1
|
Reymondet E, Grimond J, Beisel JN, Jacquet S. Photogrammetric assessment of quagga mussel growth shows no winter cessation in lake Geneva. Sci Rep 2025; 15:8309. [PMID: 40064996 PMCID: PMC11894061 DOI: 10.1038/s41598-025-93064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The quagga mussel (Dreissena rostriformis bugensis) is an invasive alien species present in many aquatic ecosystems. Although this species is known for its ecological and economic impacts, there are still significant gaps in our knowledge of its ecophysiology. This is particularly true when its growth rate under natural conditions is considered. Using a photogrammetry-based approach, we assessed bivalve growth in Lake Geneva during different seasons and for a variety of habitats. Based on the recorded changes in maximum shell length analysed during the period of this study (winter and spring 2023-2024), we measured average growth rates ranging from 0.142 ± 0.099 mm day-1 for individuals smaller than 10 mm to 0.089 ± 0.071 mm day-1 for larger individuals. The size class-dependent growth rate was analysed on the basis of the time of year, the type of environment (depth, substrate) or, again, the temperature. Our results reveal that the growth rate, obtained in situ and without manipulation, primarily depends on size and is independent of temperature or habitat within the studied range. This growth capacity in Lake Geneva is the highest found to date and is likely to explain the invasion success of this species.
Collapse
Affiliation(s)
- Erwin Reymondet
- Université Savoie Mont Blanc, INRAE, CARRTEL, 75 bis avenue de Corzent, 74203, Thonon-les-Bains, France
| | | | | | - Stéphan Jacquet
- Université Savoie Mont Blanc, INRAE, CARRTEL, 75 bis avenue de Corzent, 74203, Thonon-les-Bains, France.
| |
Collapse
|
2
|
Hulme PE. Trouble on the horizon: anticipating biological invasions through futures thinking. Biol Rev Camb Philos Soc 2025; 100:461-480. [PMID: 39310957 PMCID: PMC11718596 DOI: 10.1111/brv.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025]
Abstract
Anticipating future biosecurity threats to prevent their occurrence is the most cost-effective strategy to manage invasive alien species. Yet, biological invasions are complex, highly uncertain processes. High uncertainty drives decision-making away from strategic preventative measures and towards operational outcomes aimed at post-invasion management. The limited success of preventative measures in curbing biological invasions reflects this short-term mindset and decision-makers should instead apply strategic foresight to imagine futures where biosecurity threats are minimised. Here, four major futures thinking tools (environmental scanning, driver-mapping, horizon scanning, and scenario planning) that describe probable, possible, plausible and preferable futures are assessed in terms of their potential to support both research and policy addressing biological invasions. Environmental scanning involves surveying existing data sources to detect signals of emerging alien species through knowledge of changes in either the likelihood or consequences of biological invasions. Several approaches are widely used for biosecurity including automated scans of digital media, consensus-based expert scoring, and prediction markets. Automated systems can be poor at detecting weak signals because of the large volume of 'noise' they generate while expert scoring relies on prior knowledge and so fails to identify unknown unknowns which is also true of prediction markets that work well for quite specific known risks. Driver-mapping uses expert consensus to identify the political, economic, societal, technological, legislative, and environmental forces shaping the future and is a critical component of strategic foresight that has rarely been applied to biological invasions. Considerable potential exists to extend this approach to develop system maps to identify where biosecurity interventions may be most effective and to explore driver complexes to determine megatrends shaping the future of biological invasions. Horizon scanning is a systematic outlook of potential threats and future developments to detect weak signals of emerging issues that exist at the margins of current thinking. Applications have been strongly focused on emerging issues related to research and technological challenges relevant to biosecurity and invasion science. However, most of these emerging issues are already well known in current-day research. Because horizon scanning is based on expert consensus, it needs to embrace a diversity of cultural, gender, and disciplinary diversity more adequately to ensure participants think intuitively and outside of their own subject boundaries. Scenario planning constructs storylines that describe alternative ways the political, economic, social, technological, legislative, and environmental situation might develop in the future. Biological invasion scenario planning has favoured structured approaches such as standardised archetypes and uncertainty matrices, but scope exists to apply more intuitive thinking by using incasting, backcasting, or causal layered analysis. Futures thinking in biological invasions has not engaged with decision-makers or other stakeholders adequately and thus outcomes have been light on policy and management priorities. To date, strategic foresight addressing biological invasions has applied each approach in isolation. Yet, an integrated approach to futures thinking that involves a diverse set of stakeholders in exploring the probable, possible, plausible, and preferable futures relating to biological invasions is crucial to the delivery of strategic biosecurity foresight at both national and global scales.
Collapse
Affiliation(s)
- Philip E. Hulme
- Bioprotection Aotearoa, Department of Pest‐Management and ConservationLincoln UniversityPO Box 85084ChristchurchCanterbury7648New Zealand
| |
Collapse
|
3
|
Colberg EM, Bradley BA, Morelli TL, Brown-Lima CJ. Climate-Smart Invasive Species Management for 21st Century Global Change Challenges. GLOBAL CHANGE BIOLOGY 2024; 30:e17531. [PMID: 39445769 DOI: 10.1111/gcb.17531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
Addressing the global challenges of climate change and biotic invasions requires understanding their interactions and implications for natural resource management. To facilitate and support invasive species management in a changing climate, we review how climate change and invasions interact to impact the planning, action, and outcomes of invasive species management. Climate change is facilitating the introduction of new potential invasive species and altering pathways of introduction and spread, with implications for which species natural resource managers need to assess, monitor, and target. Climate-driven shifts in invasive species phenology require more flexible management timelines. Climate change may reduce the efficacy and feasibility of current treatment methods and make native ecosystems more vulnerable to invasion. Additionally, disturbance caused by extreme climate events can compound the spread and impacts of biological invasions, making invasive species management a necessary part of extreme event preparation and response planning. As a solution to these challenges, we propose climate-smart invasive species management, which we define as the approaches that managers and decision-makers can take to address the interactive effects of climate change and invasions. Climate-smart invasive species management includes considering potential shifts in species ranges, abundances, and impacts to inform monitoring, treatment, and policies to prevent new invasive species. Climate-smart management may also involve adjusting the timing and type of treatment to maintain efficacy, promoting resilient ecosystems through climate-smart restoration, and considering the effects of climate change when setting management goals. Explicitly considering the interactions of climate change and biological invasions within organizational decision-making and policy can lead to more effective management and promote more resilient landscapes.
Collapse
Affiliation(s)
- Eva M Colberg
- Department of Natural Resources and the Environment, New York Invasive Species Research Institute, Cornell University, Ithaca, New York, USA
| | - Bethany A Bradley
- Northeast Climate Adaptation Science Center, 134 Morrill Science Center, Amherst, Massachusetts, USA
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Toni Lyn Morelli
- Northeast Climate Adaptation Science Center, 134 Morrill Science Center, Amherst, Massachusetts, USA
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
- US Geological Survey, 134 Morrill Science Center, Amherst, Massachusetts, USA
| | - Carrie J Brown-Lima
- Department of Natural Resources and the Environment, New York Invasive Species Research Institute, Cornell University, Ithaca, New York, USA
- Northeast Climate Adaptation Science Center, 134 Morrill Science Center, Amherst, Massachusetts, USA
- US Geological Survey, 134 Morrill Science Center, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Everts T, Van Driessche C, Neyrinck S, Haegeman A, Ruttink T, Jacquemyn H, Brys R. Phenological mismatches mitigate the ecological impact of a biological invader on amphibian communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3017. [PMID: 39118362 DOI: 10.1002/eap.3017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Horizon scans have emerged as a valuable tool to anticipate the incoming invasive alien species (IAS) by judging species on their potential impacts. However, little research has been conducted on quantifying actual impacts and assessing causes of species-specific vulnerabilities to particular IAS due to persistent methodological challenges. The underlying interspecific mechanisms driving species-specific vulnerabilities therefore remain poorly understood, even though they can substantially improve the accuracy of risk assessments. Given that interspecific interactions underlying ecological impacts of IAS are often shaped by phenological synchrony, we tested the hypothesis that temporal mismatches in breeding phenology between native species and IAS can mitigate their ecological impacts. Focusing on the invasive American bullfrog (Lithobates catesbeianus), we combined an environmental DNA (eDNA) quantitative barcoding and metabarcoding survey in Belgium with a global meta-analysis, and integrated citizen-science data on breeding phenology. We examined whether the presence of native amphibian species was negatively related to the presence or abundance of invasive bullfrogs and whether this relationship was affected by their phenological mismatches. The field study revealed a significant negative effect of increasing bullfrog eDNA concentrations on native amphibian species richness and community structure. These observations were shaped by species-specific vulnerabilities to invasive bullfrogs, with late spring- and summer-breeding species being strongly affected, while winter-breeding species remained unaffected. This trend was confirmed by the global meta-analysis. A significant negative relationship was observed between phenological mismatch and the impact of bullfrogs. Specifically, native amphibian species with breeding phenology differing by 6 weeks or less from invasive bullfrogs were more likely to be absent in the presence of bullfrogs than species whose phenology differed by more than 6 weeks with that of bullfrogs. Taken together, we present a novel method based on the combination of aqueous eDNA quantitative barcoding and metabarcoding to quantify the ecological impacts of biological invaders at the community level. We show that phenological mismatches between native and invasive species can be a strong predictor of invasion impact regardless of ecological or methodological context. Therefore, we advocate for the integration of temporal alignment between native and IAS's phenologies into invasion impact frameworks.
Collapse
Affiliation(s)
- Teun Everts
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
| | - Charlotte Van Driessche
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Sabrina Neyrinck
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Annelies Haegeman
- Plant Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Tom Ruttink
- Plant Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Heverlee, Belgium
| | - Rein Brys
- Genetic Diversity, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| |
Collapse
|
5
|
Soto I, Balzani P, Carneiro L, Cuthbert RN, Macêdo R, Serhan Tarkan A, Ahmed DA, Bang A, Bacela-Spychalska K, Bailey SA, Baudry T, Ballesteros-Mejia L, Bortolus A, Briski E, Britton JR, Buřič M, Camacho-Cervantes M, Cano-Barbacil C, Copilaș-Ciocianu D, Coughlan NE, Courtois P, Csabai Z, Dalu T, De Santis V, Dickey JWE, Dimarco RD, Falk-Andersson J, Fernandez RD, Florencio M, Franco ACS, García-Berthou E, Giannetto D, Glavendekic MM, Grabowski M, Heringer G, Herrera I, Huang W, Kamelamela KL, Kirichenko NI, Kouba A, Kourantidou M, Kurtul I, Laufer G, Lipták B, Liu C, López-López E, Lozano V, Mammola S, Marchini A, Meshkova V, Milardi M, Musolin DL, Nuñez MA, Oficialdegui FJ, Patoka J, Pattison Z, Pincheira-Donoso D, Piria M, Probert AF, Rasmussen JJ, Renault D, Ribeiro F, Rilov G, Robinson TB, Sanchez AE, Schwindt E, South J, Stoett P, Verreycken H, Vilizzi L, Wang YJ, Watari Y, Wehi PM, Weiperth A, Wiberg-Larsen P, Yapıcı S, Yoğurtçuoğlu B, Zenni RD, Galil BS, Dick JTA, Russell JC, Ricciardi A, Simberloff D, Bradshaw CJA, Haubrock PJ. Taming the terminological tempest in invasion science. Biol Rev Camb Philos Soc 2024; 99:1357-1390. [PMID: 38500298 DOI: 10.1111/brv.13071] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 100, Curitiba, 81530-000, Brazil
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Rafael Macêdo
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
| | - Ali Serhan Tarkan
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
| | - Alok Bang
- Biology Group, School of Arts and Sciences, Azim Premji University, Bhopal, Madhya Pradesh, 462010, India
| | - Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Sarah A Bailey
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd, Burlington, Ontario, ON L7S 1A1, Canada
| | - Thomas Baudry
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interaction, UMR, CNRS 7267 Équipe Écologie Évolution Symbiose, 3 rue Jacques Fort, Poitiers, Cedex, 86000, France
| | - Liliana Ballesteros-Mejia
- Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, Centre national de la recherche scientifique, École Pratique des Hautes Études, Sorbonne Université, Université des Antilles, 45 Rue Buffon, Entomologie, Paris, 75005, France
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Alejandro Bortolus
- Grupo de Ecología en Ambientes Costeros. Instituto Patagónico para el Estudio de los Ecosistemas Continentales Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Nacional Patagónico, Boulevard Brown 2915, Puerto Madryn, Chubut, U9120ACD, Argentina
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
| | - J Robert Britton
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Morelia Camacho-Cervantes
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Mexico City, 04510, Mexico
| | - Carlos Cano-Barbacil
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| | - Denis Copilaș-Ciocianu
- Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Akademijos 2, Vilnius, 08412, Lithuania
| | - Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Republic of Ireland
| | - Pierre Courtois
- Centre d'Économie de l'Environnement - Montpellier, Université de Montpellier, Centre national de la recherche scientifique, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut Agro, Avenue Agropolis, Montpellier, 34090, France
| | - Zoltán Csabai
- University of Pécs, Department of Hydrobiology, Ifjúság 6, Pécs, H-7673, Hungary
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno 3, Tihany, H-8237, Hungary
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Cnr R40 and D725 Roads, Nelspruit, 1200, South Africa
| | - Vanessa De Santis
- Water Research Institute-National Research Council, Largo Tonolli 50, Verbania-Pallanza, 28922, Italy
| | - James W E Dickey
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
- Freie Universität Berlin, Institute of Biology, Königin-Luise-Straße 1-3, Berlin, 14195, Germany
| | - Romina D Dimarco
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | | | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-Consejo Nacional de Investigaciones Científicas y Técnicas, CC34, 4107, Yerba Buena, Tucumán, Argentina
| | - Margarita Florencio
- Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, Edificio de Biología, Darwin, 2, 28049, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global, 28049, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Clara S Franco
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Emili García-Berthou
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Daniela Giannetto
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Milka M Glavendekic
- Department of Landscape Architecture and Horticulture, University of Belgrade-Faculty of Forestry, Belgrade, Serbia
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Gustavo Heringer
- Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen (HfWU), Schelmenwasen 4-8, Nürtingen, 72622, Germany
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Ileana Herrera
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Km 2.5 Vía La Puntilla, Samborondón, 091650, Ecuador
- Instituto Nacional de Biodiversidad, Casilla Postal 17-07-8982, Quito, 170501, Ecuador
| | - Wei Huang
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Katie L Kamelamela
- School of Ocean Futures, Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
| | - Natalia I Kirichenko
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Centre 'Krasnoyarsk Science Centre SB RAS', Akademgorodok 50/28, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Institute of Ecology and Geography, 79 Svobodny pr, Krasnoyarsk, 660041, Russia
