1
|
Du C, Pei J, Feng Z. Unraveling the complex interactions between ozone pollution and agricultural productivity in China's main winter wheat region using an interpretable machine learning framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176293. [PMID: 39284447 DOI: 10.1016/j.scitotenv.2024.176293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Surface ozone has become a significant atmospheric pollutant in China, exerting a profound impact on crop production and posing a serious threat to food security. Previous studies have extensively explored the physiological mechanisms of ozone damage to plants. However, the effects of ozone interactions with other environmental factors, such as climate change, on agricultural productivity at the regional scale, particularly under natural conditions, remain insufficiently understood. In this study, we employed an interpretable machine learning framework, specifically the eXtreme Gradient Boosting (XGBoost) algorithm enhanced by SHapley Additive exPlanations (SHAP), to investigate the influence of ozone and its interactions with environmental factors on crop production in China's primary winter wheat region. Additionally, a structural equation model was developed to elucidate the mechanisms driving these interactions. Our findings demonstrate that ozone pollution exerts a significant negative effect on winter wheat productivity (r = -0.47, P < 0.001), with productivity losses escalating from -12.28 % to -22.09 % as ozone levels increase. Notably, the impact of ozone is spatially heterogeneous, with western Shandong province identified as a hotspot for ozone-induced damage. Furthermore, our results confirm the complexity of the relationship between ozone pollution and agricultural productivity, which is influenced by multiple interacting environmental factors. Specifically, we found that severe ozone pollution, when combined with high aerosol concentrations or elevated temperatures, significantly exacerbates crop productivity losses, although drought conditions can partially mitigate these adverse effects. Our study highlights the importance of incorporating the interactive effects of air pollution and climate change into future crop models. The comprehensive framework developed in this study, which integrates statistical modeling with explainable machine learning, provides a valuable methodological reference for quantitatively assessing the impact of air pollution on crop productivity at a regional scale.
Collapse
Affiliation(s)
- Chenxi Du
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China
| | - Jie Pei
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Zhuhai 519082, China.
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
2
|
Hoshika Y, Pollastrini M, Marzuoli R, Gerosa G, Marra E, Moura BB, Agathokleous E, Calatayud V, Feng Z, Sicard P, Paoletti E. Unraveling the difference of sensitivity to ozone between non-hybrid native poplar and hybrid poplar clones: A flux-based dose-response analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124524. [PMID: 38986760 DOI: 10.1016/j.envpol.2024.124524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Poplars are economically important tree crops and biologically important model plants, which are known to be sensitive to ozone (O3). Although surface O3 is considered as a significant global environmental issue because of its phytotoxicity and greenhouse effect, the knowledge of the dose-response (DR) relationships in poplars for the assessment of O3 risk is still limited. Hence, this study aimed at collecting data of studies with manipulative O3 exposures of poplars within FACE (Free Air Concentration Enhancement) and OTC (Open-Top Chamber) facilities. The datasets contain studies on hybrid poplar clones and a non-hybrid native poplar (Populus nigra L.) reporting both AOT40 (Accumulated exposure Over a Threshold of 40 ppb) and POD1 (Phytotoxic Ozone Dose above a threshold of 1 nmol m-2 Projected Leaf Area [PLA] s-1) to compare exposure- and flux-based indices. As a result, linear regression analysis showed that the flux-based POD1 was better than the exposure-based AOT40 to explain the biomass response of poplars to O3. From the DR relationships, a critical level (CL) of 5.7 mmol m-2 POD1 has been derived corresponding to 4% biomass growth reduction for hybrid poplar clones, which can be considered very sensitive to O3, while the non-hybrid native poplar was less sensitive to O3 (CL: 10.3 mmol m-2 POD1), although the potential risk of O3 for this taxon is still high due to very high stomatal conductance. Moreover, the different experimental settings (OTC vs. FACE) have affected the AOT40-based DR relationships but not the POD1-based DR relationships, suggesting that poplar responses to O3 were principally explained by stomatal O3 uptake regardless of the different experimental settings and exposure patterns. These results highlight the importance of the flux-based approach, especially when scaling up from experimental datasets to the O3 risk assessment for poplars at the regional or global scale.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| | - Martina Pollastrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Piazzale delle Cascine 28, Viale delle idee 30, 50019 Sesto Fiorentino, 50144, Florence, Italy
| | - Riccardo Marzuoli
- Department of Mathematics and Physics, Catholic University of the Sacred Heart, Via Garzetta 48, Brescia, Italy
| | - Giacomo Gerosa
- Department of Mathematics and Physics, Catholic University of the Sacred Heart, Via Garzetta 48, Brescia, Italy
| | - Elena Marra
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science & Technology, Nanjing, China
| | - Vicent Calatayud
- Fundación CEAM, c/ Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science & Technology, Nanjing, China
| | - Pierre Sicard
- ARGANS, Sophia-Antipolis, France; Institutul Naţional de Cercetare-Dezvoltare în Silvicultură"Marin Drăcea,", Voluntari, Romania
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sede secondaria di Firenze, Via Madonna del Piano, 50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
3
|
Yao W, You X, Gao A, Lin J, Wu M, Li A, Gao Z, Zhang Y, Zhang H. Assessment of ozone pollution on rice yield reduction and economic losses in Sichuan province during 2015-2020. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124404. [PMID: 38908674 DOI: 10.1016/j.envpol.2024.124404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
In recent years, there has been a significant increase in surface ozone (O3) concentrations in the troposphere. Ozone pollution has significant adverse effects on ecosystems, human health, and climate change, particularly on crop growth and yield. This study utilized the observational hourly O3 data, cumulative O3 concentration over 40 ppb per h (AOT40), and the mean daytime 7-h O3 concentration (M7) to analyze the spatiotemporal distributions of relative yield losses (RYLs) and evaluate the yield reduction and economic losses of rice in Sichuan province from 2015 to 2020. The results indicated that the average O3 concentration during the growing rice season ranged from 55.4 to 69.3 μg/m3, with the highest O3 concentration observed in 2017, and the AOT40 ranged from 4.5 to 8.7 ppm h from 2015 to 2020. At the county level, the O3 concentration, AOT40, and the relative yield loss (RYL) of rice based on AOT40 exhibited clear spatiotemporal differences in Sichuan. The RYLs of AOT40 were 4.9-9.2% from 2015 to 2020. According to AOT40 and M7 metrics, the yield loss and economic losses attributed to O3 pollution amounted to 78.75-150.36 (9.74-21.54) ten thousand tons, and 2079.08-4149.89 (257.25-594.45) million Yuan, respectively. Rice yield and economic losses were relatively large in the Chengdu Plain, southern Sichuan, and northeast Sichuan. These findings will contribute to a deeper understanding of the detrimental effects of elevated surface O3 concentrations on rice crops. It is imperative to implement more stringent O3 reduction measures aimed at lowering O3 concentrations, enhancing rice quality, and safeguarding food security in Sichuan.
