheng Xue
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
- Department of Pulmonary Medicine The First Affiliated Hospital of Xiamen University Xiamen Fujian China
| | - Xiao‐Ping Lin
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| | - Jia‐Min Zhang
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| | - Yi‐Ming Zeng
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| | - Xiao‐Yang Chen
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| |
Collapse
|
31
|
Zhang GY, Langan EA, Meier NT, Funk W, Siemers F, Paus R. Thyroxine (T4) may promote re-epithelialisation and angiogenesis in wounded human skin ex vivo. PLoS One 2019; 14:e0212659. [PMID: 30925152 PMCID: PMC6440638 DOI: 10.1371/journal.pone.0212659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
There is a pressing need for improved preclinical model systems in which to study human skin wound healing. Here, we report the development and application of a serum-free full thickness human skin wound healing model. Not only can re-epithelialization (epidermal repair) and angiogenesis be studied in this simple and instructive model, but the model can also be used to identify clinically relevant wound-healing promoting agents, and to dissect underlying candidate mechanisms of action in the target tissue. We present preliminary ex vivo data to suggest that Thyroxine (T4), which reportedly promotes skin wound healing in rodents in vivo, may promote key features of human skin wound healing. Namely, T4 stimulates re-epithelialisation and angiogenesis, and modulates both wound healing-associated epidermal keratin expression and energy metabolism in experimentally wound human skin. Functionally, the wound healing-promoting effects of T4 are at least partially mediated via fibroblast growth factor/fibroblast growth factor receptor-mediated signalling, since they could be significantly antagonized by bFGF-neutralizing antibody. Thus, this pragmatic, easy-to-use full-thickness human skin wound healing model provides a useful preclinical research tool in the search for clinically relevant candidate wound healing-promoting agents. These ex vivo data encourage further pre-clinical testing of topical T4 as a cost-efficient, novel agent in the management of chronic human skin wounds.
Collapse
Affiliation(s)
- Guo-You Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | - Frank Siemers
- Department of Plastic and Hand Surgery, BG Klinikum Bergmannstrost, Halle/Salle, Germany
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Böhm M, Luger T. Are melanocortin peptides future therapeutics for cutaneous wound healing? Exp Dermatol 2019; 28:219-224. [PMID: 30661264 DOI: 10.1111/exd.13887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Cutaneous wound healing is a complex process divided into different phases, that is an inflammatory, proliferative and remodelling phase. During these phases, a variety of resident skin cell types but also cells of the immune system orchestrate the healing process. In the last year, it has been shown that the majority of cutaneous cell types express the melanocortin 1 receptor (MC1R) that binds α-melanocyte-stimulating hormone (α-MSH) with high affinity and elicits pleiotropic biological effects, for example modulation of inflammation and immune responses, cytoprotection, antioxidative defense and collagen turnover. Truncated α-MSH peptides such as Lys-Pro-Val (KPV) as well as derivatives like Lys-d-Pro-Thr (KdPT), the latter containing the amino acid sequence 193-195 of interleukin-1β, have been found to possess anti-inflammatory effects but to lack the pigment-inducing activity of α-MSH. We propose here that such peptides are promising future candidates for the treatment of cutaneous wounds and skin ulcers. Experimental approaches in silico, in vitro, ex vivo and in animal models are outlined. This is followed by an unbiased discussion of the pro and contra arguments of such peptides as future candidates for the therapeutic management of cutaneous wounds and a review of the so-far available data on melanocortin peptides and derivatives in wound healing.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, University of Münster, Münster, Germany
| | - Thomas Luger
- Department of Dermatology, Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, University of Münster, Münster, Germany
| |
Collapse
|
33
|
Grammatophyllum speciosum Ethanolic Extract Promotes Wound Healing in Human Primary Fibroblast Cells. Int J Cell Biol 2018; 2018:7836869. [PMID: 30420887 PMCID: PMC6215563 DOI: 10.1155/2018/7836869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Grammatophyllum speciosum is a plant in Orchidaceae family which contains a variety of phytochemical compounds that might be beneficial for medicinal use. This study aimed to evaluate the activity of pseudobulb of G. speciosum extract (GSE) in wound healing processes in human primary fibroblast cells along with in vitro antioxidant activity and total phenolic content of GSE. Scratch wound healing assay indicated that GSE was capable of increasing migration rate after 6 and 9 hours of treatment. Besides, the extract was able to scavenge DPPH, ABTS, and superoxide anion radicals indicating the antioxidative property of GSE. This study suggested a novel role of the of pseudobulb extract of G. speciosum as a wound healing enhancer. The results from this study might be beneficial for the development of further novel active compounds for skin wound healing.
Collapse
|