- Saint Petersburg State Forest Technical University, Institutski Per. 5, Saint Petersburg, 194021, Russia
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Melina Kourantidou
- Department of Business and Sustainability, University of Southern Denmark, Degnevej 14, Esbjerg, 6705, Denmark
- AMURE-Aménagement des Usages des Ressources et des Espaces marins et littoraux, UMR 6308, Université de Bretagne Occidentale, IUEM- Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Plouzané, 29280, France
- Marine Policy Center, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, Bornova, İzmir, 35100, Turkey
| | - Gabriel Laufer
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo, 11800, Uruguay
| | - Boris Lipták
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Slovak Environment Agency, Tajovského 28, Banská Bystrica, 975 90, Slovak Republic
| | - Chunlong Liu
- The Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China
| | - Eugenia López-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Ciudad de México, 11340, Mexico
| | - Vanessa Lozano
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/A, Sassari, 07100, Italy
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
| | - Stefano Mammola
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
- Molecular Ecology Group, Water Research Institute, National Research Council, Corso Tonolli 50, Pallanza, 28922, Italy
- Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, 00100, Finland
| | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, Pavia, 27100, Italy
| | - Valentyna Meshkova
- Department of Entomology, Phytopathology, and Physiology, Ukrainian Research Institute of Forestry and Forest Melioration, Pushkinska 86, Kharkiv, UA-61024, Ukraine
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1283, Suchdol, Prague, 16500, Czech Republic
| | - Marco Milardi
- Southern Indian Ocean Fisheries Agreement (SIOFA), 13 Rue de Marseille, Le Port, La Réunion, 97420, France
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization, 21 bd Richard Lenoir, Paris, 75011, France
| | - Martin A Nuñez
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | - Francisco J Oficialdegui
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague, 16500, Czech Republic
| | - Zarah Pattison
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Daniel Pincheira-Donoso
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Marina Piria
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
- University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife management and Special Zoology, Svetošimunska cesta 25, Zagreb, 10000, Croatia
| | - Anna F Probert
- Zoology Discipline, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Jes Jessen Rasmussen
- Norwegian Institute for Water Research, Njalsgade 76, Copenhagen S, 2300, Denmark
| | - David Renault
- Université de Rennes, Centre national de la recherche scientifique (CNRS), Écosystèmes, biodiversité, évolution, Rennes, 35000, France
| | - Filipe Ribeiro
- Marine and Environmental Sciences Centre / Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa, 31080, Israel
| | - Tamara B Robinson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Axel E Sanchez
- Posgrado en Hidrociencias, Colegio de Postgraduados, Carretera México-Texcoco 36.5 km, Montecillo, Texcoco, C.P. 56264, Mexico
| | - Evangelina Schwindt
- Grupo de Ecología en Ambientes Costeros, Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Brown 2915, Puerto Madryn, U9120ACD, Argentina
| | - Josie South
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter Stoett
- Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada
| | - Hugo Verreycken
- Research Institute for Nature and Forest, Havenlaan 88 Box 73, Brussels, 1000, Belgium
| | - Lorenzo Vilizzi
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Yong-Jian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, F9F4+6FV, Dangui Rd, Hongshan, Wuhan, 430070, China
| | - Yuya Watari
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Priscilla M Wehi
- Te Pūnaha Matatini National Centre of Research Excellence in Complex Systems, University of Auckland, Private Bag 29019, Aotearoa, Auckland, 1142, New Zealand
- Centre for Sustainability, University of Otago, 563 Castle Street North, Dunedin North, Aotearoa, Dunedin, 9016, New Zealand
| | - András Weiperth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Ave 1/C, Budapest, H-1117, Hungary
| | - Peter Wiberg-Larsen
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4-8, Aarhus, 8000, Denmark
| | - Sercan Yapıcı
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, 06800, Turkey
| | - Rafael D Zenni
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Bella S Galil
- Steinhardt Museum of Natural History, Tel Aviv University, Klaunserstr. 12, Tel Aviv, Israel
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - James C Russell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Anthony Ricciardi
- Redpath Museum and Bieler School of Environment, McGill University, 859 Sherbrooke Street West, Montréal, Quebec, Quebec, H3A 0C4, Canada
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Corey J A Bradshaw
- Global Ecology, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 5001, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| |
Collapse
|
6
|
Barry PJ, Silburn B, Bakir A, Russell J, Tidbury HJ. Seafloor macrolitter as a settling platform for non-native species: A case study from UK waters. MARINE POLLUTION BULLETIN 2024; 204:116499. [PMID: 38796991 DOI: 10.1016/j.marpolbul.2024.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Marine litter is increasingly recognised as a vector for the spread of non-native species (NNS). However, our understanding of its role in the propagation of NNS in UK waters remains limited. As part of the Clean Seas Environmental Monitoring Programme, we opportunistically analysed seafloor macrolitter items trawled from various locations around the coast of England and Wales and examined each for the presence of NNS. Of the 41 litter items analysed, we identified a total of 133 taxa, including two non-native and four cryptogenic species. This confirms that NNS are settling on seafloor macrolitter in UK waters and that these can be detected using morphological taxonomic analysis. Furthermore, we propose a methodology to classify litter based on size, rugosity and polymer/material type to explore whether there were detectable patterns governing community composition and litter characteristics. This exploratory investigation provides evidence to inform future risk assessments of NNS vectors and pathways.
Collapse
Affiliation(s)
- P J Barry
- Centre for Environment Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, United Kingdom.
| | - B Silburn
- Centre for Environment Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, United Kingdom.
| | - A Bakir
- Centre for Environment Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, United Kingdom.
| | - J Russell
- Centre for Environment Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, United Kingdom.
| | - H J Tidbury
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, United Kingdom.
| |
Collapse
|
7
|
Pili AN, Leroy B, Measey JG, Farquhar JE, Toomes A, Cassey P, Chekunov S, Grenié M, van Winkel D, Maria L, Diesmos MLL, Diesmos AC, Zurell D, Courchamp F, Chapple DG. Forecasting potential invaders to prevent future biological invasions worldwide. GLOBAL CHANGE BIOLOGY 2024; 30:e17399. [PMID: 39007251 DOI: 10.1111/gcb.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
The ever-increasing and expanding globalisation of trade and transport underpins the escalating global problem of biological invasions. Developing biosecurity infrastructures is crucial to anticipate and prevent the transport and introduction of invasive alien species. Still, robust and defensible forecasts of potential invaders are rare, especially for species without known invasion history. Here, we aim to support decision-making by developing a quantitative invasion risk assessment tool based on invasion syndromes (i.e., generalising typical attributes of invasive alien species). We implemented a workflow based on 'Multiple Imputation with Chain Equation' to estimate invasion syndromes from imputed datasets of species' life-history and ecological traits and macroecological patterns. Importantly, our models disentangle the factors explaining (i) transport and introduction and (ii) establishment. We showcase our tool by modelling the invasion syndromes of 466 amphibians and reptile species with invasion history. Then, we project these models to amphibians and reptiles worldwide (16,236 species [c.76% global coverage]) to identify species with a risk of being unintentionally transported and introduced, and risk of establishing alien populations. Our invasion syndrome models showed high predictive accuracy with a good balance between specificity and generality. Unintentionally transported and introduced species tend to be common and thrive well in human-disturbed habitats. In contrast, those with established alien populations tend to be large-sized, are habitat generalists, thrive well in human-disturbed habitats, and have large native geographic ranges. We forecast that 160 amphibians and reptiles without known invasion history could be unintentionally transported and introduced in the future. Among them, 57 species have a high risk of establishing alien populations. Our reliable, reproducible, transferable, statistically robust and scientifically defensible quantitative invasion risk assessment tool is a significant new addition to the suite of decision-support tools needed for developing a future-proof preventative biosecurity globally.
Collapse
Affiliation(s)
- Arman N Pili
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria, Australia
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Boris Leroy
- Unité 8067 Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, France
| | - John G Measey
- Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- UMR7179 MECADEV CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Bâtiment d'Anatomie Comparée, Paris, France
| | - Jules E Farquhar
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria, Australia
| | - Adam Toomes
- Invasion Science and Wildlife Ecology Group, The University of Adelaide, Adelaide, South Australia, Australia
| | - Phillip Cassey
- Invasion Science and Wildlife Ecology Group, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sebastian Chekunov
- Invasion Science and Wildlife Ecology Group, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthias Grenié
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Dylan van Winkel
- Bioresearches (Babbage Consultants Limited), Auckland, New Zealand
| | - Lisa Maria
- Biosecurity New Zealand-Tiakitanga Pūtaiao Aotearoa, Ministry for Primary Industries-Manatū Ahu Matua, Upper Hutt, New Zealand
| | - Mae Lowe L Diesmos
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Damaris Zurell
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif Sur Yvette, France
| | - David G Chapple
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Sun C, Lü Z, Fang J, Yao C, Zhao S, Liu Y, Gong L, Liu B, Liu L, Liu J. Population structure of Taenioides sp. (Gobiiformes, Gobiidae) reveals their invasion history to inland waters of China based on mitochondrial DNA control region. Zookeys 2024; 1203:239-251. [PMID: 38855790 PMCID: PMC11161676 DOI: 10.3897/zookeys.1203.119133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/05/2024] [Indexed: 06/11/2024] Open
Abstract
Taenioides sp. is a small temperate fish originally known to inhabit muddy bottoms of brackish waters in coastal areas of China. However, it began to invade multiple inland freshwaters and caused severe damage to Chinese aquatic ecosystems in recent years. To investigate the sources and invasive history of this species, we examined the population structure of 141 individuals collected from seven locations based on partial mitochondrial D-loop regions. The results revealed that the genetic diversity gradually decreased from south to north, with the Yangtze River Estuary and Taihu Lake populations possessing the highest haplotype diversity (Hd), average number of differences (k), and nucleotide diversity (π) values, suggesting that they may be the sources of Taenioides sp. invasions. Isolation-by-distance analysis revealed a non-significant correlation (p = 0.166) between genetic and geographic distances among seven populations, indicating that dispersal mediated through the regional hydraulic projects may have played an essential role in Taenioides sp. invasions. The population genetic structure analysis revealed two diverged clades among seven populations, with clade 2 only detected in source populations, suggesting a possible difference in the invasion ability of the two clades. Our results provide insights into how native estuary fish become invasive through hydraulic projects and may provide critical information for the future control of this invasive species.
Collapse
Affiliation(s)
- Chenlian Sun
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Jiaqi Fang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Chenhao Yao
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Shijie Zhao
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Yantao Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Jing Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316000, ChinaZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
9
|
Nelufule T, Shivambu TC, Shivambu N, Moshobane MC, Seoraj-Pillai N, Nangammbi T. Assessing Alien Plant Invasions in Urban Environments: A Case Study of Tshwane University of Technology and Implications for Biodiversity Conservation. PLANTS (BASEL, SWITZERLAND) 2024; 13:872. [PMID: 38592858 PMCID: PMC10975853 DOI: 10.3390/plants13060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Preserving the dwindling native biodiversity in urban settings poses escalating challenges due to the confinement of remaining natural areas to isolated and diminutive patches. Remarkably scarce research has scrutinised the involvement of institutions, particularly universities, in introducing alien plant species in South Africa, thus creating a significant gap in effective monitoring and management. In this study, the Tshwane University of Technology in Tshwane Metropole, South Africa serves as a focal point, where we conducted a comprehensive survey of alien plants both within the university premises and beyond its confines. The investigation involved the classification of invasion status and a meticulous assessment of donor and recipient dynamics. Our findings encompass 876 occurrence records, revealing the presence of 94 alien plant species spanning 44 distinct families. Noteworthy occurrences among the dominant plant families are Asteraceae and Solanaceae. Herbaceous and woody plants emerged as the most prevalent alien species, with common representation across both sampling sites. A substantial majority of recorded species were initially introduced for horticultural purposes (51%) before escaping and establishing self-sustaining populations (62%). Furthermore, 43 species identified are listed in South African invasive species legislation, with some manifesting invasive tendencies and altering the distribution of native species in the remaining natural areas. The notable overlap in species observed between the university premises and adjacent areas provides crucial insights into the influence of institutions on the dynamics of plant invasions within the urban landscape. This underscores the prevailing gaps in the management of invasive alien plants in urban zones and accentuates the imperative of an integrated approach involving collaboration between municipalities and diverse institutions for effective invasive species management in urban environments.
Collapse
Affiliation(s)
- Takalani Nelufule
- Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria West 0001, South Africa
| | - Tinyiko C. Shivambu
- Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria West 0001, South Africa
| | - Ndivhuwo Shivambu
- Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria West 0001, South Africa
| | - Moleseng C. Moshobane
- South African National Biodiversity Institute, Pretoria National Botanical Garden, 2 Cussonia Avenue, Brummeria, Silverton 0184, South Africa;
| | - Nimmi Seoraj-Pillai
- Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria West 0001, South Africa
| | - Tshifhiwa Nangammbi
- Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria West 0001, South Africa
| |
Collapse
|
10
|
Pocock MJ, Adriaens T, Bertolino S, Eschen R, Essl F, Hulme PE, Jeschke JM, Roy HE, Teixeira H, de Groot M. Citizen science is a vital partnership for invasive alien species management and research. iScience 2024; 27:108623. [PMID: 38205243 PMCID: PMC10776933 DOI: 10.1016/j.isci.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Invasive alien species (IAS) adversely impact biodiversity, ecosystem functions, and socio-economics. Citizen science can be an effective tool for IAS surveillance, management, and research, providing large datasets over wide spatial extents and long time periods, with public participants generating knowledge that supports action. We demonstrate how citizen science has contributed knowledge across the biological invasion process, especially for early detection and distribution mapping. However, we recommend that citizen science could be used more for assessing impacts and evaluating the success of IAS management. Citizen science does have limitations, and we explore solutions to two key challenges: ensuring data accuracy and dealing with uneven spatial coverage of potential recorders (which limits the dataset's "fit for purpose"). Greater co-development of citizen science with public stakeholders will help us better realize its potential across the biological invasion process and across ecosystems globally while meeting the needs of participants, local communities, scientists, and decision-makers.
