1
|
Eriksen EF, Andrews AJ, Nielsen SV, Persson P, Malca E, Onar V, Aniceti V, Piquès G, Piattoni F, Fontani F, Wiech M, Ferter K, Kersten O, Ferrari G, Cariani A, Tinti F, Cilli E, Atmore LM, Star B. Five millennia of mitonuclear discordance in Atlantic bluefin tuna identified using ancient DNA. Heredity (Edinb) 2025; 134:175-185. [PMID: 39920258 PMCID: PMC11977281 DOI: 10.1038/s41437-025-00745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
Mitonuclear discordance between species is readily documented in marine fishes. Such discordance may either be the result of past natural phenomena or the result of recent introgression from previously seperated species after shifts in their spatial distributions. Using ancient DNA spanning five millennia, we here investigate the long-term presence of Pacific bluefin tuna (Thunnus orientalis) and albacore (Thunnus alalunga) -like mitochondrial (MT) genomes in Atlantic bluefin tuna (Thunnus thynnus), a species with extensive exploitation history and observed shifts in abundance and age structure. Comparing ancient (n = 130) and modern (n = 78) Atlantic bluefin MT genomes from most of its range, we detect no significant spatial or temporal population structure, which implies ongoing gene flow between populations and large effective population sizes over millennia. Moreover, we identify discordant MT haplotypes in ancient specimens up to 5000 years old and find that the frequency of these haplotypes has remained similar through time. We therefore conclude that MT discordance in the Atlantic bluefin tuna is not driven by recent introgression. Our observations provide oldest example of directly observed MT discordance in the marine environment, highlighting the utility of ancient DNA to obtain insights in the long-term persistence of such phenomena.
Collapse
Affiliation(s)
- Emma Falkeid Eriksen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway.
| | - Adam Jon Andrews
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
- Norwegian Institute of Water Research, Oslo, Norway
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | | | - Per Persson
- Museum of Cultural History, University of Oslo, Oslo, Norway
| | - Estrella Malca
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA
- NOAA Fisheries, Southeast Fisheries Science Center, Miami, FL, USA
| | - Vedat Onar
- Milas Faculty of Veterinary Medicine, Muğla Sıtkı Kocman University, Muğla, Türkiye
| | - Veronica Aniceti
- Consejo Superior de Investigaciones Científicas, Institució Milà i Fontanals (CSIC-IMF), Barcelona, Spain
| | - Gäel Piquès
- ASM, CNRS, Université Paul Valéry-Montpellier 3, Montpellier, France
| | - Federica Piattoni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Martin Wiech
- Institute of Marine Research, PO Box 1870, N-5817, Bergen, Norway
| | - Keno Ferter
- Institute of Marine Research, PO Box 1870, N-5817, Bergen, Norway
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
| | - Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Manuzzi A, Aguirre-Sarabia I, Díaz-Arce N, Bekkevold D, Jansen T, Gomez-Garrido J, Alioto TS, Gut M, Castonguay M, Sanchez-Maroño S, Álvarez P, Rodriguez-Ezpeleta N. Atlantic mackerel population structure does not support genetically distinct spawning components. OPEN RESEARCH EUROPE 2025; 4:82. [PMID: 39524113 PMCID: PMC11544206 DOI: 10.12688/openreseurope.17365.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 11/16/2024]
Abstract
Background The Atlantic mackerel, Scomber scombrus (Linnaeus, 1758) is a commercially valuable migratory pelagic fish inhabiting the northern Atlantic Ocean and the Mediterranean Sea. Given its highly migratory behaviour for feeding and spawning, several studies have been conducted to assess differentiation among spawning components to better define management units, as well as to investigate possible adaptations to comprehend and predict recent range expansion northwards. Methods Here, the genome of S. scombrus was sequenced and annotated, as an increasing number of population genetic studies have proven the relevance of reference genomes to investigate genomic markers/regions potentially linked to differences at finer scale. Such reference genome was used to map Restriction-site-associated sequencing (RAD-seq) reads for SNP discovery and genotyping in more than 500 samples distributed along the species range. The resulting genotyping tables have been used to perform connectivity and adaptation analyses. Results The assembly of the reference genome for S. scombrus resulted in a genome of 741 Mb. Our population genetic results show that the Atlantic mackerel consist of three previously known genetically isolated units (Northwest Atlantic, Northeast Atlantic, Mediterranean), and provide no evidence for genetically distinct spawning components within the Northwest or Northeast Atlantic. Conclusions Therefore, our findings resolved previous uncertainties by confirming the absence of genetically isolated spawning components in each side of the northern Atlantic, thus rejecting homing behaviour and the need to redefine management boundaries in this species. In addition, no further genetic signs of ongoing adaptation were detected in this species.
Collapse
Affiliation(s)
- Alice Manuzzi
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Imanol Aguirre-Sarabia
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Natalia Díaz-Arce
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Dorte Bekkevold
- DTU Aqua, National Institute of Aquatic Resources, Section for Marine Living Resources, Silkeborg, Denmark
| | - Teunis Jansen
- DTU Aqua, National Institute of Aquatic Resources, Section for Marine Living Resources, Silkeborg, Denmark
- GINR, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Jessica Gomez-Garrido
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Tyler S. Alioto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Martin Castonguay
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Canada, Mont-Joli, Canada
| | - Sonia Sanchez-Maroño
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Paula Álvarez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | |
Collapse
|
3
|
Sarre A, Demarcq H, Keenlyside N, Krakstad JO, El Ayoubi S, Jeyid AM, Faye S, Mbaye A, Sidibeh M, Brehmer P. Climate change impacts on small pelagic fish distribution in Northwest Africa: trends, shifts, and risk for food security. Sci Rep 2024; 14:12684. [PMID: 38830920 PMCID: PMC11148102 DOI: 10.1038/s41598-024-61734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Climate change is recognised to lead to spatial shifts in the distribution of small pelagic fish, likely by altering their environmental optima. Fish supply along the Northwest African coast is significant at both socio-economic and cultural levels. Evaluating the impacts of climatic change on small pelagic fish is a challenge and of serious concern in the context of shared stock management. Evaluating the impact of climate change on the distribution of small pelagic fish, a trend analysis was conducted using data from 2363 trawl samplings and 170,000 km of acoustics sea surveys. Strong warming is reported across the Southern Canary Current Large Marine Ecosystem (CCLME), extending from Morocco to Senegal. Over 34 years, several trends emerged, with the southern CCLME experiencing increases in both wind speed and upwelling intensity, particularly where the coastal upwelling was already the strongest. Despite upwelling-induced cooling mechanisms, sea surface temperature (SST) increased in most areas, indicating the complex interplay of climatic-related stressors in shaping the marine ecosystem. Concomitant northward shifts in the distribution of small pelagic species were attributed to long-term warming trends in SST and a decrease in marine productivity in the south. The abundance of Sardinella aurita, the most abundant species along the coast, has increased in the subtropics and fallen in the intertropical region. Spatial shifts in biomass were observed for other exploited small pelagic species, similar to those recorded for surface isotherms. An intensification in upwelling intensity within the northern and central regions of the system is documented without a change in marine primary productivity. In contrast, upwelling intensity is stable in the southern region, while there is a decline in primary productivity. These environmental differences affected several small pelagic species across national boundaries. This adds a new threat to these recently overexploited fish stocks, making sustainable management more difficult. Such changes must motivate common regional policy considerations for food security and sovereignty in all West African countries sharing the same stocks.
