1
|
Shi X, Luo X, Jiao JJ, Zuo J, Kuang X, Zhou J. Lacustrine groundwater discharge-derived carbon and nitrogen to regulate biogeochemical processes as revealed by stable isotope signals in a large shallow eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176069. [PMID: 39244066 DOI: 10.1016/j.scitotenv.2024.176069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/21/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Eutrophic shallow lakes are hotspots of carbon (C) and nitrogen (N) accumulation and transformation, and are increasingly recognized as important sources of greenhouse gases (GHGs: CO2, CH4 and N2O). Lacustrine groundwater discharge (LGD) is a crucial component of the water budget and terrestrial material delivery for lakes, but its interplays with intrinsic CN biogeochemical processes remain less tackled. In this study, C and N ingredients and multiple stable isotopes (δ2H, δ18O, δ13C, and δ15N) were measured seasonally in groundwater, river water and lake water of a large eutrophic shallow lake in eastern China. The results revealed that groundwater is enriched with various forms of C and N that have similar sources and pathways as surface water in the lake and rivers. The isotope balance model also indicated that LGD derived C and N contribute significantly to lake inventories in addition to river runoff. These allochthonous C and N provide extra substrates for related biogeochemical processes, such as algae proliferation, organic matter degradation, methanogenesis and denitrification. Simultaneously, the excess oxygen consumption leads to depletion and hypoxia in the lake, further facilitating the processes of methanogenesis and denitrification. LGD functions not only as an external source of C and N that directly increases GHG saturations, but also as a mediator of internal CN pathways, which significantly affect hypoxia formation, GHG productions and emissions in the eutrophic lake. This study highlights the unrevealed potential regulation of LGD on biogeochemical processes in the eutrophic lake, and underscores the need for its consideration in environmental and ecological studies of lakes both regionally and globally.
Collapse
Affiliation(s)
- Xiaoyan Shi
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Earth and Environment Research Institute, Zhejiang Institution of Research and Innovation, The University of Hong Kong, Hangzhou, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Earth and Environment Research Institute, Zhejiang Institution of Research and Innovation, The University of Hong Kong, Hangzhou, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Earth and Environment Research Institute, Zhejiang Institution of Research and Innovation, The University of Hong Kong, Hangzhou, China.
| | - Jinchao Zuo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Earth and Environment Research Institute, Zhejiang Institution of Research and Innovation, The University of Hong Kong, Hangzhou, China
| | - Xingxing Kuang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiaqing Zhou
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; Faculty of Engineering, China University of Geosciences, Wuhan, China
| |
Collapse
|
2
|
Chen J, Luo M, Xiao Q, Jiang M, Shang D, Qiu Y, Liu Z, Hu Z. Large variations of dissolved carbon occurred in small ponds within an agricultural watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176161. [PMID: 39260492 DOI: 10.1016/j.scitotenv.2024.176161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) significantly affect the aquatic carbon budget and ecosystem functions. Small ponds are abundant globally and widely distributed especially in agricultural watersheds, however, the variability of DOC and DIC, along with their driving factors, remains poorly understood, which likely hampers the understanding of carbon cycle of inland waters. The presented study was designed to fill the knowledge gap based on a detailed year-long field investigation via examining DOC and DIC concentrations across ponds with differing functionalities (e.g. sewage ponds, irrigation ponds, and natural ponds) of a typical agricultural watershed in eastern China. Our results found a pronounced impact of human activities on pond DOC and DIC, with higher DOC occurring in sewage ponds (10.84 ± 2.83 mg L-1) and irrigation ponds (9.09 ± 2.57 mg L-1) and peak DIC in irrigation ponds (20.36 ± 2.49 mg L-1) compared to that at natural ponds (DOC: 7.54 ± 2.55 mg L-1; DIC: 11.16 ± 3.85 mg L-1) with less human activity. The positive correlations between DOC/DIC and key environmental variables (e.g. nutrients and chlorophyll-a) further demonstrated that human activity can either directly increase the carbon concentrations via pollutant discharge, or indirectly increase DOC concentration via stimulating primary production. Meanwhile, field measurements found precipitation and temperature play roles in determining the carbon variability. Specifically, precipitation increased the DOC of these ponds via enhancing land-based carbon inputs, and decrease the DIC of irrigation ponds via diluting. Temperature can influence the carbon dynamics through increasing primary productivity and metabolism. Our study underscores the roles of human and natural influences in determining the large variations of DOC and DIC in small ponds, which should be considered to better understand the carbon dynamic variability of human-impacted small aquatic systems.
Collapse
Affiliation(s)
- Jianing Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Min Luo
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Nanjing 210007, China
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Minliang Jiang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongyao Shang
- CMA Henan Agrometeorological Support and Applied Technique Key Laboratory, Zhengzhou 450003, China
| | - Yinguo Qiu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | | | - Zhenghua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
3
|
Yang X, Yu R, Sun H, Li X, Wang X. Greenhouse gas emissions from Boreal Lakes: Highlighting the impact of salinity and freezing period on emission dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177163. [PMID: 39490390 DOI: 10.1016/j.scitotenv.2024.177163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Lakes and ponds in boreal regions are considerable natural sources of greenhouse gases (GHGs), including carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O). Although the seasonal variability of GHG emissions from boreal lakes is crucial for improving global emission models, emissions during the freezing period have not received sufficient attention. Focusing on two representative boreal lakes in China-Ulansuhai and Daihai-this study investigated variations in GHG emissions during both the non-freezing and freezing periods. The concentrations of CO2 and CH4 in lake porewater during the non-freezing period were observed to be 50 to 74 times higher than those during the freezing period. In both lakes, CO2 and CH4 emissions predominantly occurred at the water-air interface, with N2O absorption. The Global Warming Potential (GWP) of GHGs in Ulansuhai was 234.35×104 kg/yr, with CO2, CH4, and N2O contributing 12.0 %, 87.4 %, and 0.6 %, respectively. In Daihai, the GWP was 40.47×103 kg/yr, with CO2 CH4, and N2O contributing 40.4 %, 24.5 %, and 35.1 %, respectively. Notably, the GHG 'storage' capacities of Ulansuhai and Daihai were 227.51 × 105 kg/yr and 9.23 × 102 kg/yr, respectively. In both lakes, dissolved organic carbon and total nitrogen in the porewater exhibited a negative relationship with GHG concentrations. Compared to lake Ulansuhai, salinity exhibited a stronger correlation with GHGs in lake Daihai, which has high salinity. Our research reveals that the freezing period and the salinity (in high salinity lakes) have distinct impacts on GHG emissions in boreal lakes. The findings are crucial for understanding the contributions of boreal lakes to GHG emissions and their potential impact on climate change, and provide vital information for developing conservation and management strategies regarding these ecosystems.
Collapse
Affiliation(s)
- Xu Yang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010021, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Heyang Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiangwei Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaozhuang Wang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
4
|
Zhou C, Peng Y, Zhou M, Jia R, Liu H, Xu X, Chen L, Ma J, Kinouchi T, Wang G. Cyanobacteria decay alters CH 4 and CO 2 produced hotspots along vertical sediment profiles in eutrophic lakes. WATER RESEARCH 2024; 265:122319. [PMID: 39182350 DOI: 10.1016/j.watres.2024.122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Cyanobacteria-derived organic carbon has been reported to intensify greenhouse gas emissions from lacustrine sediments. However, the specific processes of CH4 and CO2 production and release from sediments into the atmosphere remain unclear, especially in eutrophic lakes. To investigate the influence of severe cyanobacteria accumulation on the production and migration of sedimentary CH4 and CO2, this study examined the different trophic level lakes along the middle and lower reaches of the Yangtze River. The results demonstrated that eutrophication amplified CH4 and CO2 emissions, notably in Lake Taihu, where fluxes peaked at 929.9 and 7222.5 μmol/m2·h, mirroring dissolved gas levels in overlying waters. Increased sedimentary organic carbon raised dissolved CH4 and CO2 concentrations in pore-water, with isotopic tracking showing cyanobacteria-derived carbon specifically elevated CH4 and CO2 in surface sediment pore-water more than in deeper layers. Cyanobacteria-derived carbon deposition on surface sediment boosted organic carbon and moisture levels, fostering an anaerobic microenvironment conducive to enhanced biogenic CH4 and CO2 production in surface sediments. In the microcosm systems with the most severe cyanobacteria accumulation, average CH4 and CO2 concentrations in surface sediments reached 6.9 and 2.3 mol/L, respectively, surpassing the 4.7 and 1.4 mol/L observed in bottom sediments, indicating upward migration of CH4 and CO2 hotspots from deeper to surface layers. These findings enhance our understanding of the mechanisms underlying lake sediment carbon emissions induced by eutrophication and provide a more accurate assessment of lake carbon emissions.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yu Peng
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Muchun Zhou
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Ruoyu Jia
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Huazu Liu
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China.
| | - Li Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| |
Collapse
|
5
|
Xun F, Feng M, Zhao C, Luo W, Han X, Ci Z, Yin Y, Wang R, Wu QL, Grossart HP, Xing P. Epilimnetic oligotrophication increases contribution of oxic methane production to atmospheric methane flux from stratified lakes. WATER RESEARCH 2024; 268:122602. [PMID: 39454273 DOI: 10.1016/j.watres.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Although considerable attention has been paid to the effects of eutrophication on aquatic methane (CH4) emissions to the atmosphere, the ecosystem-level effects of oligotrophication/re-oligotrophication on aquatic CH4 production and subsequent ecological responses remain to be elucidated. It has been hypothesized that dissolved inorganic phosphorus (DIP)-deficient conditions drive the ecosystem to utilize poorly bioavailable organic phosphorus for biomass formation, thereby generating CH4 as a by-product. To test this hypothesis, a mass balance approach was used to estimate in situ oxic methane production (OMP) in an oligotrophic, deep Lake Fuxian. The isotopic signature of dissolved 13C-CH4, the potential substrates for OMP, and the phnJ/phnD genes associated with microbial demethylation of organic phosphorus compounds were analyzed. Our results indicate that CH4 accumulation was maximal in the surface mixed layer (SML, i.e., Epilimnion) during lake stratification, and ∼ 86 % of the total CH4 flux to the atmosphere was due to OMP. Decomposition of methylphosphonate (MPn) by Alphaproteobacteria (genera Sphingomonas and Mesorhizobium) contributed significantly to OMP. Furthermore, water temperature (Temp), chlorophyll a (Chla), and DIP were the most critical predictors of water OMP potential. Meta-analysis of currently available global data showed that OMP had a negative exponential distribution with DIP (OMP = 2.0 e-0.71DIP, R2 = 0.57, p < 0.05). DIP concentrations below a threshold of 3.40 ∼ 9.35 μg P L-1 triggered OMP processes and increased the atmospheric CH4 emissions. Under future warming scenarios, stratification and catchment management induced oligotrophication or re-oligotrophication may systematically affect the biogeochemical cycling of phosphorus and the OMP contribution to CH4 emission in stratified lakes.
Collapse
Affiliation(s)
- Fan Xun
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhua Feng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlei Luo
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Chengjiang 652500, China
| | - Xiaotong Han
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Ci
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210008, China
| | - Yifan Yin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210008, China
| | - Rong Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Chengjiang 652500, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Chengjiang 652500, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz- Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin 16775, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Chengjiang 652500, China.
| |
Collapse
|
6
|
Dai M, Xu Y, Genjebay Y, Lu L, Wang C, Yang H, Huang C, Huang T. Urbanization significantly increases greenhouse gas emissions from a subtropical headwater stream in Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173508. [PMID: 38851353 DOI: 10.1016/j.scitotenv.2024.173508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Streams are disproportionately significant contributors to increases in greenhouse gas (GHG) effluxes in river networks. In the context of global urbanization, a growing number of streams are affected by urbanization, which has been suggested to stimulate the water-air GHG emissions from fluvial systems. This study investigated the seasonal and longitudinal profiles of GHG (N2O, CH4, and CO2) concentrations of Jiuxianghe Stream, a headwater stream undergoing urbanization, and estimated its GHG diffusive fluxes and global warming potentials (GWPs) using the boundary layer method. The results showed that N2O, CH4, and CO2 concentrations in Jiuxianghe Stream were 0.45-7.19 μg L-1, 0.31-586.85 μg L-1, and 0.16-11.60 mg L-1, respectively. N2O, CH4, and CO2 concentrations in the stream showed 4.55-, 23.70-, and 7.68-fold increases from headwaters to downstream, respectively, corresponding to the forest-urban transition within the watershed. Multiple linear regression indicated that NO3--N, NH4+-N, and DOC:NO3--N accurately predicted N2O and CO2 concentrations, indicating that N nutrients were the driving factors. The Jiuxianghe Stream was a source of atmospheric GHGs with a daily GWP of 7.31 g CO2-eq m-2 d-1 on average and was significantly positively correlated with the ratio of construction land and forest in the sub-watershed. This study highlights the critical role of urbanization in amplifying GHG emissions from streams, thereby augmenting our understanding of GHG emissions from river networks. With global urbanization on the rise, streams experiencing urbanization are expected to make an unprecedentedly significant contribution to riverine GHG budgets in the future.