Collapse
Affiliation(s)
- Wenjie Yao
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | - Xi You
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | - Aifang Gao
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Shanghai, 200438, China; Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Center for Ecological and Environmental Geology Research, Shijiazhuang, 050031, China.
| | - Jiaxuan Lin
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | - Michuan Wu
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | - Aiguo Li
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | - Zhijuan Gao
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | - Ying Zhang
- Shijiazhuang Center for Disease Control and Prevention, Environment and Health Research Base of China Center for Disease Control and Prevention (Shijiazhuang), Shijiazhuang, 050011, China
| | - Hongliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| |
Collapse
|
4
|
Li S, Montes CM, Aspray EK, Ainsworth EA. How do drought and heat affect the response of soybean seed yield to elevated O 3? An analysis of 15 seasons of free-air O 3 concentration enrichment studies. GLOBAL CHANGE BIOLOGY 2024; 30:e17500. [PMID: 39262235 DOI: 10.1111/gcb.17500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
The coincidence of rising ozone concentrations ([O3]), increasing global temperatures, and drought episodes is expected to become more intense and frequent in the future. A better understanding of the responses of crop yield to elevated [O3] under different levels of drought and high temperature stress is, therefore, critical for projecting future food production potential. Using a 15-year open-air field experiment in central Illinois, we assessed the impacts of elevated [O3] coupled with variation in growing season temperature and water availability on soybean seed yield. Thirteen soybean cultivars were exposed to a wide range of season-long elevated [O3] in the field using free-air O3 concentration enrichment. Elevated [O3] treatments reduced soybean seed yield from as little as 5.3% in 2005 to 35.2% in 2010. Although cultivars differed in yield response to elevated [O3] (R), ranging from 17.5% to -76.4%, there was a significant negative correlation between R and O3 dosage. Soybean cultivars showed greater seed yield losses to elevated [O3] when grown at drier or hotter conditions compared to wetter or cooler years, because the hotter and drier conditions were associated with greater O3 treatment. However, year-to-year variation in weather conditions did not influence the sensitivity of soybean seed yield to a given increase in [O3]. Collectively, this study quantitatively demonstrates that, although drought conditions or warmer temperatures led to greater O3 treatment concentrations and O3-induced seed yield reduction, drought and temperature stress did not alter soybean's sensitivity to O3. Our results have important implications for modeling the effects of rising O3 pollution on crops and suggest that altering irrigation practices to mitigate O3 stress may not be effective in reducing crop sensitivity to O3.
Collapse
Affiliation(s)
- Shuai Li
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher M Montes
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, Illinois, USA
| | - Elise K Aspray
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, Illinois, USA
| | - Elizabeth A Ainsworth
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, Illinois, USA
| |
Collapse
|
5
|
Hoshika Y, Agathokleous E, Moura BB, Paoletti E. Ozone risk assessment with free-air controlled exposure (FACE) experiments: A critical revisit. ENVIRONMENTAL RESEARCH 2024; 255:119215. [PMID: 38782333 DOI: 10.1016/j.envres.2024.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Since risk assessments of tropospheric ozone (O3) are crucial for agricultural and forestry sectors, there is a growing body for realistic assessments by a stomatal flux-based approach in Free-Air Controlled Exposure (FACE) facilities. Ozone risks are normally described as relative risks (RRs), which are calculated by assuming the biomass or yield at zero O3 dose as "reference". However, the estimation of the reference biomass or yield is challenging due to a lack of O3-clean-air treatment at the FACEs and the extrapolation without data in a low O3 range increases the bias for estimating the reference values. Here, we reviewed a current methodology for the risk assessment at FACEs and presented a simple and effective way ("modified Paoletti's approach") of defining RRs just using biomass or yield data with a range of expected impacts under the FACE conditions hypothesizing three possible scenarios based on prediction limits using 95% credible intervals (CI) (1. Best fit using the intercept as reference, 2. Optimistic scenario using a lower CI and 3. Worst scenario using an upper CI). As a result, O3-sensitive species show a relatively narrow effect range (optimistic vs. worst scenario) whereas a wide range of response may be possibly taken in resistant species. Showing a possible effect range allows for a comprehensive understanding of the potential risks and its uncertainties related to a species sensitivity to O3. As a supporting approach, we also recommend to use scientifically relevant tools (i.e., ethylenediurea treatments; mechanistic plant models) for strengthening the obtained results for the RRs against O3. Interestingly, the moderately sensitive or resistant species showed non-linear rather than linear dose-response relationships, suggesting a need for the flexible functional form for the risk assessment to properly describe the complex plant response such as hormesis, which depends on their plasticity to O3 stress.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu, 210044, China
| | - Barbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Madonna del Piano, I-50019, Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
6
|
Shang B, Agathokleous E, Calatayud V, Peng J, Xu Y, Li S, Liu S, Feng Z. Drought mitigates the adverse effects of O 3 on plant photosynthesis rather than growth: A global meta-analysis considering plant functional types. PLANT, CELL & ENVIRONMENT 2024; 47:1269-1284. [PMID: 38185874 DOI: 10.1111/pce.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Tropospheric ozone (O3 ) is a phytotoxic air pollutant adversely affecting plant growth. High O3 exposures are often concurrent with summer drought. The effects of both stresses on plants are complex, and their interactions are not yet well understood. Here, we investigate whether drought can mitigate the negative effects of O3 on plant physiology and growth based on a meta-analysis. We found that drought mitigated the negative effects of O3 on plant photosynthesis, but the modification of the O3 effect on the whole-plant biomass by drought was not significant. This is explained by a compensatory response of water-deficient plants that leads to increased metabolic costs. Relative to water control condition, reduced water treatment decreased the effects of O3 on photosynthetic traits, and leaf and root biomass in deciduous broadleaf species, while all traits in evergreen coniferous species showed no significant response. This suggested that the mitigating effects of drought on the negative impacts of O3 on the deciduous broadleaf species were more extensive than on the evergreen coniferous ones. Therefore, to avoid over- or underestimations when assessing the impact of O3 on vegetation growth, soil moisture should be considered. These results contribute to a better understanding of terrestrial ecosystem responses under global change.
Collapse
Affiliation(s)
- Bo Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna, Valencia, Spain
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Shuangjiang Li
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Shuo Liu
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Pei J, Liu P, Feng Z, Chang M, Wang J, Fang H, Wang L, Huang B. Long-term trajectory of ozone impact on maize and soybean yields in the United States: A 40-year spatial-temporal analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123407. [PMID: 38244900 DOI: 10.1016/j.envpol.2024.123407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Understanding the long-term change trends of ozone-induced yield losses is crucial for formulating strategies to alleviate ozone damaging effects, aiming towards achieving the Zero Hunger Sustainable Development Goal. Despite a wealth of experimental research indicating that ozone's influence on agricultural production exhibits marked fluctuations and differs significantly across various geographical locations, previous studies using global statistical models often failed to capture this spatial-temporal variability, leading to uncertainties in ozone impact estimation. To address this issue, we conducted a comprehensive assessment of the spatial-temporal variability of ozone impacts on maize and soybean yields in the United States (1981-2021) using a geographically and temporally weighted regression (GTWR) model. Our results revealed that over the past four decades, ozone pollution has led to average yield losses of -3.5% for maize and -6.1% for soybean, translating into an annual economic loss of approximately $2.6 billion. Interestingly, despite an overall downward trend in ozone impacts on crop yields following the implementation of stringent ozone emission control measures in 1997, our study identified distinct peaks of abnormally high yield reduction rates in drought years. Significant spatial heterogeneity was detected in ozone impacts across the study area, with ozone damage hotspots located in the Southeast Region and the Mississippi River Basin for maize and soybean, respectively. Furthermore, we discovered that hydrothermal factors modulate crop responses to ozone, with maize showing an inverted U-shaped yield loss trend with temperature increases, while soybean demonstrated an upward trend. Both crops experienced amplified ozone-induced yield losses with rising precipitation. Overall, our study highlights the necessity of incorporating spatiotemporal variability into assessments of crop yield losses attributable to ozone pollution. The insights garnered from our findings can contribute to the formulation of region-specific pollutant emission policies, based on the distinct profiles of ozone-induced agricultural damage across different regions.