Collapse
Affiliation(s)
- Abdoulaye Sarre
- ISRA, Centre de Recherches Océanographiques de Dakar-Thiaroye, CRODT, BP 2241, Dakar, Sénégal
| | - Hervé Demarcq
- MARBEC, IRD, Ifremer, CNRS, University Montpellier, Sète, CS 30171, Avenue Jean Monnet, 34203, Sète cedex, France
| | - Noel Keenlyside
- Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Jens-Otto Krakstad
- Institute of Marine Research, P.O. Box 1870, 5817, Nordnes, Bergen, Norway
| | | | - Ahmed Mohamed Jeyid
- Institut Mauritanien de Recherche Océanographique et des Pêches, IMROP, BP 22, Nouadhibou, Mauritanie
| | - Saliou Faye
- ISRA, Centre de Recherches Océanographiques de Dakar-Thiaroye, CRODT, BP 2241, Dakar, Sénégal
| | - Adama Mbaye
- ISRA, Centre de Recherches Océanographiques de Dakar-Thiaroye, CRODT, BP 2241, Dakar, Sénégal
| | | | - Patrice Brehmer
- ISRA, Centre de Recherches Océanographiques de Dakar-Thiaroye, CRODT, BP 2241, Dakar, Sénégal.
- IRD, University Brest, CNRS, Ifremer, LEMAR, SRFC, CSRP, Dakar, Senegal.
| |
Collapse
|
4
|
Zhang Z, Zhou J, García Molinos J, Mammola S, Bede-Fazekas Á, Feng X, Kitazawa D, Assis J, Qiu T, Lin Q. Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:349-362. [PMID: 38827135 PMCID: PMC11136901 DOI: 10.1007/s42995-024-00226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Correlative species distribution models (SDMs) are important tools to estimate species' geographic distribution across space and time, but their reliability heavily relies on the availability and quality of occurrence data. Estimations can be biased when occurrences do not fully represent the environmental requirement of a species. We tested to what extent species' physiological knowledge might influence SDM estimations. Focusing on the Japanese sea cucumber Apostichopus japonicus within the coastal ocean of East Asia, we compiled a comprehensive dataset of occurrence records. We then explored the importance of incorporating physiological knowledge into SDMs by calibrating two types of correlative SDMs: a naïve model that solely depends on environmental correlates, and a physiologically informed model that further incorporates physiological information as priors. We further tested the models' sensitivity to calibration area choices by fitting them with different buffered areas around known presences. Compared with naïve models, the physiologically informed models successfully captured the negative influence of high temperature on A. japonicus and were less sensitive to the choice of calibration area. The naïve models resulted in more optimistic prediction of the changes of potential distributions under climate change (i.e., larger range expansion and less contraction) than the physiologically informed models. Our findings highlight benefits from incorporating physiological information into correlative SDMs, namely mitigating the uncertainties associated with the choice of calibration area. Given these promising features, we encourage future SDM studies to consider species physiological information where available. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00226-0.
Collapse
Affiliation(s)
- Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301 China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301 China
| | - Jinxin Zhou
- Institute of Industrial Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8574 Japan
| | | | - Stefano Mammola
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), 28922 Verbania Pallanza, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Ákos Bede-Fazekas
- Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Vácrátót, Hungary
- Department of Environmental and Landscape Geography, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xiao Feng
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Daisuke Kitazawa
- Institute of Industrial Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8574 Japan
| | - Jorge Assis
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Tianlong Qiu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Marine Biodiversity and Ecological Evolution Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
5
|
Zarzyczny KM, Rius M, Williams ST, Fenberg PB. The ecological and evolutionary consequences of tropicalisation. Trends Ecol Evol 2024; 39:267-279. [PMID: 38030539 DOI: 10.1016/j.tree.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Tropicalisation is a marine phenomenon arising from contemporary climate change, and is characterised by the range expansion of tropical/subtropical species and the retraction of temperate species. Tropicalisation occurs globally and can be detected in both tropical/temperate transition zones and temperate regions. The ecological consequences of tropicalisation range from single-species impacts (e.g., altered behaviour) to whole ecosystem changes (e.g., phase shifts in intertidal and subtidal habitats). Our understanding of the evolutionary consequences of tropicalisation is limited, but emerging evidence suggests that tropicalisation could induce phenotypic change as well as shifts in the genotypic composition of both expanding and retracting species. Given the rapid rate of contemporary climate change, research on tropicalisation focusing on shifts in ecosystem functioning, biodiversity change, and socioeconomic impacts is urgently needed.