Collapse
Affiliation(s)
- Mutan Dai
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Yuanhui Xu
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | | | - Lingfeng Lu
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Chuan Wang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China.
| |
Collapse
|
7
|
Yuan G, Levi EE, Davidson TA, Lauridsen TL, Søndergaard M, Yang Z, Wu A, Cao T, Li Y, Fu H, Jeppesen E. Warming alters the network of physiological traits and their contribution to plant abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173573. [PMID: 38823703 DOI: 10.1016/j.scitotenv.2024.173573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
The impact of global warming on plant abundance has been widely discussed, but it remains unclear how warming affects plant physiological traits, and how these traits contribute to the abundance of aquatic plants. We explored the adjustments in physiological traits of two common aquatic plant species (Potamogeton crispus L. and Elodea canadensis Michx.) and their links to plant abundance in three temperature treatments by determining twelve physiological traits and plant abundance over an 11-month period in outdoor mesocosms. This mesocosms facility has been running uninteruptedly for 16 years, rendering the plants a unique opportunity to adapt to the warming differences. We found that 1) warming reduced the starch storage in winter for P. crispus and in summer for E. canadensis while increased the nitrogenous substances (e.g., TN, FAA, and proline) in winter for P. crispus. 2) For E. canadensis, TC, starch, SC, and sucrose contents were higher in summer than in winter regardless of warming, while TC, SC, and sucrose contents were lower in summer for P. crispus. 3) Warming decreased the association strength between physiological traits and plant abundance for P. crispus but enhanced it for E. canadensis. 4) E. canadensis showed increased interaction strength among physiological traits under warming, indicating increased metabolic exertion in the response to warming, which contributed to the reduction in abundance. Trait interaction strength of P. crispus was reduced under warming, but with less impact on plant abundance compared with E. canadensis. Our study emphasizes that warming alters the network of plant physiological traits and their contribution to abundance and that different strengths of susceptibility to warming of the various plant species may alter the composition of plant communities in freshwater ecosystems.
Collapse
Affiliation(s)
- Guixiang Yuan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark.
| | - Eti E Levi
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark
| | - Thomas A Davidson
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark
| | - Torben L Lauridsen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Martin Søndergaard
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Zhenzhi Yang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Aiping Wu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Te Cao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| | - Hui Fu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Ecology Department, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark.
| | - Erik Jeppesen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 60800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Underwood JC, Hall NC, Mumford AC, Harvey RW, Bliznik PA, Jeanis KM. Relation between the relative abundance and collapse of Aphanizomenon flos-aquae and microbial antagonism in Upper Klamath Lake, Oregon. FEMS Microbiol Ecol 2024; 100:fiae043. [PMID: 38533659 PMCID: PMC11022654 DOI: 10.1093/femsec/fiae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
Aphanizomenon flos-aquae (AFA) is the dominant filamentous cyanobacterium that develops into blooms in Upper Klamath Lake, Oregon, each year. During AFA bloom and collapse, ecosystem conditions for endangered Lost River and shortnose suckers deteriorate, thus motivating the need to identify processes that limit AFA abundance and decline. Here, we investigate the relations between AFA and other members of the microbial community (photosynthetic and nonphotosynthetic bacteria and archaea), how those relations impact abundance and collapse of AFA, and the types of microbial conditions that suppress AFA. We found significant spatial variation in AFA relative abundance during the 2016 bloom period using 16S rRNA sequencing. The Pelican Marina site had the lowest AFA relative abundance, and this was coincident with increased relative abundance of Candidatus Sericytochromatia, Flavobacterium, and Rheinheimera, some of which are known AFA antagonists. The AFA collapse coincided with phosphorus limitation relative to nitrogen and the increased relative abundance of Cyanobium and Candidatus Sericytochromatia, which outcompete AFA when dissolved inorganic nitrogen is available. The data collected in this study indicate the importance of dissolved inorganic nitrogen combined with microbial community structure in suppressing AFA abundance.
Collapse
Affiliation(s)
- Jennifer C Underwood
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| | - Natalie C Hall
- U.S. Geological Survey, Maryland–Delaware–D.C. Water Science Center, 5522 Research Park Dr, Catonsville, MD 21228, United States
| | - Adam C Mumford
- U.S. Geological Survey, Maryland–Delaware–D.C. Water Science Center, 5522 Research Park Dr, Catonsville, MD 21228, United States
| | - Ronald W Harvey
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| | - Paul A Bliznik
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| | - Kaitlyn M Jeanis
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| |
Collapse
|
9
|
Bauduin T, Gypens N, Borges AV. Seasonal and spatial variations of greenhouse gas (CO 2, CH 4 and N 2O) emissions from urban ponds in Brussels. WATER RESEARCH 2024; 253:121257. [PMID: 38340702 DOI: 10.1016/j.watres.2024.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Freshwaters have been recognized as important sources of greenhouse gases (GHG) to the atmosphere. However, urban ponds have received little attention even though their number is increasing due to expanding urbanisation globally. Ponds are frequently associated to urban green spaces that provide several ecosystemic services such as cooling local climate, regulating the water cycle, and acting as small carbon sinks This study aims to identify and understand the processes producing GHGs (CO2, CH4, and N2O) in the urban ponds of the temperate European city of Brussels in Belgium. 22 relatively small ponds (0.1-4.6 ha) surrounded by contrasted landscape (strictly urban, bordered by cropland or by forest), were sampled during four seasons in 2021-2022. The mean ± standard deviation was 3,667 ± 2,904 ppm for the partial pressure of CO2 (pCO2), 2,833 ± 4,178 nmol L-1 for CH4, and 273 ± 662% for N2O saturation level (%N2O). Relationships of GHGs with oxygen and water temperature suggest that biological processes controlled pCO2, CH4 concentration and%N2O. However, pCO2 was also controlled by external inputs as indicated by the higher values of pCO2 in the smaller ponds, more subject to external inputs than larger ones. The opposite was observed for CH4 concentration that was higher in larger ponds, closer to the forest in the city periphery, and with higher macrophyte cover. N2O concentrations, as well as dissolved inorganic nitrogen, were higher closer to the city center, where atmospheric nitrogen deposition was potentially higher. The total GHG emissions from the Brussels ponds were estimated to 1kT CO2-eq per year and were equivalent to the carbon sink of urban green spaces.
Collapse
Affiliation(s)
- T Bauduin
- Ecology of Aquatic Systems, Free University of Brussels, Belgium; Chemical Oceanography Unit, University of Liège, Belgium.
| | - N Gypens
- Ecology of Aquatic Systems, Free University of Brussels, Belgium
| | - A V Borges
- Chemical Oceanography Unit, University of Liège, Belgium
| |
Collapse
|
10
|
Fan L, Cheng J, Xie Y, Xu L, Buttler A, Wu Y, Fan H, Wu Y. Spatio-temporal patterns and drivers of CH 4 and CO 2 fluxes from rivers and lakes in highly urbanized areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170689. [PMID: 38320709 DOI: 10.1016/j.scitotenv.2024.170689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Gaseous carbon exchange at the water-air interface of rivers and lakes is an essential process for regional and global carbon cycle assessments. Many studies have shown that rivers surrounding urban landscapes can be hotspots for greenhouse gas (GHG) emissions. Here we investigated the variability of diffusive GHG (methane [CH4] and carbon dioxide [CO2]) emissions from rivers in different landscapes (i.e., urban, agricultural and mixed) and from lakes in Suzhou, a highly urbanized region in eastern China. GHG emissions in the Suzhou metropolitan water network followed a typical seasonal pattern, with the highest fluxes in summer, and were primarily influenced by temperature and dissolved oxygen concentration. Surprisingly, lakes were emission hotspots, with mean CH4 and CO2 fluxes of 2.80 and 128.89 mg m-2 h-1, respectively, translating to a total CO2-equivalent flux of 0.21 g CO2-eq m-2 d-1. The global warming potential of urban and mixed rivers (0.19 g CO2-eq m-2 d-1) was comparable to that for lakes, but about twice the value for agricultural rivers (0.10 g CO2-eq m-2 d-1). Factors related to the high GHG emissions in lakes included hypoxic water conditions and an adequate nutrient supply. Riverine CH4 emissions were primarily associated with the concentrations of total dissolved solids (TDS), ammonia‑nitrogen and chlorophyll a. CO2 emissions in rivers were mainly closely related to TDS, with suitable conditions allowing rapid organic matter decomposition. Compared with other types of rivers, urban rivers had more available organic matter and therefore higher CO2 emissions. Overall, this study emphasizes the need for a deeper understanding of the impact of GHG emissions from different water types on global warming in rapidly urbanizing regions. Flexible management measures are urgently needed to mitigate CO2 and CH4 emissions more effectively in the context of the shrinking gap between urban and rural areas with growing socio-economic development.
Collapse
Affiliation(s)
- Longfeng Fan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junxiang Cheng
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; Jiangxi Research Academy of Ecological Civilization, Nanchang 330036, PR China.
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing 100043, PR China.
| | - Ligang Xu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Nanjing, Nanjing 211135, PR China
| | - Alexandre Buttler
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Federal of Lausanne (EPFL), Station 2, CH-1015 Lausanne, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Site Lausanne, Station 2, CH-1015 Lausanne, Switzerland
| | - Yuexia Wu
- School of Business Administration, Nanjing University of Finance & Economics, Nanjing 210023, PR China
| | - Hongxiang Fan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yakun Wu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, PR China
| |
Collapse
|
11
|
Jiang M, Xiao Q, Deng J, Zhang M, Zhang X, Hu C, Xiao W. Ecological water diversion activity changes the fate of carbon in a eutrophic lake. ENVIRONMENTAL RESEARCH 2024; 245:117959. [PMID: 38123047 DOI: 10.1016/j.envres.2023.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/26/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Lake eutrophication mitigation measures have been implemented by ecological water diversion, however, the responses of carbon cycle to the human-derived hydrologic process still remains unclear. With a famous river-to-lake water diversion activity at eutrophic Lake Taihu, we attempted to fill the knowledge gap with integrative field measurements (2011-2017) of gas carbon (CO2 and CH4) flux, including CO2-equivalent, and dissolved carbon (DOC and DIC) at water-receiving zone and reference zone. Overall, results showed the artificial water diversion activity increased gas carbon emissions. At water-receiving zone, total gas carbon (expressed as CO2-equivalent) emissions increased significantly due to the occurring of water diversion, with CO2 flux increasing from 9.31 ± 16.28 to 18.16 ± 12.96 mmol C m-2 d-1. Meanwhile, CH4 emissions at water-receiving zone (0.06 ± 0.05 mmol C m-2 d-1) was double of that at reference zone. Water diversion decreased DOC but increased DIC especially at inflowing river mouth. Temporal variability of carbon emissions and dissolved carbon were linked to water temperature, chlorophyll a, and nutrient, but less or negligible dependency on these environment variables were found with diversion occurring. Water diversion may increase gas carbon production via stimulating DOC mineralization with nutrient enrichment, which potentially contribute to increasing carbon emissions and decreasing DOC at the same time and the significant correlation between CO2 flux and CH4 flux. Our study provided new insights into carbon biogeochemical processes, which may help to predict carbon fate under hydrologic changes of lakes.
Collapse
Affiliation(s)
- Minliang Jiang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mi Zhang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xinyue Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Cheng Hu
- College of Ecology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Wei Xiao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
12
|
Yuan D, Li S, Xu YJ, Ma S, Zhang K, Le J, Wang Y, Ma B, Jiang P, Zhang L, Xu J. Response of dissolved carbon dioxide and methane concentration to warming in shallow lakes. WATER RESEARCH 2024; 251:121116. [PMID: 38219687 DOI: 10.1016/j.watres.2024.121116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Shallow lake ecosystems are highly sensitive to temperature fluctuation because of their high water surface-to-volume ratios. Shallow lakes have been increasingly identified as a hotspot of CO2 and CH4 emissions, but their response to temperature variation remains unclear. Here, we report from a 5-month outdoor mesocosm experiment where we investigated the impacts of a projected 3.5 °C future warming and monthly temperature changes on lake CO2 and CH4, as well as the key drivers affecting the lake carbon cycling. Our results show that CO2 and CH4 concentrations had a significantly positive correlation with monthly temperatures. CH4 concentration was primarily regulated by monthly temperature, while nutrients effects on CO2 concentration overrode climate warming and temporal temperature changes. These findings imply the varied roles that temperature and nutrient levels can play on CO2 and CH4 dynamics in shallow lake systems. The relationship between temperature and CO2 concentration was nonlinear, showing a threshold of approximately 9 °C, at which CO2 concentration could be strongly modified by nutrient level in the lake systems. Understanding this complex relationship between temperature with CO2 and CH4 concentrations in shallow lakes is crucial for effective lake management and efficient control of greenhouse gases (GHGs) emissions.