Collapse
Affiliation(s)
- Jie Pei
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, 519082, China; Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Zhuhai, 519082, China
| | - Pengyu Liu
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, 519082, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Ming Chang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| | - Jian Wang
- Department of Geography, The Ohio State University, Columbus, OH, 43210, USA
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Li Wang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Bo Huang
- Department of Geography, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
8
|
Frei M, Ashrafuzzaman M, Piepho HP, Herzog E, Begum SN, Islam MM. Evidence for tropospheric ozone effects on rice production in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168560. [PMID: 37979852 DOI: 10.1016/j.scitotenv.2023.168560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Although Bangladesh is known to be burdened with elevated tropospheric ozone levels, little is known about its effects on food security. We conducted field experiments in four highly polluted rice growing environments of Bangladesh in three cropping seasons (2020-2022), in which we grew 20 different rice varieties with or without application of the ozone protectant ethylene diurea (EDU). The average daytime ozone concentrations at the study sites during the rice growing seasons ranged from 53 ppb to 84 ppb, with the lowest concentrations occurring in the year 2020. EDU increased rice grain yields significantly by an average of 10.4 % across all seasons and locations, indicating that plants were stressed under ambient ozone concentrations. EDU was effective in distinguishing ozone-tolerant from ozone-sensitive varieties, in which yield increased by up to 21 %. Likewise, the EDU treatment positively affected vegetation indices representing chlorophyll (NDVI), the chorophyll:carotenoid ratio (Lic2), and pigments of the xanthophyll cycle (PRI). Stomatal conductance was increased significantly by an average of around 10 % among all varieties when plants were treated with EDU. In all physiological traits, significant genotype by treatment interactions occurred, indicating that different varieties varied in their responses to ozone stress. Our study demonstrates that rice production in Bangladesh is severely affected by tropospheric ozone, and calls for the breeding of tolerant rice varieties as well as mitigation measures to reduce air pollution.
Collapse
Affiliation(s)
- Michael Frei
- Department of Agronomy and Crop Physiology, Justus-Liebig-University, Giessen, Germany.
| | - Md Ashrafuzzaman
- Department of Genetic Engineering & Biotechnology (GEB), School of Life Sciences, Shahjalal University of Science and Technology (SUST), Sylhet, Bangladesh
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Eva Herzog
- Department of Biometry and Population Genetics, Justus-Liebig-University, Giessen, Germany
| | - Shamsun Nahar Begum
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh
| | - Mirza Mofazzal Islam
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh
| |
Collapse
|
9
|
Xu Y, Kobayashi K, Feng Z. Wheat yield response to elevated O 3 concentrations differs between the world's major producing regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168103. [PMID: 37884153 DOI: 10.1016/j.scitotenv.2023.168103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Ground-level ozone (O3) concentration is rising in Asia, which accommodates the world's top-two wheat producers (China and India). Because wheat is among the species of high O3 sensitivity, yield loss due to rising O3 in Asia is a major threat to global wheat supply. We estimated the relationships between O3 dose on AOT40 (accumulated daytime O3 concentrations above 40 ppb for 90 days) and relative wheat yield for four wheat producing regions: China, India, Europe and North America using results of O3 elevation experiments conducted therein. When compared on the same AOT40, the estimated yield loss was greatest in China followed by India, Europe, and North America in this order. In China, Europe and North America, the yield loss was primarily due to the reduction of single grain weight, whereas in India reduction of the number of grains contributed more to the yield loss than single grain weight. The greater response of the number of grains to O3 in India can be explained by the earlier start of O3 elevation, but the seasonal change in O3 concentrations cannot explain the lower yield loss in North America than China and India. Referring to the past reports of lower yield sensitivity to O3 in older cultivars, we compared the year of release of cultivars between the regions. In North America, they used cultivars released in 1980s or earlier, whereas in China they used cultivars released in 2000s. In Europe and India, most cultivars were released between those in North America and China. The difference in cultivars could therefore be a cause the differential yield response among the regions. We argue that the O3-induced yield loss should be quantified using the dose-response relationships for each region accounting for the effects of seasonal change in O3 concentrations, cultivars and climate on the yield response.
Collapse
Affiliation(s)
- Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science & Technology, Nanjing, China
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China; Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science & Technology, Nanjing, China.
| |
Collapse
|
10
|
Feng Y, Alam MS, Yan F, Frei M. Alteration of carbon and nitrogen allocation in winter wheat under elevated ozone. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111924. [PMID: 37992899 DOI: 10.1016/j.plantsci.2023.111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Tropospheric ozone accelerates senescence and shortens grain filling, consequently affecting the remobilization and allocation efficiency of aboveground biomass and nutrients into grains in cereal crops. This study investigated carbon (C) and nitrogen (N) concentrations repeatedly in shoot biomass during the growth period and in grain after the harvest in eighteen wheat genotypes under control and ozone treatments in open-top chambers. Season-long ozone fumigation was conducted at an average ozone concentration of 70 ppb with three additional acute ozone episodes of around 150 ppb. Although there were no significant differences in straw C and N concentrations between the two treatments, the straw C:N ratio was significantly increased after long-term ozone fumigation, and the grain C:N ratio decreased under elevated ozone without significance. Grain N concentrations increased significantly under ozone stress, whereas N yield declined significantly due to grain yield losses induced by ozone. Moreover, different indicators of N use efficiency were significantly reduced with the exception of N utilization efficiency (NUtE), indicating that elevated ozone exposure reduced the N absorption from soil and allocation from vegetative to reproductive organs. The linear regression between straw C:N ratio and productivity indicated that straw C:N was not a suitable trait for predicting wheat productivity due to the low coefficient of determination (R2). Nitrogen harvest index (NHI) was not significantly affected by ozone stress among all genotypes. However, elevated ozone concentration changed the relationship between harvest index (HI) and NHI, and the reduced regression slope between them indicated that ozone exposure significantly affected the relationship of N and biomass allocation into wheat grains. The cultivar "Jenga" showed optimal ozone tolerance due to less yield reduction and higher NUE after ozone exposure. The genotypes with higher nutrient use efficiencies are promising to cope with ozone-induced changes in nitrogen partitioning.