Collapse
Affiliation(s)
- Karolina M Zarzyczny
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK; Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Marc Rius
- Centre for Advanced Studies of Blanes (CEAB), Consejo Superior de Investigaciones Científicas (CSIC), Accés a la Cala Sant Francesc 14, Blanes 17300, Spain; Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
| | | | - Phillip B Fenberg
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK; Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
6
|
Pringle BA, Duncan MI, Winkler AC, Mafwila S, Jagger C, McKeown NJ, Shaw PW, Henriques R, Potts WM. Ocean warming favours a northern Argyrosomus species over its southern congener, whereas preliminary metabolic evidence suggests that hybridization may promote their adaptation. CONSERVATION PHYSIOLOGY 2023; 11:coad026. [PMID: 37179704 PMCID: PMC10170327 DOI: 10.1093/conphys/coad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Anthropogenic-induced climate change is having profound impacts on aquatic ecosystems, and the resilience of fish populations will be determined by their response to these impacts. The northern Namibian coast is an ocean warming hotspot, with temperatures rising faster than the global average. The rapid warming in Namibia has had considerable impacts on marine fauna, such as the southern extension of the distribution of Argyrosomus coronus from southern Angola into northern Namibian waters, where it now overlaps and hybridizes with the closely related Namibian species, A. inodorus. Understanding how these species (and their hybrids) perform at current and future temperatures is vital to optimize adaptive management for Argyrosomus species. Intermittent flow-through respirometry was used to quantify standard and maximum metabolic rates for Argyrosomus individuals across a range of temperatures. The modelled aerobic scope (AS) of A. inodorus was notably higher at cooler temperatures (12, 15, 18 and 21°C) compared with that of A. coronus, whereas the AS was similar at 24°C. Although only five hybrids were detected and three modelled, their AS was in the upper bounds of the models at 15, 18 and 24°C. These findings suggest that the warming conditions in northern Namibia may increasingly favour A. coronus and promote the poleward movement of the leading edge of their southern distribution. In contrast, the poor aerobic performance of both species at cold temperatures (12°C) suggests that the cold water associated with the permanent Lüderitz Upwelling Cell in the south may constrain both species to central Namibia. This is most concerning for A. inodorus because it may be subjected to a considerable coastal squeeze.
Collapse
Affiliation(s)
- Brett A Pringle
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- Advance Africa Management Services, Johannesburg, South Africa
| | - Murray I Duncan
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- University of Seychelles and Blue Economy Research Institute, Anse Royale, Mahe, Seychelles
| | - Alexander C Winkler
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Samuel Mafwila
- Department of Fisheries and Aquatic Sciences, Sam Nujoma Campus, University of Namibia, Henties Bay, Namibia
| | - Charmaine Jagger
- Department of Fisheries and Aquatic Sciences, Sam Nujoma Campus, University of Namibia, Henties Bay, Namibia
- Ministry of Fisheries and Marine Resources, Swakopmund, Namibia
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Romina Henriques
- Marine Genomics Group, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Warren M Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
7
|
Palacios‐Abrantes J, Frölicher TL, Reygondeau G, Sumaila U, Tagliabue A, Wabnitz C, Cheung W. Timing and magnitude of climate-driven range shifts in transboundary fish stocks challenge their management. GLOBAL CHANGE BIOLOGY 2022; 28:2312-2326. [PMID: 35040239 PMCID: PMC9302671 DOI: 10.1111/gcb.16058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 05/26/2023]
Abstract
Climate change is shifting the distribution of shared fish stocks between neighboring countries' Exclusive Economic Zones (EEZs) and the high seas. The timescale of these transboundary shifts determines how climate change will affect international fisheries governance. Here, we explore this timescale by coupling a large ensemble simulation of an Earth system model under a high emission climate change scenario to a dynamic population model. We show that by 2030, 23% of transboundary stocks will have shifted and 78% of the world's EEZs will have experienced at least one shifting stock. By the end of this century, projections show a total of 45% of stocks shifting globally and 81% of EEZs waters with at least one shifting stock. The magnitude of such shifts is reflected in changes in catch proportion between EEZs sharing a transboundary stock. By 2030, global EEZs are projected to experience an average change of 59% in catch proportion of transboundary stocks. Many countries that are highly dependent on fisheries for livelihood and food security emerge as hotspots for transboundary shifts. These hotspots are characterized by early shifts in the distribution of an important number of transboundary stocks. Existing international fisheries agreements need to be assessed for their capacity to address the social-ecological implications of climate-change-driven transboundary shifts. Some of these agreements will need to be adjusted to limit potential conflict between the parties of interest. Meanwhile, new agreements will need to be anticipatory and consider these concerns and their associated uncertainties to be resilient to global change.
Collapse
Affiliation(s)
- Juliano Palacios‐Abrantes
- Institute for the Oceans and FisheriesThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Center for LimnologyUniversity of WisconsinMadisonWisconsinUSA
| | - Thomas L. Frölicher
- Climate and Environmental PhysicsPhysics InstituteUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Gabriel Reygondeau
- Institute for the Oceans and FisheriesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - U. Rashid Sumaila
- Institute for the Oceans and FisheriesThe University of British ColumbiaVancouverBritish ColumbiaCanada
- School of Public Policy and Global AffairsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Colette C. C. Wabnitz
- Institute for the Oceans and FisheriesThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Stanford Center for Ocean SolutionsStanford UniversityStanfordCaliforniaUSA
| | - William W. L. Cheung
- Institute for the Oceans and FisheriesThe University of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
8
|
Silva CNS, Young EF, Murphy NP, Bell JJ, Green BS, Morley SA, Duhamel G, Cockcroft AC, Strugnell JM. Climatic change drives dynamic source-sink relationships in marine species with high dispersal potential. Ecol Evol 2021; 11:2535-2550. [PMID: 33767820 PMCID: PMC7981208 DOI: 10.1002/ece3.7204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
While there is now strong evidence that many factors can shape dispersal, the mechanisms influencing connectivity patterns are species-specific and remain largely unknown for many species with a high dispersal potential. The rock lobsters Jasus tristani and Jasus paulensis have a long pelagic larval duration (up to 20 months) and inhabit seamounts and islands in the southern Atlantic and Indian Oceans, respectively. We used a multidisciplinary approach to assess the genetic relationships between J. tristani and J. paulensis, investigate historic and contemporary gene flow, and inform fisheries management. Using 17,256 neutral single nucleotide polymorphisms we found low but significant genetic differentiation. We show that patterns of connectivity changed over time in accordance with climatic fluctuations. Historic migration estimates showed stronger connectivity from the Indian to the Atlantic Ocean (influenced by the Agulhas Leakage). In contrast, the individual-based model coupled with contemporary migration estimates inferred from genetic data showed stronger inter-ocean connectivity in the opposite direction from the Atlantic to the Indian Ocean driven by the Subtropical Front. We suggest that the J. tristani and J. paulensis historical distribution might have extended further north (when water temperatures were lower) resulting in larval dispersal between the ocean basis being more influenced by the Agulhas Leakage than the Subtropical Front. As water temperatures in the region increase in accordance with anthropogenic climate change, a southern shift in the distribution range of J. tristani and J. paulensis could further reduce larval transport from the Indian to the Atlantic Ocean, adding complexity to fisheries management.