Collapse
Affiliation(s)
- Danni Yuan
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shiwang Ma
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kairui Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jingquan Le
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yang Wang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Bingjie Ma
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ping Jiang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Liuqing Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
13
|
Gao J, Xie D, Cao L, Zhao Z, Zhou J, Liao W, Xu X, Wang Q, He F. The ratio but not individual of fragile to refractory DOM affects greenhouse gases release in different trophic level lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119914. [PMID: 38157569 DOI: 10.1016/j.jenvman.2023.119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Inland shallow lakes are recognized as an important source of greenhouse gases (GHGs), and their contribution is expected to increase due to global eutrophication. The generation and release of GHGs involved multiple variables, leading to many uncertain potential factors. This study examined the emission characteristics of GHGs at the water-air interface in 12 shallow lakes categorized into four eutrophic levels in the Yangtze River basin. The average emission rates of CH4, CO2 and N2O were 1.55, 3.43, 18.13 and 30.47 mg m-2 h-1, 4.12, 14.64, 25.11 and 69.84 mg m-2 h-1, and 0.2, 0.25, 0.43 and 0.79 mg m-2 day-1 in the oligotrophic, mesotrophic, eutrophic and hypereutrophic lakes, respectively. There were significant correlations between eutrophic levels and the emission rates of CH4 and CO2 (p < 0.05). Redundancy analysis and Mantel test were conducted to further examine the key factors influencing carbon emissions from eutrophic water. It was found that the presence of algae and nutrients in the overlying water played a crucial role in the release of GHGs, indicating the importance of ecosystem productivity in the carbon budget of the lake. In order to assess the bioavailability of organic matter, a new indicator called R(P/H) was proposed. This indicator represents the ratio of protein and humus-like components, which were obtained through EEMs-PARAFAC modeling. The relationship between R(P/H) and CH4 was found to be exponential (R2 = 0.90). Additionally, R(P/H) showed a linear relationship with CO2 and N2O (R2 = 0.68, R2 = 0.75). Therefore, it is crucial to consider R(P/H) as an important factor in accurately estimating global GHG emission fluxes in the future, especially with advancements in the database.
Collapse
Affiliation(s)
- Jin Gao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Dongyu Xie
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China
| | - Liu Cao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiwang Zhao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jiayu Zhou
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Weicheng Liao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| | - Qingwei Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
14
|
Yin Y, Kara-Murdoch F, Murdoch RW, Yan J, Chen G, Xie Y, Sun Y, Löffler FE. Nitrous oxide inhibition of methanogenesis represents an underappreciated greenhouse gas emission feedback. THE ISME JOURNAL 2024; 18:wrae027. [PMID: 38447133 PMCID: PMC10960958 DOI: 10.1093/ismejo/wrae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
Methane (CH4) and nitrous oxide (N2O) are major greenhouse gases that are predominantly generated by microbial activities in anoxic environments. N2O inhibition of methanogenesis has been reported, but comprehensive efforts to obtain kinetic information are lacking. Using the model methanogen Methanosarcina barkeri strain Fusaro and digester sludge-derived methanogenic enrichment cultures, we conducted growth yield and kinetic measurements and showed that micromolar concentrations of N2O suppress the growth of methanogens and CH4 production from major methanogenic substrate classes. Acetoclastic methanogenesis, estimated to account for two-thirds of the annual 1 billion metric tons of biogenic CH4, was most sensitive to N2O, with inhibitory constants (KI) in the range of 18-25 μM, followed by hydrogenotrophic (KI, 60-90 μM) and methylotrophic (KI, 110-130 μM) methanogenesis. Dissolved N2O concentrations exceeding these KI values are not uncommon in managed (i.e. fertilized soils and wastewater treatment plants) and unmanaged ecosystems. Future greenhouse gas emissions remain uncertain, particularly from critical zone environments (e.g. thawing permafrost) with large amounts of stored nitrogenous and carbonaceous materials that are experiencing unprecedented warming. Incorporating relevant feedback effects, such as the significant N2O inhibition on methanogenesis, can refine climate models and improve predictive capabilities.
Collapse
Affiliation(s)
- Yongchao Yin
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Fadime Kara-Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
| | - Jun Yan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Yongchao Xie
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Yanchen Sun
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
15
|
Liao Y, Xiao Q, Li Y, Yang C, Li J, Duan H. Salinity is an important factor in carbon emissions from an inland lake in arid region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167721. [PMID: 37832686 DOI: 10.1016/j.scitotenv.2023.167721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Saline lakes, serving as the ultimate destination for most hydrological systems, accumulate substantial amounts of nutrients and organic matter from basins, and act as vast carbon reservoirs. These lakes exhibit exceptionally active biogeochemical cycling processes of carbon dioxide (CO2) and methane (CH4), and constitute integral components of the global carbon cycle. However, understanding of greenhouse gas emissions from saline lakes remains unclear mostly due to scarce data. In this study, we obtained CO2 and CH4 diffusive fluxes and biogeochemical parameters during ice-free period of 2021 at Bosten Lake, which is a representative inland saline lake located in China's arid region. Results revealed that Bosten Lake was a significant source of atmospheric gas carbon emissions, with average diffusion emissions of 12.645 ± 3.475 mmol m-2 d-1 for CO2 and 0.279 ± 0.069 mmol m-2 d-1 for CH4. Temporally, field measurements found a positive correlation between conductivity (Spc, a proxy of salinity) and CO2 emissions (R2 = 0.50, p < 0.01). Furthermore, the CH4 diffusive fluxes increased with the trophic state index (TSI, R2 = 0.31, p < 0.01). Spatially, exogenous inputs led to the spatial heterogeneity of carbon emissions. Our results highlighted that temporal variations in salinity constitute a crucial factor influencing CO2 emissions, and the saline lake has greater global warming potential compared to freshwater. The study provides an in-depth analysis of greenhouse gas emissions and driving factors in saline lakes of arid regions, and supports a further understanding of the carbon cycle in different types of lakes.
Collapse
Affiliation(s)
- Yuanshan Liao
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yimin Li
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chen Yang
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junli Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hongtao Duan
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
16
|
Bartosiewicz M, Przytulska A, Birkholz A, Zopfi J, Lehmann MF. Controls and significance of priming effects in lake sediments. GLOBAL CHANGE BIOLOGY 2024; 30:e17076. [PMID: 38273585 DOI: 10.1111/gcb.17076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 01/27/2024]
Abstract
Warming and eutrophication influence carbon (C) processing in sediments, with implications for the global greenhouse-gas budget. Temperature effects on sedimentary C loss are well understood, but the mechanism of change in turnover through priming with labile organic matter (OM) is not. Evaluating changes in the magnitude of priming as a function of warming, eutrophication, and OM stoichiometry, we incubated sediments with 13 C-labeled fresh organic matter (FOM, algal/cyanobacterial) and simulated future climate scenarios (+4°C and +8°C). We investigated FOM-induced production of CH4 and microbial community changes. C loss was primed by up to 17% in dominantly allochthonous sediments (ranging from 5% to 17%), compared to up to 6% in autochthonous sediments (-9% to 6%), suggesting that refractory OM is more susceptible to priming. The magnitude of priming was dependent on sediment OM stoichiometry (C/N ratio), the ratio of fresh labile OM to microbial biomass (FOM/MB), and temperature. Priming was strongest at 4°C when FOM/MB was below 50%. Addition of FOM was associated with activation and growth of bacterial decomposers, including for example, Firmicutes, Bacteroidetes, or Fibrobacteres, known for their potential to degrade insoluble and complex structural biopolymers. Using sedimentary C/N > 15 as a threshold, we show that in up to 35% of global lakes, sedimentation is dominated by allochthonous rather than autochthonous material. We then provide first-order estimates showing that, upon increase in phytoplankton biomass in these lakes, priming-enabled degradation of recalcitrant OM will release up to 2.1 Tg C annually, which would otherwise be buried for geological times.
Collapse
Affiliation(s)
- Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Przytulska
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Axel Birkholz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Jakob Zopfi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Zhang L, Li X, Yu R, Geng Y, Sun L, Sun H, Li Y, Zhang Z, Zhang X, Lei X, Wang R, Lu C, Lu X. Significant methane ebullition from large shallow eutrophic lakes of the semi-arid region of northern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119093. [PMID: 37783080 DOI: 10.1016/j.jenvman.2023.119093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023]
Abstract
Eutrophic lakes are a major source of the atmospheric greenhouse gas methane (CH4), and CH4 ebullition emissions from inland lakes have important implications for the carbon cycle. However, the spatio-temporal heterogeneity of CH4 ebullition emission and its influencing factors in shallow eutrophic lakes of arid and semi-arid regions remain unclear. This study aimed to determine the mechanism of CH4 emission via eutrophication in Lake Ulansuhai, a large shallow eutrophic lake in a semi-arid region of China.To this end, monthly field surveys were conducted from May to October 2021, and gas chromatography was applied using the headspace equilibrium technique with an inverted funnel arrangement. The total CH4 fluxes ranged from 0.102 mmol m-2 d-1 to 59.296 mmol m-2 d-1 with an average value of 4.984 ± 1.82 mmol m-2 d-1. CH4 ebullition emissions showed significant temporal and spatial variations. The highest CH4 ebullition emission was observed in July with a grand mean of 9.299 mmol m-2 d-1, and the lowest CH4 ebullition emissions occurred in October with an average of 0.235 mmol m-2 d-1. Among seven sites (S1-S7), the maximum (3.657 mmol m-2 d-1) and minimum (1.297 mmol m-2 d-1). CH4 ebullition emissions were observed at S2 and S7, respectively. As the main route of CH4 emission to the atmosphere in Lake Ulansuhai, the CH4 ebullition flux during May to October accounted for 69% of the total CH4 flux. Statistical analysis showed that CH4 ebullition was positively correlated with temperature (R = 0.391, P < 0.01) and negatively correlated with air pressure (R = 0.286, P < 0.00). Temperature and air pressure were found to strongly regulate the production and oxidation of CH4. Moreover, nutritional status indicators such as TP and NH4+-N significantly affect CH4 ebullition emissions (R = 0.232, P < 0.01; R = -0.241, P < 0.01). This study reveals the influencing factors of CH4 ebullition emission in Lake Ulansuhai, and provides theoretical reference and data support for carbon emission from eutrophic lakes. Nevertheless, research on eutrophic shallow lakes needs to be further strengthened. Future research should incorporate improved flux measurement techniques with process-based models to improve the accuracy from regional to large-scale estimation of CH4 emissions and clarify the carbon budget of aquatic ecosystems. In this manner, the understanding and predictability of CH4 ebullition emission from shallow lakes can be improved.
Collapse
Affiliation(s)
- Linxiang Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xiangwei Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot, 010021, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, 010018, China.
| | - Yue Geng
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Liangqi Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Heyang Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Beijing Normal University, China
| | - Yuan Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhonghua Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xiangyu Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xue Lei
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Rui Wang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Changwei Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xixi Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Department of Geography, National University of Singapore, 117570, Singapore
| |
Collapse
|
18
|
Martínez Rodríguez A, Marchant DJ, Francelle P, Kratina P, Jones JI. Nutrient enrichment mediates the effect of biodegradable and conventional microplastics on macroinvertebrate communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122511. [PMID: 37689134 DOI: 10.1016/j.envpol.2023.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
There is growing concern regarding the lack of evidence on the effects bioplastics may have on natural ecosystems, whilst their production continues to increase as they are considered as a greener alternative to conventional plastics. Most research is limited to investigations of the response of individual taxa under laboratory conditions, with few experiments undertaken at the community or ecosystem scale, either investigating microplastics independently or in combination with other pollutants, such as nutrient enrichment. The aim of this study is to experimentally compare the effects of oil-based (high density polyethylene - HDPE) with those of bio-based biodegradable (polylactic acid - PLA) microplastics and their interaction with nutrient enrichment on freshwater macroinvertebrate communities under seminatural conditions. There were no significant differences in total abundance, alpha and beta diversities, or community composition attributable to the type of microplastics, their concentration, or nutrient enrichment compared with the control. However, there was a significant difference in macroinvertebrate alpha diversity between high concentrations of both microplastic types under ambient nutrient conditions, with lower diversity in communities exposed to HDPE compared with PLA. Nutrient enrichment mediated the effect of microplastic type, such that the diversity of macroinvertebrate communities exposed to HDPE were similar to those communities exposed to PLA. These findings suggest that the effects of microplastic pollution on macroinvertebrate communities are very weak at large-scale settings under seminatural conditions and that these effects might be mediated by the nutrient status of freshwater ecosystems. More research under large-scale, long-term, seminatural settings are needed in order to elucidate the impact of both conventional plastics and bioplastics on natural environments and their interactive effect with other occurring stressors and pollutants.