Collapse
Affiliation(s)
- Yanru Feng
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390 Giessen, Germany; Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115 Bonn, Germany
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Feng Yan
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390 Giessen, Germany.
| |
Collapse
|
11
|
Wu G, Guan K, Ainsworth EA, Martin DG, Kimm H, Yang X. Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:350-363. [PMID: 37702411 DOI: 10.1093/jxb/erad356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) provides an opportunity to rapidly and non-destructively investigate how plants respond to stress. Here, we explored the potential of SIF to detect the effects of elevated O3 on soybean in the field where soybean was subjected to ambient and elevated O3 throughout the growing season in 2021. Exposure to elevated O3 resulted in a significant decrease in canopy SIF at 760 nm (SIF760), with a larger decrease in the late growing season (36%) compared with the middle growing season (13%). Elevated O3 significantly decreased the fraction of absorbed photosynthetically active radiation by 8-15% in the middle growing season and by 35% in the late growing stage. SIF760 escape ratio (fesc) was significantly increased under elevated O3 by 5-12% in the late growth stage due to a decrease of leaf chlorophyll content and leaf area index. Fluorescence yield of the canopy was reduced by 5-11% in the late growing season depending on the fesc estimation method, during which leaf maximum carboxylation rate and maximum electron transport were significantly reduced by 29% and 20% under elevated O3. These results demonstrated that SIF could capture the elevated O3 effect on canopy structure and acceleration of senescence in soybean and provide empirical support for using SIF for soybean stress detection and phenotyping.
Collapse
Affiliation(s)
- Genghong Wu
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- National Center for Supercomputing Applications, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Ainsworth
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- USDA-ARS, Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA
| | - Duncan G Martin
- Department of Plant Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Hyungsuk Kimm
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Xi Yang
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Moura BB, Manzini J, Paoletti E, Hoshika Y. A three-year free-air experimental assessment of ozone risk on the perennial Vitis vinifera crop species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122626. [PMID: 37778493 DOI: 10.1016/j.envpol.2023.122626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Tropospheric ozone (O3) is an oxidative air pollutant that promotes damage to several crops, including grapevine, which is considered moderately resistant to O3 stress. To study the O3 effect on this perennial crop species under realistic environmental conditions, a three-year experiment was performed using an innovative O3-FACE facility located in the Mediterranean climate region, where the target species, Vitis vinifera cv. "Cabernet sauvignon", was exposed to three O3 levels: ambient (AA), 1.5 × ambient (×1.5), and 2 × ambient (×2.0). A stomatal conductance model parameterization was conducted, and O3-exposure (AOT40) and flux-based indices (PODy) were estimated. An assessment of O3-induced visible foliar injury (O3_VFI) was conducted by estimating VFI_Incidence (percentage of symptomatic leaves per branch) and VFI_Severity (average percentage of O3_VFI surface in symptomatic leaves). Biomass parameters were used to assess the cumulative O3 effect and calculate the most appropriate critical levels (CL) for a 5% yield loss and for the induction of 5, 10, and 15% of O3_VFI. We confirmed that the O3 effect on this grapevine variety VFI was cumulative and that POD0 values accumulated over the two or three years preceding the assessment were better related to the response variables than single-year values, with the response increasing with increasing O3 level. The estimated CL for 5% yield loss based on the O3-exposure index was 25 ppm h AOT40 and 21 or 23 ppm h for a 10% of VFI_Incidence or VFI_Severity, respectively. The suggested flux-based index value for 5% yield loss was 5.2 POD3 mmol m-2, and for 10% of VFI_Incidence or VFI_Severity, the values were 7.7 or 8.6 POD3 mmol m-2, respectively. The results presented in this study demonstrate that O3 risk assessment for this grapevine varietyproduces consistent and comparable results when using either yield or O3_VFI as response parameter.
Collapse
Affiliation(s)
- Bárbara Baesso Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Jacopo Manzini
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo 85050 (Potenza), Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo 85050 (Potenza), Italy
| |
Collapse
|
13
|
Li S, Leakey ADB, Moller CA, Montes CM, Sacks EJ, Lee D, Ainsworth EA. Similar photosynthetic but different yield responses of C 3 and C 4 crops to elevated O 3. Proc Natl Acad Sci U S A 2023; 120:e2313591120. [PMID: 37948586 PMCID: PMC10655586 DOI: 10.1073/pnas.2313591120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The deleterious effects of ozone (O3) pollution on crop physiology, yield, and productivity are widely acknowledged. It has also been assumed that C4 crops with a carbon concentrating mechanism and greater water use efficiency are less sensitive to O3 pollution than C3 crops. This assumption has not been widely tested. Therefore, we compiled 46 journal articles and unpublished datasets that reported leaf photosynthetic and biochemical traits, plant biomass, and yield in five C3 crops (chickpea, rice, snap bean, soybean, and wheat) and four C4 crops (sorghum, maize, Miscanthus × giganteus, and switchgrass) grown under ambient and elevated O3 concentration ([O3]) in the field at free-air O3 concentration enrichment (O3-FACE) facilities over the past 20 y. When normalized by O3 exposure, C3 and C4 crops showed a similar response of leaf photosynthesis, but the reduction in chlorophyll content, fluorescence, and yield was greater in C3 crops compared with C4 crops. Additionally, inbred and hybrid lines of rice and maize showed different sensitivities to O3 exposure. This study quantitatively demonstrates that C4 crops respond less to elevated [O3] than C3 crops. This understanding could help maintain cropland productivity in an increasingly polluted atmosphere.
Collapse
Affiliation(s)
- Shuai Li
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Andrew D. B. Leakey
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Christopher A. Moller
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Global Change and Photosynthesis Research Unit, US Department of Agriculture, Agricultural Research Service, Urbana, IL61801
| | - Christopher M. Montes
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Global Change and Photosynthesis Research Unit, US Department of Agriculture, Agricultural Research Service, Urbana, IL61801
| | - Erik J. Sacks
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - DoKyoung Lee
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Elizabeth A. Ainsworth
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Global Change and Photosynthesis Research Unit, US Department of Agriculture, Agricultural Research Service, Urbana, IL61801
| |
Collapse
|
14
|
Ta Bui L, Nguyen PH. Assessment of rice yield and economic losses caused by ground-level O 3 exposure in the Mekong delta region, Vietnam. Heliyon 2023; 9:e17883. [PMID: 37519663 PMCID: PMC10372206 DOI: 10.1016/j.heliyon.2023.e17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The Lower Mekong Delta region (LMD) accounts for 90% of Vietnam's rice exports; however, the air quality in the LMD is remarkably reduced by ground-level ozone (O3) pollution. This study aimed to quantify the relative yield and economic value losses in rice-growing crop seasons affected by ground-level O3 concentrations across the LMD. The results of this study can serve as a basis for extensive assessments for the following years and support environmental managers to propose control measures of O3 precursor emissions (NOx and VOCs) from man-made sectors, as well as build protective solutions for rice farming in LMD. Two ground-level O3 exposure metrics of M7 and AOT40 reflecting ground-level O3 pollution impacts, combined with the model of exposure-relative yield relationship (or surface O3-crop models), were used to assess losses of crop production (CPL) and economic cost losses (ECL) caused by rice crop yield reductions. For the M7 metric of ground-level O3 exposure, the average value was 14.746 ppbV, with levels ranging from 13.959 ppbV to 15.502 ppbV, and the affected area was spread across 1309.39 thousand hectares. The AOT40 exposure metric reached an average value of 11.490 ppbV, with a range of 0.000-31.665 ppbV. The highest exposure level was 17.503-31.653 ppbV, covering an area of 747.01 thousand hectares. The total CPL of the three rice crops over the LMD was 9593.52 tonnes (accounting for 0.039% of the total value of rice production in the region), with a total corresponding EPL of 62.405 billion VND (equivalent to 2761.01 thousand USD). The results are considered a baseline study to serve as a basis for extensive assessments for the following years and support for the environmental managers to propose control measures of O3 precursor emissions (NOx and VOCs) from man-made sectors as well as build protective solutions in rice farming in LMD shortly.