Collapse
Affiliation(s)
- Catarina N. S. Silva
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQldAustralia
| | | | | | - James J. Bell
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Bridget S. Green
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | | | - Guy Duhamel
- Département Adaptations du VivantBOREAMNHNParisFrance
| | - Andrew C. Cockcroft
- Department of Agriculture, Forestry and FisheriesSouth African GovernmentCape TownSouth Africa
| | - Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQldAustralia
- Department of EcologyLa Trobe UniversityMelbourneVic.Australia
| |
Collapse
|
9
|
Liu B, Zhou Z, Bai Y, Yang J, Shi Y, Pu F, Xu P. Genome-Scale Phylogenetic and Population Genetic Studies Provide Insight Into Introgression and Adaptive Evolution of Takifugu Species in East Asia. Front Genet 2021; 12:625600. [PMID: 33692829 PMCID: PMC7937929 DOI: 10.3389/fgene.2021.625600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
As a typical marine adaptive radiation species, most Takifugu species are widely distributed in East Asian offshore, which have diversified morphological characteristics and different ecological habits. The phylogenetic relationship and population structure of the Takifugu species was complicated because of incomplete lineage sorting, widespread hybridization and introgression. Therefore, to systematically clarify the phylogenetic relationships of Takifugu genus, explore the introgression and natural hybridization between different Takifugu species, and detect the selective signatures in the adaptive evolution of diversified traits, whole-genome resequencing was used in 122 Takifugu samples from 10 species. Phylogenetic analysis showed solid sister-group relationships between Takifugu bimaculatus and Takifugu flavidus, Takifugu oblongus, and Takifugu niphobles, Takifugu rubripes, and Takifugu obscurus, Takifugu xanthoptreus, and Takifugu ocellatus. Further admixture analysis indicated the divergence of T. obscurus population and the bidirectional gene flow between T. bimaculatus and T. flavidus. Using species-specific homozygous genetic variance sites, we detected the asymmetric introgression between T. bimaculatus and T. flavidus at China East sea and southern Taiwan Strait. By genome-scale genetic diversity scanning, we detected two copies of syt1, zar1 and tgfbr1 related to the semilunar reproduction rhythm in T. niphobles, involved in memory formation, embryo maturation and female reproduction. Furthermore, we also found lots of T. niphobles specific mutations in CDS region of circadian rhythm related genes and endocrine hormone genes. For Takifugu species, our research provides reliable genetic resources and results for the phylogeny, introgression, hybridization and adaptive evolution, and could be used as a guide for the formulation of the protection and proliferation release policies.
Collapse
Affiliation(s)
- Bo Liu
- Fisheries Research Institute of Fujian, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Junyi Yang
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yue Shi
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Zhang Z, Mammola S, Zhang H. Does weighting presence records improve the performance of species distribution models? A test using fish larval stages in the Yangtze Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140393. [PMID: 32610238 DOI: 10.1016/j.scitotenv.2020.140393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
To obtain realistic forecasts of the impacts of climate change on species habitat suitability, novel approaches based on species distribution models (SDMs) are being developed and scrutinized. We argue here that, when dealing with data from long-term monitoring programmes, incorporating a temporal weight on the occurrence points may result in a more realistic prediction of a species' potential distribution. Using larval fish presence records collected from 1999 to 2013 in the Yangtze Estuary, China, we compared the performance of ensembles of standard SDMs versus SDMs constructed with weighted time-series presence records in predicting the present and future distributions of the larval stages of two dominant fish. The results of the ensemble SDMs showed that weighted presence records can significantly improve SDM performance, as measured through standard validation metrics. The SDM projections suggest that suitable habitat for both species will decrease under future climate scenarios, with one species (Stolephorus commersonnii) predicted to be more susceptible to climate change than the other (Engraulis japonicus). In addition to range contraction, model projections suggest that the future habitats of both species will shift northward-an implication of climate change that should be considered in future management and conservation strategies for the Yangtze Estuary.
Collapse
Affiliation(s)
- Zhixin Zhang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 1088477, Japan.
| | - Stefano Mammola
- Molecular Ecology Group (MEG), Water Research Institute National Research Council of Italy (CNR-IRSA), Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| | - Hui Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
11
|
Papa Y, Oosting T, Valenza-Troubat N, Wellenreuther M, Ritchie PA. Genetic stock structure of New Zealand fish and the use of genomics in fisheries management: an overview and outlook. NEW ZEALAND JOURNAL OF ZOOLOGY 2020. [DOI: 10.1080/03014223.2020.1788612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yvan Papa
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Tom Oosting
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Noemie Valenza-Troubat
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand
| | - Maren Wellenreuther
- New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter A. Ritchie
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
12
|
Zhang Z, Capinha C, Karger DN, Turon X, MacIsaac HJ, Zhan A. Impacts of climate change on geographical distributions of invasive ascidians. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104993. [PMID: 32662432 DOI: 10.1016/j.marenvres.2020.104993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Ocean warming associated with global climate change renders marine ecosystems susceptible to biological invasions. Here, we used species distribution models to project habitat suitability for eight invasive ascidians under present-day and future climate scenarios. Distance to shore and maximum sea surface temperature were identified as the most important variables affecting species distributions. Results showed that eight ascidians might respond differently to future climate change. Alarmingly, currently colonized areas are much smaller than predicted, suggesting ascidians may expand their invasive ranges. Areas such as Americas, Europe and Western Pacific have high risks of receiving new invasions. In contrast, African coasts, excluding the Mediterranean side, are not prone to new invasions, likely due to the high sea surface temperature there. Our results highlight the importance of climate change impacts on future invasions and the need for accurate modelling of invasion risks, which can be used as guides to develop management strategies.
