1
|
Chen B, Sun M, Zhang C, Huang Q, Teng D, Hu L, Ma H, Lin X, Huang Z, Gui R, Hu X, Xu L, Zheng M, Zhou Y, Li J, Wang M. Discovery of CLPP-1071 as an Exceptionally Potent and Orally Efficacious Human ClpP Activator with Strong In Vivo Antitumor Activity. J Med Chem 2024; 67:21009-21029. [PMID: 39574384 DOI: 10.1021/acs.jmedchem.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Human sapiens caseinolytic protease P (ClpP) is essential for maintaining mitochondrial proteome homeostasis, and its activation is increasingly recognized as a promising cancer therapy strategy. Herein, based on structure-guided drug design, we discovered a series of potent ClpP activators by introducing a methyl group to the imipridone scaffold of the ClpP activator ONC201 in Phase III clinical trials. Through structural optimization of the lead compound, the most optimal compound, CLPP-1071, exhibited exceptionally potent ClpP agonistic activity (EC50 = 23.5 nM, 107.1-fold stronger than ONC201) and inhibited the proliferation of HL60 cells (IC50 = 4.6 nM, 169.2-fold stronger than ONC201). CLPP-1071 possesses good pharmacokinetic properties and effectively prolongs the lifespan in the MOLM13 and HL60 xenograft models in mice through oral administration. CLPP-1071 is the most potent and orally efficacious ClpP activator reported to date.
Collapse
Affiliation(s)
- Beijing Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Mingyang Sun
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
| | - Chun Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qi Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dan Teng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
- Department of Medicinal Chemistry, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Huicong Ma
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xinyi Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
- School of Pharmaceutical Sciences, Southern Medical University, No. 1023 South Shatai Road Baiyun District, Guangzhou 510515, Guangdong, China
| | - Zan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
| | - Renzhao Gui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
| | - Xiaobei Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
| | - Lei Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
- State Key Laboratory of Drug Research, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
- State Key Laboratory of Drug Research, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550014, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan 528400, Guangdong, China
- Department of Medicinal Chemistry, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
2
|
Niihori M, James J, Varghese MV, McClain N, Lawal OS, Philip RC, Baggett BK, Goncharov DA, de Jesus Perez V, Goncharova EA, Rafikov R, Rafikova O. Mitochondria as a primary determinant of angiogenic modality in pulmonary arterial hypertension. J Exp Med 2024; 221:e20231568. [PMID: 39320470 PMCID: PMC11452743 DOI: 10.1084/jem.20231568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/27/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Impaired pulmonary angiogenesis plays a pivotal role in the progression of pulmonary arterial hypertension (PAH) and patient mortality, yet the molecular mechanisms driving this process remain enigmatic. Our study uncovered a striking connection between mitochondrial dysfunction (MD), caused by a humanized mutation in the NFU1 gene, and severely disrupted pulmonary angiogenesis in adult lungs. Restoring the bioavailability of the NFU1 downstream target, lipoic acid (LA), alleviated MD and angiogenic deficiency and rescued the progressive PAH phenotype in the NFU1G206C model. Notably, significant NFU1 expression and signaling insufficiencies were also identified in idiopathic PAH (iPAH) patients' lungs, emphasizing this study's relevance beyond NFU1 mutation cases. The remarkable improvement in mitochondrial function of PAH patient-derived pulmonary artery endothelial cells (PAECs) following LA supplementation introduces LA as a potential therapeutic approach. In conclusion, this study unveils a novel role for MD in dysregulated pulmonary angiogenesis and PAH manifestation, emphasizing the need to correct MD in PAH patients with unrecognized NFU1/LA deficiency.
Collapse
Affiliation(s)
- Maki Niihori
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Joel James
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Mathews V. Varghese
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Nolan McClain
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Odunayo Susan Lawal
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Rohit C. Philip
- Department of Electrical and Computer Engineering, University of Arizona College of Engineering, Tucson, AZ, USA
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Brenda K. Baggett
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Dmitry A. Goncharov
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, University of California, Davis School of Medicine, Davis, CA, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, University of California, Davis School of Medicine, Davis, CA, USA
| | - Ruslan Rafikov
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Olga Rafikova
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
3
|
Zuttion S, Senger B, Panja C, Friant S, Kucharczyk R, Becker HD. Monitoring mitochondrial localization of dual localized proteins using a Bi-Genomic Mitochondrial-Split-GFP. Methods Enzymol 2024; 706:75-95. [PMID: 39455235 DOI: 10.1016/bs.mie.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Even if a myriad of approaches has been developed to identify the subcellular localization of a protein, the easiest and fastest way remains to fuse the protein to Green Fluorescent Protein (GFP) and visualize its location using fluorescence microscopy. However, this strategy is not well suited to visualize the organellar pools of proteins that are simultaneously localized both in the cytosol and in organelles because the GFP signal of a cytosolic pool of the protein (cytosolic echoform) will inevitably mask or overlay the GFP signal of the organellar pool of the protein (organellar echoform). To solve this issue, we engineered a dedicated yeast strain expressing a Bi-Genomic Mitochondrial-Split-GFP. This split-GFP is bi-genomic because the first ten ß-strands of GFP (GFPß1-10) are encoded by the mitochondrial genome and translated by mitoribosomes whereas the remaining ß-strand of GFP (GFPß11) is fused to the protein of interest encoded by the nucleus and expressed by cytosolic ribosomes. Consequently, if the GFPß11-tagged protein localizes into mitochondria, GFP will be reconstituted by self-assembly GFPß1-10 and GFPß11 thereby generating a GFP signal restricted to mitochondria and detectable by regular fluorescence microscopy. In addition, because mitochondrial translocases and import mechanisms are evolutionary well conserved, the BiG Mito-Split-GFP yeast strain can be used to probe mitochondrial importability of proteins regardless of their organismal origins and can thus serve to identify unsuspected mitochondrial echoforms readily from any organism.
Collapse
Affiliation(s)
- Solène Zuttion
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sylvie Friant
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg Cedex, France.
| |
Collapse
|
4
|
Krakowczyk M, Bragoszewski P. Monitoring retro-translocation of proteins from the mitochondrial intermembrane space. Methods Enzymol 2024; 707:173-208. [PMID: 39488374 DOI: 10.1016/bs.mie.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondria play multiple essential roles in eukaryotic cells. To perform their functions, mitochondria require an adequate supply of externally produced proteins and an intact two-membrane structure. The structure of mitochondrial membranes separates these organelles from their cytosolic environment, with proteins that make up the mitochondrial proteome either being embedded into or enveloped by these membranes. From the experimental point of view, the structural properties of mitochondria contribute to the relative ease of isolating these organelles from other cellular components. The ability to isolate intact mitochondria and analyze them in a well-controlled environment opens up the possibility of tracking any proteins that enter or escape the membrane-formed enclosure. This chapter discusses assays that monitor the movement of proteins out of mitochondria through intact membranes. These protocols provide insight into the mechanisms behind mitochondrial protein quality control. It was discovered that the retro-translocation of IMS proteins regulates the protein content of this specific sub-compartment of the organelle. Additionally, proteins can move out of the mitochondria to resolve failed import events. Assays based on isolated mitochondria precisely tackle such intricate 'dance' of proteins crossing mitochondrial membranes during import and export, maintaining the dynamics of the organellar proteome.