Collapse
Affiliation(s)
- Long Ta Bui
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Phong Hoang Nguyen
- Laboratory for Environmental Modelling, Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| |
Collapse
|
15
|
Feng Y, Nguyen TH, Alam MS, Emberson L, Gaiser T, Ewert F, Frei M. Identifying and modelling key physiological traits that confer tolerance or sensitivity to ozone in winter wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119251. [PMID: 35390418 DOI: 10.1016/j.envpol.2022.119251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Tropospheric ozone threatens crop production in many parts of the world, especially in highly populated countries in economic transition. Crop models suggest substantial global yield losses for wheat, but typically such models fail to address differences in ozone responses between tolerant and sensitive genotypes. Therefore, the purpose of this study was to identify physiological traits contributing to yield losses or yield stability under ozone stress in 18 contrasting wheat cultivars that had been pre-selected from a larger wheat population with known ozone tolerance. Plants were exposed to season-long ozone fumigation in open-top chambers at an average ozone concentration of 70 ppb with three additional acute ozone episodes of around 150 ppb. Compared to control conditions, average yield loss was 18.7 percent, but large genotypic variation was observed ranging from 2.7 to 44.6 percent. Foliar chlorophyll content represented by normalized difference vegetation index and net CO2 assimilation rate of young leaves during grain filling were the physiological traits most strongly correlated with grain yield losses or stability. Accumulative effects of chronic ozone exposure on photosynthesis were more detrimental for grain yield than instantaneous effects of acute ozone shocks, or accelerated senescence of older leaves represented by changes in the ratio of brown leaf area/green leaf area index. We used experimental data of two selected tolerant or sensitive varieties, respectively, to parametrize the LINTULCC2 crop model expanded with an ozone response routine. By specifying parameters representing the distinct physiological responses of contrasting genotypes, we simulated yield losses of 7 percent (tolerant) or 33 percent (sensitive). By considering genotypic differences in ozone response models, this study helps to improve the accuracy of simulation studies, estimate the effects of adaptive breeding, and identify physiological traits for the breeding of ozone tolerant wheat varieties that could deliver stable yields despite ozone exposure.
Collapse
Affiliation(s)
- Yanru Feng
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390, Giessen, Germany; Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Thuy Huu Nguyen
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Lisa Emberson
- Environment and Geography Department, University of York, YO10 5NG, UK
| | - Thomas Gaiser
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Frank Ewert
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany; Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Systems Analysis, 15374, Muencheberg, Germany
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding, Justus Liebig University Giessen, 35390, Giessen, Germany.
| |
Collapse
|
16
|
Experimental Approach Alters N and P Addition Effects on Leaf Traits and Growth Rate of Subtropical Schima superba (Reinw. ex Blume) Seedlings. FORESTS 2022. [DOI: 10.3390/f13020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitrogen (N) and/or phosphorus (P) addition has controversial effects on tree functional traits and growth; however, this experimental approach may clarify these controversial results. In this study, field and pot experiments were designed with +N (100 kg N ha−1 yr−1), +P (50 kg P ha−1 yr−1), +NP (100 kg N plus 50 kg P ha−1 yr−1), and a control (no N or P addition) to comparatively investigate the effects of N and P addition on 24 leaf traits and the growth rate of Schima superba (Reinw. ex Blume ) seedlings in subtropical China. We found that the experimental approach alters N and P addition effects on leaf traits and tree growth. Nitrogen addition strongly altered leaf biochemical and physiological traits and limited tree growth compared to P addition in the pot experiment, while the effects of N and P addition on leaf traits and tree growth were weaker in the field, since the seedlings might be mainly limited by light availability rather than nutrient supplies. The inference from the pot experiment might amplify the impact of N deposition on forest plants in complicated natural systems. These findings will help guide refining pot fertilization experiments to simulate trees in the field under environmental change. Future directions should consider reducing the confounding effects of biotic and abiotic factors on fertilization in the field, and refinement of the control seedlings’ genetic diversity, mycorrhizal symbiont, and root competition for long-term fertilization experiments are required.
Collapse
|
17
|
Feng Z, Xu Y, Kobayashi K, Dai L, Zhang T, Agathokleous E, Calatayud V, Paoletti E, Mukherjee A, Agrawal M, Park RJ, Oak YJ, Yue X. Ozone pollution threatens the production of major staple crops in East Asia. NATURE FOOD 2022; 3:47-56. [PMID: 37118490 DOI: 10.1038/s43016-021-00422-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/27/2021] [Indexed: 04/30/2023]
Abstract
East Asia is a hotspot of surface ozone (O3) pollution, which hinders crop growth and reduces yields. Here, we assess the relative yield loss in rice, wheat and maize due to O3 by combining O3 elevation experiments across Asia and air monitoring at about 3,000 locations in China, Japan and Korea. China shows the highest relative yield loss at 33%, 23% and 9% for wheat, rice and maize, respectively. The relative yield loss is much greater in hybrid than inbred rice, being close to that for wheat. Total O3-induced annual loss of crop production is estimated at US$63 billion. The large impact of O3 on crop production urges us to take mitigation action for O3 emission control and adaptive agronomic measures against the rising surface O3 levels across East Asia.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China.
| | - Yansen Xu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Lulu Dai
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tianyi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | | | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems, National Research Council, Sesto Fiorentino, Italy
| | - Arideep Mukherjee
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rokjin J Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| | - Yujin J Oak
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| | - Xu Yue
- School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, China.
| |
Collapse
|
18
|
Montes CM, Demler HJ, Li S, Martin DG, Ainsworth EA. Approaches to investigate crop responses to ozone pollution: from O 3 -FACE to satellite-enabled modeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:432-446. [PMID: 34555243 PMCID: PMC9293421 DOI: 10.1111/tpj.15501] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 05/05/2023]
Abstract
Ozone (O3 ) is a damaging air pollutant to crops. As one of the most reactive oxidants known, O3 rapidly forms other reactive oxygen species (ROS) once it enters leaves through stomata. Those ROS in turn can cause oxidative stress, reduce photosynthesis, accelerate senescence, and decrease crop yield. To improve and adapt our feed, fuel, and food supply to rising O3 pollution, a number of Free Air Concentration Enrichment (O3 -FACE) facilities have been developed around the world and have studied key staple crops. In this review, we provide an overview of the FACE facilities and highlight some of the lessons learned from the last two decades of research. We discuss the differences between C3 and C4 crop responses to elevated O3 , the possible trade-off between productivity and protection, genetic variation in O3 response within and across species, and how we might leverage this observed variation for crop improvement. We also highlight the need to improve understanding of the interaction between rising O3 pollution and other aspects of climate change, notably drought. Finally, we propose the use of globally modeled O3 data that are available at increasing spatial and temporal resolutions to expand upon the research conducted at the limited number of global O3 -FACE facilities.