Collapse
Affiliation(s)
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Philip E. Hulme
- Bioprotection Aotearoa, Department of Pest Management and Conservation, Lincoln University, PO Box 84850, Christchurch, Lincoln 7648, New Zealand
| | - Jonathan M. Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Helen E. Roy
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Heliana Teixeira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Maarten de Groot
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Cottier-Cook EJ, Bentley-Abbot J, Cottier FR, Minchin D, Olenin S, Renaud PE. Horizon scanning of potential threats to high-Arctic biodiversity, human health and the economy from marine invasive alien species: A Svalbard case study. GLOBAL CHANGE BIOLOGY 2024; 30:e17009. [PMID: 37942571 DOI: 10.1111/gcb.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
The high Arctic is considered a pristine environment compared with many other regions in the northern hemisphere. It is becoming increasingly vulnerable to invasion by invasive alien species (IAS), however, as climate change leads to rapid loss of sea ice, changes in ocean temperature and salinity, and enhanced human activities. These changes are likely to increase the incidence of arrival and the potential for establishment of IAS in the region. To predict the impact of IAS, a group of experts in taxonomy, invasion biology and Arctic ecology carried out a horizon scanning exercise using the Svalbard archipelago as a case study, to identify the species that present the highest risk to biodiversity, human health and the economy within the next 10 years. A total of 114 species, currently absent from Svalbard, recorded once and/or identified only from environmental DNA samples, were initially identified as relevant for review. Seven species were found to present a high invasion risk and to potentially cause a significant negative impact on biodiversity and five species had the potential to have an economic impact on Svalbard. Decapod crabs, ascidians and barnacles dominated the list of highest risk marine IAS. Potential pathways of invasion were also researched, the most common were found associated with vessel traffic. We recommend (i) use of this approach as a key tool within the application of biosecurity measures in the wider high Arctic, (ii) the addition of this tool to early warning systems for strengthening existing surveillance measures; and (iii) that this approach is used to identify high-risk terrestrial and freshwater IAS to understand the overall threat facing the high Arctic. Without the application of biosecurity measures, including horizon scanning, there is a greater risk that marine IAS invasions will increase, leading to unforeseen changes in the environment and economy of the high Arctic.
Collapse
Affiliation(s)
| | - Jude Bentley-Abbot
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, UK
| | - Finlo R Cottier
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, UK
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Dan Minchin
- Marine Organism Investigations, Killaloe, Ireland
- Marine Research Institute, Klaipeda University, Klaipeda, Lithuania
| | - Sergej Olenin
- Marine Research Institute, Klaipeda University, Klaipeda, Lithuania
| | | |
Collapse
|
12
|
Cano-Barbacil C, Carrete M, Castro-Díez P, Delibes-Mateos M, Jaques JA, López-Darias M, Nogales M, Pino J, Ros M, Traveset A, Turon X, Vilà M, Altamirano M, Álvarez I, Arias A, Boix D, Cabido C, Cacabelos E, Cobo F, Cruz J, Cuesta JA, Dáder B, Del Estal P, Gallardo B, Gómez Laporta M, González-Moreno P, Hernández JC, Jiménez-Alfaro B, Lázaro Lobo A, Leza M, Montserrat M, Oliva-Paterna FJ, Piñeiro L, Ponce C, Pons P, Rotchés-Ribalta R, Roura-Pascual N, Sánchez M, Trillo A, Viñuela E, García-Berthou E. Identification of potential invasive alien species in Spain through horizon scanning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118696. [PMID: 37549639 DOI: 10.1016/j.jenvman.2023.118696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Invasive alien species have widespread impacts on native biodiversity and ecosystem services. Since the number of introductions worldwide is continuously rising, it is essential to prevent the entry, establishment and spread of new alien species through a systematic examination of future potential threats. Applying a three-step horizon scanning consensus method, we evaluated non-established alien species that could potentially arrive, establish and cause major ecological impact in Spain within the next 10 years. Overall, we identified 47 species with a very high risk (e.g. Oreochromis niloticus, Popillia japonica, Hemidactylus frenatus, Crassula helmsii or Halophila stipulacea), 61 with high risk, 93 with moderate risk, and 732 species with low risk. Many of the species categorized as very high or high risk to Spanish biodiversity are either already present in Europe and neighbouring countries or have a long invasive history elsewhere. This study provides an updated list of potential invasive alien species useful for prioritizing efforts and resources against their introduction. Compared to previous horizon scanning exercises in Spain, the current study screens potential invaders from a wider range of terrestrial, freshwater, and marine organisms, and can serve as a basis for more comprehensive risk analyses to improve management and increase the efficiency of the early warning and rapid response framework for invasive alien species. We also stress the usefulness of measuring agreement and consistency as two different properties of the reliability of expert scores, in order to more easily elaborate consensus ranked lists of potential invasive alien species.
Collapse
Affiliation(s)
- Carlos Cano-Barbacil
- GRECO, Institute of Aquatic Ecology, University of Girona, 17003, Girona, Spain.
| | - Martina Carrete
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. de Utrera, km. 1, 41013, Seville, Spain
| | - Pilar Castro-Díez
- Biological Invasions Research Group (BioInv), Departamento de Ciencias de la Vida, Universidad de Alcalá, Pza. San Diego, s/n, 28801, Alcalá de Henares, Madrid, Spain
| | - Miguel Delibes-Mateos
- Instituto de Estudios Sociales Avanzados (IESA-CSIC), Plaza Campo Santo de los Mártires, 7, 14004, Córdoba, Spain
| | - Josep A Jaques
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12071, Castelló de la Plana, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206, San Cristóbal de La Laguna, Canarias, Spain
| | - Manuel Nogales
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206, San Cristóbal de La Laguna, Canarias, Spain
| | - Joan Pino
- CREAF, E08193 Bellaterra, (Cerdanyola del Vallès), Catalonia, Spain; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Edifici C. Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Macarena Ros
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Anna Traveset
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA,CSIC-UIB), C/ Miquel Marquès, 21, 07190, Esporles, Mallorca, Illes Balears, Spain
| | - Xavier Turon
- Departamento de Ecología Marina, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Accés a la Cala St. Francesc, 14, 17300, Blanes, Spain
| | - Montserrat Vilà
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, 41092, Sevilla, Spain; Department of Plant Biology and Ecology, University of Sevilla, 41012, Sevilla, Spain
| | - María Altamirano
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Inés Álvarez
- Real Jardín Botánico (RJB-CSIC), C/ Claudio Moyano 1, 28014, Madrid, Spain
| | - Andrés Arias
- Departamento de Biología de Organismos y Sistemas (Zoología), Universidad de Oviedo, 33071, Oviedo, Spain
| | - Dani Boix
- GRECO, Institute of Aquatic Ecology, University of Girona, 17003, Girona, Spain
| | - Carlos Cabido
- Sociedad de Ciencias Aranzadi, Departamento de Herpetología, Calle Alto de Zorroaga 11, E-20014, San Sebastián, Spain
| | - Eva Cacabelos
- Hydrosphere - Environmental laboratory for the study of aquatic Ecosystems, 36331, Vigo, Spain
| | - Fernando Cobo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Joaquín Cruz
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12071, Castelló de la Plana, Spain
| | - José A Cuesta
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), 11519, Puerto Real, Cádiz, Spain
| | - Beatriz Dáder
- Unit of Crop Protection, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | - Pedro Del Estal
- Unit of Crop Protection, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | - Belinda Gallardo
- Instituto Pirenaico de Ecología (IPE), CSIC, Avda. Montañana 1005, 50192, Zaragoza, Spain
| | | | | | - José Carlos Hernández
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, c/ Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Santa Cruz de Tenerife, Spain
| | - Borja Jiménez-Alfaro
- Biodiversity Research Institute IMIB (Univ. Oviedo-CSIC-Princ. Asturias), Mieres, Spain
| | - Adrián Lázaro Lobo
- Biological Invasions Research Group (BioInv), Departamento de Ciencias de la Vida, Universidad de Alcalá, Pza. San Diego, s/n, 28801, Alcalá de Henares, Madrid, Spain; Biodiversity Research Institute IMIB (Univ. Oviedo-CSIC-Princ. Asturias), Mieres, Spain
| | - Mar Leza
- Departamento de Biología (Zoología), Universitat de les Illes Balears, Crta. Valldemossa, km. 7,5, 07122, Palma, Illes Balears, Spain
| | - Marta Montserrat
- Institute for Mediterranean and Subtropical Horticulture "La Mayora"-UMA-CSIC, Avda Dr Weinberg s/n, 29750, Algarrobo-Costa, Malaga, Spain
| | - Francisco J Oliva-Paterna
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | | | | | - Pere Pons
- Animal Biology Lab & BioLand. Departament de Ciències Ambientals, Universitat de Girona, 17003, Girona, Catalonia, Spain
| | - Roser Rotchés-Ribalta
- CREAF, E08193 Bellaterra, (Cerdanyola del Vallès), Catalonia, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Núria Roura-Pascual
- Animal Biology Lab & BioLand. Departament de Ciències Ambientals, Universitat de Girona, 17003, Girona, Catalonia, Spain
| | - Marta Sánchez
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | - Alejandro Trillo
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | - Elisa Viñuela
- Unit of Crop Protection, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | | |
Collapse
|
13
|
Di Febbraro M, Bosso L, Fasola M, Santicchia F, Aloise G, Lioy S, Tricarico E, Ruggieri L, Bovero S, Mori E, Bertolino S. Different facets of the same niche: Integrating citizen science and scientific survey data to predict biological invasion risk under multiple global change drivers. GLOBAL CHANGE BIOLOGY 2023; 29:5509-5523. [PMID: 37548610 DOI: 10.1111/gcb.16901] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Citizen science initiatives have been increasingly used by researchers as a source of occurrence data to model the distribution of alien species. Since citizen science presence-only data suffer from some fundamental issues, efforts have been made to combine these data with those provided by scientifically structured surveys. Surprisingly, only a few studies proposing data integration evaluated the contribution of this process to the effective sampling of species' environmental niches and, consequently, its effect on model predictions on new time intervals. We relied on niche overlap analyses, machine learning classification algorithms and ecological niche models to compare the ability of data from citizen science and scientific surveys, along with their integration, in capturing the realized niche of 13 invasive alien species in Italy. Moreover, we assessed differences in current and future invasion risk predicted by each data set under multiple global change scenarios. We showed that data from citizen science and scientific surveys captured similar species niches though highlighting exclusive portions associated with clearly identifiable environmental conditions. In terrestrial species, citizen science data granted the highest gain in environmental space to the pooled niches, determining an increased future biological invasion risk. A few aquatic species modelled at the regional scale reported a net loss in the pooled niches compared to their scientific survey niches, suggesting that citizen science data may also lead to contraction in pooled niches. For these species, models predicted a lower future biological invasion risk. These findings indicate that citizen science data may represent a valuable contribution to predicting future spread of invasive alien species, especially within national-scale programmes. At the same time, citizen science data collected on species poorly known to citizen scientists, or in strictly local contexts, may strongly affect the niche quantification of these taxa and the prediction of their future biological invasion risk.
Collapse
Affiliation(s)
- Mirko Di Febbraro
- Environmetrics Lab, Department of Biosciences and Territory, University of Molise, Pesche, Isernia, Italy
| | - Luciano Bosso
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Mauro Fasola
- Dipartimento Scienze della Terra e dell'Ambiente, Università di Pavia, Pavia, Italy
| | - Francesca Santicchia
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Gaetano Aloise
- Museo di Storia Naturale e Orto Botanico, Università della Calabria, Rende, Cosenza, Italy
| | - Simone Lioy
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Elena Tricarico
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | | | - Stefano Bovero
- "Zirichiltaggi" Sardinia Wildlife Conservation NGO, Sassari, Italy
| | - Emiliano Mori
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Florence, Italy
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Rodríguez-Merino A. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. PLANTS (BASEL, SWITZERLAND) 2023; 12:3069. [PMID: 37687316 PMCID: PMC10490461 DOI: 10.3390/plants12173069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation's greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.
Collapse
|
15
|
Oficialdegui FJ, Zamora-Marín JM, Guareschi S, Anastácio PM, García-Murillo P, Ribeiro F, Miranda R, Cobo F, Gallardo B, García-Berthou E, Boix D, Arias A, Cuesta JA, Medina L, Almeida D, Banha F, Barca S, Biurrun I, Cabezas MP, Calero S, Campos JA, Capdevila-Argüelles L, Capinha C, Casals F, Clavero M, Encarnação J, Fernández-Delgado C, Franco J, Guillén A, Hermoso V, Machordom A, Martelo J, Mellado-Díaz A, Morcillo F, Oscoz J, Perdices A, Pou-Rovira Q, Rodríguez-Merino A, Ros M, Ruiz-Navarro A, Sánchez MI, Sánchez-Fernández D, Sánchez-González JR, Sánchez-Gullón E, Teodósio MA, Torralva M, Vieira-Lanero R, Oliva-Paterna FJ. A horizon scan exercise for aquatic invasive alien species in Iberian inland waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161798. [PMID: 36702272 DOI: 10.1016/j.scitotenv.2023.161798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As the number of introduced species keeps increasing unabatedly, identifying and prioritising current and potential Invasive Alien Species (IAS) has become essential to manage them. Horizon Scanning (HS), defined as an exploration of potential threats, is considered a fundamental component of IAS management. By combining scientific knowledge on taxa with expert opinion, we identified the most relevant aquatic IAS in the Iberian Peninsula, i.e., those with the greatest geographic extent (or probability of introduction), severe ecological, economic and human health impacts, greatest difficulty and acceptability of management. We highlighted the 126 most relevant IAS already present in Iberian inland waters (i.e., Concern list) and 89 with a high probability of being introduced in the near future (i.e., Alert list), of which 24 and 10 IAS, respectively, were considered as a management priority after receiving the highest scores in the expert assessment (i.e., top-ranked IAS). In both lists, aquatic IAS belonging to the four thematic groups (plants, freshwater invertebrates, estuarine invertebrates, and vertebrates) were identified as having been introduced through various pathways from different regions of the world and classified according to their main functional feeding groups. Also, the latest update of the list of IAS of Union concern pursuant to Regulation (EU) No 1143/2014 includes only 12 top-ranked IAS identified for the Iberian Peninsula, while the national lists incorporate the vast majority of them. This fact underlines the great importance of taxa prioritisation exercises at biogeographical scales as a step prior to risk analyses and their inclusion in national lists. This HS provides a robust assessment and a cost-effective strategy for decision-makers and stakeholders to prioritise the use of limited resources for IAS prevention and management. Although applied at a transnational level in a European biodiversity hotspot, this approach is designed for potential application at any geographical or administrative scale, including the continental one.