Collapse
Affiliation(s)
- Magda Krakowczyk
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bragoszewski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
5
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Marzetti E, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Mitochondrial Quality Control Processes at the Crossroads of Cell Death and Survival: Mechanisms and Signaling Pathways. Int J Mol Sci 2024; 25:7305. [PMID: 39000412 PMCID: PMC11242688 DOI: 10.3390/ijms25137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Helio José Coelho-Júnior
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
7
|
Reisman EG, Hawley JA, Hoffman NJ. Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle. Sports Med 2024; 54:1097-1119. [PMID: 38528308 PMCID: PMC11127882 DOI: 10.1007/s40279-024-02007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
Exercise perturbs energy homeostasis in skeletal muscle and engages integrated cellular signalling networks to help meet the contraction-induced increases in skeletal muscle energy and oxygen demand. Investigating exercise-associated perturbations in skeletal muscle signalling networks has uncovered novel mechanisms by which exercise stimulates skeletal muscle mitochondrial biogenesis and promotes whole-body health and fitness. While acute exercise regulates a complex network of protein post-translational modifications (e.g. phosphorylation) in skeletal muscle, previous investigations of exercise signalling in human and rodent skeletal muscle have primarily focused on a select group of exercise-regulated protein kinases [i.e. 5' adenosine monophosphate-activated protein kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase (CaMK) and mitogen-activated protein kinase (MAPK)] and only a small subset of their respective protein substrates. Recently, global mass spectrometry-based phosphoproteomic approaches have helped unravel the extensive complexity and interconnection of exercise signalling pathways and kinases beyond this select group and phosphorylation and/or translocation of exercise-regulated mitochondrial and nuclear protein substrates. This review provides an overview of recent advances in our understanding of the molecular events associated with acute endurance exercise-regulated signalling pathways and kinases in skeletal muscle with a focus on phosphorylation. We critically appraise recent evidence highlighting the involvement of mitochondrial and nuclear protein phosphorylation and/or translocation in skeletal muscle adaptive responses to an acute bout of endurance exercise that ultimately stimulate mitochondrial biogenesis and contribute to exercise's wider health and fitness benefits.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
8
|
Ovciarikova J, Shikha S, Lacombe A, Courjol F, McCrone R, Hussain W, Maclean A, Lemgruber L, Martins-Duarte ES, Gissot M, Sheiner L. Two ancient membrane pores mediate mitochondrial-nucleus membrane contact sites. J Cell Biol 2024; 223:e202304075. [PMID: 38456969 PMCID: PMC10923651 DOI: 10.1083/jcb.202304075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Coordination between nucleus and mitochondria is essential for cell survival, and thus numerous communication routes have been established between these two organelles over eukaryotic cell evolution. One route for organelle communication is via membrane contact sites, functional appositions formed by molecular tethers. We describe a novel nuclear-mitochondrial membrane contact site in the protozoan Toxoplasma gondii. We have identified specific contacts occurring at the nuclear pore and demonstrated an interaction between components of the nuclear pore and the mitochondrial protein translocon, highlighting them as molecular tethers. Genetic disruption of the nuclear pore or the TOM translocon components, TgNup503 or TgTom40, respectively, result in contact site reduction, supporting their potential involvement in this tether. TgNup503 depletion further leads to specific mitochondrial morphology and functional defects, supporting a role for nuclear-mitochondrial contacts in mediating their communication. The discovery of a contact formed through interaction between two ancient mitochondrial and nuclear complexes sets the ground for better understanding of mitochondrial-nuclear crosstalk in eukaryotes.
Collapse
Affiliation(s)
- Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Shikha Shikha
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Alice Lacombe
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Flavie Courjol
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Rosalind McCrone
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Wasim Hussain
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Erica S. Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mathieu Gissot
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
von der Dunk SHA, Hogeweg P, Snel B. Intracellular signaling in proto-eukaryotes evolves to alleviate regulatory conflicts of endosymbiosis. PLoS Comput Biol 2024; 20:e1011860. [PMID: 38335232 PMCID: PMC10883579 DOI: 10.1371/journal.pcbi.1011860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complex eukaryotic cell resulted from a merger between simpler prokaryotic cells, yet the role of the mitochondrial endosymbiosis with respect to other eukaryotic innovations has remained under dispute. To investigate how the regulatory challenges associated with the endosymbiotic state impacted genome and network evolution during eukaryogenesis, we study a constructive computational model where two simple cells are forced into an obligate endosymbiosis. Across multiple in silico evolutionary replicates, we observe the emergence of different mechanisms for the coordination of host and symbiont cell cycles, stabilizing the endosymbiotic relationship. In most cases, coordination is implicit, without signaling between host and symbiont. Signaling only evolves when there is leakage of regulatory products between host and symbiont. In the fittest evolutionary replicate, the host has taken full control of the symbiont cell cycle through signaling, mimicking the regulatory dominance of the nucleus over the mitochondrion that evolved during eukaryogenesis.
Collapse
Affiliation(s)
| | - Paulien Hogeweg
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Berend Snel
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Wei W, Jiang Y, Hu G, He Y, Chen H. Recent Advances of Mitochondrial Alterations in Alzheimer's Disease: A Perspective of Mitochondrial Basic Events. J Alzheimers Dis 2024; 101:379-396. [PMID: 39213063 DOI: 10.3233/jad-240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and is characterized by a decrease in learning capacity, memory loss and behavioral changes. In addition to the well-recognized amyloid-β cascade hypothesis and hyperphosphorylated Tau hypothesis, accumulating evidence has led to the proposal of the mitochondrial dysfunction hypothesis as the primary etiology of AD. However, the predominant molecular mechanisms underlying the development and progression of AD have not been fully elucidated. Mitochondrial dysfunction is not only considered an early event in AD pathogenesis but is also involved in the whole course of the disease, with numerous pathophysiological processes, including disordered energy metabolism, Ca2+ homeostasis dysfunction and hyperactive oxidative stress. In the current review, we have integrated emerging evidence to summarize the main mitochondrial alterations- bioenergetic metabolism, mitochondrial inheritance, mitobiogenesis, fission- fusion dynamics, mitochondrial degradation, and mitochondrial movement- underlying AD pathogenesis; precisely identified the mitochondrial regulators; discussed the potential mechanisms and primary processes; highlighted the leading players; and noted additional incidental signaling pathway changes. This review may help to stimulate research exploring mitochondrial metabolically-oriented neuroprotection strategies in AD therapies, leading to a better understanding of the link between the mitochondrial dysfunction hypothesis and AD pathogenesis.
Collapse
Affiliation(s)
- Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Ying Jiang
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Guizhen Hu
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Yanfang He
- Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Huiyi Chen
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| |
Collapse
|
11
|
Park SC, Lee YS, Cho KA, Kim SY, Lee YI, Lee SR, Lim IK. What matters in aging is signaling for responsiveness. Pharmacol Ther 2023; 252:108560. [PMID: 37952903 DOI: 10.1016/j.pharmthera.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.
Collapse
Affiliation(s)
- Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea; Interdisciplinary Engineering Major, Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea; Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
12
|
Almaguer J, Hindle A, Lawrence JJ. The Contribution of Hippocampal All-Trans Retinoic Acid (ATRA) Deficiency to Alzheimer's Disease: A Narrative Overview of ATRA-Dependent Gene Expression in Post-Mortem Hippocampal Tissue. Antioxidants (Basel) 2023; 12:1921. [PMID: 38001775 PMCID: PMC10669734 DOI: 10.3390/antiox12111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
There is accumulating evidence that vitamin A (VA) deficiency contributes to the pathogenesis and progression of Alzheimer's disease (AD). All-trans retinoic acid (ATRA), a metabolite of VA in the brain, serves distinct roles in the human hippocampus. Agonists of retinoic acid receptors (RAR), including ATRA, promote activation of the non-amyloidogenic pathway by enhancing expression of α-secretases, providing a mechanistic basis for delaying/preventing amyloid beta (Aβ) toxicity. However, whether ATRA is actually deficient in the hippocampi of patients with AD is not clear. Here, using a publicly available human transcriptomic dataset, we evaluated the extent to which ATRA-sensitive genes are dysregulated in hippocampal tissue from post-mortem AD brains, relative to age-matched controls. Consistent with ATRA deficiency, we found significant dysregulation of many ATRA-sensitive genes and significant upregulation of RAR co-repressors, supporting the idea of transcriptional repression of ATRA-mediated signaling. Consistent with oxidative stress and neuroinflammation, Nrf2 and NfkB transcripts were upregulated, respectively. Interestingly, transcriptional targets of Nrf2 were not upregulated, accompanied by upregulation of several histone deacetylases. Overall, our investigation of ATRA-sensitive genes in the human hippocampus bolsters the scientific premise of ATRA depletion in AD and that epigenetic factors should be considered and addressed as part of VA supplementation.