Collapse
Affiliation(s)
- Christopher M. Montes
- USDA ARS Global Change and Photosynthesis Research Unit1201 W. Gregory DriveUrbanaIL61801USA
| | - Hannah J. Demler
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Shuai Li
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Duncan G. Martin
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Elizabeth A. Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit1201 W. Gregory DriveUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
19
|
Zhang G, Kobayashi K, Wu H, Shang B, Wu R, Zhang Z, Feng Z. Ethylenediurea (EDU) protects inbred but not hybrid cultivars of rice from yield losses due to surface ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68946-68956. [PMID: 34286427 DOI: 10.1007/s11356-021-15032-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The rising concentration of ground-level ozone (O3) reduces crop yield via increased oxidative stress. Application of ethylenediurea (EDU) protects plants from O3 and could thereby serve as a means to estimate the crop yield losses due to ambient O3 (AO3). However, no study but a few exceptions has ever compared the yield loss estimates from EDU application with those from O3 elevation experiments. Here, we estimated yield loss to AO3 in rice cultivars across the 3 types, indica, japonica, and hybrid, by an EDU application in the field, and compared the yield losses with those estimated with dose-response relationships based on O3 elevation experiments. Relative yield loss (RYL) in the EDU application was estimated at 16% across the rice types on an assumption of a 100% efficiency for protection of crop yield by EDU. This estimate of RYL was close to the 15% RYL estimated from the O3 elevation experiments when a common sensitivity to O3 is assumed across the cultivars. The rice yield loss due to AO3 was thus consistent between the two approaches supporting the idea of EDU application for the yield loss estimation. When only hybrids are focused, however, the RYL from EDU application (16%) was much lower than the 34% RYL from the O3 elevation experiments, which indicates only a 37% yield protection by EDU in the hybrid rice. The incomplete protection by EDU and its genetic variability indicates the need to quantify the efficiency of protection from AO3-induced yield loss as estimated with O3 manipulating experiments.
Collapse
Affiliation(s)
- Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | | | - Hengchao Wu
- College of Wetland, Southwest Forestry University, Kunming, 650224, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zujian Zhang
- Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
20
|
Wu R, Agathokleous E, Feng Z. Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144588. [PMID: 33429267 DOI: 10.1016/j.scitotenv.2020.144588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
A modified Ball-Berry-Leuning model of stomatal conductance was applied to data from fully open-air ozone (O3)-enrichment experiments with winter wheat (Triticum aestivum L.). The O3 fluxes reaching both surface of cell wall (Fcw) and plasmalemma (Fpl) were estimated considering apoplastic ascorbate, a major scavenger of O3. The difference (D) between Fcw and Fpl was defined as detoxification capacity of O3 by reaction with ascorbate in the leaf apoplast (ASCapo). The accumulated stomatal O3 flux above D nmol O3 m-2 s-1 (AFstD) and the accumulated Fpl (AFpl) were calculated over the optimal integration period covering the whole reproductive development of wheat, and used to derive O3AFstD yield-response relationships in comparison with PODY (phytotoxic O3 dose above a threshold of Y nmol m-2 s-1) and AOT40 (accumulated O3 dose over a threshold of 40 ppb). There was a good agreement between the observed and modeled values of ASCapo and stomatal conductance. AFstD and AFpl performed better than PODY and AOT40 in terms of R2 and intercept. However, the AFstD metric was more suitable for assessing grain yield loss due to lower sensitivity of the regression slope to variations in the input parameters, compared with AFpl. The average critical level (CL) of four cultivars for 5% grain-yield reduction was 1.53 mmol m-2 using POD6 and 2.81 mmol m-2 using AFstD, with the latter being well above the POD6-derived value for European cultivars (1.3 mmol m-2). The minimum hourly averaged O3 concentration contributed to CLs was below 20 ppb according to AFstD, a value that is lower than that suggested by POD6 (≈27 ppb). O3 flux-response relationships and CLs on the basis of quantified detoxification capacity shall facilitate the understanding of the different degrees of susceptibility to O3 among species or cultivars, and improve the assessments of O3 impacts on plants.
Collapse
Affiliation(s)
- Rongjun Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
21
|
Li C, Gu X, Wu Z, Qin T, Guo L, Wang T, Zhang L, Jiang G. Assessing the effects of elevated ozone on physiology, growth, yield and quality of soybean in the past 40 years: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111644. [PMID: 33396164 DOI: 10.1016/j.ecoenv.2020.111644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Soybean (Glycine max) production is seriously threatened by ground-level ozone (O3) pollution. The goal of our study is to summarize the impacts of O3 on physiology, growth, yield, and quality of soybean, as well as root parameters. We performed meta-analysis on the collated 48 peer-reviewed papers published between 1980 and 2019 to quantitatively summarize the response of soybean to elevated O3 concentrations ([O3]). Relative to charcoal-filtered air (CF), elevated [O3] significantly accelerated chlorophyll degradation, enhanced foliar injury, and inhibited growth of soybean, evidenced by great reductions in leaf area (-20.8%), biomass of leaves (-13.8%), shoot (-22.8%), and root (-16.9%). Shoot of soybean was more sensitive to O3 than root in case of biomass. Chronic ozone exposure of about 75.5 ppb posed pronounced decrease in seed yield of soybean (-28.3%). In addition, root environment in pot contributes to higher reduction in shoot biomass and yield of soybean. Negative linear relationships were observed between yield loss and intensity of O3 treatment, AOT40. The larger loss in seed yield was significantly associated with higher reduction in shoot biomass and other yield component. This meta-analysis demonstrates the effects of elevated O3 on soybean were pronounced, suggesting that O3 pollution is still a soaring threat to the productivity of soybean in regions with high ozone levels.
Collapse
Affiliation(s)
- Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xian Gu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhiyuan Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liyue Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.
| | - Gaoming Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Cao J, Wang X, Zhao H, Ma M, Chang M. Evaluating the effects of ground-level O 3 on rice yield and economic losses in Southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115694. [PMID: 33254685 DOI: 10.1016/j.envpol.2020.115694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/21/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Ground-level ozone (O3) pollution and its impact on crop growth and yield have become one of the serious environmental problems in recent years, especially in economically active and densely populated areas. In this study, rice yield and the associated economic losses due to O3 were estimated by using observational O3 concentration ([O3]) data during growing seasons in Southern China. O3-induced yield losses were calculated by using O3 exposure metrics of AOT40 and M7. The spatial distribution of these two metrics is relatively consistent, the highest areas located in the Yangtze River Basin. Under the current O3 level, during double-early rice, double-late rice and single rice growing seasons, the relative yield losses estimated with AOT40 (M7) were 6.8% (1.2%), 10.2% (1.9%) and 10.4% (2.0%), respectively. O3-induced rice production loss for double-early rice, double-late rice and single rice totaled 2.4 million metric tons (0.4 million metric tons), 4.3 million metric tons (0.7 million metric tons) and 11.0 million metric tons (1.9 million metric tons) and associated economic losses were 108.1 million USD (18.3 million USD), 190.2 million USD (32.4 million USD) and 486.4 million USD (82.9 million USD) based on AOT40 (M7) metric. This study indicates that regional risks to rice from O3 exposure and provide quantitative evidence of O3-induced impacts on rice yields and economic losses across Southern China. Therefore, the establishment of scientific O3 risk assessment method is of great significance to prevent yield production and economic losses caused by O3 exposure. Policymakers should strengthen supervision of emissions of O3 precursors to mitigate the rise of O3 concentration, thereby reducing O3 damage to agricultural production.