Collapse
Affiliation(s)
- Francisco J Oficialdegui
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain.
| | - José M Zamora-Marín
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Simone Guareschi
- Geography and Environment Division, Loughborough University, Loughborough, United Kingdom; Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | - Pedro M Anastácio
- Departamento de Paisagem, Ambiente e Ordenamento, MARE-Centro de Ciências do Mar e do Ambiente, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Pablo García-Murillo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Filipe Ribeiro
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rafael Miranda
- Instituto de Biodiversidad y Medioambiente (BIOMA), Universidad de Navarra, Pamplona, Spain
| | - Fernando Cobo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Belinda Gallardo
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología (IPE)-CSIC, Zaragoza, Spain
| | | | - Dani Boix
- GRECO, Institut d'Ecologia Aquàtica, Universitat de Girona, Girona, Spain
| | - Andrés Arias
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Asturias, Spain
| | - Jose A Cuesta
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (ICMAN)-CSIC, Cádiz, Spain
| | | | - David Almeida
- Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Filipe Banha
- Departamento de Paisagem, Ambiente e Ordenamento, MARE-Centro de Ciências do Mar e do Ambiente, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Sandra Barca
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Idoia Biurrun
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - M Pilar Cabezas
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sara Calero
- Planificación y Gestión Hídrica, Tragsatec, Grupo Tragsa-SEPI, Madrid, Spain
| | - Juan A Campos
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | | | - César Capinha
- Centre of Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Lisboa, Portugal
| | - Frederic Casals
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain; Centre Tecnològic Forestal de Catalunya (CTFC), Solsona, Lleida, Spain
| | - Miguel Clavero
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | - João Encarnação
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Javier Franco
- AZTI, Marine Research, Marine and Coastal Environmental Management, Pasaia, Gipuzkoa, Spain
| | - Antonio Guillén
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Virgilio Hermoso
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN)-CSIC, Madrid, Spain
| | - Joana Martelo
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andrés Mellado-Díaz
- Planificación y Gestión Hídrica, Tragsatec, Grupo Tragsa-SEPI, Madrid, Spain
| | - Felipe Morcillo
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Oscoz
- Departamento de Biología Ambiental, Universidad de Navarra, Pamplona, Spain
| | - Anabel Perdices
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN)-CSIC, Madrid, Spain
| | | | | | - Macarena Ros
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ana Ruiz-Navarro
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain; Departamento de Didáctica de las Ciencias Experimentales, Facultad de Educación, Universidad de Murcia, Murcia, Spain
| | - Marta I Sánchez
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | | | - Jorge R Sánchez-González
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain; Sociedad Ibérica de Ictiología, Departamento de Biología Ambiental, Universidad de Navarra, Pamplona/Iruña, Spain
| | - Enrique Sánchez-Gullón
- Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, Huelva, Spain
| | - M Alexandra Teodósio
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Mar Torralva
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Rufino Vieira-Lanero
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Francisco J Oliva-Paterna
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| |
Collapse
|
16
|
Hulbert JM, Hallett RA, Roy HE, Cleary M. Citizen science can enhance strategies to detect and manage invasive forest pests and pathogens. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Incorporating a citizen science approach into biological invasion management strategies can enhance biosecurity. Many citizen science projects exist to strengthen the management of forest pest and pathogen invasions within both pre- and post-border scenarios. Besides the value of citizen science initiatives for early detection and monitoring, they also contribute widely to raising awareness, informing decisions about eradication and containment efforts to minimize pest and pathogen spread, and even finding resistant plant material for restoration of landscapes degraded by disease. Overall, many projects actively engage citizens in the different stages of forest pest and pathogen invasions, but it is unclear how they work together across all stages of the entire biological invasion process to enhance biosecurity. Here we provide examples of citizen science projects for each stage of the biological invasion process, discuss options for developing a citizen science program to enhance biosecurity, and suggest approaches for integrating citizen science into biosecurity measures to help safeguard forest resources in the future.
Collapse
|
17
|
Bradley BA, Beaury EM, Fusco EJ, Lopez BE. Invasive Species Policy Must Embrace a Changing Climate. Bioscience 2022. [DOI: 10.1093/biosci/biac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
With increasing impacts of climate change observed across ecosystems, there is an urgent need to consider climate change in all future environmental policy. But existing policy and management might be slow to respond to this challenge, leading to missed opportunities to incorporate climate change into practice. Furthermore, invasive species threats continue to rise and interact with climate change—exacerbating negative impacts. Enabling natural resource managers and individuals to be proactive about climate-driven invasive species threats creates a win–win for conservation. Recommendations include expanding opportunities for information sharing across borders, supporting proactive screening and regulation of high-risk species on the horizon, and incentivizing individual actions that reduce ecological impacts. In addition, invasive species risk should be considered when crafting climate mitigation and adaptation policy to reduce compounding stressors on ecosystems. As we develop much-needed tools to reduce harm, policy and management must consider the combined threats of invasions and climate change.
Collapse
Affiliation(s)
- Bethany A Bradley
- Department of Environmental Conservation, University of Massachusetts , Amherst, Amherst, Massachusetts, United States
| | - Evelyn M Beaury
- High Meadows Environmental Institute, Princeton University , Princeton, New Jersey, United States
| | - Emily J Fusco
- Department of Environmental Conservation, University of Massachusetts , Amherst, Amherst, Massachusetts, United States
| | - Bianca E Lopez
- American Association for the Advancement of Science , Washington, DC, United States
| |
Collapse
|
18
|
Dawson W, Peyton JM, Pescott OL, Adriaens T, Cottier‐Cook EJ, Frohlich DS, Key G, Malumphy C, Martinou AF, Minchin D, Moore N, Rabitsch W, Rorke SL, Tricarico E, Turvey KMA, Winfield IJ, Barnes DKA, Baum D, Bensusan K, Burton FJ, Carr P, Convey P, Copeland AI, Fa DA, Fowler L, García‐Berthou E, Gonzalez A, González‐Moreno P, Gray A, Griffiths RW, Guillem R, Guzman AN, Haakonsson J, Hughes KA, James R, Linares L, Maczey N, Mailer S, Manco BN, Martin S, Monaco A, Moverley DG, Rose‐Smyth C, Shanklin J, Stevens N, Stewart AJ, Vaux AGC, Warr SJ, Werenkaut V, Roy HE. Horizon scanning for potential invasive non‐native species across the United Kingdom Overseas Territories. Conserv Lett 2022. [DOI: 10.1111/conl.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wayne Dawson
- Department of Biosciences Durham University Durham UK
| | | | | | - Tim Adriaens
- Research Institute for Nature and Forest (INBO) Herman Teirlinckgebouw Brussels Belgium
| | | | | | - Gillian Key
- GB Non‐Native Species Secretariat Animal and Plant Health Agency York UK
| | | | - Angeliki F. Martinou
- Joint Services Health Unit, British Forces Cyprus Nicosia Cyprus
- The Cyprus Institute Nicosia Cyprus
| | - Dan Minchin
- Marine Research Institute Klaipėda University Klaipėda Lithuania
- Marine Organism Investigations Co Clare Ireland
| | - Niall Moore
- GB Non‐Native Species Secretariat Animal and Plant Health Agency York UK
| | | | | | - Elena Tricarico
- Department of Biology University of Florence Sesto Fiorentino Italy
| | | | - Ian J. Winfield
- UK Centre for Ecology & Hydrology Lancaster Environment Centre Lancaster UK
| | | | - Diane Baum
- Ascension Island Government Ascension Island South Atlantic Ocean
| | - Keith Bensusan
- Gibraltar Botanic Gardens Campus, ‘The Alameda’ University of Gibraltar Gibraltar Gibraltar
| | - Frederic J. Burton
- Department of Environment Cayman Islands Government Grand Cayman Cayman Islands
| | - Peter Carr
- Institute of Zoology Zoological Society of London London UK
| | | | - Alison I. Copeland
- Department of Biosciences Durham University Durham UK
- Department of Environment and Natural Resources Government of Bermuda Hamilton Parish Bermuda
| | - Darren A. Fa
- Natural Sciences and Environment Hub, Research Office University of Gibraltar, Europa Point Campus Gibraltar Gibraltar
| | - Liza Fowler
- St Helena National Trust Jamestown South Atlantic Ocean
| | | | | | - Pablo González‐Moreno
- Department of Forest Engineering, ERSAF University of Cordoba Córdoba Spain
- CABI Egham UK
| | - Alan Gray
- UK Centre for Ecology and Hydrology Penicuik UK
| | | | | | - Antenor N. Guzman
- U.S. Navy Support Facility Diego Garcia Diego Garcia British Indian Ocean Territory
| | - Jane Haakonsson
- Gibraltar Botanic Gardens Campus, ‘The Alameda’ University of Gibraltar Gibraltar Gibraltar
| | | | - Ross James
- Government of South Georgia & the South Sandwich Islands Government House Stanley Falkland Islands
| | - Leslie Linares
- Field Centre, Jews’ Gate Gibraltar Ornithological & Natural History Society Gibraltar Gibraltar
| | | | | | - Bryan Naqqi Manco
- Department of Environment and Coastal Resources National Environmental Centre Providenciales Turks and Caicos Islands
| | - Stephanie Martin
- Government of Tristan da Cunha Edinburgh of the Seven Seas Tristan da Cunha
| | - Andrea Monaco
- Department of Life Sciences University of Siena Siena Italy
| | - David G. Moverley
- Secretariat of the Pacific Regional Environment Programme Apia Samoa
| | | | | | | | | | | | - Stephen J. Warr
- Department of the Environment HM Government of Gibraltar Gibraltar Gibraltar
| | - Victoria Werenkaut
- Laboratorio Ecotono INIBIOMA‐CONICET – Universidad Nacional del Comahue San Carlos de Bariloche Argentina
| | - Helen E. Roy
- UK Centre for Ecology & Hydrology Crowmarsh Gifford UK
| |
Collapse
|
19
|
Karachle PK, Oikonomou A, Pantazi M, Stergiou KI, Zenetos A. Can Biological Traits Serve as Predictors for Fishes' Introductions, Establishment, and Interactions? The Mediterranean Sea as a Case Study. BIOLOGY 2022; 11:1625. [PMID: 36358326 PMCID: PMC9687294 DOI: 10.3390/biology11111625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023]
Abstract
The Mediterranean Sea (MED) is prone to species' introductions, induced by human activities and/or climate change. Recent studies focus on the biological traits that result in such introductions, yet on a single-area-type approach. Here, we used, analyzed, and compared biological traits derived from FishBase for MED, non-indigenous (NIS) and neonative (NEO) in the Mediterranean, and adjacent Atlantic (ATL) and Red Sea (RS) species. A quantitative trait-based analysis was performed using random forest to determine the importance of traits in the successful establishment in the Mediterranean. MED fishes were mainly demersal, slow growing and small-medium sized, preferring intermediate temperatures. Conversely, ATL were mainly deep-dwelling species, preferring low temperatures. RS and NIS were predominantly reef-associated, thermophilus, and stenothermic. NEO species were stenothermic with preference to intermediate-high temperatures. Omnivores with preference to animals was the most common trophic group among regions. MED species exhibited higher phylogenetic uniqueness (PD50) compared to RS and NIS, indicating that they have long ancestral branches and few descendants. Preferred temperature, habitat type preference and maximum reported length (Lmax) and infinite length (Linf) were the most important predictors in the establishment process. Overall, the results presented here could serve as a baseline for future research, especially by using more refined and/or additional biological trail estimates.
Collapse
Affiliation(s)
- Paraskevi K. Karachle
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 19013 Attika, Greece
| | - Anthi Oikonomou
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 19013 Attika, Greece
| | - Maria Pantazi
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 19013 Attika, Greece
| | - Konstantinos I. Stergiou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, U.P.B. 134, 54124 Thessaloniki, Greece
| | - Argyro Zenetos
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 19013 Attika, Greece
| |
Collapse
|
20
|
Bernardo-Madrid R, González-Moreno P, Gallardo B, Bacher S, Vilà M. Consistency in impact assessments of invasive species is generally high and depends on protocols and impact types. NEOBIOTA 2022. [DOI: 10.3897/neobiota.76.83028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Impact assessments can help prioritising limited resources for invasive species management. However, their usefulness to provide information for decision-making depends on their repeatability, i.e. the consistency of the estimated impact. Previous studies have provided important insights into the consistency of final scores and rankings. However, due to the criteria to summarise protocol responses into one value (e.g. maximum score observed) or to categorise those final scores into prioritisation levels, the real consistency at the answer level remains poorly understood. Here, we fill this gap by quantifying and comparing the consistency in the scores of protocol questions with inter-rater reliability metrics. We provide an overview of impact assessment consistency and the factors altering it, by evaluating 1,742 impact assessments of 60 terrestrial, freshwater and marine vertebrates, invertebrates and plants conducted with seven protocols applied in Europe (EICAT; EPPO; EPPO prioritisation; GABLIS; GB; GISS; and Harmonia+). Assessments include questions about diverse impact types: environment, biodiversity, native species interactions, hybridisation, economic losses and human health. Overall, the great majority of assessments (67%) showed high consistency; only a small minority (13%) presented low consistency. Consistency of responses did not depend on species identity or the amount of information on their impacts, but partly depended on the impact type evaluated and the protocol used, probably due to linguistic uncertainties (pseudo-R2 = 0.11 and 0.10, respectively). Consistency of responses was highest for questions on ecosystem and human health impacts and lowest for questions regarding biological interactions amongst alien and native species. Regarding protocols, consistency was highest with Harmonia+ and GISS and lowest with EPPO. The presence of few, but very low, consistent assessments indicates that there is room for improvement in the repeatability of assessments. As no single factor explained largely the variance in consistency, low values can rely on multiple factors. We thus endorse previous studies calling for diverse and complementary actions, such as improving protocols and guidelines or consensus assessment to increase impact assessment repeatability. Nevertheless, we conclude that impact assessments were generally highly consistent and, therefore, useful in helping to prioritise resources against the continued relentless rise of invasive species.