Collapse
Affiliation(s)
- Joey Almaguer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ashly Hindle
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, and Center of Excellence for Integrated Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
13
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
14
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
15
|
Maudsley S, Schrauwen C, Harputluoğlu İ, Walter D, Leysen H, McDonald P. GPR19 Coordinates Multiple Molecular Aspects of Stress Responses Associated with the Aging Process. Int J Mol Sci 2023; 24:ijms24108499. [PMID: 37239845 DOI: 10.3390/ijms24108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a significant role in controlling biological paradigms such as aging and aging-related disease. We have previously identified receptor signaling systems that are specifically associated with controlling molecular pathologies associated with the aging process. Here, we have identified a pseudo-orphan GPCR, G protein-coupled receptor 19 (GPR19), that is sensitive to many molecular aspects of the aging process. Through an in-depth molecular investigation process that involved proteomic, molecular biological, and advanced informatic experimentation, this study found that the functionality of GPR19 is specifically linked to sensory, protective, and remedial signaling systems associated with aging-related pathology. This study suggests that the activity of this receptor may play a role in mitigating the effects of aging-related pathology by promoting protective and remedial signaling systems. GPR19 expression variation demonstrates variability in the molecular activity in this larger process. At low expression levels in HEK293 cells, GPR19 expression regulates signaling paradigms linked with stress responses and metabolic responses to these. At higher expression levels, GPR19 expression co-regulates systems involved in sensing and repairing DNA damage, while at the highest levels of GPR19 expression, a functional link to processes of cellular senescence is seen. In this manner, GPR19 may function as a coordinator of aging-associated metabolic dysfunction, stress response, DNA integrity management, and eventual senescence.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Patricia McDonald
- Moffitt Cancer Center, Department of Metabolism & Physiology, 12902 Magnolia Drive, Tampa, FL 33612, USA
- Lexicon Pharmaceuticals Inc. Research & Development, 2445 Technology Forest, The Woodlands, TX 77381, USA
| |
Collapse
|
16
|
Finding the balance: The elusive mechanisms underlying auditory hair cell mitochondrial biogenesis and mitophagy. Hear Res 2023; 428:108664. [PMID: 36566644 DOI: 10.1016/j.heares.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In all cell types, mitochondrial biogenesis is balanced with mitophagy to maintain a healthy mitochondrial pool that sustains specific energetic demands. Cell types that have a higher energetic burden, such as skeletal muscle cells and cardiomyocytes, will subsequently develop high mitochondrial volumes. In these cells, calcium influx during activity triggers cascades leading to activation of the co-transcriptional regulation factor PGC-1α, a master regulator of mitochondrial biogenesis, in a well-defined pathway. Despite the advantages in ATP production, high mitochondrial volumes might prove to be perilous, as it increases exposure to reactive oxygen species produced during oxidative phosphorylation. Mechanosensory hair cells are highly metabolically active cells, with high total mitochondrial volumes to meet that demand. However, the mechanisms leading to expansion and maintenance of the hair cell mitochondrial pool are not well defined. Calcium influx during mechanotransduction and synaptic transmission regulate hair cell mitochondria, leading to a possibility that similar to skeletal muscle and cardiomyocytes, intracellular calcium underlies the expansion of the hair cell mitochondrial volume. This review briefly summarizes the potential mechanisms underlying mitochondrial biogenesis in other cell types and in hair cells. We propose that hair cell mitochondrial biogenesis is primarily product of cellular differentiation rather than calcium influx, and that the hair cell high mitochondrial volume renders them more susceptible to reactive oxygen species increased by calcium flux than other cell types.
Collapse
|
17
|
Wu Z, Berlemann LA, Bader V, Sehr DA, Dawin E, Covallero A, Meschede J, Angersbach L, Showkat C, Michaelis JB, Münch C, Rieger B, Namgaladze D, Herrera MG, Fiesel FC, Springer W, Mendes M, Stepien J, Barkovits K, Marcus K, Sickmann A, Dittmar G, Busch KB, Riedel D, Brini M, Tatzelt J, Cali T, Winklhofer KF. LUBAC assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of NF-κB to the nucleus. EMBO J 2022; 41:e112006. [PMID: 36398858 PMCID: PMC9753471 DOI: 10.15252/embj.2022112006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF-κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF-κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner. Notably, TNF-induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1-ubiquitin-specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF-mediated NF-κB activation, both serving as a signaling platform, as well as a transport mode for activated NF-κB to the nuclear.
Collapse
Affiliation(s)
- Zhixiao Wu
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Lena A Berlemann
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Dominik A Sehr
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Eva Dawin
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
- Leibniz‐Institut für Analytische Wissenschaften—ISAS—e.VDortmundGermany
| | | | - Jens Meschede
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Lena Angersbach
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Cathrin Showkat
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Jonas B Michaelis
- Faculty of Medicine, Institute of Biochemistry IIGoethe University FrankfurtFrankfurt am MainGermany
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry IIGoethe University FrankfurtFrankfurt am MainGermany
| | - Bettina Rieger
- Institute for Integrative Cell Biology and Physiology, Faculty of BiologyUniversity of MünsterMünsterGermany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Faculty of MedicineGoethe‐University FrankfurtFrankfurtGermany
| | - Maria Georgina Herrera
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
| | - Fabienne C Fiesel
- Department of NeuroscienceMayo ClinicJacksonvilleFLUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFLUSA
| | - Wolfdieter Springer
- Department of NeuroscienceMayo ClinicJacksonvilleFLUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFLUSA
| | - Marta Mendes
- Proteomics of Cellular Signaling, Department of Infection and ImmunityLuxembourg Institute of HealthStrassenLuxembourg
| | - Jennifer Stepien
- Medizinisches Proteom‐CenterRuhr‐Universität BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
| | - Katalin Barkovits
- Medizinisches Proteom‐CenterRuhr‐Universität BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
| | - Katrin Marcus
- Medizinisches Proteom‐CenterRuhr‐Universität BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
| | - Albert Sickmann
- Leibniz‐Institut für Analytische Wissenschaften—ISAS—e.VDortmundGermany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Department of Infection and ImmunityLuxembourg Institute of HealthStrassenLuxembourg
- Department of Life Sciences and MedicineUniversity of LuxembourgBelvauxLuxembourg
| | - Karin B Busch
- Institute for Integrative Cell Biology and Physiology, Faculty of BiologyUniversity of MünsterMünsterGermany
| | - Dietmar Riedel
- Laboratory for Electron MicroscopyMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Marisa Brini
- Department of BiologyUniversity of PaduaPaduaItaly
- Centro Studi per la Neurodegenerazione (CESNE)University of PadovaPaduaItaly
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
- RESOLV Cluster of ExcellenceRuhr University BochumBochumGermany
| | - Tito Cali
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- Centro Studi per la Neurodegenerazione (CESNE)University of PadovaPaduaItaly
- Padua Neuroscience Center (PNC)University of PaduaPaduaItaly
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and PathobiochemistryRuhr University BochumBochumGermany
- RESOLV Cluster of ExcellenceRuhr University BochumBochumGermany
| |
Collapse
|
18
|
Liu S, Liu S, Jiang H. Multifaceted roles of mitochondrial stress responses under ETC dysfunction - repair, destruction and pathogenesis. FEBS J 2022; 289:6994-7013. [PMID: 34918460 DOI: 10.1111/febs.16323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/13/2023]
Abstract
Electron transport chain (ETC) dysfunction is a common feature of mitochondrial diseases and induces severe cellular stresses, including mitochondrial membrane potential (Δψm ) reduction, mitochondrial matrix acidification, metabolic derangements and proteostatic stresses. Extensive studies of ETC dysfunction in yeast, Caenorhabditis elegans, cultured cells and mouse models have revealed multiple mitochondrial stress response pathways. Here, we summarise the current understanding of the triggers, sensors, signalling mechanisms and the functional outcomes of mitochondrial stress responses in different species. We highlight Δψm reduction as a major trigger of stress responses in different species, but the responses are species-specific and the outcomes are context-dependent. ETC dysfunction elicits a mitochondrial unfolded protein response (UPRmt ) to repair damaged mitochondria in C. elegans, and activates a global adaptive programme to maintain Δψm in yeast. Yeast and C. elegans responses are remarkably similar at the downstream responses, although they are activated by different signalling mechanisms. UPRmt generally protects ETC-defective worms, but its constitutive activation is toxic for wildtype worms and worms carrying mutant mtDNA. In contrast to lower organisms, ETC dysfunction in mammals mainly activates a mitochondrial integrated stress response (ISRmt ) to reprogramme metabolism and a PINK1-Parkin mitophagy pathway to degrade damaged mitochondria. Accumulating in vivo results suggest that the ATF4 branch of ISRmt exacerbates metabolic derangements to accelerate mitochondrial disease progression. The in vivo roles of mitophagy in mitochondrial diseases are also context-dependent. These results thus reveal the common and unique aspects of mitochondrial stress responses in different species and highlight their multifaceted roles in mitochondrial diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Siqi Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Exosome mediated Tom40 delivery protects against hydrogen peroxide-induced oxidative stress by regulating mitochondrial function. PLoS One 2022; 17:e0272511. [PMID: 35951602 PMCID: PMC9371349 DOI: 10.1371/journal.pone.0272511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of neurodegeneration. The expression level of Tom40, a crucial mitochondrial membrane protein, is significantly reduced in neurodegenerative disease subjects. Tom40 overexpression studies have shown to protect the neurons against oxidative stress by improving mitochondrial function. Thus, successful delivery of Tom40 protein to the brain could lead to a novel therapy for neurodegenerative diseases. However, delivering protein to the cell may be difficult. Especially the blood-brain barrier (BBB) is a big hurdle to clear in order to deliver the protein to the brain. In the current study, we engineered exosomes, which are the extracellular vesicles of endosomal origin, and able to cross BBB as delivery vehicles packing human Tom40. We found Tom40 protein delivery by the exosome successfully protected the cells against hydrogen peroxide-induced oxidative stress. This result suggests that exosome-mediated delivery of Tom40 may potentially be useful in restoring mitochondrial functions and alleviating oxidative stress in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases.