Collapse
Affiliation(s)
- Jiachen Cao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, China
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, China
| | - Hui Zhao
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
| | - Mingrui Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; State Key Laboratory of Pollution Control & Resource Reuse and School of the Environment, Nangjing University, Nanjing, China
| | - Ming Chang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, China; Research Center on Low-carbon Economy for Guangzhou Region, Jinan University, Guangzhou, China.
| |
Collapse
|
23
|
Ren X, Shang B, Feng Z, Calatayud V. Yield and economic losses of winter wheat and rice due to ozone in the Yangtze River Delta during 2014-2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140847. [PMID: 32758759 DOI: 10.1016/j.scitotenv.2020.140847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Ground-level ozone (O3) is the main phytotoxic air pollutant causing crop yield reduction in China. As the main grain producing area in China, the Yangtze River Delta (YRD) is facing serious O3 pollution. This study analyzed the hourly ground-level O3 observation data of 158 stations from 2014 to 2019 in YRD, and grain production data of 193 districts and counties. The exposure-response relationships based on AOT40 (accumulated hourly O3 concentration above 40 ppb) was used to estimate the yield loss and economic loss of two food crops (winter wheat and rice). This study used spatial interpolation and calculated the specific data values of each district and county in order to improve the assessment reliability. For years 2014-2019, averaged O3 concentration during the 75 days growing period of rice and wheat were 33.1-50.6 ppb and 32.2-48.0 ppb, AOT40 value were 5.2-12.0 ppm h and 4.6-9.4 ppm h, and the averaged relative yield losses were 4.9%-11.4% and 9.4%-19.3%, respectively. The trend of O3 in the YRD in a six-year period peaked in 2016 and 2017 for rice and winter wheat, respectively. During 2014-2017, the average estimated yield loss of rice was 2445 Mt. accounting for about 9.1% of the actual production, and the average estimated economic loss was about 1037 million USD; for winter wheat, it was 2025 Mt, 20.4% and 736 million USD, respectively. These results urge governments to provide effective policies and measures to control O3 pollution.
Collapse
Affiliation(s)
- Xiaoyu Ren
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science &Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science &Technology, Nanjing 210044, China.
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, 46980 Paterna, Valencia, Spain
| |
Collapse
|
24
|
Zhao H, Zheng Y, Zhang Y, Li T. Evaluating the effects of surface O 3 on three main food crops across China during 2015-2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113794. [PMID: 31864924 DOI: 10.1016/j.envpol.2019.113794] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 05/15/2023]
Abstract
In order to tackle China's severe air pollution issue, the government has released the "Air Pollution Prevention and Control Action Plan" (known simply as the "Action Plan") since 2013. A recent study reported a decreased trend in PM2.5 concentrations over 2013-2017, but O3 pollution has become more serious. However, the effects of surface O3 on crops are unclear after the implementation of the "Action Plan". Here, we evaluated the potential negative effects of surface O3 on three main food crops (winter wheat, maize and rice) across China during 2015-2018 using nationwide O3 monitoring data and AOT40-yield response functions. Results suggested that mean O3 concentration, AOT40 and relative yield loss in China showed an overall upward trend from 2015 to 2018. During winter wheat, maize, single rice, double-early rice, and double-late rice growing seasons, mean O3 concentration in recent years ranged from 38.6 to 46.9 ppb, 40.2-43.9 ppb, 39.3-42.2 ppb, 33.8-40.0 ppb, and 35.9-39.1 ppb, respectively, and AOT40 mean values ranged from 8.5 to 14.3 ppm h, 10.5-13.4 ppm h, 9.8-11.9 ppm h, 5.2-9.2 ppm h, and 8.0-9.5 ppm h, respectively. O3-induced yield reductions were estimated to range from 20.1 to 33.3% for winter wheat, 5.0-6.3% for maize, 7.3-8.8% for single rice, 3.9-6.8% for double-early rice and 5.9-7.1% for double-late rice. O3-induced production losses for winter wheat, maize, single rice, double-early rice, and double-late rice totaled 39.5-88.2 million metric tons, 12.6-21.0 million metric tons, 9.5-11.3 million metric tons, 1.2-1.8 million metric tons, and 2.2-2.7 million metric tons, respectively, and the corresponding economic losses totaled 14.3-32.0 billion US$, 3.9-6.5 billion US$, 3.9-4.6 billion US$, 0.5-0.7 billion US$, and 0.9-1.1 billion US$, respectively. Our results suggested that the government should take effective measures to reduce O3 pollution and its effects on agricultural production.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Youfei Zheng
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yuxin Zhang
- School of Science, Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Agathokleous E, Calabrese EJ. A global environmental health perspective and optimisation of stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135263. [PMID: 31836236 DOI: 10.1016/j.scitotenv.2019.135263] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 05/17/2023]
Abstract
The phrase "what doesn't kill us makes us stronger" suggests the possibility that living systems have evolved a spectrum of adaptive mechanisms resulting in a biological stress response strategy that enhances resilience in a targeted quantifiable manner for amplitude and duration. If so, what are its evolutionary foundations and impact on biological diversity? Substantial research demonstrates that numerous agents enhance biological performance and resilience at low doses in a manner described by the hormetic dose response, being inhibitory and/or harmful at higher doses. This Review assesses how environmental changes impact the spectrum and intensity of biological stresses, how they affect health, and how such knowledge may improve strategies in confronting global environmental change.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Edward J Calabrese
- Professor of Toxicology, Department of Environmental Health Sciences, Morrill I, N344; University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|
26
|
Agathokleous E, Araminiene V, Belz RG, Calatayud V, De Marco A, Domingos M, Feng Z, Hoshika Y, Kitao M, Koike T, Paoletti E, Saitanis CJ, Sicard P, Calabrese EJ. A quantitative assessment of hormetic responses of plants to ozone. ENVIRONMENTAL RESEARCH 2019; 176:108527. [PMID: 31203049 DOI: 10.1016/j.envres.2019.108527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Evaluations of ozone effects on vegetation across the globe over the last seven decades have mostly incorporated exposure levels that were multi-fold the preindustrial concentrations. As such, global risk assessments and derivation of critical levels for protecting plants and food supplies were based on extrapolation from high to low exposure levels. These were developed in an era when it was thought that stress biology is framed around a linear dose-response. However, it has recently emerged that stress biology commonly displays non-linear, hormetic processes. The current biological understanding highlights that the strategy of extrapolating from high to low exposure levels may lead to biased estimates. Here, we analyzed a diverse sample of published empirical data of approximately 500 stimulatory, hormetic-like dose-responses induced by ozone in plants. The median value of the maximum stimulatory responses induced by elevated ozone was 124%, and commonly <150%, of the background response (control), independently of species and response variable. The maximum stimulatory response to ozone was similar among types of response variables and major plant species. It was also similar among clades, between herbaceous and woody plants, between deciduous and evergreen trees, and between annual and perennial herbaceous plants. There were modest differences in the stimulatory response between genera and between families which may reflect different experimental designs and conditions among studies. The responses varied significantly upon type of exposure system, with open-top chambers (OTCs) underestimating the maximum stimulatory response compared to free-air ozone-concentration enrichment (FACE) systems. These findings suggest that plants show a generalized hormetic stimulation by ozone which is constrained within certain limits of biological plasticity, being highly generalizable, evolutionarily based, and maintained over ecological scales. They further highlight that non-linear responses should be taken into account when assessing the ozone effects on plants.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Girionys, Lithuania