Collapse
Affiliation(s)
- Zhixin Zhang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo, 108-8477, Japan
| | - César Capinha
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território - IGOT, Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| | - Dirk N Karger
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Xavier Turon
- Centre for Advanced Studies of Blanes (CEAB, CSIC), Blanes, Catalonia, Spain
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Li X, Yang W, Li S, Sun T, Bai J, Pei J, Xie T, Cui B. Asymmetric responses of spatial variation of different communities to a salinity gradient in coastal wetlands. MARINE ENVIRONMENTAL RESEARCH 2020; 158:105008. [PMID: 32501264 DOI: 10.1016/j.marenvres.2020.105008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Various ecological communities are susceptible to the salinity gradients in coastal wetlands. Remane diagram has well described the macrozoobenthos diversity pattern along salinity gradients. Yet, further research is still needed, that is, the changes in diversity and biomass of other communities (e.g. plants, fish) along salinity gradients, and whether these changes are consistent or different among different communities. In this study, using China's Yellow River Delta wetland as a case study, we analyzed the variation of the community composition, species richness, and biomass of plant, macrozoobenthos, and fish communities along a salinity gradient from <0.5 to 30 ppt. We found that plant community composition exhibited more distinct variation along the salinity gradient than macrozoobenthos, with the least distinction for fish. Plant species richness decreased greatly along the gradient, whereas macrozoobenthos richness first decreased and then increased with increasing salinity, with the low richness occurring at a salinity of 0.9-12.3 ppt. Fish had the highest richness at a salinity of 14.8-16.0 ppt. The sum of plant, macrozoobenthos, and fish species and macrozoobenthos richness were both similar to the Remane diagram. Plants had higher biomass in low-salinity zones than in high-salinity zones, except for high biomass at a salinity of 14.8-16.0 ppt, whereas macrozoobenthos and fish showed the opposite trend. Principal-coordinate analysis showed an obvious dissimilarity map based on the composition, richness, and biomass of the plant, macrozoobenthos, and fish communities. Overall, the effects of salinity gradient differed among different communities. These findings demonstrate the asymmetric responses of different communities to salinity gradients, and have practical implications for maintaining a salinity gradient in coastal wetlands.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China.
| | - Shanze Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Jun Pei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Tian Xie
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| |
Collapse
|
14
|
Hudson J, McQuaid CD, Rius M. Contemporary climate change hinders hybrid performance of ecologically dominant marine invertebrates. J Evol Biol 2020; 34:60-72. [PMID: 32096898 DOI: 10.1111/jeb.13609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 12/28/2022]
Abstract
Human activities alter patterns of biodiversity, particularly through species extinctions and range shifts. Two of these activities are human mediated transfer of species and contemporary climate change, and both allow previously isolated genotypes to come into contact and hybridize, potentially altering speciation rates. Hybrids have been shown to survive environmental conditions not tolerated by either parent, suggesting that, under some circumstances, hybrids may be able to expand their ranges and perform well under rapidly changing conditions. However, studies assessing how hybridization influences contemporary range shifts are scarce. We performed crosses on Pyura herdmani and Pyura stolonifera (Chordata, Tunicata), two closely related marine invertebrate species that are ecologically dominant and can hybridize. These sister species live in sympatry along the coasts of southern Africa, but one has a disjunct distribution that includes northern hemisphere sites. We experimentally assessed the performance of hybrid and parental crosses using different temperature regimes, including temperatures predicted under future climate change scenarios. We found that hybrids showed lower performance than parental crosses at the experimental temperatures, suggesting that hybrids are unlikely to expand their ranges to new environments. In turn, we found that the more widespread species performed better at a wide array of temperatures, indicating that this parental species may cope better with future conditions. This study illustrates how offspring fitness may provide key insights to predict range expansions and how contemporary climate change may mediate both the ability of hybrids to expand their ranges and the occurrence of speciation as a result of hybridization.
Collapse
Affiliation(s)
- Jamie Hudson
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | | | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.,Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
15
|
Littrell KA, Ellis D, Gephard SR, MacDonald AD, Palkovacs EP, Scranton K, Post DM. Evaluating the potential for prezygotic isolation and hybridization between landlocked and anadromous alewife ( Alosa pseudoharengus) following secondary contact. Evol Appl 2018; 11:1554-1566. [PMID: 30344627 PMCID: PMC6183454 DOI: 10.1111/eva.12645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/09/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022] Open
Abstract
The recent increase in river restoration projects is altering habitat connectivity for many aquatic species, increasing the chance that previously isolated populations will come into secondary contact. Anadromous and landlocked alewife (Alosa pseudoharengus) are currently undergoing secondary contact as a result of a fishway installation at Rogers Lake in Old Lyme, Connecticut. To determine the degree of prezygotic isolation and potential for hybridization between alewife life history forms, we constructed spawning time distributions for two anadromous and three landlocked alewife populations using otolith-derived age estimates. In addition, we analyzed long-term data from anadromous alewife migratory spawning runs to look for trends in arrival date and spawning time. Our results indicated that anadromous alewife spawned earlier and over a shorter duration than landlocked alewife, but 3%-13% of landlocked alewife spawning overlapped with the anadromous alewife spawning period. The degree of spawning time overlap was primarily driven by annual and population-level variation in the timing of spawning by landlocked alewife, whereas the timing and duration of spawning for anadromous alewife were found to be relatively invariant among years in our study system. For alewife and many other anadromous fish species, the increase in fish passage river restoration projects in the coming decades will re-establish habitat connectivity and may bring isolated populations into contact. Hybridization between life history forms may occur when prezygotic isolating mechanisms are minimal, leading to potentially rapid ecological and evolutionary changes in restored habitats.
Collapse
Affiliation(s)
| | - David Ellis
- Fisheries DivisionConnecticut Department of Energy and Environmental ProtectionOld LymeConnecticut
| | - Stephen R. Gephard
- Fisheries DivisionConnecticut Department of Energy and Environmental ProtectionOld LymeConnecticut
| | - Andrew D. MacDonald
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Eric P. Palkovacs
- Long Marine LaboratoryUniversity of California Santa CruzSanta CruzCalifornia
| | | | - David M. Post
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| |
Collapse
|
16
|
Population genetic signatures of a climate change driven marine range extension. Sci Rep 2018; 8:9558. [PMID: 29934542 PMCID: PMC6015011 DOI: 10.1038/s41598-018-27351-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/20/2018] [Indexed: 11/08/2022] Open
Abstract
Shifts in species distribution, or 'range shifts', are one of the most commonly documented responses to ocean warming, with important consequences for the function and structure of ecosystems, and for socio-economic activities. Understanding the genetic signatures of range shifts can help build our knowledge of the capacity of species to establish and persist in colonised areas. Here, seven microsatellite loci were used to examine the population connectivity, genetic structure and diversity of Octopus tetricus, which has extended its distribution several hundred kilometres polewards associated with the southwards extension of the warm East Australian Current along south-eastern Australia. The historical distribution and the range extension zones had significant genetic differences but levels of genetic diversity were comparable. The population in the range extension zone was sub-structured, contained relatively high levels of self-recruitment and was sourced by migrants from along the entire geographic distribution. Genetic bottlenecks and changes in population size were detected throughout the range extension axis. Persistent gene flow from throughout the historical zone and moderate genetic diversity may buffer the genetic bottlenecks and favour the range extension of O. tetricus. These characteristics may aid adaptation, establishment, and long-term persistence of the population in the range extension zone.