Collapse
|
20
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Monitoring DNA polymerase β mitochondrial localization and dynamics. DNA Repair (Amst) 2022; 116:103357. [PMID: 35717762 PMCID: PMC9253048 DOI: 10.1016/j.dnarep.2022.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Mouse fibroblasts lacking (null) DNA polymerase β (pol β) were transfected with fluorescently tagged pol β and stained with biomarkers to allow visualization within living cells by confocal microscopy. Transient transfection resulted in varying pol β expression levels. Separating cells into three groups based on pol β fluorescence intensity and morphological distribution, permitted analysis of the concentration dependence and spatial distribution of cytoplasmic pol β. Colocalization between pol β and mitochondria was pol β concentration dependent. A decrease in overlap with nucleoids containing mitochondrial DNA (mtDNA) was observed at the highest pol β intensity where pol β exhibits a tubular appearance, suggesting the ability to load elevated levels of pol β into mitochondria readily available for relocation to damaged mtDNA. The dynamics of pol β and mitochondrial nucleoids were followed by confocal recording of time series images. Two populations of mitochondrial nucleoids were observed, with and without pol β. Micro-irradiation, known to form DNA single-strand breaks, in a line across nucleus and cytoplasm of pol β stably transfected cells enhanced apparent localization of pol β with mitochondria in the perinuclear region of the cytoplasm near the nuclear membrane. Exposure of pol β expressing cells to H2O2 resulted in a time-dependent increase in cytoplasmic pol β observed by immunofluorescence analysis of fixed cells. Further screening revealed increased levels of colocalization of pol β with a mitochondrial probe and an increase in oxidative DNA damage in the cytoplasm. ELISA quantification confirmed an increase of an oxidative mitochondrial base lesion, 7,8-dihydro-8-oxoguanine, after H2O2 treatment. Taken together, the results suggest that pol β is recruited to mitochondria in response to oxidatively-induced mtDNA damage to participate in mtDNA repair.
Collapse
|
22
|
De Luca V, Leo M, Cretella E, Montanari A, Saliola M, Ciaffi G, Vecchione A, Stoppacciaro A, Filetici P. Role of yUbp8 in Mitochondria and Hypoxia Entangles the Finding of Human Ortholog Usp22 in the Glioblastoma Pseudo-Palisade Microlayer. Cells 2022; 11:cells11101682. [PMID: 35626719 PMCID: PMC9140154 DOI: 10.3390/cells11101682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
KAT Gcn5 and DUB Ubp8 are required for respiration and mitochondria functions in budding yeast, and in this study we show that loss of respiratory activity is acquired over time. Interestingly, we show that absence of Ubp8 allows cells to grow in hypoxic conditions with altered mitophagy. Comparatively, the aggressive glioblastoma (GBM) multiforme tumor shows survival mechanisms able to overcome hypoxia in the brain. Starting from yeast and our findings on the role of Ubp8 in hypoxia, we extended our analysis to the human ortholog and signature cancer gene Usp22 in glioblastoma tumor specimens. Here we demonstrate that Usp22 is localized and overexpressed in the pseudo-palisade tissue around the necrotic area of the tumor. In addition, Usp22 colocalizes with the mitophagy marker Parkin, indicating a link with mitochondria function in GBM. Collectively, this evidence suggests that altered expression of Usp22 might provide a way for tumor cells to survive in hypoxic conditions, allowing the escape of cells from the necrotic area toward vascularized tissues. Collectively, our experimental data suggest a model for a possible mechanism of uncontrolled proliferation and invasion in glioblastoma.
Collapse
Affiliation(s)
- Veronica De Luca
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Manuela Leo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Elisabetta Cretella
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Arianna Montanari
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Michele Saliola
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Gabriele Ciaffi
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
- Correspondence: (A.S.); (P.F.); Tel.: +39-06-3377-6102 (A.S.)
| | - Patrizia Filetici
- Institute of Molecular Biology and Pathology—CNR, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (A.S.); (P.F.); Tel.: +39-06-3377-6102 (A.S.)
| |
Collapse
|
23
|
Infectious Spleen and Kidney Necrosis Virus (ISKNV) Triggers Mitochondria-Mediated Dynamic Interaction Signals via an Imbalance of Bax/Bak over Bcl-2/Bcl-xL in Fish Cells. Viruses 2022; 14:v14050922. [PMID: 35632664 PMCID: PMC9144193 DOI: 10.3390/v14050922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
The molecular pathogenesis of infectious spleen and kidney necrosis virus (ISKNV) infections is important but has rarely been studied in connection to host organelle behavior. In the present study, we demonstrated that ISKNV can induce host cell death via a pro-apoptotic Bcl-2 and anti-apoptotic Bcl-2 family member imbalance in mitochondrial membrane potential (MMP or ΔΨm) regulation in GF-1 cells. The results of our study on ISKNV infection showed that it can induce host cell death by up to 80% at day 5 post-infection. Subsequently, in an apoptotic assay, ISKNV infection was seen to induce an increase in Annexin-V-positive signals by 20% and in propidium iodide (PI) staining-positive signals by up to 30% at day 5 (D5) in GF-1 cells. Then, through our studies on the mechanism of cell death in mitochondria function, we found that ISKNV can induce MMP loss by up to 58% and 78% at days 4 and 5 with a JC1 dye staining assay. Furthermore, we found that pro-apoptotic members Bax and Bak were upregulated from the early replication stage (day one) to the late stage (day 5), but the expression profiles were very dynamically different. On the other hand, by Western blotted analysis, the anti-apoptotic members Bcl-2 and Bcl-xL were upregulated very quickly at the same time from day one (two-fold) and continued to maintain this level at day five. Finally, we found that pro-apoptotic death signals strongly activated the downstream signals of caspase-9 and -3. Taken together, these results suggest that ISKNV infection can induce Bax/Bak-mediated cell death signaling downstream of caspase-9 and -3 activation. During the viral replication cycle with the cell death induction process, the anti-apoptotic members Bcl-2/Bcl-xL interacted with the pro-apoptotic members Bax/Bak to maintain the mitochondrial function in the dynamic interaction so as to maintain the MMP in GF-1 cells. These findings may provide insights into DNA-virus control and treatment.
Collapse
|
24
|
Walker BR, Moraes CT. Nuclear-Mitochondrial Interactions. Biomolecules 2022; 12:biom12030427. [PMID: 35327619 PMCID: PMC8946195 DOI: 10.3390/biom12030427] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria, the cell’s major energy producers, also act as signaling hubs, interacting with other organelles both directly and indirectly. Despite having its own circular genome, the majority of mitochondrial proteins are encoded by nuclear DNA. To respond to changes in cell physiology, the mitochondria must send signals to the nucleus, which can, in turn, upregulate gene expression to alter metabolism or initiate a stress response. This is known as retrograde signaling. A variety of stimuli and pathways fall under the retrograde signaling umbrella. Mitochondrial dysfunction has already been shown to have severe implications for human health. Disruption of retrograde signaling, whether directly associated with mitochondrial dysfunction or cellular environmental changes, may also contribute to pathological deficits. In this review, we discuss known signaling pathways between the mitochondria and the nucleus, examine the possibility of direct contacts, and identify pathological consequences of an altered relationship.