Collapse
Affiliation(s)
- Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Danielle J Marchant
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Pascaline Francelle
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
19
|
Zhang L, Xu YJ, Ma B, Jiang P, Li S. Intense methane diffusive emissions in eutrophic urban lakes, Central China. ENVIRONMENTAL RESEARCH 2023; 237:117073. [PMID: 37673122 DOI: 10.1016/j.envres.2023.117073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Urban lakes are hotspots of methane (CH4) emissions. Yet, actual field measurements of CH4 in these lakes are rather limited and our understanding of CH4 response to urban lake eutrophication is still incomplete. In this study, we measured dissolved CH4 concentrations and quantified CH4 diffusion from four urban lakes in subtropical China during wet and dry seasons. We found that these lakes were constantly CH4-saturated, contributing the greenhouse gas (GHG) to the atmosphere. Nutrient enrichment significantly increased CH4 concentrations and diffusive fluxes. Average CH4 flux rate in the highly-eutrophic lake zones (4.18 ± 7.68 mmol m-2 d-1) was significantly higher than those in the mesotrophic (0.19 ± 0.18 mmol m-2 d-1) and lightly/moderately-eutrophic zones (0.72 ± 2.22 mmol m-2 d-1). Seasonally, CH4 concentrations and fluxes were significantly higher in the wet season than in the dry season in the mesotrophic and the lightly/moderately-eutrophic lake zones, but an inverse pattern existed in the highly-eutrophic lake zones. CH4 concentrations and fluxes increased with elevated levels of nitrogen, phosphorus and dissolved organic carbon (DOC). The accumulation of nutrients provided autochthonous substrate for methanogenesis, indicated by a negative correlation between CH4 and the C:N ratio. Ammonium-nitrogen (NH4+-N) was the best predictor for spatial fluctuation of CH4 concentrations and diffusive fluxes in the mesotrophic and the lightly/moderately-eutrophic lake zones, while total nitrogen (TN) and total phosphorus (TP) levels showed the highest predictability in the highly-eutrophic lake zones. Based on the findings, we conclude that nutrient enrichment in urban lakes can largely increase CH4 diffusion, and that urban sewage inflow is a key concern for eutrophication boosting CH4 production and diffusive emission. Furthermore, our study reveals that small urban lakes may be an important missing source of GHG emissions in the global C accounting, and that the ratio of littoral-to-pelagic zones can be important for predicting lake-scale estimation of CH4 emission.
Collapse
Affiliation(s)
- Liuqing Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Bingjie Ma
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ping Jiang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
20
|
Zhang L, Xu YJ, Li S. Changes in CO 2 concentration and degassing of eutrophic urban lakes associated with algal growth and decline. ENVIRONMENTAL RESEARCH 2023; 237:117031. [PMID: 37660875 DOI: 10.1016/j.envres.2023.117031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Urban lakes are numerous in the world, but their role in carbon storage and emission is not well understood. This study aimed to answer the critical questions: How does algal growing season influence carbon dioxide concentration (cCO2) and exchange flux (FCO2) in eutrophic urban lakes? We investigated trophic state, seasonality of algal productivity, and their association with CO2 dynamics in four urban lakes in Central China. We found that these lightly-to moderately-eutrophic urban lakes showed a shifting pattern of CO2 source-sink dynamics. In the non-algal bloom phase, the moderately-eutrophic lakes outgassed on average of 12.18 ± 24.37 mmol m-2 d-1 CO2; but, during the algal bloom phase, the lakes sequestered an average 1.07 ± 6.22 mmol m-2 d-1 CO2. The lightly-eutrophic lakes exhibited lower CO2 emission in the algal bloom (0.60 ± 10.24 mmol m-2 d-1) compared to the non-algal bloom (3.84 ± 12.38 mmol m-2 d-1). Biological factors such as Chl-a (chlorophyll a) and AOU (apparent oxygen utilization), were found to be important factors to potentially affect the shifting pattern of lake CO2 source-sink dynamics in moderately-eutrophic lakes, explaining 48% and 34% of the CO2 variation in the non-algal and algal bloom phases, respectively. Moreover, CO2 showed positive correlations with AOU, and negative correlations with Chl-a in both phases. In the lightly-eutrophic lakes, biological factors explained a higher proportion of CO2 variations (29%) in the non-algal bloom phase, with AOU accounting for 19%. Our results indicate that algal growth and decline phases largely affect dissolved CO2 level and exchange flux by regulating in-lake respiration and photosynthesis. Based on the findings, we conclude that shallow urban lakes can act as both sources and sinks of CO2, with algal growth seasonality and trophic state playing pivotal roles in controlling their carbon dynamics.
Collapse
Affiliation(s)
- Liuqing Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
21
|
Yuan D, Xu YJ, Ma S, Le J, Zhang K, Miao R, Li S. Nitrogen addition effect overrides warming effect on dissolved CO 2 and phytoplankton structure in shallow lakes. WATER RESEARCH 2023; 244:120437. [PMID: 37556989 DOI: 10.1016/j.watres.2023.120437] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Shallow lakes are numerous in all climate zones, but our knowledge about their dissolved carbon dioxide (CO2) response to future climate change and nutrient enrichment is rather limited. Here we performed a mesocosm experiment with four treatments to investigate how warming and nitrogen addition will impact the partial pressure of CO2 (pCO2) and phytoplankton community individually and combined. We found that warming alone had no significant effect on pCO2, while nitrogen addition increased pCO2 significantly. The combined effects of nitrogen addition and warming on pCO2 level were prevalent, indicating that eutrophic shallow lakes would be double-jeopardized in the future climate. Warming and nitrogen addition together also showed to have changed the phytoplankton community structure, suggesting a potential shifting of biological system in shallow lakes under changing climate. These findings highlight the importance of reducing nitrogen pollution to shallow lake systems for sustainable development goal.
Collapse
Affiliation(s)
- Danni Yuan
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Shiwang Ma
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jingquan Le
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kairui Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Rongli Miao
- Hydrobiological Data Analysis Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
22
|
Duan H, Xiao Q, Qi T, Hu C, Zhang M, Shen M, Hu Z, Wang W, Xiao W, Qiu Y, Luo J, Lee X. Quantification of Diffusive Methane Emissions from a Large Eutrophic Lake with Satellite Imagery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13520-13529. [PMID: 37651621 DOI: 10.1021/acs.est.3c05631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Lakes are major emitters of methane (CH4); however, a longstanding challenge with quantifying the magnitude of emissions remains as a result of large spatial and temporal variability. This study was designed to address the issue using satellite remote sensing with the advantages of spatial coverage and temporal resolution. Using Aqua/MODIS imagery (2003-2020) and in situ measured data (2011-2017) in eutrophic Lake Taihu, we compared the performance of eight machine learning models to predict diffusive CH4 emissions and found that the random forest (RF) model achieved the best fitting accuracy (R2 = 0.65 and mean relative error = 21%). On the basis of input satellite variables (chlorophyll a, water surface temperature, diffuse attenuation coefficient, and photosynthetically active radiation), we assessed how and why they help predict the CH4 emissions with the RF model. Overall, these variables mechanistically controlled the emissions, leading to the model capturing well the variability of diffusive CH4 emissions from the lake. Additionally, we found climate warming and associated algal blooms boosted the long-term increase in the emissions via reconstructing historical (2003-2020) daily time series of CH4 emissions. This study demonstrates the great potential of satellites to map lake CH4 emissions by providing spatiotemporal continuous data, with new and timely insights into accurately understanding the magnitude of aquatic greenhouse gas emissions.
Collapse
Affiliation(s)
- Hongtao Duan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
- University of Chinese Academy of Sciences, Nanjing, Jiangsu 211135, People's Republic of China
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, People's Republic of China
| | - Tianci Qi
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
| | - Cheng Hu
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Mi Zhang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, People's Republic of China
| | - Ming Shen
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
| | - Zhenghua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, People's Republic of China
| | - Wei Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, People's Republic of China
| | - Wei Xiao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, People's Republic of China
| | - Yinguo Qiu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
| | - Juhua Luo
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
| | - Xuhui Lee
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
23
|
Daun C, Huth V, Gaudig G, Günther A, Krebs M, Jurasinski G. Full-cycle greenhouse gas balance of a Sphagnum paludiculture site on former bog grassland in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162943. [PMID: 36934933 DOI: 10.1016/j.scitotenv.2023.162943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Growing Sphagnum on rewetted bogs (=Sphagnum paludiculture) is an alternative to drainage-based land use because it retains its value as productive land while mitigating greenhouse gas (GHG) emissions. However, studies on GHG exchange covering the full production system and cycle are missing. Here, we combined data of the establishment phase with newly recorded data of a 7-year old Sphagnum paludiculture site in Germany including partial Sphagnum harvest. GHGs were measured with closed chambers at all elements of the system (production fields, ditches, causeways). Over the full production cycle, the production fields were GHG sinks with -3.2 ± 4.2 t ha-1 a-1 (in CO2-eq), while ditches represented sources emitting 13.8 ± 11.5 t ha-1 a-1. New measurements on the causeway indicated that it was a stronger GHG source with 29.3 ± 9.8 t ha-1 a-1 than previously assumed from literature values. Corrected for the area share of its elements and including the partial Sphagnum harvest (in dry mass) of ~13.8 ± 0.6 t ha-1 (=average 7-year CO2 emissions of 3.3 ± 0.1 t ha-1 a-1), the site was a GHG source of 10.7 ± 4.6 t ha-1 a-1, thus reducing emissions by ~20 t ha-1 a-1 compared to the German emission factor for grassland on drained organic soils. Per ton harvested dry biomass, the paludiculture site emitted 9.9 ± 4.6 t of CO2-eq. The causeways were the major contributor to the warming, calling for reducing causeway area in Sphagnum paludicultures. Future 'best-practice' could realistically comprise areal shares of 80 % production fields, 5 % ditches, 15 % causeways and a full Sphagnum harvest with the uppermost 5 cm remaining on site for recovery. In this scenario the site would emit CO2-eq emissions of 4.3 ± 1.9 t ha-1 a-1 or 0.9 ± 2.1 t per ton harvested dry mass.
Collapse
Affiliation(s)
- Caroline Daun
- University of Rostock, Landscape Ecology, Justus-von-Liebig-Weg 6, 18059, Germany
| | - Vytas Huth
- University of Rostock, Grassland and Fodder Sciences, Justus-von-Liebig-Weg 6, 18059, Germany.
| | - Greta Gaudig
- University of Greifswald, Institute of Botany and Landscape Ecology (partner of the Greifswald Mire Centre), Soldmannstraße 15, 17489 Greifswald, Germany
| | - Anke Günther
- Federal State Agency for the Environment, Nature Conservation and Geology, Goldberger Straße 12b, 18273 Güstrow, Germany
| | - Matthias Krebs
- University of Greifswald, Institute of Botany and Landscape Ecology (partner of the Greifswald Mire Centre), Soldmannstraße 15, 17489 Greifswald, Germany
| | - Gerald Jurasinski
- University of Rostock, Landscape Ecology, Justus-von-Liebig-Weg 6, 18059, Germany
| |
Collapse
|
24
|
Wang H, Li Q, Xu J. Climate Warming Does Not Override Eutrophication, but Facilitates Nutrient Release from Sediment and Motivates Eutrophic Process. Microorganisms 2023; 11:microorganisms11040910. [PMID: 37110333 PMCID: PMC10143447 DOI: 10.3390/microorganisms11040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The climate is changing. The average temperature in Wuhan, China, is forecast to increase by at least 4.5 °C over the next century. Shallow lakes are important components of the biosphere, but they are sensitive to climate change and nutrient pollution. We hypothesized that nutrient concentration is the key determinant of nutrient fluxes at the water-sediment interface, and that increased temperature increases nutrient movement to the water column because warming stimulates shifts in microbial composition and function. Here, twenty-four mesocosms, mimicking shallow lake ecosystems, were used to study the effects of warming by 4.5 °C above ambient temperature at two levels of nutrients relevant to current degrees of lake eutrophication levels. This study lasted for 7 months (April–October) under conditions of near-natural light. Intact sediments from two different trophic lakes (hypertrophic and mesotrophic) were used, separately. Environmental factors and bacterial community compositions of overlying water and sediment were measured at monthly intervals (including nutrient fluxes, chlorophyll a [chl a], water conductivity, pH, sediment characteristics, and sediment-water et al.). In low nutrient treatment, warming significantly increased chl a in the overlying waters and bottom water conductivity, it also drives a shift in microbial functional composition towards more conducive sediment carbon and nitrogen emissions. In addition, summer warming significantly accelerates the release of inorganic nutrients from the sediment, to which microorganisms make an important contribution. In high nutrient treatment, by contrast, the chl a was significantly decreased by warming, and the nutrient fluxes of sediment were significantly enhanced, warming had considerably smaller effects on benthic nutrient fluxes. Our results suggest that the process of eutrophication could be significantly accelerated in current projections of global warming, especially in shallow unstratified clear-water lakes dominated by macrophytes.