Collapse
|
17
|
Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu MN, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017; 355:355/6332/eaai9214. [PMID: 28360268 DOI: 10.1126/science.aai9214] [Citation(s) in RCA: 1065] [Impact Index Per Article: 133.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals.
Collapse
Affiliation(s)
- Gretta T Pecl
- Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia. .,Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia
| | - Miguel B Araújo
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.,Centro de Investigação em Biodiversidade e Recursos Geneticos, Universidade de Évora, 7000-890 Évora, Portugal.,Department of Biology, Center for Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen O, Denmark
| | - Johann D Bell
- Australian National Centre for Ocean Resources and Security, University of Wollongong, New South Wales 2522, Australia.,Betty and Gordon Moore Center for Science and Oceans, Conservation International, Arlington, VA 22202, USA
| | - Julia Blanchard
- Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia.,Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia
| | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
| | - Timothy D Clark
- Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and Food, Hobart, Tasmania 7000, Australia
| | - Robert K Colwell
- Department of Biology, Center for Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen O, Denmark.,Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,University of Colorado Museum of Natural History, Boulder, CO 80309, USA.,Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil
| | | | - Birgitta Evengård
- Division of Infectious Diseases, Department of Clinical Microbiology, Umea University, 90187 Umea, Sweden
| | - Lorena Falconi
- College of Marine and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia
| | - Simon Ferrier
- CSIRO Land and Water, Canberra, Australian Capital Territory 2601, Australia
| | - Stewart Frusher
- Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia.,Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia
| | - Raquel A Garcia
- Centre for Statistics in Ecology, the Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.,Centre for Invasion Biology, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Matieland 7602, South Africa
| | - Roger B Griffis
- National Oceanic and Atmospheric Administration (NOAA) Fisheries Service, Silver Spring, MD 20912, USA
| | - Alistair J Hobday
- Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.,CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | | | - Marta A Jarzyna
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Sarah Jennings
- Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.,Tasmanian School of Business and Economics, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jonathan Lenoir
- EDYSAN (FRE 3498 CNRS-UPJV), Université de Picardie Jules Verne, 80037 Amiens Cedex 1, France
| | - Hlif I Linnetved
- Institute of Food and Resource Economics, Faculty of Science, University of Copenhagen, Rolighedsvej 25, DK-1958 Frederiksberg C, Denmark
| | - Victoria Y Martin
- School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia
| | | | - Jan McDonald
- Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.,Faculty of Law, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Tero Mustonen
- Snowchange Cooperative, University of Eastern Finland, Joensuu, FIN 80100 Finland
| | - John M Pandolfi
- School of Biological Sciences, Autralian Research Council (ARC) Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent's Park, NW1 4RY London, UK
| | - Ekaterina Popova
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | - Sharon A Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Justine D Shaw
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Cascade J B Sorte
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, 4811 Queensland, Australia.,Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jennifer M Sunday
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mao-Ning Tuanmu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | - Adriana Vergés
- Centre for Marine Bio-Innovation and Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cecilia Villanueva
- Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia.,Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia
| | - Thomas Wernberg
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.,Oceans Institute, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Erik Wapstra
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Stephen E Williams
- College of Marine and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
18
|
Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM. The broad footprint of climate change from genes to biomes to people. Science 2017; 354:354/6313/aaf7671. [PMID: 27846577 DOI: 10.1126/science.aaf7671] [Citation(s) in RCA: 518] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most ecological processes now show responses to anthropogenic climate change. In terrestrial, freshwater, and marine ecosystems, species are changing genetically, physiologically, morphologically, and phenologically and are shifting their distributions, which affects food webs and results in new interactions. Disruptions scale from the gene to the ecosystem and have documented consequences for people, including unpredictable fisheries and crop yields, loss of genetic diversity in wild crop varieties, and increasing impacts of pests and diseases. In addition to the more easily observed changes, such as shifts in flowering phenology, we argue that many hidden dynamics, such as genetic changes, are also taking place. Understanding shifts in ecological processes can guide human adaptation strategies. In addition to reducing greenhouse gases, climate action and policy must therefore focus equally on strategies that safeguard biodiversity and ecosystems.
Collapse
Affiliation(s)
- Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611-0430, USA.
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Ch. De Beriotstraat 32, 3000 Leuven, Belgium
| | - Tom C L Bridge
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811, Australia.,Queensland Museum, Townsville, Queensland 4810, Australia
| | - Ary A Hoffmann
- Bio21 Institute, School of Biosciences, University of Melbourne, Victoria 3010, Australia
| | - John M Pandolfi
- School of Biological Sciences and the Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Gardens, Chinese Academy of Sciences, Yunnan 666303, China
| | - Stuart H M Butchart
- BirdLife International, David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Kit M Kovacs
- Norwegian Polar Institute, FRAM Centre, 9296 Tromsø, Norway
| | - David Dudgeon
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Michela Pacifici
- Global Mammal Assessment Program, Department of Biology and Biotechnologies, Sapienza Università di Roma, Viale dell'Università 32, I-00185 Rome, Italy
| | - Carlo Rondinini
- Global Mammal Assessment Program, Department of Biology and Biotechnologies, Sapienza Università di Roma, Viale dell'Università 32, I-00185 Rome, Italy
| | - Wendy B Foden
- Department of Botany and Zoology, University of Stellenbosch, P/Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Tara G Martin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Camilo Mora
- Department of Geography, University of Hawaii, Honolulu, Hawaii, USA
| | - David Bickford
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - James E M Watson
- School of Geography, Planning and Environmental Management, The University of Queensland, Brisbane, Queensland 4072, Australia.,Global Conservation Program, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, USA
| |
Collapse
|
19
|
Henriques R, von der Heyden S, Matthee CA. When homoplasy mimics hybridization: a case study of Cape hakes (Merluccius capensis and M. paradoxus). PeerJ 2016; 4:e1827. [PMID: 27069785 PMCID: PMC4824878 DOI: 10.7717/peerj.1827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
In the marine environment, an increasing number of studies have documented introgression and hybridization using genetic markers. Hybridization appears to occur preferentially between sister-species, with the probability of introgression decreasing with an increase in evolutionary divergence. Exceptions to this pattern were reported for the Cape hakes (Merluccius capensis and M. paradoxus), two distantly related Merluciidae species that diverged 3-4.2 million years ago. Yet, it is expected that contemporary hybridization between such divergent species would result in reduced hybrid fitness. We analysed 1,137 hake individuals using nine microsatellite markers and control region mtDNA data to assess the validity of the described hybridization event. To distinguish between interbreeding, ancestral polymorphism and homplasy we sequenced the flanking region of the most divergent microsatellite marker. Simulation and empirical analyses showed that hybrid identification significantly varied with the number of markers, model and approach used. Phylogenetic analyses based on the sequences of the flanking region of Mmerhk-3b, combined with the absence of mito-nuclear discordance, suggest that previously reported hybridization between M. paradoxus and M. capensis cannot be substantiated. Our findings highlight the need to conduct a priori simulation studies to establish the suitability of a particular set of microsatellite loci for detecting multiple hybridization events. In our example, the identification of hybrids was severely influenced by the number of loci and their variability, as well as the different models employed. More importantly, we provide quantifiable evidence showing that homoplasy mimics the effects of heterospecific crossings which can lead to the incorrect identification of hybridization.