Collapse
Affiliation(s)
- Brittni R. Walker
- Neuroscience Program, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm. 229, Miami, FL 33136, USA;
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm. 229, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-243-5858
| |
Collapse
|
25
|
Xu Y, Erdjument‐Bromage H, Phoon CKL, Neubert TA, Ren M, Schlame M. Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane. EMBO J 2021; 40:e108428. [PMID: 34661298 PMCID: PMC8634138 DOI: 10.15252/embj.2021108428] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial cristae are extraordinarily crowded with proteins, which puts stress on the bilayer organization of lipids. We tested the hypothesis that the high concentration of proteins drives the tafazzin-catalyzed remodeling of fatty acids in cardiolipin, thereby reducing bilayer stress in the membrane. Specifically, we tested whether protein crowding induces cardiolipin remodeling and whether the lack of cardiolipin remodeling prevents the membrane from accumulating proteins. In vitro, the incorporation of large amounts of proteins into liposomes altered the outcome of the remodeling reaction. In yeast, the concentration of proteins involved in oxidative phosphorylation (OXPHOS) correlated with the cardiolipin composition. Genetic ablation of either remodeling or biosynthesis of cardiolipin caused a substantial drop in the surface density of OXPHOS proteins in the inner membrane of the mouse heart and Drosophila flight muscle mitochondria. Our data suggest that OXPHOS protein crowding induces cardiolipin remodelling and that remodeled cardiolipin supports the high concentration of these proteins in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Yang Xu
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Hediye Erdjument‐Bromage
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Colin K L Phoon
- Department of PediatricsNew York University Grossman School of MedicineNew YorkNYUSA
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Mindong Ren
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Michael Schlame
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| |
Collapse
|
26
|
Putative role of uncoupling proteins in mitochondria-nucleus communications and DNA damage response. J Biosci 2021. [DOI: 10.1007/s12038-021-00224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Eisenberg-Bord M, Zung N, Collado J, Drwesh L, Fenech EJ, Fadel A, Dezorella N, Bykov YS, Rapaport D, Fernandez-Busnadiego R, Schuldiner M. Cnm1 mediates nucleus-mitochondria contact site formation in response to phospholipid levels. J Cell Biol 2021; 220:212719. [PMID: 34694322 PMCID: PMC8548916 DOI: 10.1083/jcb.202104100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease.
Collapse
Affiliation(s)
| | - Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Javier Collado
- Institute for Neuropathology, Georg August Universität Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Yury S Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Ruben Fernandez-Busnadiego
- Institute for Neuropathology, Georg August Universität Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Zhao J, Qu D, Xi Z, Huan Y, Zhang K, Yu C, Yang D, Kang J, Lin W, Wu S, Wang Y. Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF. Transl Res 2021; 235:102-114. [PMID: 33798765 DOI: 10.1016/j.trsl.2021.03.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/21/2021] [Accepted: 03/23/2021] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and paralysis around the world. Secondary injury, characterized by progressive neuronal loss and astrogliosis, plays important roles in the post-TBI cognitive impairment and mood disorder. Unfortunately, there still lacks effective treatments, particularly surgery interferences for it. Recent findings of intercellular mitochondria transfer implies a potential therapeutic value of mitochondria transplantation for TBI, which has not been tested yet. In the present study, we demonstrated a quick dysfunction of mitochondria, up-regulation of Tom20 in the injured cortex and subsequent cognitive and mood impairment. Our data demonstrated that mitochondria derived from allogeneic liver or autogeneic muscle stimulated similar microglial activation in brain parenchyma. In vitro experiments showed that exogenous mitochondria could be easily internalized by neurons, astrocytes, and microglia, except for oligodendrocytes. Mitochondria transplantation effectively rescued neuronal apoptosis, restored the expression of Tom20 and the phosphorylation of JNK. Further analysis revealed that mitochondria transplantation in injured cortex induced a significant up-regulation of BDNF in reactive astrocytes, improved animals' spatial memory and alleviated anxiety. In together, our data indicate that mitochondria transplantation may has the potential of clinical translation for TBI treatment, in combination with surgery.
Collapse
Affiliation(s)
- Jiqian Zhao
- Department of Neurobiology and Institute of Neurosciences, School of Basic, Medicine, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Dujie Qu
- Department of General Practice, Luochuan County Hospital, Yanan, Shaanxi, PR China
| | - Zihan Xi
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Kun Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic, Medicine, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Caiyong Yu
- Department of Neurobiology and Institute of Neurosciences, School of Basic, Medicine, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Dingding Yang
- Department of Neurobiology and Institute of Neurosciences, School of Basic, Medicine, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Junjun Kang
- Department of Neurobiology and Institute of Neurosciences, School of Basic, Medicine, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Lin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic, Medicine, Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic, Medicine, Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
29
|
Poveda-Huertes D, Taskin AA, Dhaouadi I, Myketin L, Marada A, Habernig L, Büttner S, Vögtle FN. Increased mitochondrial protein import and cardiolipin remodelling upon early mtUPR. PLoS Genet 2021; 17:e1009664. [PMID: 34214073 PMCID: PMC8282050 DOI: 10.1371/journal.pgen.1009664] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/15/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial defects can cause a variety of human diseases and protective mechanisms exist to maintain mitochondrial functionality. Imbalances in mitochondrial proteostasis trigger a transcriptional program, termed mitochondrial unfolded protein response (mtUPR). However, the temporal sequence of events in mtUPR is unclear and the consequences on mitochondrial protein import are controversial. Here, we have quantitatively analyzed all main import pathways into mitochondria after different time spans of mtUPR induction. Kinetic analyses reveal that protein import into all mitochondrial subcompartments strongly increases early upon mtUPR and that this is accompanied by rapid remodelling of the mitochondrial signature lipid cardiolipin. Genetic inactivation of cardiolipin synthesis precluded stimulation of protein import and compromised cellular fitness. At late stages of mtUPR upon sustained stress, mitochondrial protein import efficiency declined. Our work clarifies the enigma of protein import upon mtUPR and identifies sequential mtUPR stages, in which an early increase in protein biogenesis to restore mitochondrial proteostasis is followed by late stages characterized by a decrease in import capacity upon prolonged stress induction.
Collapse
Affiliation(s)
- Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ines Dhaouadi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Gao H, Tripathi U, Trushin S, Okromelidze L, Pichurin NP, Wei L, Zhuang Y, Wang L, Trushina E. A genome-wide association study in human lymphoblastoid cells supports safety of mitochondrial complex I inhibitor. Mitochondrion 2021; 58:83-94. [PMID: 33610756 PMCID: PMC8743030 DOI: 10.1016/j.mito.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 01/12/2023]
Abstract
Novel therapeutic strategies for Alzheimer's disease (AD) are of the greatest priority given the consistent failure of recent clinical trials focused on Aβ or pTau. Earlier, we demonstrated that mild mitochondrial complex I inhibitor CP2 blocks neurodegeneration and cognitive decline in multiple mouse models of AD. To evaluate the safety of CP2 in humans, we performed a genome-wide association study (GWAS) using 196 lymphoblastoid cell lines and identified 11 SNP loci and 64 mRNA expression probe sets that potentially associate with CP2 susceptibility. Using primary mouse neurons and pharmacokinetic study, we show that CP2 is generally safe at a therapeutic dose.
Collapse
Affiliation(s)
- Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Lela Okromelidze
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Nicholas P Pichurin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Lixuan Wei
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Yongxian Zhuang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Eugenia Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA; Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
31
|
Fard-Aghaie MH, Budai A, Daradics N, Horvath G, Oldhafer KJ, Szijarto A, Fulop A. The effects of physical prehabilitation: Improved liver regeneration and mitochondrial function after ALPPS operation in a rodent model. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2021; 28:692-702. [PMID: 33742528 DOI: 10.1002/jhbp.945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND To identify the role of physical prehabilitation (PP) in liver regeneration, mitochondrial function, biogenesis, and inflammatory response was investigated after associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) in a rodent model. METHODS Male Wistar rats (n = 60) underwent ALPPS. Animals were divided (n = 30) to the physical prehabilitation group (PP) and sedentary group (S). The animals were exsanguinated before (0 hour) and 24, 48, 72, or 168 hours after the operation. Regeneration rate and proliferation index were assessed. Mitochondrial function, biogenesis, and inflammatory response were evaluated. RESULTS Regeneration rate and Ki67 index were significantly increased in the PP group compared to the S group (P < .001). Due to the changes in oxidative capacity and ATP production rate, the P/O ratio of PP group compared to the S group was significantly increased (P < .05). PP group was characterized by accelerated mitochondrial biogenesis and less intense inflammatory response compared to the S group. CONCLUSIONS To our knowledge, this is the first demonstration of the beneficial effects of PP on liver regeneration, mitochondrial function, biogenesis, and the inflammatory response after ALPPS.