Collapse
|
25
|
Xu X, Wu C, Xie D, Ma J. Sources, Migration, Transformation, and Environmental Effects of Organic Carbon in Eutrophic Lakes: A Critical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:860. [PMID: 36613182 PMCID: PMC9820045 DOI: 10.3390/ijerph20010860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Organic carbon (OC) plays a leading role in the carbon cycle of lakes and is crucial to carbon balances at regional and even global scales. In eutrophic lakes, in addition to external river inputs, the decomposition of endogenous grass and algae is a major source of organic carbon. Outbreaks of algal blooms (algal eutrophication) and the rapid growth of aquatic grasses (grass eutrophication) can lead to the accumulation and decay of large amounts of algae and aquatic grass debris, which increases the intensity of the carbon cycle of lakes and greatly impacts aquatic environments and ecosystems. The structures, decomposition processes, and distribution characteristics of algae and higher aquatic plant debris in eutrophic lakes are different from mesotrophic and oligotrophic lakes. Studying their accumulation dynamics and driving mechanisms is key to further understanding lake carbon cycles and their many interdependent pathways. This paper focuses on the carbon sources, tracing technologies, migration and transformation processes, and environmental effects of OC in eutrophic lakes. Based on the existing knowledge, we further combed the literature to identify the most important knowledge gaps preventing an in-depth understanding of the processes and driving mechanisms of the organic carbon cycle in eutrophic lakes.
Collapse
Affiliation(s)
- Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chao Wu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Dongyu Xie
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
26
|
Nijman TPA, Lemmens M, Lurling M, Kosten S, Welte C, Veraart AJ. Phosphorus control and dredging decrease methane emissions from shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157584. [PMID: 35882339 DOI: 10.1016/j.scitotenv.2022.157584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are an important source of the greenhouse gas methane (CH4), and their emissions are expected to increase due to eutrophication. Two commonly applied management techniques to reduce eutrophication are the addition of phosphate-binding lanthanum modified bentonite (LMB, trademark Phoslock©) and dredging, but their effect on CH4 emissions is still poorly understood. Here, this study researched how LMB and dredging affected CH4 emissions using a full-factorial mesocosm design monitored for 18 months. The effect was tested by measuring diffusive and ebullitive CH4 fluxes, plant community composition, methanogen and methanotroph activity and community composition, and a range of physicochemical water and sediment variables. LMB addition decreased total CH4 emissions, while dredging showed a trend towards decreasing CH4 emissions. Total CH4 emissions in all mesocosms were much higher in the summer of the second year, likely because of higher algal decomposition and organic matter availability. First, LMB addition lowered CH4 emissions by decreasing P-availability, which reduced coverage of the floating fern Azolla filiculoides, and thereby prevented anoxia and decreased surface water NH4+ concentrations, lowering CH4 production rates. Second, dredging decreased CH4 emissions in the first summer, possibly it removed the methanogenic community, and in the second year by preventing autumn and winter die-off of the rooted macrophyte Potamogeton cripsus. Finally, methanogen community composition was related to surface water NH4+ and O2, and porewater total phosphorus, while methanotroph community composition was related to organic matter content. To conclude, LMB addition and dredging not only improve water quality, but also decrease CH4 emissions, mitigating climate change.
Collapse
Affiliation(s)
- Thomas P A Nijman
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Maxime Lemmens
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Miquel Lurling
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Cornelia Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Annelies J Veraart
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| |
Collapse
|
27
|
Aben RCH, Velthuis M, Kazanjian G, Frenken T, Peeters ETHM, Van de Waal DB, Hilt S, de Senerpont Domis LN, Lamers LPM, Kosten S. Temperature response of aquatic greenhouse gas emissions differs between dominant plant types. WATER RESEARCH 2022; 226:119251. [PMID: 36288666 DOI: 10.1016/j.watres.2022.119251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Greenhouse gas (GHG) emissions from small inland waters are disproportionately large. Climate warming is expected to favor dominance of algae and free-floating plants at the expense of submerged plants. Through different routes these functional plant types may have far-reaching impacts on freshwater GHG emissions in future warmer waters, which are yet unknown. We conducted a 1,000 L mesocosm experiment testing the effects of plant type and warming on GHG emissions from temperate inland waters dominated by either algae, free-floating or submerged plants in controls and warmed (+4 °C) treatments for one year each. Our results show that the effect of experimental warming on GHG fluxes differs between dominance of different functional plant types, mainly by modulating methane ebullition, an often-dominant GHG emission pathway. Specifically, we demonstrate that the response to experimental warming was strongest for free-floating and lowest for submerged plant-dominated systems. Importantly, our results suggest that anticipated shifts in plant type from submerged plants to a dominance of algae or free-floating plants with warming may increase total GHG emissions from shallow waters. This, together with a warming-induced emission response, represents a so far overlooked positive climate feedback. Management strategies aimed at favouring submerged plant dominance may thus substantially mitigate GHG emissions.
Collapse
Affiliation(s)
- Ralf C H Aben
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Mandy Velthuis
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands; Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Garabet Kazanjian
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Thijs Frenken
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Edwin T H M Peeters
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, Wageningen, PB 6708, the Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Sabine Hilt
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands.
| |
Collapse
|
28
|
Wang S, Gao Y, Jia J, Lu Y, Wang J, Ha X, Li Z, Sun K. Determining whether hydrological processes drive carbon source and sink conversion shifts in a large floodplain-lake system in China. WATER RESEARCH 2022; 224:119105. [PMID: 36122449 DOI: 10.1016/j.watres.2022.119105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/15/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Lake carbon (C) cycling is a key component of the global C cycle and associated C source and sink processes. The partial pressure of carbon dioxide (pCO2) and carbon dioxide (CO2) exchange flux at the lake-air interface (Fc) are controlled by complex physical, chemical, and biological mechanisms. It would be instructively significant to determine whether hydrological processes drive conversion shifts between C sources and sinks in floodplain-lake systems. Findings from this study show that exogenous input and in situ metabolism related to photosynthesis, respiration, and organic matter degradation were the main driving mechanisms of CO2 absorption and release in a large floodplain-lake system (i.e., Lake Poyang). Moreover, the intense and frequent water-level fluctuations inherent to floodplain-lakes may also have a direct or indirect impact on C cycling processes and CO2 exchange rates in floodplain-lake systems via their effect on physical processes, inorganic C transport, in-situ metabolic processes. We confirmed the potential of C source and sink conversion in floodplain-lakes under hydrological fluctuations, and strengthen the understanding of driving mechanisms of C source and sink conversion in floodplain systems.
Collapse
Affiliation(s)
- Shuoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yao Lu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xianrui Ha
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhaoxi Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
29
|
Sun H, Yu R, Liu X, Cao Z, Li X, Zhang Z, Wang J, Zhuang S, Ge Z, Zhang L, Sun L, Lorke A, Yang J, Lu C, Lu X. Drivers of spatial and seasonal variations of CO 2 and CH 4 fluxes at the sediment water interface in a shallow eutrophic lake. WATER RESEARCH 2022; 222:118916. [PMID: 35921715 DOI: 10.1016/j.watres.2022.118916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Shallow eutrophic lakes contribute disproportional to the emissions of CO2 and CH4 from inland waters. The processes that contribute to these fluxes, their environmental controls, and anthropogenic influences, however, are poorly constrained. Here, we studied the spatial variability and seasonal dynamics of CO2 and CH4 fluxes across the sediment-water interface, and their relationships to porewater nutrient concentrations in Lake Ulansuhai, a shallow eutrophic lake located in a semi-arid region in Northern China. The mean concentrations of CO2 and CH4 in porewater were 877.8 ± 31.0 µmol L-1 and 689.2 ± 45.0 µmol L-1, which were more than 50 and 20 times higher than those in the water column, respectively. The sediment was always a source of both gases for the water column. Porewater CO2 and CH4 concentrations and diffusive fluxes across the sediment-water interface showed significant temporal and spatial variations with mean diffusive fluxes of 887.3 ±124.7 µmol m-2 d-1 and 607.1 ± 68.0 µmol m-2 d-1 for CO2 and CH4, respectively. The temporal and spatial variations of CO2 and CH4 concentrations in porewater were associated with corresponding variations in dissolved organic carbon and dissolved nitrogen species. Temperature and dissolved organic carbon in surface porewater were the most important drivers of temporal variations in diffusive fluxes, whereas dissolved organic carbon and nitrogen were the main drivers of their spatial variations. Diffusive fluxes generally increased with increasing dissolved organic carbon and nitrogen in the porewater from the inflow to the outflow region of the lake. The estimated fluxes of both gases at the sediment-water interface were one order of magnitude lower than the emissions at the water surface, which were measured in a companion study. This indicates that diffusive fluxes across the sediment-water interface were not the main pathway for CO2 and CH4 emissions to the atmosphere. To improve the mechanistic understanding and predictability of greenhouse gas emissions from shallow lakes, future studies should aim to close the apparent gap in the CO2 and CH4 budget by combining improved flux measurement techniques with process-based modeling.
Collapse
Affiliation(s)
- Heyang Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010021, China.
| | - Xinyu Liu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhengxu Cao
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiangwei Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhuangzhuang Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jun Wang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shuai Zhuang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zheng Ge
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Linxiang Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Liangqi Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Andreas Lorke
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Jie Yang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Department of Ecology and Environment of Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Changwei Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xixi Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Department of Geography, National University of Singapore, 117570, Singapore
| |
Collapse
|
30
|
Zhan Q, Teurlincx S, van Herpen F, Raman NV, Lürling M, Waajen G, de Senerpont Domis LN. Towards climate-robust water quality management: Testing the efficacy of different eutrophication control measures during a heatwave in an urban canal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154421. [PMID: 35278546 DOI: 10.1016/j.scitotenv.2022.154421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms are symptomatic of eutrophication and lead to deterioration of water quality and ecosystem services. Extreme climatic events could enhance eutrophication resulting in more severe nuisance algal blooms, while they also may hamper current restoration efforts aimed to reduce nutrient loads. Evaluation of restoration measures on their efficacy under climate change is essential for effective water management. We conducted a two-month mesocosm experiment in a hypertrophic urban canal focussing on the reduction of sediment phosphorus (P)-release. We tested the efficacy of four interventions, measuring phytoplankton biomass, nutrients in water and sediment. The measures included sediment dredging, water column aeration and application of P-sorbents (lanthanum-modified bentonite - Phoslock® and iron-lime sludge, a by-product from drinking water production). An extreme heatwave (with the highest daily maximum air temperature up to 40.7 °C) was recorded in the middle of our experiment. This extreme heatwave was used for the evaluation of heatwave-induced impacts. Dredging and lanthanum modified bentonite exhibited the largest efficacy in reducing phytoplankton and cyanobacteria biomass and improving water clarity, followed by iron-lime sludge, whereas aeration did not show an effect. The heatwave negatively impacted all four measures, with increased nutrient releases and consequently increased phytoplankton biomass and decreased water clarity compared to the pre-heatwave phase. We propose a conceptual model suggesting that the heatwave locks nutrients within the biological P loop, which is the exchange between labile P and organic P, while the P fraction in the chemical P loop will be decreased. As a consequence, the efficacy of chemical agents targeting P-reduction by chemical binding will be hampered by heatwaves. Our study indicates that current restoration measures might be challenged in a future with more frequent and intense heatwaves.