Collapse
|
21
|
Martelli F, Paradiso F, Ghidotti S, Viterbi R, Cerrato C, Bonelli S. Invasion patterns and niche comparison of the butterfly Cacyreus marshalli among native and non-native range. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractAlien species introduction is a global phenomenon involving different invasion patterns and is characterized by niche conservatism or shift. We describe the spatial distribution of Cacyreus marshalli Butler, [1898] (Lepidoptera: Lycaenidae) in its native (southern Africa) and invaded (Europe) ranges. C. marshalli is the only alien butterfly in Europe, introduced by the trade of ornamental Pelargonium plants, and might threaten native lycaenids because of the chance of its naturalization on indigenous Geranium spp. In Europe, C. marshalli is widespread in the Mediterranean basin, but absent in northern countries. We investigate invasion patterns and their temporal dynamics in Italy, the most extensively invaded country, identifying three phases and different rates of spread resulting from multiple introductions and human-mediated movements. We also characterize and compare the native and invasive ecological niches of C. marshalli with a multivariate approach based on bioclimatic, ecological and human demographic variables. The little overlap between the native and invaded niches (12.6%) indicates a shift in the realized niche of C. marshalli. While the expansion potential of C. marshalli in Europe remains constrained by the distribution of suitable host plants, our niche comparison analysis suggests the species has already invaded new ecological and climatic spaces. This includes colder areas than would be suggested by its native distribution in Africa.
Collapse
|
22
|
Kendig AE, Canavan S, Anderson PJ, Flory SL, Gettys LA, Gordon DR, Iannone III BV, Kunzer JM, Petri T, Pfingsten IA, Lieurance D. Scanning the horizon for invasive plant threats using a data-driven approach. NEOBIOTA 2022. [DOI: 10.3897/neobiota.74.83312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Early detection and eradication of invasive plants are more cost-effective than managing well-established invasive plant populations and their impacts. However, there is high uncertainty around which taxa are likely to become invasive in a given area. Horizon scanning that combines a data-driven approach with rapid risk assessment and consensus building among experts can help identify invasion threats. We performed a horizon scan of potential invasive plant threats to Florida, USA—a state with a high influx of introduced species, conditions that are generally favorable for plant establishment, and a history of negative impacts from invasive plants. We began with an initial list of 2128 non-native plant taxa that are known invaders or crop pests. We built on previous invasive species horizon scans by developing data-based criteria to prioritize 100 taxa for rapid risk assessment. The semi-automated prioritization process included selecting taxa “on the horizon” (i.e., not yet in the target location and not on a noxious weed list) with climate matching, naturalization history, “weediness” record, and global commonness. We derived overall invasion risk scores with rapid risk assessment by evaluating the likelihood of each of the taxa arriving, establishing, and having an impact in Florida. Then, following a consensus-building discussion, we identified six plant taxa as high risk, with overall risk scores ranging from 75 to 100 out of a possible 125. The six taxa are globally distributed, easily transported to new areas, found in regions with climates similar to Florida’s, and can impact native plant communities, human health, or agriculture. Finally, we evaluated our initial and final lists for potential biases. Assessors tended to assign higher risk scores to taxa that had more available information. In addition, we identified biases towards four plant families and certain geographical regions of origin. Our horizon scan approach identified taxa conforming to metrics of high invasion risk and used a methodology refined for plants that can be applied to other locations.
Collapse
|
23
|
Zhang H, Yohannes E, Rothhaupt KO. The Potential Impacts of Invasive Quagga and Zebra Mussels on Macroinvertebrate Communities: An Artificial Stone Substrate Based Field Experiment Using Stable Isotopes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.887191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, the zebra mussel (Dreissena polymorpha) and quagga mussel (D. rostriformis bugensis) invaded multiple freshwater systems and posed major threats to the overall ecosystem. In Lake Constance where zebra mussels invaded in the 1960s, the quagga mussel invasion progressed at a very high rate since 2016, providing an opportunity to study the ecological impact of both species at an early stage. We conducted a field experiment in the littoral region of the lake and monitored differences in macroinvertebrate community colonization. We used standardized stone substrates, which were blank, glued with empty shells of mussels, with living adult quagga mussels, and with living adult zebra mussels. Empty shells and the shells of both living adult quagga and zebra mussels created more colonization areas for newly settled macroinvertebrates. The abundance of newly settled quagga mussels was higher than zebra mussels, indicating the outcompeting behavior of quagga mussels. We used stable isotopes (δ13C and δ15N) of both dreissenids and their potential competitors, which include two snail species (New Zealand mud snail Potamopyrgus antipodarum and faucet snail Bithynia tentaculate) and additional invasive gammarid species (killer shrimp Dikerogammarus villosus), in order to investigate their feeding ecology and to evaluate their potential impacts on macroinvertebrate community. The δ13C and δ15N of neither the newly settled quagga mussels nor the well-established zebra mussels differed significantly among various treatments. Newly settled quagga mussels had higher δ13C values than newly settled zebra mussels and showed similar differences in all four stone setups. During the experimental period (with quagga and zebra mussels still coexisting in some regions), these two dreissenids exhibited clear dietary (isotopic) niche segregation. The rapid expansion of invasive quagga mussels coupled with the higher mortality rate of zebra mussels might have caused a dominance shift from zebra to quagga mussels. The study offers the first overview of the progressive invasion of quagga mussel and the reaction of zebra mussels and other newly settled macroinvertebrates, and compliments the hypothesis of facilitative associations between invasive dreissenids. Results provide an experimental benchmark by which future changes in trophic ecology and invasion dynamics can be measured across the ecosystem.
Collapse
|
24
|
Mulema J, Day R, Nunda W, Akutse KS, Bruce AY, Gachamba S, Haukeland S, Kahuthia-Gathu R, Kibet S, Koech A, Kosiom T, Miano DW, Momanyi G, Murungi LK, Muthomi JW, Mwangi J, Mwangi M, Mwendo N, Nderitu JH, Nyasani J, Otipa M, Wambugu S, Were E, Makale F, Doughty L, Edgington S, Rwomushana I, Kenis M. Prioritization of invasive alien species with the potential to threaten agriculture and biodiversity in Kenya through horizon scanning. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractInvasive alien species (IAS) rank among the most significant drivers of species extinction and ecosystem degradation resulting in significant impacts on socio-economic development. The recent exponential spread of IAS in most of Africa is attributed to poor border biosecurity due to porous borders that have failed to prevent initial introductions. In addition, countries lack adequate information about potential invasions and have limited capacity to reduce the risk of invasions. Horizon scanning is an approach that prioritises the risks of potential IAS through rapid assessments. A group of 28 subject matter experts used an adapted methodology to assess 1700 potential IAS on a 5-point scale for the likelihood of entry and establishment, potential socio-economic impact, and impact on biodiversity. The individual scores were combined to rank the species according to their overall potential risk for the country. Confidence in individual and overall scores was recorded on a 3-point scale. This resulted in a priority list of 120 potential IAS (70 arthropods, 9 nematodes, 15 bacteria, 19 fungi/chromist, 1 viroid, and 6 viruses). Options for risk mitigation such as full pest risk analysis and detection surveys were suggested for prioritised species while species for which no immediate action was suggested, were added to the plant health risk register and a recommendation was made to regularly monitor the change in risk. By prioritising risks, horizon scanning guides resource allocation to interventions that are most likely to reduce risk and is very useful to National Plant Protection Organisations and other relevant stakeholders.
Collapse
|
25
|
Pearson JB, Bellmore JR, Dunham JB. Controlling invasive fish in fluctuating environments: Model analysis of common carp (
Cyprinus carpio
) in a shallow lake. Ecosphere 2022. [DOI: 10.1002/ecs2.3985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- James B. Pearson
- Malheur National Wildlife Refuge U.S. Fish and Wildlife Service Princeton Oregon USA
| | - J. Ryan Bellmore
- Pacific Northwest Research Station U.S. Department of Agriculture, Forest Service Juneau Alaska USA
| | - Jason B. Dunham
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis Oregon USA
| |
Collapse
|
26
|
Costello KE, Lynch SA, McAllen R, O'Riordan RM, Culloty SC. Assessing the potential for invasive species introductions and secondary spread using vessel movements in maritime ports. MARINE POLLUTION BULLETIN 2022; 177:113496. [PMID: 35272109 DOI: 10.1016/j.marpolbul.2022.113496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Global shipping facilitates the introduction of invasive species and parasites via ballast water and hull fouling. Regional management of invasives may be strengthened by identifying the major routes in a network, to allow for targeted ship inspections. This study used cargo shipping records to establish the connectivity of shipping routes between ports in Ireland and other nations. 9291 records were analysed, investigating vessel residence and journey times. On average, vessels spent up to five days in port and less than five days at sea. However, there was strong variation, with general cargo ships recording up to 13 days in port. A horizon scan for species likely to invade in Ireland was incorporated for five species and their associated parasites: American razor clam, Asian shore crab, Brush clawed shore crab, Chinese mitten crab and American slipper limpet. Routes of concern are highlighted and a general framework for effective management is outlined.
Collapse
Affiliation(s)
- Katie E Costello
- School of Biological, Earth and Environmental Sciences, University College Cork, Ireland; Aquaculture and Fisheries Development Centre, Environmental Research Institute, University College Cork, Ireland.
| | - Sharon A Lynch
- School of Biological, Earth and Environmental Sciences, University College Cork, Ireland; Aquaculture and Fisheries Development Centre, Environmental Research Institute, University College Cork, Ireland
| | - Rob McAllen
- School of Biological, Earth and Environmental Sciences, University College Cork, Ireland
| | - Ruth M O'Riordan
- School of Biological, Earth and Environmental Sciences, University College Cork, Ireland; Aquaculture and Fisheries Development Centre, Environmental Research Institute, University College Cork, Ireland
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Ireland; Aquaculture and Fisheries Development Centre, Environmental Research Institute, University College Cork, Ireland; MaREI Centre, Environmental Research Institute, University College Cork, Ireland
| |
Collapse
|
27
|
Krivak-Tetley FE, Sullivan-Stack J, Garnas JR, Zylstra KE, Höger LO, Lombardero MJ, Liebhold AM, Ayres MP. Demography of an invading forest insect reunited with hosts and parasitoids from its native range. NEOBIOTA 2022. [DOI: 10.3897/neobiota.72.75392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Sirex woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae), a widespread invasive pest of pines in the Southern Hemisphere, was first detected in North America in 2004. This study assessed the impacts of life history traits, host resistance and species interactions on the demography of S. noctilio in New York, Pennsylvania and Vermont, then compared key metrics to those found in the native range in Galicia, Spain. Many trees naturally attacked by S. noctilio in North America produced no adult woodwasps, with 5 of 38 infested trees (13%) sampled across six sites yielding 64% of emerging insects. Reproductive success was highest in the introduced host scots pine, Pinus sylvestris, but native red pine, Pinus resinosa, produced larger insects. Sirex noctilio required one or sometimes two years to develop and sex ratios were male biased, 1:2.98 ♀:♂. Body size and fecundity were highly variable, but generally lower than observed in non-native populations in the Southern Hemisphere. Hymenopteran parasitoids killed approximately 20% of S. noctilio larvae and 63% of emerging adults were colonized by the parasitic nematode Deladenus siricidicola, although no nematodes entered eggs. Demographic models suggested that S. noctilio in the northeastern USA have a higher potential for population growth than populations in the native range: estimated finite factor of increase, λ, was 4.17–4.52 (depending on tree species colonized), compared to λ = 1.57 in Spain.
Collapse
|
28
|
Peyton J, Hadjistylli M, Tziortzis I, Erotokritou E, Demetriou M, Samuel Y, Anastasi V, Fyttis G, Hadjioannou L, Ieronymidou C, Kassinis N, Kleitou P, Kletou D, Mandoulaki A, Michailidis N, Papatheodoulou A, Payiattas G, Sparrow D, Sparrow R, Turvey K, Tzirkalli E, Varnava AI, Pescott OL. Using expert-elicitation to deliver biodiversity monitoring priorities on a Mediterranean island. PLoS One 2022; 17:e0256777. [PMID: 35324899 PMCID: PMC8947143 DOI: 10.1371/journal.pone.0256777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
Biodiversity monitoring plays an essential role in tracking changes in ecosystems, species distributions and abundances across the globe. Data collected through both structured and unstructured biodiversity recording can inform conservation measures designed to reduce, prevent, and reverse declines in valued biodiversity of many types. However, given that resources for biodiversity monitoring are limited, it is important that funding bodies prioritise investments relative to the requirements in any given region. We addressed this prioritisation requirement for a biodiverse Mediterranean island (Cyprus) using a three-stage process of expert-elicitation. This resulted in a structured list of twenty biodiversity monitoring needs; specifically, a hierarchy of three groups of these needs was created using a consensus approach. The most highly prioritised biodiversity monitoring needs were those related to the development of robust survey methodologies, and those ensuring that sufficiently skilled citizens are available to contribute. We discuss ways that the results of our expert-elicitation process could be used to support current and future biodiversity monitoring in Cyprus.