Collapse
Affiliation(s)
| | - Andras Budai
- 1st Department of Surgery and Interventional Gastroenterology, Hepato-Pancreatico-Biliary (HPB) Surgical Research Center Hungary, Semmelweis University, Budapest, Hungary
| | - Noemi Daradics
- 1st Department of Surgery and Interventional Gastroenterology, Hepato-Pancreatico-Biliary (HPB) Surgical Research Center Hungary, Semmelweis University, Budapest, Hungary
| | - Gergo Horvath
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Karl J Oldhafer
- Medical Faculty, Asklepios Campus Hamburg, Semmelweis University, Hamburg, Germany
| | - Attila Szijarto
- 1st Department of Surgery and Interventional Gastroenterology, Hepato-Pancreatico-Biliary (HPB) Surgical Research Center Hungary, Semmelweis University, Budapest, Hungary
| | - Andras Fulop
- 1st Department of Surgery and Interventional Gastroenterology, Hepato-Pancreatico-Biliary (HPB) Surgical Research Center Hungary, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Lin KL, Chen SD, Lin KJ, Liou CW, Chuang YC, Wang PW, Chuang JH, Lin TK. Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:636295. [PMID: 33829016 PMCID: PMC8019794 DOI: 10.3389/fcell.2021.636295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide. Multiple factors are known to affect the cardiovascular system from lifestyles, genes, underlying comorbidities, and age. Requiring high workload, metabolism of the heart is largely dependent on continuous power supply via mitochondria through effective oxidative respiration. Mitochondria not only serve as cellular power plants, but are also involved in many critical cellular processes, including the generation of intracellular reactive oxygen species (ROS) and regulating cellular survival. To cope with environmental stress, mitochondrial function has been suggested to be essential during bioenergetics adaptation resulting in cardiac pathological remodeling. Thus, mitochondrial dysfunction has been advocated in various aspects of cardiovascular pathology including the response to ischemia/reperfusion (I/R) injury, hypertension (HTN), and cardiovascular complications related to type 2 diabetes mellitus (DM). Therefore, mitochondrial homeostasis through mitochondrial dynamics and quality control is pivotal in the maintenance of cardiac health. Impairment of the segregation of damaged components and degradation of unhealthy mitochondria through autophagic mechanisms may play a crucial role in the pathogenesis of various cardiac disorders. This article provides in-depth understanding of the current literature regarding mitochondrial remodeling and dynamics in cardiovascular diseases.
Collapse
Affiliation(s)
- Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Čunátová K, Reguera DP, Vrbacký M, Fernández-Vizarra E, Ding S, Fearnley IM, Zeviani M, Houštěk J, Mráček T, Pecina P. Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis. Cells 2021; 10:369. [PMID: 33578848 PMCID: PMC7916595 DOI: 10.3390/cells10020369] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
The oxidative phosphorylation (OXPHOS) system localized in the inner mitochondrial membrane secures production of the majority of ATP in mammalian organisms. Individual OXPHOS complexes form supramolecular assemblies termed supercomplexes. The complexes are linked not only by their function but also by interdependency of individual complex biogenesis or maintenance. For instance, cytochrome c oxidase (cIV) or cytochrome bc1 complex (cIII) deficiencies affect the level of fully assembled NADH dehydrogenase (cI) in monomeric as well as supercomplex forms. It was hypothesized that cI is affected at the level of enzyme assembly as well as at the level of cI stability and maintenance. However, the true nature of interdependency between cI and cIV is not fully understood yet. We used a HEK293 cellular model where the COX4 subunit was completely knocked out, serving as an ideal system to study interdependency of cI and cIV, as early phases of cIV assembly process were disrupted. Total absence of cIV was accompanied by profound deficiency of cI, documented by decrease in the levels of cI subunits and significantly reduced amount of assembled cI. Supercomplexes assembled from cI, cIII, and cIV were missing in COX4I1 knock-out (KO) due to loss of cIV and decrease in cI amount. Pulse-chase metabolic labeling of mitochondrial DNA (mtDNA)-encoded proteins uncovered a decrease in the translation of cIV and cI subunits. Moreover, partial impairment of mitochondrial protein synthesis correlated with decreased content of mitochondrial ribosomal proteins. In addition, complexome profiling revealed accumulation of cI assembly intermediates, indicating that cI biogenesis, rather than stability, was affected. We propose that attenuation of mitochondrial protein synthesis caused by cIV deficiency represents one of the mechanisms, which may impair biogenesis of cI.
Collapse
Affiliation(s)
- Kristýna Čunátová
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - David Pajuelo Reguera
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| | - Marek Vrbacký
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| | - Erika Fernández-Vizarra
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; (E.F.-V.); (S.D.); (I.M.F.); (M.Z.)
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; (E.F.-V.); (S.D.); (I.M.F.); (M.Z.)
| | - Ian M. Fearnley
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; (E.F.-V.); (S.D.); (I.M.F.); (M.Z.)
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; (E.F.-V.); (S.D.); (I.M.F.); (M.Z.)
| | - Josef Houštěk
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| | - Tomáš Mráček
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| |
Collapse
|
34
|
Wu J, Venkata Subbaiah KC, Jiang F, Hedaya O, Mohan A, Yang T, Welle K, Ghaemmaghami S, Tang WHW, Small E, Yan C, Yao P. MicroRNA-574 regulates FAM210A expression and influences pathological cardiac remodeling. EMBO Mol Med 2021; 13:e12710. [PMID: 33369227 PMCID: PMC7863409 DOI: 10.15252/emmm.202012710] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Aberrant expression of mitochondrial proteins impairs cardiac function and causes heart disease. The mechanism of regulation of mitochondria encoded protein expression during cardiac disease, however, remains underexplored. Here, we show that multiple pathogenic cardiac stressors induce the expression of miR-574 guide and passenger strands (miR-574-5p/3p) in both humans and mice. miR-574 knockout mice exhibit severe cardiac disorder under different pathogenic cardiac stresses while miR-574-5p/3p mimics that are delivered systematically using nanoparticles reduce cardiac pathogenesis under disease insults. Transcriptomic analysis of miR-574-null hearts uncovers family with sequence similarity 210 member A (FAM210A) as a common target mRNA of miR-574-5p and miR-574-3p. The interactome capture analysis suggests that FAM210A interacts with mitochondrial translation elongation factor EF-Tu. Manipulating miR-574-5p/3p or FAM210A expression changes the protein expression of mitochondrial-encoded electron transport chain (ETC) genes but not nuclear-encoded mitochondrial ETC genes in both human AC16 cardiomyocyte cells and miR-574-null murine hearts. Together, we discovered that miR-574 regulates FAM210A expression and modulates mitochondrial-encoded protein expression, which may influence cardiac remodeling in heart failure.
Collapse
Affiliation(s)
- Jiangbin Wu
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Kadiam C Venkata Subbaiah
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Feng Jiang
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- Department of Biochemistry & BiophysicsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Omar Hedaya
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- Department of Biochemistry & BiophysicsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Amy Mohan
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Tingting Yang
- Department of OphthalmologyColumbia UniversityNew YorkNYUSA
| | - Kevin Welle
- Mass Spectrometry Resource LabUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource LabUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | | | - Eric Small
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Chen Yan
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| | - Peng Yao
- Department of MedicineAab Cardiovascular Research InstituteUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- Department of Biochemistry & BiophysicsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- The Center for RNA BiologyUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
- The Center for Biomedical InformaticsUniversity of Rochester School of Medicine & DentistryRochester, New YorkNYUSA
| |
Collapse
|
35
|
Gomez-Fabra Gala M, Vögtle FN. Mitochondrial proteases in human diseases. FEBS Lett 2021; 595:1205-1222. [PMID: 33453058 DOI: 10.1002/1873-3468.14039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria contain more than 1000 different proteins, including several proteolytic enzymes. These mitochondrial proteases form a complex system that performs limited and terminal proteolysis to build the mitochondrial proteome, maintain, and control its functions or degrade mitochondrial proteins and peptides. During protein biogenesis, presequence proteases cleave and degrade mitochondrial targeting signals to obtain mature functional proteins. Processing by proteases also exerts a regulatory role in modulation of mitochondrial functions and quality control enzymes degrade misfolded, aged, or superfluous proteins. Depending on their different functions and substrates, defects in mitochondrial proteases can affect the majority of the mitochondrial proteome or only a single protein. Consequently, mutations in mitochondrial proteases have been linked to several human diseases. This review gives an overview of the components and functions of the mitochondrial proteolytic machinery and highlights the pathological consequences of dysfunctional mitochondrial protein processing and turnover.