Collapse
Affiliation(s)
- Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University , Stellenbosch , South Africa
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University , Stellenbosch , South Africa
| | - Conrad A Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University , Stellenbosch , South Africa
| |
Collapse
|
20
|
Beckensteiner J, Kaplan DM, Potts WM, Santos CV, O’Farrell MR. Data-Limited Population-Status Evaluation of Two Coastal Fishes in Southern Angola Using Recreational Catch Length-Frequency Data. PLoS One 2016; 11:e0147834. [PMID: 26829489 PMCID: PMC4734550 DOI: 10.1371/journal.pone.0147834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/08/2016] [Indexed: 11/18/2022] Open
Abstract
Excessive truncation of a population’s size structure is often identified as an important deleterious effect of exploitation, yet the effect on population persistence of size-structure truncation caused by exploitation is often not quantified due to data limitations. In this study, we estimate changes in eggs per recruit (EPR) using annual length-frequency samples over a 9 year period to assess persistence of the two most important recreational fishes in southern Angola: west coast dusky kob (Argyrosomus coronus) and leerfish (Lichia amia). Using a length- and age-structured model, we improve on an existing method to fit this type of model to length-frequency data and estimate EPR. The objectives of the methodological changes are to add flexibility and robustness to the approach for assessing population status in data-limited situations. Results indicate that dusky kob presents very low levels of EPR (5%-10% of the per recruit reproductive capacity in the absence of fishing) in 2013, whereas large inter-annual variability in leerfish estimates suggest caution must be applied when drawing conclusions about its exploitation status. Using simulated length frequency data with known parameter values, we demonstrate that recruitment decline due to overexploitation leads to overestimation of EPR values. Considering the low levels of EPR estimated for the study species, recruitment limitation is not impossible and true EPR values may be even lower than our estimates. It is, therefore, likely that management action, such as the creation of Marine Protected Areas, is needed to reconstitute the west coast dusky kob population.
Collapse
Affiliation(s)
- Jennifer Beckensteiner
- UMR 212 EME, Centre de Recherche Halieutique Méditerranéenne et Tropicale, Institut de Recherche pour le Développement (IRD), Sète, France
- Department of fisheries, Virginia Institute of Marine Science (VIMS), College of William & Mary, Gloucester Point, Virginia, United States of America
- * E-mail:
| | - David M. Kaplan
- UMR 212 EME, Centre de Recherche Halieutique Méditerranéenne et Tropicale, Institut de Recherche pour le Développement (IRD), Sète, France
- Department of fisheries, Virginia Institute of Marine Science (VIMS), College of William & Mary, Gloucester Point, Virginia, United States of America
| | - Warren M. Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Carmen V. Santos
- Faculdade Ciêncas da Universidade Agostinho Neto (FCUAN), Luanda, Angola
| | - Michael R. O’Farrell
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
21
|
Jonsson B, Jonsson N, Albretsen J. Environmental change influences the life history of salmon Salmo salar in the North Atlantic Ocean. JOURNAL OF FISH BIOLOGY 2016; 88:618-637. [PMID: 26725985 DOI: 10.1111/jfb.12854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Annual mean total length (LT) of wild one-sea-winter (1SW) Atlantic salmon Salmo salar of the Norwegian River Imsa decreased from 63 to 54 cm with a corresponding decrease in condition factor (K) for cohorts migrating to sea from 1976 to 2010. The reduction in LT is associated with a 40% decline in mean individual mass, from 2 to 1·2 kg. Hatchery fish reared from parental fish of the same population exhibited similar changes from 1981 onwards. The decrease in LT correlated negatively with near-surface temperatures in the eastern Norwegian Sea, thought to be the main feeding area of the present stock. Furthermore, S. salar exhibited significant variations in the proportion of cohorts attaining maturity after only one winter in the ocean. The proportion of S. salar spawning as 1SW fish was lower both in the 1970s and after 2000 than in the 1980s and 1990s associated with a gradual decline in post-smolt growth and smaller amounts of reserve energy in the fish. In wild S. salar, there was a positive association between post-smolt growth and the sea survival back to the River Imsa for spawning. In addition, among smolt year-classes, there were significant positive correlations between wild and hatchery S. salar in LT, K and age at maturity. The present changes may be caused by ecosystem changes following the collapse and rebuilding of the pelagic fish abundance in the North Atlantic Ocean, a gradual decrease in zooplankton abundance and climate change with increasing surface temperature in the Norwegian Sea. Thus, the observed variation in the life-history traits of S. salar appears primarily associated with major changes in the pelagic food web in the ocean.
Collapse
Affiliation(s)
- B Jonsson
- Norwegian Institute for Nature Research, Landscape Ecology Department, Gaustadalléen 21, 0349 Oslo, Norway
| | - N Jonsson
- Norwegian Institute for Nature Research, Landscape Ecology Department, Gaustadalléen 21, 0349 Oslo, Norway
| | - J Albretsen
- Institute of Marine Research, Flødevigen Research Station, Nye Flødevigveien 20, 4817 His, Norway
| |
Collapse
|
22
|
Gattuso JP, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner HO, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C. OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. Science 2015; 349:aac4722. [PMID: 26138982 DOI: 10.1126/science.aac4722] [Citation(s) in RCA: 433] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems—and the goods and services they provide—for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario—consistent with the Copenhagen Accord's goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate.