Collapse
Affiliation(s)
- J. Peyton
- UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
- * E-mail:
| | - M. Hadjistylli
- Department of Agriculture, Ministry of Agriculture, Rural Development and Environment, Lefkosia, Cyprus
| | - I. Tziortzis
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Lefkosia, Cyprus
| | - E. Erotokritou
- Department of Environment, Ministry of Agriculture, Rural Development and Environment, Lefkosia, Cyprus
| | - M. Demetriou
- Department of Biological Sciences, University of Cyprus, Lefkosia, Cyprus
| | - Y. Samuel
- Department of Biological Sciences, University of Cyprus, Lefkosia, Cyprus
- Oceanography Centre, University of Cyprus, Lefkosia, Cyprus
| | - V. Anastasi
- Terra Cypria - The Cyprus Conservation Foundation, Lefkosia, Cyprus
- BirdLife Cyprus, Nicosia, Cyprus
| | - G. Fyttis
- Department of Biological Sciences, University of Cyprus, Lefkosia, Cyprus
- I.A.CO Environmental & Water Consultants Ltd., Lefkosia, Cyprus
| | - L. Hadjioannou
- Enalia Physis Environmental Research Centre, Lefkosia, Cyprus
- CMMI – Cyprus Marine and Maritime Institute, Larnaca, Cyprus
| | | | - N. Kassinis
- Game and Fauna Service, Ministry of Interior, Lefkosia, Cyprus
| | - P. Kleitou
- Marine & Environmental Research (MER) Lab, Lemesos, Cyprus
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - D. Kletou
- Marine & Environmental Research (MER) Lab, Lemesos, Cyprus
- Department of Maritime Transport and Commerce, Frederick University, Lemesos, Cyprus
| | - A. Mandoulaki
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - N. Michailidis
- Department of Fisheries and Marine Research, Ministry of Agriculture, Rural Development and Environment, Lefkosia, Cyprus
| | | | - G. Payiattas
- Department of Fisheries and Marine Research, Ministry of Agriculture, Rural Development and Environment, Lefkosia, Cyprus
| | - D. Sparrow
- Cyprus Dragonfly Study Group, Pafos, Cyprus
| | - R. Sparrow
- Cyprus Dragonfly Study Group, Pafos, Cyprus
| | - K. Turvey
- UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| | - E. Tzirkalli
- School of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - A. I. Varnava
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - O. L. Pescott
- UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| |
Collapse
|
29
|
Kenis M, Agboyi LK, Adu-Acheampong R, Ansong M, Arthur S, Attipoe PT, Baba ASM, Beseh P, Clottey VA, Combey R, Dzomeku I, Eddy-Doh MA, Fening KO, Frimpong-Anin K, Hevi W, Lekete-Lawson E, Nboyine JA, Ohene-Mensah G, Oppong-Mensah B, Nuamah HSA, van der Puije G, Mulema J. Horizon scanning for prioritising invasive alien species with potential to threaten agriculture and biodiversity in Ghana. NEOBIOTA 2022. [DOI: 10.3897/neobiota.71.72577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species (IAS) continue to shape the global landscape through their effects on biological diversity and agricultural productivity. The effects are particularly pronounced in Sub-Saharan Africa, which has seen the arrival of many IAS in recent years. This has been attributed to porous borders, weak cross border biosecurity, and inadequate capacity to limit or stop invasions. Prediction and early detection of IAS, as well as mechanisms of containment and eradication, are needed in the fight against this global threat. Horizon scanning is an approach that enables gathering of information on risk and impact that can support IAS management. A study was conducted in Ghana to establish two ranked lists of potential invasive alien plant pest species that could be harmful to agriculture, forestry, and the environment, and to rank them according to their potential threat. The ultimate objective was to enable prioritization of actions including pest risk analysis, prevention, surveillance and contingency plans. Prioritisation was carried out using an adapted version of horizon scanning and consensus methods developed for ranking IAS worldwide. Following a horizon scan of invasive alien species not yet officially present in Ghana, a total of 110 arthropod and 64 pathogenic species were assessed through a simplified pest risk assessment. Sixteen species, of which 14 were arthropods and two pathogens, had not been recorded on the African continent at the time of assessment. The species recorded in Africa included 19 arthropod and 46 pathogenic species which were already recorded in the neighbouring countries of Burkina Faso, Côte d’Ivoire, and Togo. The majority of arthropod species were likely to arrive as contaminants on commodities, followed by a sizable number which were likely to arrive as stowaways, while some species were capable of long distance dispersal unaided. The main actions suggested for species that scored highly included full pest risk analyses and, for species recorded in neighbouring countries, surveys to determine their presence in Ghana were recommended.
Collapse
|
30
|
Li Y, Bateman C, Skelton J, Wang B, Black A, Huang YT, Gonzalez A, Jusino MA, Nolen ZJ, Freeman S, Mendel Z, Kolařík M, Knížek M, Park JH, Sittichaya W, Pham TH, Ito SI, Torii M, Gao L, Johnson AJ, Lu M, Sun J, Zhang Z, Adams DC, Hulcr J. Preinvasion Assessment of Exotic Bark Beetle-Vectored Fungi to Detect Tree-Killing Pathogens. PHYTOPATHOLOGY 2022; 112:261-270. [PMID: 34261341 DOI: 10.1094/phyto-01-21-0041-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exotic diseases and pests of trees have caused continental-scale disturbances in forest ecosystems and industries, and their invasions are considered largely unpredictable. We tested the concept of preinvasion assessment of not yet invasive organisms, which enables empirical risk assessment of potential invasion and impact. Our example assesses fungi associated with Old World bark and ambrosia beetles and their potential to impact North American trees. We selected 55 Asian and European scolytine beetle species using host use, economic, and regulatory criteria. We isolated 111 of their most consistent fungal associates and tested their effect on four important southeastern American pine and oak species. Our test dataset found no highly virulent pathogens that should be classified as an imminent threat. Twenty-two fungal species were minor pathogens, which may require context-dependent response for their vectors at North American borders, while most of the tested fungi displayed no significant impact. Our results are significant in three ways; they ease the concerns over multiple overseas fungus vectors suspected of heightened potential risk, they provide a basis for the focus on the prevention of introduction and establishment of species that may be of consequence, and they demonstrate that preinvasion assessment, if scaled up, can support practical risk assessment of exotic pathogens.
Collapse
Affiliation(s)
- You Li
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
- Fujian Province Key Laboratory of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Craig Bateman
- Florida Museum of Natural History, University of Florida, Gainesville 32611, U.S.A
| | - James Skelton
- Department of Biology, William and Mary, Williamsburg 23185, U.S.A
| | - Bo Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Adam Black
- Peckerwood Garden Conservation Foundation, Hempstead 77445, U.S.A
| | - Yin-Tse Huang
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Allan Gonzalez
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | | | | | - Stanley Freeman
- Plant Protection Institute, The Volcani Center, Rishon LeZion, Israel
| | - Zvi Mendel
- Plant Protection Institute, The Volcani Center, Rishon LeZion, Israel
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miloš Knížek
- Forestry and Game Management Research Institute, 156 04 Prague 5-Zbraslav, Czech Republic
| | - Ji-Hyun Park
- National Institute of Forest Science, Seoul, South Korea
| | - Wisut Sittichaya
- Department of Pest Management, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thai-Hong Pham
- Mientrung Institute for Scientific Research, VNMN and Graduate School of Science and Technology, Vietnam Academy of Science and Technology, Hue, Vietnam
| | | | - Masato Torii
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Lei Gao
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Andrew J Johnson
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Min Lu
- School of Life Sciences, Hubei University, Wuhan, China
| | - Jianghua Sun
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Damian C Adams
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Jiri Hulcr
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| |
Collapse
|
31
|
García-Díaz P, Montti L, Powell PA, Phimister E, Pizarro JC, Fasola L, Langdon B, Pauchard A, Raffo E, Bastías J, Damasceno G, Fidelis A, Huerta MF, Linardaki E, Moyano J, Núñez MA, Ortiz MI, Rodríguez-Jorquera I, Roesler I, Tomasevic JA, Burslem DFRP, Cava M, Lambin X. Identifying Priorities, Targets, and Actions for the Long-term Social and Ecological Management of Invasive Non-Native Species. ENVIRONMENTAL MANAGEMENT 2022; 69:140-153. [PMID: 34586487 PMCID: PMC8758626 DOI: 10.1007/s00267-021-01541-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Formulating effective management plans for addressing the impacts of invasive non-native species (INNS) requires the definition of clear priorities and tangible targets, and the recognition of the plurality of societal values assigned to these species. These tasks require a multi-disciplinary approach and the involvement of stakeholders. Here, we describe procedures to integrate multiple sources of information to formulate management priorities, targets, and high-level actions for the management of INNS. We follow five good-practice criteria: justified, evidence-informed, actionable, quantifiable, and flexible. We used expert knowledge methods to compile 17 lists of ecological, social, and economic impacts of lodgepole pines (Pinus contorta) and American mink (Neovison vison) in Chile and Argentina, the privet (Ligustrum lucidum) in Argentina, the yellow-jacket wasp (Vespula germanica) in Chile, and grasses (Urochloa brizantha and Urochloa decumbens) in Brazil. INNS plants caused a greater number of impacts than INNS animals, although more socio-economic impacts were listed for INNS animals than for plants. These impacts were ranked according to their magnitude and level of confidence on the information used for the ranking to prioritise impacts and assign them one of four high-level actions-do nothing, monitor, research, and immediate active management. We showed that it is possible to formulate management priorities, targets, and high-level actions for a variety of INNS and with variable levels of available information. This is vital in a world where the problems caused by INNS continue to increase, and there is a parallel growth in the implementation of management plans to deal with them.
Collapse
Affiliation(s)
- Pablo García-Díaz
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Lía Montti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, CC 1260, 7600, Mar del Plata, Argentina
- Instituto de Geología de Costas y del Cuaternario (IGCyC), FCEyN-Universidad Nacional de Mar del Plata-CIC, Funes 3350, 7600, Mar del Plata, Argentina
| | - Priscila Ana Powell
- Instituto de Ecología Regional (IER, UNT, CONICET) and Facultad de Ciencias Naturales e IMl, UNT, Residencia Universitaria de Horco Molle, Yerba Buena, Tucumán, Argentina
| | - Euan Phimister
- Business School, University of Aberdeen, Aberdeen, AB24 3QY, UK
- Business School, University of Stellenbosch, PO Box 610, Bellville, 7535, South Africa
| | - José Cristóbal Pizarro
- Laboratorio de Estudios del Antropoceno (LEA), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Laura Fasola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Dirección Regional Patagonia Norte de la Administración de Parques Nacionales, O'Connor 1188, 8400-San Carlos de Bariloche, Río Negro, Argentina
| | - Bárbara Langdon
- Laboratorio de Invasiones Biológicas (LIB), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biológicas (LIB), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | - Eduardo Raffo
- Servicio Agrícola y Ganadero, Gobierno de Chile, Valdivia, Chile
| | - Joselyn Bastías
- Laboratorio de Estudios del Antropoceno (LEA), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Gabriella Damasceno
- Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A, Rio Claro, 13506-900, Brazil
| | - Alessandra Fidelis
- Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A, Rio Claro, 13506-900, Brazil
| | - Magdalena F Huerta
- Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Valdivia, Chile
| | - Eirini Linardaki
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina
| | - Martín A Núñez
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - María Ignacia Ortiz
- Laboratorio de Estudios del Antropoceno (LEA), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | | | - Ignacio Roesler
- Programa Patagonia, Departamento de Conservación de Aves Argentinas/Asociación Ornitológica del Plata, Buenos Aires, C1249 AAB, Argentina
- Departamento de Análisis de Sistemas Complejos, Fundación Bariloche, CONICET, Av. Bustillo 9400, San Carlos de Bariloche, CP 8400, Argentina
- EDGE of Existence-Zoological Society of London, London, UK
| | - Jorge A Tomasevic
- Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Valdivia, Chile
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Mário Cava
- Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A, Rio Claro, 13506-900, Brazil
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
32
|
Robertson PA, Mill AC, Adriaens T, Moore N, Vanderhoeven S, Essl F, Booy O. Risk Management Assessment Improves the Cost-Effectiveness of Invasive Species Prioritisation. BIOLOGY 2021; 10:biology10121320. [PMID: 34943234 PMCID: PMC8698869 DOI: 10.3390/biology10121320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary International agreements commit nations to control or eradicate invasive alien species. The scale of this challenge exceeds available resources and so it is essential to prioritise the management of invasive alien species. Species prioritisation for management may consider the likelihood and scale of impact (risk assessment) and the feasibility, costs and effectiveness of management (risk management). Risk assessment processes are widely used, risk management less so. To assess the cost effectiveness of prioritisation, we considered 26 high-risk species considered for eradication from Great Britain (GB) with pre-existing risk assessment and risk management outputs. We used these to consider the relative reduction in risk per unit cost when managing prioritised species based on different criteria. We showed that the cost effectiveness of prioritisation within our sample using risk assessment scores alone performed no better than a random ranking of the species. In contrast, prioritisation including management feasibility produced nearly two orders of magnitude improvement compared to random ranking. We concluded that basing management actions on priorities based solely on risk assessment without considering management feasibility risks the inefficient use of limited resources. In this study, the cost effectiveness of species prioritisation action was greatly increased by the inclusion of a risk management assessment. Abstract International agreements commit nations to control or eradicate invasive alien species. The scale of this challenge exceeds available resources and so it is essential to prioritise the management of invasive alien species. Species prioritisation for management typically involves a hierarchy of processes that consider the likelihood and scale of impact (risk assessment) and the feasibility, costs and effectiveness of management (risk management). Risk assessment processes are widely used, risk management less so, but are a crucial component of resource decision making. To assess the cost-effectiveness of prioritisation, we considered 26 high-risk species considered for eradication from Great Britain (GB) with pre-existing risk assessment and risk management outputs. We extracted scores to reflect the overall risk to GB posed by the species, together with the estimated cost and the overall feasibility of eradication. We used these to consider the relative reduction in risk per unit cost when managing prioritised species based on different criteria. We showed that the cost-effectiveness of prioritisation within our sample using risk assessment scores alone, performed no better than a random ranking of the species. In contrast, prioritisation including management feasibility produced nearly two orders of magnitude improvement compared to random. We conclude that basing management actions on priorities based solely on risk assessment without considering management feasibility risks the inefficient use of limited resources. In this study, the cost-effectiveness of species prioritisation for action was greatly increased by the inclusion of risk management assessment.
Collapse
Affiliation(s)
- Peter A. Robertson
- Modelling, Evidence and Policy Group, Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.C.M.); (O.B.)