Collapse
Affiliation(s)
- Maria Gomez-Fabra Gala
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany
| | - Friederike-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
| |
Collapse
|
36
|
FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability. Commun Biol 2021; 4:127. [PMID: 33514811 PMCID: PMC7846573 DOI: 10.1038/s42003-021-01647-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.
Collapse
|
37
|
Li YQ, Jiao Y, Liu YN, Fu JY, Sun LK, Su J. PGC-1α protects from myocardial ischaemia-reperfusion injury by regulating mitonuclear communication. J Cell Mol Med 2021; 26:593-600. [PMID: 33470050 PMCID: PMC8817131 DOI: 10.1111/jcmm.16236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The recovery of blood supply after a period of myocardial ischaemia does not restore the heart function and instead results in a serious dysfunction called myocardial ischaemia‐reperfusion injury (IRI), which involves several complex pathophysiological processes. Mitochondria have a wide range of functions in maintaining the cellular energy supply, cell signalling and programmed cell death. When mitochondrial function is insufficient or disordered, it may have adverse effects on myocardial ischaemia‐reperfusion and therefore mitochondrial dysfunction caused by oxidative stress a core molecular mechanism of IRI. Peroxisome proliferator‐activated receptor gamma co‐activator 1α (PGC‐1α) is an important antioxidant molecule found in mitochondria. However, its role in IRI has not yet been systematically summarized. In this review, we speculate the role of PGC‐1α as a key regulator of mitonuclear communication, which may interacts with nuclear factor, erythroid 2 like ‐1 and ‐2 (NRF‐1/2) to inhibit mitochondrial oxidative stress, promote the clearance of damaged mitochondria, enhance mitochondrial biogenesis, and reduce the burden of IRI.
Collapse
Affiliation(s)
- Yan-Qing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ya-Nan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jia-Ying Fu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lian-Kun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
38
|
Frankovsky J, Vozáriková V, Nosek J, Tomáška Ľ. Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion 2021; 57:148-162. [PMID: 33412333 DOI: 10.1016/j.mito.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is one of the best-known post-translational modifications occurring in all domains of life. In eukaryotes, protein phosphorylation affects all cellular compartments including mitochondria. High-throughput techniques of mass spectrometry combined with cell fractionation and biochemical methods yielded thousands of phospho-sites on hundreds of mitochondrial proteins. We have compiled the information on mitochondrial protein kinases and phosphatases and their substrates in Saccharomyces cerevisiae and provide the current state-of-the-art overview of mitochondrial protein phosphorylation in this model eukaryote. Using several examples, we describe emerging features of the yeast mitochondrial phosphoproteome and present challenges lying ahead in this exciting field.
Collapse
Affiliation(s)
- Jan Frankovsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
39
|
Lin TK, Lin KJ, Lin KL, Liou CW, Chen SD, Chuang YC, Wang PW, Chuang JH, Wang TJ. When Friendship Turns Sour: Effective Communication Between Mitochondria and Intracellular Organelles in Parkinson's Disease. Front Cell Dev Biol 2020; 8:607392. [PMID: 33330511 PMCID: PMC7733999 DOI: 10.3389/fcell.2020.607392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease with pathological hallmarks including progressive neuronal loss from the substantia nigra pars compacta and α-synuclein intraneuronal inclusions, known as Lewy bodies. Although the etiology of PD remains elusive, mitochondrial damage has been established to take center stage in the pathogenesis of PD. Mitochondria are critical to cellular energy production, metabolism, homeostasis, and stress responses; the association with PD emphasizes the importance of maintenance of mitochondrial network integrity. To accomplish the pleiotropic functions, mitochondria are dynamic not only within their own network but also in orchestrated coordination with other organelles in the cellular community. Through physical contact sites, signal transduction, and vesicle transport, mitochondria and intracellular organelles achieve the goals of calcium homeostasis, redox homeostasis, protein homeostasis, autophagy, and apoptosis. Herein, we review the finely tuned interactions between mitochondria and surrounding intracellular organelles, with focus on the nucleus, endoplasmic reticulum, Golgi apparatus, peroxisomes, and lysosomes. Participants that may contribute to the pathogenic mechanisms of PD will be highlighted in this review.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Jou Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
40
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Vögtle F. Open questions on the mitochondrial unfolded protein response. FEBS J 2020; 288:2856-2869. [DOI: 10.1111/febs.15569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Friederike‐Nora Vögtle
- Institute of Biochemistry and Molecular Biology ZBMZ Faculty of Medicine University of Freiburg Germany
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Germany
| |
Collapse
|
42
|
Ludwig-Słomczyńska AH, Seweryn MT, Kapusta P, Pitera E, Handelman SK, Mantaj U, Cyganek K, Gutaj P, Dobrucka Ł, Wender-Ożegowska E, Małecki MT, Wołkow PP. Mitochondrial GWAS and association of nuclear - mitochondrial epistasis with BMI in T1DM patients. BMC Med Genomics 2020; 13:97. [PMID: 32635923 PMCID: PMC7341625 DOI: 10.1186/s12920-020-00752-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND BMI is a strong indicator of complications from type I diabetes, especially under intensive treatment. METHODS We have genotyped 435 type 1 diabetics using Illumina Infinium Omni Express Exome-8 v1.4 arrays and performed mitoGWAS on BMI. We identified additive interactions between mitochondrial and nuclear variants in genes associated with mitochondrial functioning MitoCarta2.0 and confirmed and refined the results on external cohorts: the Framingham Heart Study (FHS) and GTEx data. Linear mixed model analysis was performed using the GENESIS package in R/Bioconductor. RESULTS We find a borderline significant association between the mitochondrial variant rs28357980, localized to MT-ND2, and BMI (β = - 0.69, p = 0.056). This BMI association was confirmed on 1889 patients from FHS cohort (β = - 0.312, p = 0.047). Next, we searched for additive interactions between mitochondrial and nuclear variants. MT-ND2 variants interacted with variants in the genes SIRT3, ATP5B, CYCS, TFB2M and POLRMT. TFB2M is a mitochondrial transcription factor and together with TFAM creates a transcription promoter complex for the mitochondrial polymerase POLRMT. We have found an interaction between rs3021088 in MT-ND2 and rs6701836 in TFB2M leading to BMI decrease (inter_pval = 0.0241), while interaction of rs3021088 in MT-ND2 and rs41542013 in POLRMT led to BMI increase (inter_pval = 0.0004). The influence of these interactions on BMI was confirmed in external cohorts. CONCLUSIONS Here, we have shown that variants in the mitochondrial genome as well as additive interactions between mitochondrial and nuclear SNPs influence BMI in T1DM and general cohorts.
Collapse
Affiliation(s)
| | - Michał T Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
- The Ohio State University Wexner Medical Center, Department of Cancer Biology and Genetics, Columbus, OH, USA
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Ewelina Pitera
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Samuel K Handelman
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Urszula Mantaj
- Division of Reproduction, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Cyganek
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | - Paweł Gutaj
- Division of Reproduction, Poznań University of Medical Sciences, Poznań, Poland
| | - Łucja Dobrucka
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | | | - Maciej T Małecki
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
43
|
Nakhle J, Rodriguez AM, Vignais ML. Multifaceted Roles of Mitochondrial Components and Metabolites in Metabolic Diseases and Cancer. Int J Mol Sci 2020; 21:E4405. [PMID: 32575796 PMCID: PMC7352686 DOI: 10.3390/ijms21124405] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are essential cellular components that ensure physiological metabolic functions. They provide energy in the form of adenosine triphosphate (ATP) through the electron transport chain (ETC). They also constitute a metabolic hub in which metabolites are used and processed, notably through the tricarboxylic acid (TCA) cycle. These newly generated metabolites have the capacity to feed other cellular metabolic pathways; modify cellular functions; and, ultimately, generate specific phenotypes. Mitochondria also provide intracellular signaling cues through reactive oxygen species (ROS) production. As expected with such a central cellular role, mitochondrial dysfunctions have been linked to many different diseases. The origins of some of these diseases could be pinpointed to specific mutations in both mitochondrial- and nuclear-encoded genes. In addition to their impressive intracellular tasks, mitochondria also provide intercellular signaling as they can be exchanged between cells, with resulting effects ranging from repair of damaged cells to strengthened progression and chemo-resistance of cancer cells. Several therapeutic options can now be envisioned to rescue mitochondria-defective cells. They include gene therapy for both mitochondrial and nuclear defective genes. Transferring exogenous mitochondria to target cells is also a whole new area of investigation. Finally, supplementing targeted metabolites, possibly through microbiota transplantation, appears as another therapeutic approach full of promises.