Collapse
Affiliation(s)
- Qing Zhan
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, the Netherlands.
| | - Sven Teurlincx
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, the Netherlands
| | - Frank van Herpen
- Royal HaskoningDHV, P.O. Box 1132, 3800 BC Amersfoort, the Netherlands; Water Authority Aa en Maas, P.O. Box 5049, 5201 GA 's-Hertogenbosch, the Netherlands
| | - Nandini Vasantha Raman
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB Wageningen, the Netherlands
| | - Miquel Lürling
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB Wageningen, the Netherlands
| | - Guido Waajen
- Water Authority Brabantse Delta, P.O. Box 5520, 4801 DZ Breda, the Netherlands
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
31
|
Liu S, Hou J, Suo C, Chen J, Liu X, Fu R, Wu F. Molecular-level composition of dissolved organic matter in distinct trophic states in Chinese lakes: Implications for eutrophic lake management and the global carbon cycle. WATER RESEARCH 2022; 217:118438. [PMID: 35452972 DOI: 10.1016/j.watres.2022.118438] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) is an abundant and mobile part of the aquatic environment and plays important roles in aquatic biogeochemical cycles and the global carbon cycle. Recently, eutrophication has become an important environmental issue in global lakes, but how eutrophication drives changes in the molecular composition of DOM along trophic gradients remains poorly understood. We thus characterized 67 DOM isolates from 11 lakes along a trophic gradient in China by using a combined approach including absorption spectroscopy, excitation-emission matrix fluorescence and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Our results indicated that dissolved organic carbon and absorption coefficients at 350 nm increased with increasing trophic status index. The ultraviolet absorbance at 254 nm and fluorescence intensity of all fluorescent components were higher in eutrophic lakes than in oligotrophic lakes. DOM in high trophic state lakes tended to be dominated by higher molecular weight, unsaturation degree, greater abundance of S-containing compounds, and condensed or polycyclic aromatic compounds than oligotrophic lakes. Additionally, autochthonous DOM characterized by more aliphatic compounds increased with the increasing trophic state. We concluded that nutrient input along with allochthonous DOM favors the lake eutrophication and subsequently increases the release and accumulation of autochthonous DOM. Consequently, eutrophication modifies the structure of the organic matter into more complex materials with increased input of allochthonous DOM and increased release of autochthonous DOM, which could accelerate global carbon cycle processes. Our results here have potential to contribute significantly to future studies of DOM dynamics in eutrophic lakes.
Collapse
Affiliation(s)
- Shasha Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junwen Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chengyu Suo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junyi Chen
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaohui Liu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Fu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengchang Wu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
32
|
Nguyen AT, Némery J, Gratiot N, Dao TS, Le TTM, Baduel C, Garnier J. Does eutrophication enhance greenhouse gas emissions in urbanized tropical estuaries? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119105. [PMID: 35276252 DOI: 10.1016/j.envpol.2022.119105] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Estuaries are considered as important sources of the global emission of greenhouse gases (GHGs). Urbanized estuaries often experience eutrophication under strong anthropogenic activities. Eutrophication can enhance phytoplankton abundance, leading to carbon dioxide (CO2) consumption in the water column. Only a few studies have evaluated the relationship between GHGs and eutrophication in estuaries. In this study, we assessed the concentrations and fluxes of CO2, methane (CH4) and nitrous oxide (N2O) in combination with a suite of biogeochemical variables in four sampling campaigns over two years in a highly urbanized tropical estuary in Southeast Asia (the Saigon River Estuary, Vietnam). The impact of eutrophication on GHGs was evaluated through several statistical methods and interpreted by biological processes. The average concentrations of CO2, CH4 and N2O at the Saigon River in 2019-2020 were 3174 ± 1725 μgC-CO2 L-1, 5.9 ± 16.8 μgC-CH4 L-1 and 3.0 ± 4.8 μgN-N2O L-1, respectively. Their concentrations were 13-18 times, 52-332 times, and 9-37 times higher than the global mean concentrations of GHGs, respectively. While CO2 concentration had no clear seasonal pattern, N2O and CH4 concentrations significantly differed between the dry and the rainy seasons. The increase in eutrophication status along the dense urban area was linearly correlated with the increase in GHGs concentrations. The presence of both nitrification and denitrification resulted in elevated N2O concentrations in this urban area of the estuary. The high concentration of CO2 was contributed by the high concentration of organic carbon and mineralization process. GHGs fluxes at the Saigon River Estuary were comparable to other urbanized estuaries regardless of climatic condition. Control of eutrophication in urbanized estuaries through the implantation of efficient wastewater treatment facilities will be an effective solution in mitigating the global warming potential caused by estuarine emissions.
Collapse
Affiliation(s)
- An Truong Nguyen
- Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE(1), F-38000, Grenoble, France; CARE, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam.
| | - Julien Némery
- Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE(1), F-38000, Grenoble, France; CARE, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
| | - Nicolas Gratiot
- Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE(1), F-38000, Grenoble, France; CARE, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
| | - Thanh-Son Dao
- CARE, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Tam Thi Minh Le
- CARE, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
| | - Christine Baduel
- Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE(1), F-38000, Grenoble, France; CARE, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
| | - Josette Garnier
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, BP 123, Tour 56-55, Etage 4, 4 Place Jussieu, 7500, Paris, France
| |
Collapse
|
33
|
Ho L, Jerves-Cobo R, Barthel M, Six J, Bode S, Boeckx P, Goethals P. Greenhouse gas dynamics in an urbanized river system: influence of water quality and land use. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37277-37290. [PMID: 35048344 DOI: 10.1007/s11356-021-18081-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Rivers act as a natural source of greenhouse gases (GHGs). However, anthropogenic activities can largely alter the chemical composition and microbial communities of rivers, consequently affecting their GHG production. To investigate these impacts, we assessed the accumulation of CO2, CH4, and N2O in an urban river system (Cuenca, Ecuador). High variation of dissolved GHG concentrations was found among river tributaries that mainly depended on water quality and land use. By using Prati and Oregon water quality indices, we observed a clear pattern between water quality and the dissolved GHG concentration: the more polluted the sites were, the higher were their dissolved GHG concentrations. When river water quality deteriorated from acceptable to very heavily polluted, the mean value of pCO2 and dissolved CH4 increased by up to ten times while N2O concentrations boosted by 15 times. Furthermore, surrounding land-use types, i.e., urban, roads, and agriculture, could considerably affect the GHG production in the rivers. Particularly, the average pCO2 and dissolved N2O of the sites close to urban areas were almost four times higher than those of the natural sites while this ratio was 25 times in case of CH4, reflecting the finding that urban areas had the worst water quality with almost 70% of their sites being polluted while this proportion of nature areas was only 12.5%. Lastly, we identified dissolved oxygen, ammonium, and flow characteristics as the main important factors to the GHG production by applying statistical analysis and random forests. These results highlighted the impacts of land-use types on the production of GHGs in rivers contaminated by sewage discharges and surface runoff.
Collapse
Affiliation(s)
- Long Ho
- Department of Animal Sciences, Ghent University, Ghent, Belgium.
| | - Ruben Jerves-Cobo
- Department of Animal Sciences, Ghent University, Ghent, Belgium
- PROMAS, Universidad de Cuenca, Cuenca, Ecuador
- Department of Data Analysis and Mathematical Modelling, BIOMATH, Ghent University, Ghent, Belgium
| | - Matti Barthel
- Department of Environmental System`S Science, ETH Zurich, Zurich, Switzerland
| | - Johan Six
- Department of Environmental System`S Science, ETH Zurich, Zurich, Switzerland
| | - Samuel Bode
- Department of Green Chemistry and Technology, Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium
| | - Peter Goethals
- Department of Animal Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Yang Y, Chen J, Pratscher J, Xie S. DNA-SIP reveals an overlooked methanotroph, Crenothrix sp., involved in methane consumption in shallow lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152742. [PMID: 34974014 DOI: 10.1016/j.scitotenv.2021.152742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Methanotrophs are the main consumers of methane produced in lake sediments. In shallow lakes suffering from eutrophication, methanogenesis is accelerated by the excess organic carbon input, and thus methanotrophs play a key role in regulating this methane flux as well as carbon cycling. Here, we applied nucleic acid stable isotope probing (SIP) to investigate the active methanotrophic microbial community in sediments of several shallow lakes affected by eutrophication. Our results showed that an active methanotrophic community dominated by gamma-proteobacterial methanotrophs, as well as abundant beta-proteobacterial methanol-utilizers, was involved in methane-derived carbon assimilation. Crenothrix, a filamentous methanotroph, was found to be a key methane consumer in all studied lakes. The ecological role of Crenothrix in lacustrine ecosystems is so far poorly understood, with only limited information on its existence in the water column of stratified lakes. Our results provide a novel ecological insight into this group by revealing a wide distribution of Crenothrix in lake sediments. The active methane assimilation by Crenothrix also suggested that it might represent a so far overlooked but crucial biological sink of methane in shallow lakes.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh EH14 4AP, UK
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jennifer Pratscher
- The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh EH14 4AP, UK
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
35
|
Xia T, Zhang W, Li H, Wang H, He P, Wang X. Rivers draining contrasting landscapes exhibit distinct potentials to emit diffusive methane (CH 4). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150898. [PMID: 34653457 DOI: 10.1016/j.scitotenv.2021.150898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Methane (CH4) is the second most important greenhouse gas, contributing approximately 17% of radiative forcing, and CH4 emissions from river networks due to intensified human activities have become a worldwide issue. However, there is a dearth of information on the CH4 emission potentials of different rivers, especially those draining contrasting watershed landscapes. Here, we examined the spatial variability of diffusive CH4 emissions and discerned the roles of environmental factors in influencing CH4 production in different river reaches (agricultural, urban, forested and mixed-landscape rivers) from the Chaohu Lake Basin in eastern China. According to our results, the urban rivers most frequently exhibited extremely high CH4 concentrations, with a mean concentration of 5.46 μmol L-1, equivalent to 4.1, 9.7, and 7.2 times those measured in the agricultural, forested, and mixed-landscape rivers, respectively. The availability of carbon sources and total phosphorus were commonly identified as the most important factors for CH4 production in agricultural and urban rivers. Dissolved oxygen and oxidation-reduction potential were separately discerned as important factors for the forested and mixed-landscape rivers, respectively. Monte Carlo flux estimations demonstrated that rivers draining contrasting landscapes exhibit distinct potentials to emit CH4. The urban rivers had the highest CH4 emissions, with a flux of 9.44 mmol m-2 d-1, which was 5.1-10.4 times higher than those of the other river reaches. Overall, our study highlighted that management actions should be specifically targeted at the river reaches with the highest emission potentials and should carefully consider the influences of different riverine environmental conditions as projected by their watershed landscapes.
Collapse
Affiliation(s)
- Tianyu Xia
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wangshou Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hengpeng Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Huiliang Wang
- College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Peng He
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xingfeng Wang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
36
|
Yang P, Luo L, Tang KW, Lai DYF, Tong C, Hong Y, Zhang L. Environmental drivers of nitrous oxide emission factor for a coastal reservoir and its catchment areas in southeastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118568. [PMID: 34838712 DOI: 10.1016/j.envpol.2021.118568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
While Asia is projected to be one of the major nitrous oxide (N2O) sources in the coming decades, a more accurate assessment of N2O budget has been hampered by low data resolution and poorly constrained emission factor (EF). Since urbanized coastal reservoirs receive high nitrogen loads from diverse sources across a heterogeneous landscape, the use of a single fixed EF may lead to large errors in N2O assessment. In this study, we conducted high spatial resolution sampling of dissolved N2O, nitrate-nitrogen (NO3--N) and other physico-chemical properties of surface water in Wenwusha Reservoir and other types of water bodies (river, drainage channels, and aquaculture ponds) in its catchment areas in southeastern China between November 2018 and June 2019. The empirically derived EF (calculated as N2O-N:NO3--N) for the reservoir showed considerable spatial variations, with a 10-fold difference ranging from 0.8 × 10-3 to 8.8 × 10-3. The average EF varied significantly among the four types of water bodies in the following descending order: aquaculture ponds > river > drainage channels > reservoir. Across all the water bodies, the mean EF in summer was 1.8-3.5 and 1.7-2.8 fold higher than that in autumn and spring, respectively, owing to the elevated water temperature. Overall, our derived EF deviated considerably from the IPCC default value, which implied that the use of default EF could result in over- or under-estimation of N2O emissions by up to 42%. We developed a multiple regression model that could explain 82% of the variance in EF based on water temperature and the ratio between dissolved organic carbon and nitrate-nitrogen (p < 0.001), which could be used to improve the estimate of EF for assessing N2O emission from coastal reservoirs and other similar environments.