- Correspondence:
| | - Aileen C. Mill
- Modelling, Evidence and Policy Group, Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.C.M.); (O.B.)
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Havenlaan 88 Bus 73, B-1000 Brussel, Belgium;
| | - Niall Moore
- GB Non-Native Species Secretariat, Animal and Plant Health Agency, Sand Hutton, York YO41 1JW, UK;
| | - Sonia Vanderhoeven
- Belgian Biodiversity Platform, Walloon Research Department for Nature and Agricultural Area (DEMNA), Service Public de Wallonie, Avenue Maréchal Juin, 23, B-5030 Gembloux, Belgium;
| | - Franz Essl
- Bioinvasions Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria;
| | - Olaf Booy
- Modelling, Evidence and Policy Group, Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.C.M.); (O.B.)
- GB Non-Native Species Secretariat, Animal and Plant Health Agency, Sand Hutton, York YO41 1JW, UK;
| |
Collapse
|
33
|
Jourdan J, Riesch R, Cunze S. Off to new shores: Climate niche expansion in invasive mosquitofish ( Gambusia spp.). Ecol Evol 2021; 11:18369-18400. [PMID: 35003679 PMCID: PMC8717293 DOI: 10.1002/ece3.8427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
AIM Formerly introduced for their presumed value in controlling mosquito-borne diseases, the two mosquitofish Gambusia affinis and G. holbrooki (Poeciliidae) are now among the world's most widespread invasive alien species, negatively impacting aquatic ecosystems around the world. These inconspicuous freshwater fish are, once their presence is noticed, difficult to eradicate. It is, therefore, of utmost importance to assess their geographic potential and to identify their likely ability to persist under novel climatic conditions. LOCATION Global. METHODS We build species distribution models using occurrence data from the native and introduced distribution ranges to identify putative niche shifts and further ascertain the areas climatically suitable for the establishment and possible spread of mosquitofish. RESULTS We found significant niche expansions into climatic regions outside their natural climatic conditions, emphasizing the importance of integrating climatic niches of both native and invasive ranges into projections. In particular, there was a marked shift toward tropical regions in Asia and a clear niche shift of European G. holbrooki. This ecological flexibility partly explains the massive success of the two species, and substantially increases the risk for further range expansion. We also showed that the potential for additional expansion resulting from climate change is enormous-especially in Europe. MAIN CONCLUSIONS Despite the successful invasion history and ongoing range expansions, many countries still lack proper preventive measures. Thus, we urge policy makers to carefully evaluate the risk both mosquitofish pose to a particular area and to initiate appropriate management strategies.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department Aquatic EcotoxicologyGoethe University of FrankfurtFrankfurt am MainGermany
| | - Rüdiger Riesch
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Sarah Cunze
- Department of Integrative Parasitology and ZoophysiologyGoethe University of FrankfurtFrankfurt am MainGermany
| |
Collapse
|
34
|
Use of environmental DNA in early detection of Mnemiopsis leidyi in UK coastal waters. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota..71358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
36
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.71358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
37
|
Use of meteorological data in biosecurity. Emerg Top Life Sci 2021; 4:497-511. [PMID: 32935835 PMCID: PMC7803344 DOI: 10.1042/etls20200078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Pests, pathogens and diseases cause some of the most widespread and damaging impacts worldwide — threatening lives and leading to severe disruption to economic, environmental and social systems. The overarching goal of biosecurity is to protect the health and security of plants and animals (including humans) and the wider environment from these threats. As nearly all living organisms and biological systems are sensitive to weather and climate, meteorological, ‘met’, data are used extensively in biosecurity. Typical applications include, (i) bioclimatic modelling to understand and predict organism distributions and responses, (ii) risk assessment to estimate the probability of events and horizon scan for future potential risks, and (iii) early warning systems to support outbreak management. Given the vast array of available met data types and sources, selecting which data is most effective for each of these applications can be challenging. Here we provide an overview of the different types of met data available and highlight their use in a wide range of biosecurity studies and applications. We argue that there are many synergies between meteorology and biosecurity, and these provide opportunities for more widespread integration and collaboration across the disciplines. To help communicate typical uses of meteorological data in biosecurity to a wide audience we have designed the ‘Meteorology for biosecurity’ infographic.
Collapse
|
38
|
Cuthbert RN, Bartlett AC, Turbelin AJ, Haubrock PJ, Diagne C, Pattison Z, Courchamp F, Catford JA. Economic costs of biological invasions in the United Kingdom. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59743] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the high costs of invasion are frequently cited and are a key motivation for environmental management and policy, synthesised data on invasion costs are scarce. Here, we quantify and examine the monetary costs of biological invasions in the United Kingdom (UK) using a global synthesis of reported invasion costs. Invasive alien species have cost the UK economy between US$6.9 billion and $17.6 billion (£5.4 – £13.7 billion) in reported losses and expenses since 1976. Most costs were reported for the entire UK or Great Britain (97%); country-scale cost reporting for the UK's four constituent countries was scarce. Reports of animal invasions were the costliest ($4.7 billion), then plant ($1.3 billion) and fungal ($206.7 million) invasions. Reported damage costs (i.e. excluding management costs) were higher in terrestrial ($4.8 billion) than aquatic or semi-aquatic environments ($29.8 million), and primarily impacted agriculture ($4.2 billion). Invaders with earlier introduction years accrued significantly higher total invasion costs. Invasion costs have been increasing rapidly since 1976, and have cost the UK economy $157.1 million (£122.1 million) per annum, on average. Published information on specific economic costs included only 42 of 520 invaders reported in the UK and was generally available only for the most intensively studied taxa, with just four species contributing 90% of species-specific costs. Given that many of the invasive species lacking cost data are actively managed and have well-recognised impacts, this suggests that cost information is incomplete and that totals presented here are vast underestimates owing to knowledge gaps. Financial expenditure on managing invasions is a fraction (37%) of the costs incurred through damage from invaders; greater investments in UK invasive species research and management are, therefore, urgently required.
Collapse
|
39
|
Montti L, Velazco SJE, Travis JMJ, Grau HR. Predicting current and future global distribution of invasive
Ligustrum lucidum
W.T. Aiton: Assessing emerging risks to biodiversity hotspots. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Lía Montti
- Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN, Universidad Nacional de Mar del Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata Buenos Aires Argentina
- Instituto de Geología de Costas y del Cuaternario (IGCyC) FCEyN Universidad Nacional de Mar del Plata‐CIC Mar del Plata Buenos Aires Argentina
- Instituto de Biología Subtropical (IBS) Universidad Nacional de Misiones (UNaM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Misiones Argentina
- Instituto de Ecología Regional (IER) Universidad Nacional de Tucumán (UNT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Tucumán Argentina
| | - Santiago José Elías Velazco
- Instituto de Biología Subtropical (IBS) Universidad Nacional de Misiones (UNaM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Misiones Argentina
- Department of Botany and Plant Sciences University of California – Riverside Riverside CA USA
- Programa de Pós‐Graduação em Biodiversidade Neotropical Universidade Federal da Integração Latino‐Americana (UNILA) Foz do Iguaçu Brazil
| | | | - H. Ricardo Grau
- Instituto de Ecología Regional (IER) Universidad Nacional de Tucumán (UNT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Tucumán Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo Universidad Nacional de Tucumán (UNT) Tucumán Argentina
| |
Collapse
|
40
|
Identifying threats from introduced and translocated non-native freshwater fishes in Croatia and Slovenia under current and future climatic conditions. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Reynolds SA, Aldridge DC. Impacts of invasive quagga mussels (Dreissena rostriformis bugensis) on reservoir water quality, as revealed by progressive-change BACIPS analysis. WATER RESEARCH 2021; 197:117105. [PMID: 33845280 DOI: 10.1016/j.watres.2021.117105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Invasive quagga mussels (Dreissena rostriformis bugensis) are an emerging threat to the functioning and management of freshwater ecosystems. Quagga mussels were first recorded in the UK in 2014 and have subsequently established at high densities in a number of major reservoirs. Through implementing a Progressive-Change BACIPS (Before-After-Control-Impact Paired Series) analysis, we found that the following trends were observed following quagga mussel establishment: reduced diatom and cyanobacteria abundances; increased soluble reactive phosphorus and reactive silica concentrations; and reduced abundances of Aphanizomenon sp., a potentially toxic cyanobacterium. We also found reservoirs with established quagga mussel populations experienced slightly increased overall chlorophyll a concentration but no changes in turbidity or Microcystis sp. abundance, which are often considered common indicators of dreissenid invasion. Our results show that Progressive-Change BACIPS analysis is a powerful tool which can be used to interrogate industry standard long-term datasets of water quality metrics in order to identify and quantify the impacts of invasive species when the approximate timeframe of species arrival is known. We also demonstrate that quagga mussels may have had significant effects on reservoir ecosystems which, primarily through their impacts on phytoplankton communities, may have implications for reservoir management.
Collapse
Affiliation(s)
- Sam A Reynolds
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK.
| | - David C Aldridge
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; BioRISC, St. Catharine's College, Cambridge, CB2 1RL, UK
| |
Collapse
|
42
|
Goldsmit J, McKindsey CW, Stewart DB, Howland KL. Screening for High-Risk Marine Invaders in the Hudson Bay Region, Canadian Arctic. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.627497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Canadian Arctic is receiving increased ship traffic, largely related to non-renewable resource exploitation and facilitated by climate change. This traffic, much of which arrives in ballast, increases opportunities for the spread of aquatic invasive species (AIS). One of the regions at greatest risk is the Hudson Bay Complex. A horizon scanning exercise was conducted using the semi-quantitative Canadian Marine Invasive Screening Tool (CMIST) to identify AIS of potential concern to the region. This screening-level risk assessment tool, uses documented information to answer questions related to the likelihood and impact of invasion. Species were analyzed by ecological categories (zoobenthos, zooplankton, phytobenthos) and taxonomic groups, with 14 species (out of 31) identified as being of highest relative risk. Crabs, mollusks, macrozooplankton and macroalgae were the taxonomic groups with the highest overall risk scores, through a combination of higher likelihood of invasion and impact scores relative to other taxa. Species that may pose the highest AIS risk are currently mainly distributed on the east and west coasts of the North Atlantic Ocean. Their distributions coincide with source ports and shipping pathways that are well connected to the Hudson Bay Complex. This first horizon scan to identify potential high-risk AIS for the Canadian Arctic incorporated two novel approaches into the CMIST analysis: i) use of the tool to assess two new ecological categories (phytobenthos and zooplankton), and ii) use of averaged CMIST results to interpret general risk patterns of ecological categories. This study is also the first to use CMIST scores to highlight common source regions and connected ports for the highest risk species. In a scenario of climate change and increasing ship traffic, this information can be used to support management actions such as the creation of watch lists to inform adaptive management for preventing AIS establishment, and mitigating associated environmental and economic impacts.
Collapse
|
43
|
Abstract
Multiple national and international trends and drivers are radically changing what biological security means for the United Kingdom (UK). New technologies present novel opportunities and challenges, and globalisation has created new pathways and increased the speed, volume and routes by which organisms can spread. The UK Biological Security Strategy (2018) acknowledges the importance of research on biological security in the UK. Given the breadth of potential research, a targeted agenda identifying the questions most critical to effective and coordinated progress in different disciplines of biological security is required. We used expert elicitation to generate 80 policy-relevant research questions considered by participants to have the greatest impact on UK biological security. Drawing on a collaboratively-developed set of 450 questions, proposed by 41 experts from academia, industry and the UK government (consulting 168 additional experts) we subdivided the final 80 questions into six categories: bioengineering; communication and behaviour; disease threats (including pandemics); governance and policy; invasive alien species; and securing biological materials and securing against misuse. Initially, the questions were ranked through a voting process and then reduced and refined to 80 during a one-day workshop with 35 participants from a variety of disciplines. Consistently emerging themes included: the nature of current and potential biological security threats, the efficacy of existing management actions, and the most appropriate future options. The resulting questions offer a research agenda for biological security in the UK that can assist the targeting of research resources and inform the implementation of the UK Biological Security Strategy. These questions include research that could aid with the mitigation of Covid-19, and preparation for the next pandemic. We hope that our structured and rigorous approach to creating a biological security research agenda will be replicated in other countries and regions. The world, not just the UK, is in need of a thoughtful approach to directing biological security research to tackle the emerging issues.
Collapse
|
44
|
Barwell LJ, Perez-Sierra A, Henricot B, Harris A, Burgess TI, Hardy G, Scott P, Williams N, Cooke DEL, Green S, Chapman DS, Purse BV. Evolutionary trait-based approaches for predicting future global impacts of plant pathogens in the genus Phytophthora. J Appl Ecol 2020; 58:718-730. [PMID: 33883780 DOI: 10.1111/1365-2664.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
Plant pathogens are introduced to new geographical regions ever more frequently as global connectivity increases. Predicting the threat they pose to plant health can be difficult without in-depth knowledge of behaviour, distribution and spread. Here, we evaluate the potential for using biological traits and phylogeny to predict global threats from emerging pathogens.We use a species-level trait database and phylogeny for 179 Phytophthora species: oomycete pathogens impacting natural, agricultural, horticultural and forestry settings. We compile host and distribution reports for Phytophthora species across 178 countries and evaluate the power of traits, phylogeny and time since description (reflecting species-level knowledge) to explain and predict their international transport, maximum latitude and host breadth using Bayesian phylogenetic generalised linear mixed models.In the best-performing models, traits, phylogeny and time since description together explained up to 90%, 97% and 87% of variance in number of countries reached, latitudinal limits and host range, respectively. Traits and phylogeny together explained up to 26%, 41% and 34% of variance in the number of countries reached, maximum latitude and host plant families affected, respectively, but time since description had the strongest effect.Root-attacking species were reported in more countries, and on more host plant families than foliar-attacking species. Host generalist pathogens had thicker-walled resting structures (stress-tolerant oospores) and faster growth rates at their optima. Cold-tolerant species are reported in more countries and at higher latitudes, though more accurate interspecific empirical data are needed to confirm this finding. Policy implications. We evaluate the potential of an evolutionary trait-based framework to support horizon-scanning approaches for identifying pathogens with greater potential for global-scale impacts. Potential future threats from Phytophthora include Phytophthora x heterohybrida, P. lactucae, P. glovera, P. x incrassata, P. amnicola and P. aquimorbida, which are recently described, possibly under-reported species, with similar traits and/or phylogenetic proximity to other high-impact species. Priority traits to measure for emerging species may be thermal minima, oospore wall index and growth rate at optimum temperature. Trait-based horizon-scanning approaches would benefit from the development of international and cross-sectoral collaborations to deliver centralised databases incorporating pathogen distributions, traits and phylogeny.