Collapse
Affiliation(s)
- Jean Nakhle
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, F-34090 Montpellier, France;
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, Univ Montpellier, F-34090 Montpellier, France
| | - Anne-Marie Rodriguez
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- EnvA, IMRB, F-94700 Maisons-Alfort, France
- EFS, Mondor Institute for Biomedical Research (IMRB), F-94010 Creteil, France
- AP-HP, Hopital Mondor, Service d’histologie, F-94010 Creteil, France
| | - Marie-Luce Vignais
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, F-34090 Montpellier, France;
| |
Collapse
|
44
|
Samhadaneh DM, Mandl GA, Han Z, Mahjoob M, Weber SC, Tuznik M, Rudko DA, Capobianco JA, Stochaj U. Evaluation of Lanthanide-Doped Upconverting Nanoparticles for in Vitro and in Vivo Applications. ACS APPLIED BIO MATERIALS 2020; 3:4358-4369. [DOI: 10.1021/acsabm.0c00381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Dana M. Samhadaneh
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gabrielle A. Mandl
- Department of Chemistry & Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Zhao Han
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maryam Mahjoob
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stephanie C. Weber
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Marius Tuznik
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - David A. Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - John A. Capobianco
- Department of Chemistry & Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
45
|
Zung N, Schuldiner M. New horizons in mitochondrial contact site research. Biol Chem 2020; 401:793-809. [PMID: 32324151 DOI: 10.1515/hsz-2020-0133] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Contact sites, areas where two organelles are held in close proximity through the action of molecular tethers, enable non-vesicular communication between compartments. Mitochondria have been center stage in the contact site field since the discovery of the first contact between mitochondria and the endoplasmic reticulum (ER) over 60 years ago. However, only now, in the last decade, has there been a burst of discoveries regarding contact site biology in general and mitochondrial contacts specifically. The number and types of characterized contacts increased dramatically, new molecular mechanisms enabling contact formation were discovered, additional unexpected functions for contacts were shown, and their roles in cellular and organismal physiology were emphasized. Here, we focus on mitochondria as we highlight the most recent developments, future goals and unresolved questions in the field.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
46
|
Taskin AA, Poveda-Huertes D, Vögtle FN. Author's View: a nuclear transcription factor relocalizing to mitochondria rescues cells from proteotoxic aggregates. Mol Cell Oncol 2020; 7:1698256. [PMID: 31993502 PMCID: PMC6961659 DOI: 10.1080/23723556.2019.1698256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
Abstract
Mitochondrial proteostasis is essential for survival, and imbalances can result in severe human diseases. We identified a novel stress response triggered upon accumulation of proteotoxic aggregates in the mitochondrial matrix. Mitochondria-to-nucleus signaling results in a transcriptional response and translocation of a nuclear transcription factor into mitochondria to maintain mitochondrial gene expression.
Collapse
Affiliation(s)
- Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Poveda-Huertes D, Matic S, Marada A, Habernig L, Licheva M, Myketin L, Gilsbach R, Tosal-Castano S, Papinski D, Mulica P, Kretz O, Kücükköse C, Taskin AA, Hein L, Kraft C, Büttner S, Meisinger C, Vögtle FN. An Early mtUPR: Redistribution of the Nuclear Transcription Factor Rox1 to Mitochondria Protects against Intramitochondrial Proteotoxic Aggregates. Mol Cell 2020; 77:180-188.e9. [PMID: 31630969 PMCID: PMC6941230 DOI: 10.1016/j.molcel.2019.09.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
The mitochondrial proteome is built mainly by import of nuclear-encoded precursors, which are targeted mostly by cleavable presequences. Presequence processing upon import is essential for proteostasis and survival, but the consequences of dysfunctional protein maturation are unknown. We find that impaired presequence processing causes accumulation of precursors inside mitochondria that form aggregates, which escape degradation and unexpectedly do not cause cell death. Instead, cells survive via activation of a mitochondrial unfolded protein response (mtUPR)-like pathway that is triggered very early after precursor accumulation. In contrast to classical stress pathways, this immediate response maintains mitochondrial protein import, membrane potential, and translation through translocation of the nuclear HMG-box transcription factor Rox1 to mitochondria. Rox1 binds mtDNA and performs a TFAM-like function pivotal for transcription and translation. Induction of early mtUPR provides a reversible stress model to mechanistically dissect the initial steps in mtUPR pathways with the stressTFAM Rox1 as the first line of defense.
Collapse
Affiliation(s)
- Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stanka Matic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Sergi Tosal-Castano
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Daniel Papinski
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030 Vienna, Austria
| | - Patrycja Mulica
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Cansu Kücükköse
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden; Institute for Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
48
|
Madreiter‐Sokolowski CT, Ramadani‐Muja J, Ziomek G, Burgstaller S, Bischof H, Koshenov Z, Gottschalk B, Malli R, Graier WF. Tracking intra- and inter-organelle signaling of mitochondria. FEBS J 2019; 286:4378-4401. [PMID: 31661602 PMCID: PMC6899612 DOI: 10.1111/febs.15103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria are as highly specialized organelles and masters of the cellular energy metabolism in a constant and dynamic interplay with their cellular environment, providing adenosine triphosphate, buffering Ca2+ and fundamentally contributing to various signaling pathways. Hence, such broad field of action within eukaryotic cells requires a high level of structural and functional adaptation. Therefore, mitochondria are constantly moving and undergoing fusion and fission processes, changing their shape and their interaction with other organelles. Moreover, mitochondrial activity gets fine-tuned by intra- and interorganelle H+ , K+ , Na+ , and Ca2+ signaling. In this review, we provide an up-to-date overview on mitochondrial strategies to adapt and respond to, as well as affect, their cellular environment. We also present cutting-edge technologies used to track and investigate subcellular signaling, essential to the understanding of various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Corina T. Madreiter‐Sokolowski
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
- Department of Health Sciences and TechnologyETH ZurichSchwerzenbachSwitzerland
| | - Jeta Ramadani‐Muja
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Gabriela Ziomek
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
- BioTechMedGrazAustria
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
- BioTechMedGrazAustria
| |
Collapse
|
49
|
Andréasson C, Ott M, Büttner S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 2019; 20:e47865. [PMID: 31531937 PMCID: PMC6776902 DOI: 10.15252/embr.201947865] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
The eukaryotic cell is morphologically and functionally organized as an interconnected network of organelles that responds to stress and aging. Organelles communicate via dedicated signal transduction pathways and the transfer of information in form of metabolites and energy levels. Recent data suggest that the communication between organellar proteostasis systems is a cornerstone of cellular stress responses in eukaryotic cells. Here, we discuss the integration of proteostasis and energy fluxes in the regulation of cellular stress and aging. We emphasize the molecular architecture of the regulatory transcriptional pathways that both sense and control metabolism and proteostasis. A special focus is placed on mechanistic insights gained from the model organism budding yeast in signaling from mitochondria to the nucleus and how this shapes cellular fitness.
Collapse
Affiliation(s)
- Claes Andréasson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Sabrina Büttner
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| |
Collapse
|
50
|
Dakik P, Medkour Y, Mohammad K, Titorenko VI. Mechanisms Through Which Some Mitochondria-Generated Metabolites Act as Second Messengers That Are Essential Contributors to the Aging Process in Eukaryotes Across Phyla. Front Physiol 2019; 10:461. [PMID: 31057428 PMCID: PMC6482166 DOI: 10.3389/fphys.2019.00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies have revealed that some low-molecular weight molecules produced in mitochondria are essential contributing factors to aging and aging-associated pathologies in evolutionarily distant eukaryotes. These molecules are intermediates or products of certain metabolic reactions that are activated in mitochondria in response to specific changes in the nutrient, stress, proliferation, or age status of the cell. After being released from mitochondria, these metabolites directly or indirectly change activities of a distinct set of protein sensors that reside in various cellular locations outside of mitochondria. Because these protein sensors control the efficiencies of some pro- or anti-aging cellular processes, such changes in their activities allow to create a pro- or anti-aging cellular pattern. Thus, mitochondria can function as signaling platforms that respond to certain changes in cell stress and physiology by remodeling their metabolism and releasing a specific set of metabolites known as "mitobolites." These mitobolites then define the pace of cellular and organismal aging because they regulate some longevity-defining processes taking place outside of mitochondria. In this review, we discuss recent progress in understanding mechanisms underlying the ability of mitochondria to function as such signaling platforms in aging and aging-associated diseases.
Collapse
|