Collapse
Affiliation(s)
- J-P Gattuso
- Laboratoire d'Océanographie de Villefranche, CNRS-Institut National des Sciences de l'Univers, F-06230 Villefranche-sur-mer, France. Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-mer, France. Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France.
| | - A Magnan
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - R Billé
- Secretariat of the Pacific Community, B.P. D5, 98848 Noumea Cedex, New Caledonia
| | - W W L Cheung
- Nippon Foundation-UBC Nereus Program, University of British Columbia (UBC), Vancouver, BC V6T 1Z4, Canada
| | - E L Howes
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570, Bremenrhaven, Germany
| | - F Joos
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - D Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000 Monaco, Principality of Monaco. Institut Pierre Simon Laplace/Laboratoire des Science du Climat et de l'Environnement, UMR8212, CNRS-Commissariat à l'Énergie Atomique et aux Énergies Alternatives-Université de Versailles Saint-Quentin-en-Yvelines, Gif sur Yvette, France
| | - L Bopp
- Ocean Conservancy, 1300 19th Street NW, 8th Floor, Washington, DC 20036, USA
| | - S R Cooley
- Coral Reef Watch, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA
| | - C M Eakin
- Global Change Institute and Australian Research Council Centre for Excellence in Coral Reef Studies, University of Queensland, Building 20, St Lucia, 4072 Queensland, Australia
| | - O Hoegh-Guldberg
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| | - R P Kelly
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - H-O Pörtner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570, Bremenrhaven, Germany
| | - A D Rogers
- Scottish Natural Heritage, 231 Corstorphine Road, Edinburgh EH12 7AT, Scotland
| | - J M Baxter
- IUCN, Rue Mauverney 28, CH-1196 Gland, Switzerland
| | - D Laffoley
- Environment Laboratories, International Atomic Energy Agency, 4a Quai Antoine 1er, MC-98000 Monaco, Principality of Monaco
| | - D Osborn
- Program on Science, Technology, and Society, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138, USA
| | - A Rankovic
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France. Fisheries Economics Research Unit, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - J Rochette
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - U R Sumaila
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - S Treyer
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| | - C Turley
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| |
Collapse
|
23
|
Ellington EH, Murray DL. Influence of hybridization on animal space use: a case study using coyote range expansion. OIKOS 2015. [DOI: 10.1111/oik.01824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E. Hance Ellington
- Environmental and Life Sciences, Trent Univ.; 2140 East Bank Drive Peterborough, ON K9J 7B8 Canada
| | - Dennis L. Murray
- Biology Dept; Trent Univ.; 2140 East Bank Drive Peterborough, ON K9J 7B8 Canada
| |
Collapse
|
24
|
Beatty GE, Barker L, Chen PP, Kelleher CT, Provan J. Cryptic introgression into the kidney saxifrage (Saxifraga hirsuta) from its more abundant sympatric congener Saxifraga spathularis, and the potential risk of genetic assimilation. ANNALS OF BOTANY 2015; 115:179-86. [PMID: 25471098 PMCID: PMC4551084 DOI: 10.1093/aob/mcu226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/26/2014] [Accepted: 09/29/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Although hybridization can play a positive role in plant evolution, it has been shown that excessive unidirectional hybridization can result in replacement of a species' gene pool, and even the extinction of rare species via genetic assimilation. This study examines levels of introgression between the common Saxifraga spathularis and its rarer congener S. hirsuta, which have been observed to hybridize in the wild where they occur sympatrically. METHODS Seven species-specific single nucleotide polymorphisms (SNPs) were analysed in 1025 plants representing both species and their hybrid, S. × polita, from 29 sites across their ranges in Ireland. In addition, species distribution modelling was carried out to determine whether the relative abundance of the two parental species is likely to change under future climate scenarios. KEY RESULTS Saxifraga spathularis individuals tended to be genetically pure, exhibiting little or no introgression from S. hirsuta, but significant levels of introgression of S. spathularis alleles into S. hirsuta were observed, indicating that populations exhibiting S. hirsuta morphology are more like a hybrid swarm, consisting of backcrosses and F2s. Populations of the hybrid, S. × polita, were generally comprised of F1s or F2s, with some evidence of backcrossing. Species distribution modelling under projected future climate scenarios indicated an increase in suitable habitats for both parental species. CONCLUSIONS Levels of introgression observed in this study in both S. spathularis and S. hirsuta would appear to be correlated with the relative abundance of the species. Significant introgression of S. spathularis alleles was detected in the majority of the S. hirsuta populations analysed and, consequently, ongoing introgression would appear to represent a threat to the genetic integrity of S. hirsuta, particularly in areas where the species exists sympatrically with its congener and where it is greatly outnumbered.
Collapse
Affiliation(s)
- Gemma E Beatty
- School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK, Institute for Global Food Security, Queen's University Belfast, UK and DBN Plant Molecular Laboratory, National Botanic Gardens, Glasnevin, Dublin 9, Ireland School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK, Institute for Global Food Security, Queen's University Belfast, UK and DBN Plant Molecular Laboratory, National Botanic Gardens, Glasnevin, Dublin 9, Ireland
| | - Laura Barker
- School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK, Institute for Global Food Security, Queen's University Belfast, UK and DBN Plant Molecular Laboratory, National Botanic Gardens, Glasnevin, Dublin 9, Ireland
| | - Pei-Pei Chen
- School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK, Institute for Global Food Security, Queen's University Belfast, UK and DBN Plant Molecular Laboratory, National Botanic Gardens, Glasnevin, Dublin 9, Ireland
| | - Colin T Kelleher
- School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK, Institute for Global Food Security, Queen's University Belfast, UK and DBN Plant Molecular Laboratory, National Botanic Gardens, Glasnevin, Dublin 9, Ireland
| | - Jim Provan
- School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK, Institute for Global Food Security, Queen's University Belfast, UK and DBN Plant Molecular Laboratory, National Botanic Gardens, Glasnevin, Dublin 9, Ireland School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK, Institute for Global Food Security, Queen's University Belfast, UK and DBN Plant Molecular Laboratory, National Botanic Gardens, Glasnevin, Dublin 9, Ireland
| |
Collapse
|