Collapse
Affiliation(s)
| | | | | | | | - Treena I Burgess
- Phytophthora Science and Management Centre for Climate Impacted Terrestrial Ecosystems Harry Butler Institute Murdoch University Murdoch Australia
| | - Giles Hardy
- Phytophthora Science and Management Centre for Climate Impacted Terrestrial Ecosystems Harry Butler Institute Murdoch University Murdoch Australia
| | | | | | | | - Sarah Green
- Forest Research Northern Research Station Roslin UK
| | - Daniel S Chapman
- Biological and Environmental Sciences University of Stirling Stirling UK
| | | |
Collapse
|
45
|
Blackman RC, Ling KKS, Harper LR, Shum P, Hänfling B, Lawson‐Handley L. Targeted and passive environmental DNA approaches outperform established methods for detection of quagga mussels, Dreissena rostriformis bugensis in flowing water. Ecol Evol 2020; 10:13248-13259. [PMID: 33304534 PMCID: PMC7713958 DOI: 10.1002/ece3.6921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022] Open
Abstract
The early detection of invasive non-native species (INNS) is important for informing management actions. Established monitoring methods require the collection or observation of specimens, which is unlikely at the beginning of an invasion when densities are likely to be low. Environmental DNA (eDNA) analysis is a highly promising technique for the detection of INNS-particularly during the early stages of an invasion.Here, we compared the use of traditional kick-net sampling with two eDNA approaches (targeted detection using both conventional and quantitative PCR and passive detection via metabarcoding with conserved primers) for detection of quagga mussel, Dreissena rostriformis bugensis, a high priority INNS, along a density gradient on the River Wraysbury, UK.All three molecular tools outperformed traditional sampling in terms of detection. Conventional PCR and qPCR both had 100% detection rate in all samples and outperformed metabarcoding when the target species was at low densities. Additionally, quagga mussel DNA copy number (qPCR) and relative read count (metabarcoding) were significantly influenced by both mussel density and distance from source population, with distance being the most significant predictor. Synthesis and application. All three molecular approaches were more sensitive than traditional kick-net sampling for the detection of the quagga mussel in flowing water, and both qPCR and metabarcoding enabled estimates of relative abundance. Targeted approaches were more sensitive than metabarcoding, but metabarcoding has the advantage of providing information on the wider community and consequently the impacts of INNS.
Collapse
Affiliation(s)
- Rosetta C. Blackman
- Department of Aquatic EcologyEawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
- Evolutionary and Environmental Genomics Group (EvoHull)Department of Biological and Marine SciencesUniversity of HullHullUK
| | - Kar Keun Sean Ling
- Evolutionary and Environmental Genomics Group (EvoHull)Department of Biological and Marine SciencesUniversity of HullHullUK
| | - Lynsey R. Harper
- Evolutionary and Environmental Genomics Group (EvoHull)Department of Biological and Marine SciencesUniversity of HullHullUK
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Peter Shum
- Evolutionary and Environmental Genomics Group (EvoHull)Department of Biological and Marine SciencesUniversity of HullHullUK
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Bernd Hänfling
- Evolutionary and Environmental Genomics Group (EvoHull)Department of Biological and Marine SciencesUniversity of HullHullUK
| | - Lori Lawson‐Handley
- Evolutionary and Environmental Genomics Group (EvoHull)Department of Biological and Marine SciencesUniversity of HullHullUK
| |
Collapse
|
46
|
Volery L, Jatavallabhula D, Scillitani L, Bertolino S, Bacher S. Ranking alien species based on their risks of causing environmental impacts: a global assessment of alien ungulates. GLOBAL CHANGE BIOLOGY 2020; 27:1003-1016. [PMID: 33289257 DOI: 10.1111/gcb.15467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
For an efficient allocation of the limited resources to alien species management, the most damaging species should be prioritized. Comparing alien species based on their impacts is not straightforward, as the same species can cause different types and magnitudes of impacts when introduced to different contexts, making it difficult to summarize its overall impact. The Environmental Impact Classification of Alien Taxa (EICAT) systematically summarizes and compares detrimental impacts caused by alien populations to native biota and has been adopted by the International Union for Conservation of Nature (IUCN). For each alien species, all reported impacts to native populations within the introduced range are classified into five levels of severity, from negligible impact to irreversible local extinction. Currently, EICAT only compares alien species based on their highest impact, thereby ignoring variation in impact magnitudes. Here, we used information on the variation in impact magnitudes of alien species to estimate their risks to cause high impacts if introduced to a novel environment. We demonstrate the usefulness of this approach by classifying the global impacts of alien ungulates. We found impact reports for 27 of the 66 alien ungulate species established worldwide, highlighting substantial knowledge gaps in invasion science. We classified a total of 441 impacts to native fauna and flora caused by these 27 species. Twenty-six of the species were found to cause harmful impacts (native population declines or local extinctions). Mouflon (Ovis orientalis, Gmelin, 1774) and dromedary (Camelus dromedarius, Linnaeus, 1758) had a higher risk of causing local extinctions if introduced to a novel environment than sika deer (Cervus nippon, Temminck, 1838) and goats (Capra hircus, Linnaeus, 1758). Including risk of high impacts allows to discriminate among species with the same EICAT classification and improves alien species prioritization for management.
Collapse
Affiliation(s)
- Lara Volery
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Divija Jatavallabhula
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Laura Scillitani
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sven Bacher
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| |
Collapse
|
47
|
Dickey JWE, Cuthbert RN, Steffen GT, Dick JTA, Briski E. Sea freshening may drive the ecological impacts of emerging and existing invasive non‐native species. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- James W. E. Dickey
- Institute for Global Food Security School of Biological Sciences Queen’s University Belfast Belfast UK
| | - Ross N. Cuthbert
- Institute for Global Food Security School of Biological Sciences Queen’s University Belfast Belfast UK
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Kiel Germany
| | | | - Jaimie T. A. Dick
- Institute for Global Food Security School of Biological Sciences Queen’s University Belfast Belfast UK
| | | |
Collapse
|
48
|
Booy O, Robertson PA, Moore N, Ward J, Roy HE, Adriaens T, Shaw R, Van Valkenburg J, Wyn G, Bertolino S, Blight O, Branquart E, Brundu G, Caffrey J, Capizzi D, Casaer J, De Clerck O, Coughlan NE, Davis E, Dick JTA, Essl F, Fried G, Genovesi P, González-Moreno P, Huysentruyt F, Jenkins SR, Kerckhof F, Lucy FE, Nentwig W, Newman J, Rabitsch W, Roy S, Starfinger U, Stebbing PD, Stuyck J, Sutton-Croft M, Tricarico E, Vanderhoeven S, Verreycken H, Mill AC. Using structured eradication feasibility assessment to prioritize the management of new and emerging invasive alien species in Europe. GLOBAL CHANGE BIOLOGY 2020; 26:6235-6250. [PMID: 32851731 DOI: 10.1111/gcb.15280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Prioritizing the management of invasive alien species (IAS) is of global importance and within Europe integral to the EU IAS regulation. To prioritize management effectively, the risks posed by IAS need to be assessed, but so too does the feasibility of their management. While the risk of IAS to the EU has been assessed, the feasibility of management has not. We assessed the feasibility of eradicating 60 new (not yet established) and 35 emerging (established with limited distribution) species that pose a threat to the EU, as identified by horizon scanning. The assessment was carried out by 34 experts in invasion management from across Europe, applying the Non-Native Risk Management scheme to defined invasion scenarios and eradication strategies for each species, assessing the feasibility of eradication using seven key risk management criteria. Management priorities were identified by combining scores for risk (derived from horizon scanning) and feasibility of eradication. The results show eradication feasibility score and risk score were not correlated, indicating that risk management criteria evaluate different information than risk assessment. In all, 17 new species were identified as particularly high priorities for eradication should they establish in the future, whereas 14 emerging species were identified as priorities for eradication now. A number of species considered highest priority for eradication were terrestrial vertebrates, a group that has been the focus of a number of eradication attempts in Europe. However, eradication priorities also included a diverse range of other taxa (plants, invertebrates and fish) suggesting there is scope to broaden the taxonomic range of attempted eradication in Europe. We demonstrate that broad scale structured assessments of management feasibility can help prioritize IAS for management. Such frameworks are needed to support evidence-based decision-making.
Collapse
Affiliation(s)
- Olaf Booy
- Animal and Plant Health Agency, Non-Native Species Secretariat, Sand Hutton, York, UK
- Modelling, Evidence and Policy Group, Newcastle University, Newcastle upon Tyne, UK
| | - Pete A Robertson
- Modelling, Evidence and Policy Group, Newcastle University, Newcastle upon Tyne, UK
| | - Niall Moore
- Animal and Plant Health Agency, Non-Native Species Secretariat, Sand Hutton, York, UK
| | - Jess Ward
- Modelling, Evidence and Policy Group, Newcastle University, Newcastle upon Tyne, UK
| | - Helen E Roy
- UK Centre for Ecology and Hydrology, Wallingford, UK
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Wildlife Management and Invasive Species, Brussels, Belgium
| | | | - Johan Van Valkenburg
- Netherlands Food and Consumer Product Safety Authority, National Reference Centre, Wageningen, Netherlands
| | | | - Sandro Bertolino
- Department of Agriculture, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Olivier Blight
- Institut Méditerranéen de Biodiversité et d'Ecologie, Avignon Université, UMR CNRS IRD Aix Marseille Université, Avignon, France
| | - Etienne Branquart
- Invasive Species Unit, Service Public de Wallonie, Wallonia, Belgium
| | - Giuseppe Brundu
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Joe Caffrey
- INVAS Biosecurity, Stillorgan, Co Dublin, Ireland
| | - Dario Capizzi
- Directorate for Natural Capital, Latium Region, Parks and Protected Areas, Rome, Italy
| | - Jim Casaer
- Research Institute for Nature and Forest (INBO), Wildlife Management and Invasive Species, Brussels, Belgium
| | - Olivier De Clerck
- Biology Department, Research Group Phycology, Ghent University, Ghent, Belgium
| | | | - Eithne Davis
- Department of Environmental Science, Centre for Environmental Research, Innovation and Sustainability, Institute of Technology, Ash Lane, Sligo, Ireland
| | | | - Franz Essl
- Division of Conservation Biology, Vegetation Ecology and Landscape Ecology, University Vienna, Vienna, Austria
| | - Guillaume Fried
- Entomology and Invasive Plants Unit, Plant Health Laboratory, Montferrier-sur-Lez, France
| | - Piero Genovesi
- Institute for Environmental Protection and Research (ISPRA), and Chair IUCN SSC Invasive Species Specialist Group, Rome, Italy
| | - Pablo González-Moreno
- CABI Science Centre, Egham, Surrey, UK
- Department of Forest Engineering (ERSAF), University of Córdoba, Córdoba, Spain
| | - Frank Huysentruyt
- Research Institute for Nature and Forest (INBO), Wildlife Management and Invasive Species, Brussels, Belgium
| | | | - Francis Kerckhof
- Royal Belgian Institute of Natural Sciences (RBINS), Oostende, Belgium
| | - Frances E Lucy
- Department of Environmental Science, Centre for Environmental Research, Innovation and Sustainability, Institute of Technology, Ash Lane, Sligo, Ireland
| | | | | | | | - Sugoto Roy
- International Union for the Conservation of Nature, Gland, Switzerland
| | | | | | - Jan Stuyck
- Research Institute for Nature and Forest (INBO), Wildlife Management and Invasive Species, Brussels, Belgium
| | | | | | | | - Hugo Verreycken
- Research Institute for Nature and Forest (INBO), Wildlife Management and Invasive Species, Brussels, Belgium
| | - Aileen C Mill
- Modelling, Evidence and Policy Group, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Peyton JM, Martinou AF, Adriaens T, Chartosia N, Karachle PK, Rabitsch W, Tricarico E, Arianoutsou M, Bacher S, Bazos I, Brundu G, Bruno-McClung E, Charalambidou I, Demetriou M, Galanidi M, Galil B, Guillem R, Hadjiafxentis K, Hadjioannou L, Hadjistylli M, Hall-Spencer JM, Jimenez C, Johnstone G, Kleitou P, Kletou D, Koukkoularidou D, Leontiou S, Maczey N, Michailidis N, Mountford JO, Papatheodoulou A, Pescott OL, Phanis C, Preda C, Rorke S, Shaw R, Solarz W, Taylor CD, Trajanovski S, Tziortzis I, Tzirkalli E, Uludag A, Vimercati G, Zdraveski K, Zenetos A, Roy HE. Horizon Scanning to Predict and Prioritize Invasive Alien Species With the Potential to Threaten Human Health and Economies on Cyprus. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.566281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Manning L, Birchmore I, Morris W. Swans and elephants: A typology to capture the challenges of food supply chain risk assessment. Trends Food Sci Technol 2020; 106:288-297. [PMID: 33071459 PMCID: PMC7554487 DOI: 10.1016/j.tifs.2020.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 11/29/2022]
Abstract
As a result of internal or external shocks, food supply chains can transition between existing regimes of assembly and planned activity to situations that are unexpected or unknown. These events can occur without warning, causing stress, shift, even collapse, and impact on business/supply chain viability. Black elephants and black swans are of concern in food supply chains. Black swans can evolve to grey and white swans with appropriate risk mitigation. If supply chain controls become lax, white swans can revert to grey swans.
Collapse
Affiliation(s)
- Louise Manning
- Royal Agricultural University, Stroud Road Cirencester, Gloucestershire, GL7 6JS, UK
| | - Ian Birchmore
- Aberystwyth University, Hugh Owen Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3DY, UK
| | - Wyn Morris
- Aberystwyth University, Hugh Owen Building, Penglais Campus, Aberystwyth, Ceredigion, SY23 3DY, UK
| |
Collapse
|