Collapse
Affiliation(s)
- Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China.
| | - Liangjuan Luo
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Kam W Tang
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuan Tong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Yan Hong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| |
Collapse
|
37
|
Shen Z, Xie G, Tian W, Shao K, Yang G, Tang X. Effects of wind-wave disturbance and nutrient addition on aquatic bacterial diversity, community composition, and co-occurrence patterns: A mesocosm study. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100168. [DOI: 10.1016/j.crmicr.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
38
|
Yang P, Lu M, Tang KW, Yang H, Lai DYF, Tong C, Chun KP, Zhang L, Tang C. Coastal reservoirs as a source of nitrous oxide: Spatio-temporal patterns and assessment strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147878. [PMID: 34090167 DOI: 10.1016/j.scitotenv.2021.147878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Coastal reservoirs are widely regarded as a viable solution to the water scarcity problem faced by coastal cities with growing populations. As a result of the accumulation of anthropogenic wastes and the alteration of hydroecological processes, these reservoirs may also become the emission hotspots of nitrous oxide (N2O). Hitherto, accurate global assessment of N2O emission suffers from the scarcity and low spatio-temporal resolution of field data, especially from small coastal reservoirs with high spatial heterogeneity and multiple water sources. In this study, we measured the surface water N2O concentrations and emissions at a high spatial resolution across three seasons in a subtropical coastal reservoir in southeastern China, which was hydrochemically highly heterogeneous because of the combined influence of river runoff, aquacultural discharge, industrial discharge and municipal sewage. Both N2O concentration and emission exhibited strong spatio-temporal variations, which were correlated with nitrogen loading from the river and wastewater discharge. The mean N2O concentration and emission were found to be significantly higher in the summer than in spring and autumn. The results of redundancy analysis showed that NH4+-N explained the greatest variance in N2O emission, which implied that nitrification was the main microbial pathway for N2O production in spite of the potentially increasing importance of denitrification of NO3--N in the summer. The mean N2O emission across the whole reservoir was 107 μg m-2 h-1, which was more than an order of magnitude higher than that from global lakes and reservoirs. Based on our results of Monte Carlo simulations, a minimum of 15 sampling points per km2 would be needed to produce representative and reliable N2O estimates in such a spatially heterogeneous aquatic system. Overall, coastal reservoirs could play an increasingly important role in future climate change via their N2O emission to the atmosphere as water demand and anthropogenic pressure continue to rise.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Miaohui Lu
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Kam W Tang
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Hong Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China; Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuan Tong
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Kwok Pan Chun
- Department of Geography, Hong Kong Baptist University, Hong Kong, China
| | - Linhai Zhang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chen Tang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
39
|
Martin G, Rissanen AJ, Garcia SL, Mehrshad M, Buck M, Peura S. Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes. Front Microbiol 2021; 12:669937. [PMID: 34456882 PMCID: PMC8397446 DOI: 10.3389/fmicb.2021.669937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.
Collapse
Affiliation(s)
- Gaëtan Martin
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Antti J. Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
40
|
Sun H, Lu X, Yu R, Yang J, Liu X, Cao Z, Zhang Z, Li M, Geng Y. Eutrophication decreased CO 2 but increased CH 4 emissions from lake: A case study of a shallow Lake Ulansuhai. WATER RESEARCH 2021; 201:117363. [PMID: 34174729 DOI: 10.1016/j.watres.2021.117363] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Eutrophic lakes, especially shallow eutrophic lakes, disproportionately contribute to greenhouse gas (GHG) emissions. To investigate the effects of eutrophication on GHG dynamics, we conducted field measurements every three months from January 2019 to October 2019 in Lake Ulansuhai, a shallow eutrophic lake (mean depth of 0.7 m) located in a semi-arid region in Northern China. We found that Lake Ulansuhai was a predominantly source of atmospheric carbon dioxide (CO2); however, it converted to a CO2 sink in July due to eutrophication. It was also a strong source of methane (CH4) with a mean CO2 emission of 35.7 ± 12.1 mmol m-2 d-1 and CH4 emission of 5.9 ± 2.9 mmol m-2 d-1. The CO2 concentrations in most sites and CH4 concentrations in all sites were supersaturated, with the average partial pressure of CO2 (pCO2) being 654±34 μatm and the partial pressure of CH4 (pCH4) being 157±37 μatm. The partial pressures and emissions of the greenhouse gases exhibited substantial seasonal and spatial variations. The correlation analysis between the trophic level index and the partial pressure of the greenhouse gases indicated that eutrophication could significantly decrease the CO2 emissions but increase the CH4 emissions from the lake, resulting in a CH4 and CO2 emission ratio of approximately 2 in terms of global warming potential. Eutrophication decreased the pCO2 in the lake and subsequently increased the pCH4 due to nutrient input, thereby enhancing primary production. The results indicated that shallow eutrophic lakes in arid regions are strong sources of CH4 and that eutrophication could alter the greenhouse gas emission patterns.
Collapse
Affiliation(s)
- Heyang Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xixi Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Department of Geography, National University of Singapore 117570, Singapore
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010021, China.
| | - Jie Yang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Buereau of Ecology and Environment of Inner Mongolia Autonomous Region, Hohhot 010021, China.
| | - Xinyu Liu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhengxu Cao
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhuangzhuang Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Meixia Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yue Geng
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
41
|
Vallejo B, Ponce R, Ortega T, Gómez-Parra A, Forja J. "Greenhouse gas dynamics in a coastal lagoon during the recovery of the macrophyte meadow (Mar Menor, SE Spain)". THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146314. [PMID: 34030236 DOI: 10.1016/j.scitotenv.2021.146314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The Mar Menor is a hypersaline coastal lagoon with salinity values ranging from 41.9 to 45.5. The system is subjected to a high anthropic pressure that causes an intense eutrophication process, followed by a recovery of the macrophyte meadows. This study focuses on the distribution of the main greenhouse gases (CO2, CH4 and N2O) and was carried out in the extreme seasonal conditions of winter and summer during the year 2018. Sediment-water-atmosphere exchanges and biochemical processes in the water column appeared to be the main factors to explain the variability of these gases. Dissolved Inorganic Carbon (DIC), CH4 and N2O benthic fluxes values obtained in this study, were of 91 ± 29 mmol m-2 d-1, 3.9 ± 1.9 μmol m-2 d-1 and -0.65 μmol m-2 d-1, respectively, along with an important seasonal variation observed, with an increase of DIC and CH4 benthic fluxes during the summer season. Mean values of partial pressure of CO2 (pCO2) in surface water were of 579 μatm in winter and 464 μatm in summer, therefore we can establish that the Mar Menor acts as a source of this gas emitting 3.3 ± 3.0 mmol CO2 m-2 d-1 to the atmosphere. In spite of this, the Mar Menor has a strong autotrophic behaviour partly due to the recovery of the macrophyte meadows, presenting an estimated NEP of 101 mmol m-2 d-1. Regarding to CH4, the mean fluxes to the atmosphere were of 8.0 ± 5.8 μmol m-2 d-1 and there was evidence of CH4 production in the water column that increased in summer. Last of all, in the case of N2O the system acts as a sink with values of -0.65 ± 0.5 μmol m-2 d-1, presenting an intake of N2O that is usually detected in pristine systems.
Collapse
Affiliation(s)
- B Vallejo
- Dpto. Química-Física, INMAR, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Andalucía, Spain.
| | - R Ponce
- Dpto. Química-Física, INMAR, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Andalucía, Spain
| | - T Ortega
- Dpto. Química-Física, INMAR, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Andalucía, Spain
| | - A Gómez-Parra
- Dpto. Química-Física, INMAR, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Andalucía, Spain
| | - J Forja
- Dpto. Química-Física, INMAR, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Andalucía, Spain
| |
Collapse
|
42
|
Yang P, Huang J, Tan L, Tong C, Jin B, Hu B, Gao C, Yuan J, Lai DYF, Yang H. Large variations in indirect N 2O emission factors (EF 5) from coastal aquaculture systems in China from plot to regional scales. WATER RESEARCH 2021; 200:117208. [PMID: 34048983 DOI: 10.1016/j.watres.2021.117208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture ponds are important anthropogenic sources of nitrous oxide (N2O). Direct N2O emissions arising from feed application to ponds have been widely investigated, but indirect emissions from N2O production from residual feeds in pond water are much less understood and characterized to refine the IPCC emission factor. In this study, we determined the concentrations and spatiotemporal variations of dissolved N2O and NO3--N in situ in three aquaculture ponds at the Min River Estuary in southeastern China during the culture period over two years, and calculated the indirect N2O emission factor (EF5) for aquaculture ponds using the N2O-N/NO3--N mass ratio methodology. Our results indicated that the EF5 values in the ponds over the culture period ranged between 0.0007 and 0.0543, with a clear seasonal pattern which closely followed that of the DOC:NO3-N ratio. We also observed significant spatial variations in EF5 among the three ponds, which could be attributed to the difference in feed conversion rate. In addition, we assessed the EF5 values from aquaculture ponds in five regions of the Chinese coastline across the latitudinal gradient from the tropical to the temperate zones. The average EF5 value from aquaculture ponds across the five coastal regions was 0.0093±0.0024, which was approximately 3.7 times of the IPCC default value for rivers and estuaries (0.0025). Moreover, the EF5 values demonstrated considerable spatial variations across these coastal regions with a coefficient of variation of 59%, which were largely related to the difference in water salinity. Our findings filled a key knowledge gap about the indirect N2O emission factor from aquaculture ponds, and provided field evidence for the refinement of EF5 value currently adopted by IPCC in the national greenhouse gas inventory.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Jiafang Huang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Lishan Tan
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Chuan Tong
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Baoshi Jin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China; College of Resources and Environment Science, Anqing Normal University, Anqing, 246011, P.R. China
| | - Beibei Hu
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Changjun Gao
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, P.R. China
| | - Junji Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P.R. China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China.
| | - Hong Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, P.R. China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China; Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AB, UK.
| |
Collapse
|
43
|
Chen S, Wang D, Ding Y, Yu Z, Liu L, Li Y, Yang D, Gao Y, Tian H, Cai R, Chen Z. Ebullition Controls on CH 4 Emissions in an Urban, Eutrophic River: A Potential Time-Scale Bias in Determining the Aquatic CH 4 Flux. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7287-7298. [PMID: 34003644 DOI: 10.1021/acs.est.1c00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rivers and streams contribute significant quantities of methane (CH4) to the atmosphere. However, there is a lack of CH4 flux and ebullitive (bubble) emission data from urban rivers, which might lead to large underestimations of global aquatic CH4 emissions. Here, we conducted high-frequency surveys using the boundary layer model (BLM) supplemented with floating chambers (FCs) and bubble traps to investigate the seasonal and diurnal variability in CH4 emissions in a eutrophic urban river and to evaluate whether the contribution of bubbles is important. We found that ebullition contributed nearly 99% of CH4 emissions and varied on hourly to seasonal time scales, ranging from 0.83 to 230 mmol m-2 d-1, although diffusive emissions and CH4 concentrations in bubbles did not exhibit temporal variability. Ebullitive CH4 emissions presented high temperature sensitivity (r = 0.6 and p < 0.01) in this urban river, and eutrophication might have triggered this high temperature sensitivity. The ebullitive CH4 flux is more likely to be underestimated at low temperatures because capturing the bubble flux is more difficult, given the low frequency of ebullition events. This study suggests that future ebullition measurements on longer time scales are needed to accurately quantify the CH4 budgets of eutrophic urban rivers.
Collapse
Affiliation(s)
- Shu Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Dongqi Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, East China Normal University, 200241 Shanghai, China
| | - Yan Ding
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Zhongjie Yu
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, 61801-3028 Urbana, Illinois, United States
| | - Lijie Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Yu Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Dong Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Yingyuan Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Haowen Tian
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Rui Cai
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Zhenlou Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| |
Collapse
|
44
|
Bartosiewicz M, Maranger R, Przytulska A, Laurion I. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake. WATER RESEARCH 2021; 196:116985. [PMID: 33735621 DOI: 10.1016/j.watres.2021.116985] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Lakes are important sources of greenhouse gases (GHGs) to the atmosphere. Factors controlling CO2, CH4 and N2O fluxes include eutrophication and warming, but the integrated influence of climate-warming-driven stratification, oxygen loss and resultant changes in bloom characteristics on GHGs are not well understood. Here we assessed the influence of contrasting meteorological conditions on stratification and phytoplankton bloom composition in a eutrophic lake, and tested for associated changes in GHGs inventories in both the shallow and deep waters, over three seasons (2010-2012). Atmospheric heatwaves had one of the most dramatic effects on GHGs. Indeed, cyanobacterial blooms that developed in response to heatwave events in 2012 enhanced both sedimentary CH4 concentrations (reaching up to 1mM) and emissions to the atmosphere (up to 8 mmol m-2 d-1). That summer, CH4 contributed 52% of the integrated warming potential of GHGs produced in the lake (in CO2 equivalents) as compared to between 34 and 39% in years without cyanobacterial blooms. High CH4 accumulation and subsequent emission in 2012 were preceded by CO2 and N2O consumption and under-saturation at the lake surface (uptakes at -30 mmol m-2 d-1 and -1.6 µmol m-2 d-1, respectively). Fall overturn presented a large efflux of N2O and CH4, particularly from the littoral zone after the cyanobacterial bloom. We provide evidence that, despite cooling observed at depth during hot summers, CH4 emissions increased via stronger stratification and surface warming, resulting in enhanced cyanobacterial biomass deposition and intensified bottom water anoxia. Our results, supported by recent literature reports, suggests a novel interplay between climate change effects on lake hydrodynamics that impacts both bloom characteristics and GHGs production in shallow eutrophic lakes. Given global trends of warming and enrichment, these interactive effects should be considered to more accurately predict the future global role of lakes in GHG emissions.
Collapse
Affiliation(s)
- Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland; Groupe de recherche interuniversitaire en limnologie (GRIL); Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 de la Couronne, Québec, Canada
| | - Roxane Maranger
- Groupe de recherche interuniversitaire en limnologie (GRIL); Département des Sciences Biologiques, Université de Montréal, C.P. 6128 succ. Centre-ville, Montréal, Canada
| | - Anna Przytulska
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Isabelle Laurion
- Groupe de recherche interuniversitaire en limnologie (GRIL); Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 de la Couronne, Québec, Canada
| |
Collapse
|
45
|
Tang Z, Xu H, Qiu Y, Li H, He Q, Ai H. Addressing algal blooms by bio-pumps to reduce greenhouse gas production and emissions with multi-path. CHEMOSPHERE 2021; 270:128666. [PMID: 33097234 DOI: 10.1016/j.chemosphere.2020.128666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
The collapse of dense algal blooms is identified as a significant source of methane (CH4) emissions. When flocculation is used for algae removal, algal carbon is often turned into CH4 and carbon dioxide (CO2). Here, we established a "bio-pump" to control algal blooms and reduce greenhouse gas (GHG) emissions by the introduction of submerged macrophytes to the aquatic ecosystem and combination of flocculation and capping. The results suggested that this strategy contributed to an approximately 98% algae removal and sustainably improved dissolved oxygen (DO) in the water and sediment after the 40-day incubation. The aerobic condition at the sediment-water interface and deeper oxygen penetration in the sediment inhibited the abundance of microorganisms related to anaerobic CH4 production, then changed the metabolic pathway and fate of algal carbon. After the 40-day incubation, compared with flocculation-capping treatments, the bio-pump reduced 69.07% CH4 and 77.57% CO2 emissions, which was jointly contributed by the inhibition of anaerobic CH4 production, aerobic oxidation of CH4 and carbon sequestration of submerged macrophytes. This was also demonstrated from the finding of a decrease in methyl coenzyme M reductase (mcrA) gene, an increase in particulate methane monooxygenase (pmoA) gene and the absorption of 13C-labeled from algae biomass by submerged macrophytes at the end of incubation. Therefore, the bio-pump established in the present study can improve DO in algal blooms water and turn algal-derived organic matter into the plant biomass, which supplied a sustainable method for algae removal and GHG reduction.
Collapse
Affiliation(s)
- Zhenzhen Tang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Haolian Xu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yixi Qiu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hainan Ai
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
46
|
Colas F, Baudoin JM, Bonin P, Cabrol L, Daufresne M, Lassus R, Cucherousset J. Ecosystem maturity modulates greenhouse gases fluxes from artificial lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144046. [PMID: 33341629 DOI: 10.1016/j.scitotenv.2020.144046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Lentic ecosystems play a major role in the global carbon cycling but the understanding of the environmental determinants of lake metabolism is still limited, notably in small artificial lakes. Here the effects of environmental conditions on lake metabolism and CO2 and CH4 emissions were quantified in 11 small artificial gravel pit lakes covering a gradient of ecosystem maturity, ranging from young oligotrophic to older, hypereutrophic lakes. The diffusive fluxes of CO2 and CH4 ranged from -30.10 to 37.78 mmol m-2 d-1 and from 3.05 to 25.45 mmol m-2 d-1 across gravel pit lakes, respectively. Nutrients and chlorophyll a concentrations were negatively correlated with CO2 concentrations and emissions but positively correlated with CH4 concentrations and emissions from lakes. These findings indicate that, as they mature, gravel pit lakes switch from heterotrophic to autotrophic-based metabolism and hence turn into CO2-sinks. In contrast, the emission of CH4 increased along the maturity gradient. As a result, eutrophication occurring during ecosystem maturity increased net emissions in terms of climate impact (CO2 equivalent) due to the higher contribution of CH4 emissions. Overall, mean CO2equivalent emission was 7.9 g m-2 d-1, a value 3.7 and 4.7 times higher than values previously reported in temperate lakes and reservoirs, respectively. While previous studies reported that lakes represent emitters of C to the atmosphere, this study highlights that eutrophication may reverse lake contribution to global C budgets. However, this finding is to be balanced with the fact that eutrophication also increased CH4 emissions and hence, enhanced the potential impact of these ecosystems on climate. Implementing mitigation strategies for maintaining intermediate levels of maturity is therefore needed to limit the impacts of small artificial waterbodies on climate. This could be facilitated by their small size and should be planned at the earliest stages of artificial lake construction.
Collapse
Affiliation(s)
- Fanny Colas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France.
| | - Jean-Marc Baudoin
- Pôle R&D "ECLA", Aix-en-Provence, France; OFB, Direction de la Recherche et de l'Appui Scientifique, Aix-en-Provence, France.
| | - Patricia Bonin
- Aix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France.
| | - Léa Cabrol
- Aix Marseille Univ., Universite de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France; Institute of Ecology and Biodiversity (IEB), Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | | | - Rémy Lassus
- Inrae, Aix Marseille Univ, RECOVER, Aix-en-Provence, France; UPS, CNRS, IRD, Université de Toulouse, UMR 5174, Laboratoire Évolution et Diversité Biologique (EDB), Université de Toulouse, 118 route de Narbonne, 31062 Toulouse, France.
| | - Julien Cucherousset
- UPS, CNRS, IRD, Université de Toulouse, UMR 5174, Laboratoire Évolution et Diversité Biologique (EDB), Université de Toulouse, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
47
|
Identifying the Mechanisms behind the Positive Feedback Loop between Nitrogen Cycling and Algal Blooms in a Shallow Eutrophic Lake. WATER 2021. [DOI: 10.3390/w13040524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Algal blooms have increased in frequency, intensity, and duration in response to nitrogen (N) cycling in freshwater ecosystems. We conducted a high-resolution sedimentary study of N transformation and its associated microbial activity in Lake Taihu to assess the accumulation rates of the different N fractions in response to algal blooms, aiming to understand the mechanisms of N cycling in lacustrine environments. Downcore nitrification and denitrification processes were measured simultaneously in situ via diffusive gradients in thin-films technique, peeper, and microelectrode devices in a region of intensified algal blooms of shallow lake. The decomposition of different biomasses of algal blooms did not change the main controlling factor on different N fractions in profundal sediment. However, the decomposition of different algal biomasses led to significant differences in the nitrification and denitrification processes at the sediment–water interface (SWI). Low algal biomasses facilitated the classic process of N cycling, with the balanced interaction between nitrification and denitrification. However, the extreme hypoxia under high algal biomasses significantly limited nitrification at the SWI, which in turn, restricted denitrification due to the lack of available substrates. Our high-resolution results combined with estimates of apparent diffusion fluxes of the different N fractions inferred that the lack of substrates for denitrification was the main factor influencing the positive feedback loop between N and eutrophication in freshwater ecosystems. Moreover, this positive feedback can become irreversible without technological intervention.
Collapse
|
48
|
Zhang W, Li H, Xiao Q, Li X. Urban rivers are hotspots of riverine greenhouse gas (N 2O, CH 4, CO 2) emissions in the mixed-landscape chaohu lake basin. WATER RESEARCH 2021; 189:116624. [PMID: 33242788 DOI: 10.1016/j.watres.2020.116624] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Growing evidence shows that riverine networks surrounding urban landscapes may be hotspots of riverine greenhouse gas (GHG) emissions. This study strengthens the evidence by investigating the spatial variability of diffusive GHG (N2O, CH4, CO2) emissions from river reaches that drain from different types of landscapes (i.e., urban, agricultural, mixed, and forest landscapes), in the Chaohu Lake basin of eastern China. Our results showed that almost all the rivers were oversaturated with dissolved GHGs. Urban rivers were identified as emission hotspots, with mean fluxes of 470 μmol m-2d-1 for N2O, 7 mmol m-2d-1 for CH4, and 900 mmol m-2d-1 for CO2, corresponding to ~14, seven, and two times of those from the non-urban rivers in the Chaohu Lake basin, respectively. Factors related to the high N2O and CH4 emissions in urban rivers included large nutrient supply and hypoxic environments. The factors affecting CO2 were similar in all the rivers, which were temperature-dependent with suitable environments that allowed rapid decomposition of organic matter. Overall, this study highlights that better recognition of the influence that river networks have on global warming is required-particularly when it comes to urban rivers, as urban land cover and populations will continue to expand in the future. Management measures should incorporate regional hotspots to more efficiently mitigate GHG emissions.
Collapse
Affiliation(s)
- Wangshou Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hengpeng Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyan Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
49
|
Impact of Nutrients, Temperatures, and a Heat Wave on Zooplankton Community Structure: An Experimental Approach. WATER 2020. [DOI: 10.3390/w12123416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Shallow lakes are globally the most numerous water bodies and are sensitive to external perturbations, including eutrophication and climate change, which threaten their functioning. Extreme events, such as heat waves (HWs), are expected to become more frequent with global warming. To elucidate the effects of nutrients, warming, and HWs on zooplankton community structure, we conducted an experiment in 24 flow-through mesocosms (1.9 m in diameter, 1.0 m deep) imitating shallow lakes. The mesocosms have two nutrient levels (high (HN) and low (LN)) crossed with three temperature scenarios based on the Intergovernmental Panel on Climate Change (IPCC) projections of likely warming scenarios (unheated, A2, and A2 + 50%). The mesocosms had been running continuously with these treatments for 11 years prior to the HW simulation, which consisted of an additional 5 °C increase in temperature applied from 1 July to 1 August 2014. The results showed that nutrient effects on the zooplankton community composition and abundance were greater than temperature effects for the period before, during, and after the HW. Before the HW, taxon richness was higher, and functional group diversity and evenness were lower in HN than in LN. We also found a lower biomass of large Cladocera and a lower zooplankton: phytoplankton ratio, indicating higher fish predation in HN than in LN. Concerning the temperature treatment, we found some indication of higher fish predation with warming in LN, but no clear effects in HN. There was a positive nutrient and warming interaction for the biomass of total zooplankton, large and small Copepoda, and the zooplankton: phytoplankton ratio during the HW, which was attributed to recorded HW-induced fish kill. The pattern after the HW largely followed the HW response. Our results suggest a strong nutrient effect on zooplankton, while the effect of temperature treatment and the 5 °C HW was comparatively modest, and the changes likely largely reflected changes in predation.
Collapse
|
50
|
Phytoplankton Community Response to Nutrients, Temperatures, and a Heat Wave in Shallow Lakes: An Experimental Approach. WATER 2020. [DOI: 10.3390/w12123394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phytoplankton usually responds directly and fast to environmental fluctuations, making them useful indicators of lake ecosystem changes caused by various stressors. Here, we examined the phytoplankton community composition before, during, and after a simulated 1-month heat wave in a mesocosm facility in Silkeborg, Denmark. The experiment was conducted over three contrasting temperature scenarios (ambient (A0), Intergovernmental Panel on Climate Change A2 scenario (circa +3 °C, A2) and A2+ %50 (circa +4.5 °C, A2+)) crossed with two nutrient levels (low (LN) and high (HN)) with four replicates. The facility includes 24 mesocosms mimicking shallow lakes, which at the time of our experiment had run without interruption for 11 years. The 1-month heat wave effect was simulated by increasing the temperature by 5 °C (1 July to 1 August) in A2 and A2+, while A0 was not additionally heated. Throughout the study, HN treatments were mostly dominated by Cyanobacteria, whereas LN treatments were richer in genera and mostly dominated by Chlorophyta. Linear mixed model analyses revealed that high nutrient conditions were the most important structuring factor, which, regardless of temperature treatments and heat waves, increased total phytoplankton, Chlorophyta, Bacillariophyta, and Cyanobacteria biomasses and decreased genus richness and the grazing pressure of zooplankton. The effect of temperature was, however, modest. The effect of warming on the phytoplankton community was not significant before the heat wave, yet during the heat wave it became significant, especially in LN-A2+, and negative interaction effects between nutrient and A2+ warming were recorded. These warming effects continued after the heat wave, as also evidenced by Co-inertia analyses. In contrast to the prevailing theory stating that more diverse ecosystems would be more stable, HN were less affected by the heat wave disturbance, most likely because the dominant phytoplankton group cyanobacteria is adapted to high nutrient conditions and also benefits from increased temperature. We did not find any significant change in phytoplankton size diversity, but size evenness decreased in HN as a result of an increase in the smallest and largest size classes simultaneously. We conclude that the phytoplankton community was most strongly affected by the nutrient level, but less sensitive to changes in both temperature treatments and the heat wave simulation in these systems, which have been adapted for a long time to different temperatures. Moreover, the temperature and heat wave effects were observed mostly in LN systems, indicating that the sensitivity of phytoplankton community structure to high temperatures is dependent on nutrient availability.
Collapse
|