| | - Regina G Belz
- University of Hohenheim, Agroecology Unit, Hans-Ruthenberg Institute, 70593, Stuttgart, Germany
| | - Vicent Calatayud
- Fundación CEAM, Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Spain
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, SSPT-PVS, Via Anguillarese 301, S. Maria di Galeria, Rome, 00123, Italy
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972, SP, Brazil
| | - ZhaoZhong Feng
- Institute of Ecology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yasutomo Hoshika
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, 06410, Biot, France
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
27
|
Peng J, Shang B, Xu Y, Feng Z, Pleijel H, Calatayud V. Ozone exposure- and flux-yield response relationships for maize. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1-7. [PMID: 31146222 DOI: 10.1016/j.envpol.2019.05.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
A stomatal ozone (O3) flux-response relationship for relative yield of maize was established by parameterizing a Jarvis stomatal conductance model. For the function (fVPD) describing the limitation of stomatal conductance by vapor pressure deficit (VPD, kPa), cumulative VPD during daylight hours was superior to hourly VPD. The latter function is proposed as a methodological improvement of this multiplicative model when stomatal conductance peaks during the morning and it is reduced later as it is the case of maize in this experiment. The model agreed relatively well with the measured stomatal conductance (R2 = 0.63). Based on the comparison of R2 values of the response functions, POD6 (Phytotoxic Ozone Dose over an hourly threshold 6 nmol m-2 s-1) and AOT40 (accumulated hourly O3 concentrations over a threshold of 40 ppb) performed similarly. The critical levels based on POD6 and AOT40 for 5% reduction in maize yield were 1.17 mmol m-2 PLA and 8.70 ppm h, respectively. In comparison with other important crops, the ranking of sensitivity of maize strongly differed depending on the O3 metric used, AOT40 or POD6. The newly proposed response functions are relevant for O3 risk assessment for this crop in Asia.
Collapse
Affiliation(s)
- Jinlong Peng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Ecology, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Håkan Pleijel
- Biological and Environmental Sciences, University of Gothenburg, PO Box 461, S-405 30, Göteborg, Sweden
| | - Vicent Calatayud
- Fundación CEAM, c/ Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| |
Collapse
|
28
|
Agathokleous E, Calabrese EJ. Hormesis can enhance agricultural sustainability in a changing world. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2019. [DOI: 10.1016/j.gfs.2019.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Agathokleous E, Anav A, Araminiene V, De Marco A, Domingos M, Kitao M, Koike T, Manning WJ, Paoletti E, Saitanis CJ, Sicard P, Vitale M, Wang W, Calabrese EJ. Commentary: EPA's proposed expansion of dose-response analysis is a positive step towards improving its ecological risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:566-570. [PMID: 30594897 DOI: 10.1016/j.envpol.2018.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 05/17/2023]
Abstract
The United States Environmental Protection Agency (US EPA) has recently proposed changes to strengthen the transparency of its pivotal regulatory science policy and procedures. In this context, the US EPA aims to enhance the transparency of dose-response data and models, proposing to consider for the first time non-linear biphasic dose-response models. While the proposed changes have the potential to lead to markedly improved ecological risk assessment compared to past and current approaches, we believe there remain open issues for improving the quality of ecological risk assessment, such as the consideration of adaptive, dynamic and interactive effects. Improved risk assessment including adaptive and dynamic non-linear models (beyond classic threshold models) can enhance the quality of regulatory decisions and the protection of ecological health. We suggest that other countries consider adopting a similar scientific-regulatory posture with respect to dose-response modeling via the inclusion of non-linear biphasic models, that incorporate the dynamic potential of biological systems to adapt (i.e., enhancing positive biological endpoints) or maladapt to low levels of stressor agents.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan.
| | - Alessandro Anav
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - Valda Araminiene
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, 53101, Kaunas district, Lithuania
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome, 00123, Italy
| | - Marisa Domingos
- Instituto de Botânica, Núcleo de Pesquisa em Ecologia, PO Box 68041, 04045-972, SP, Brazil
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido, 062-8516, Japan
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido, 060-8589, Japan
| | - William J Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, USA
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, Sophia Antipolis cedex, 06904, France
| | - Marcello Vitale
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Wenjie Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Northeast Forestry University, Harbin, 150040, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
30
|
Agathokleous E, Belz RG, Calatayud V, De Marco A, Hoshika Y, Kitao M, Saitanis CJ, Sicard P, Paoletti E, Calabrese EJ. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:61-74. [PMID: 30172135 DOI: 10.1016/j.scitotenv.2018.08.264] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 05/03/2023]
Abstract
UNLABELLED The nature of the dose-response relationship in the low dose zone and how this concept may be used by regulatory agencies for science-based policy guidance and risk assessment practices are addressed here by using the effects of surface ozone (O3) on plants as a key example for dynamic ecosystems sustainability. This paper evaluates the current use of the linear non-threshold (LNT) dose-response model for O3. The LNT model has been typically applied in limited field studies which measured damage from high exposures, and used to estimate responses to lower concentrations. This risk assessment strategy ignores the possibility of biological acclimation to low doses of stressor agents. The upregulation of adaptive responses by low O3 concentrations typically yields pleiotropic responses, with some induced endpoints displaying hormetic-like biphasic dose-response relationships. Such observations recognize the need for risk assessment flexibility depending upon the endpoints measured, background responses, as well as possible dose-time compensatory responses. Regulatory modeling strategies would be significantly improved by the adoption of the hormetic dose response as a formal/routine risk assessment option based on its substantial support within the literature, capacity to describe the entire dose-response continuum, documented explanatory dose-dependent mechanisms, and flexibility to default to a threshold feature when background responses preclude application of biphasic dose responses. CAPSULE The processes of ozone hazard and risk assessment can be enhanced by incorporating hormesis into their principles and practices.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| | - Regina G Belz
- University of Hohenheim, Agroecology Unit, Hans-Ruthenberg Institute, 70593 Stuttgart, Germany.
| | - Vicent Calatayud
- Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnològic, 46980 Paterna, Valencia, Spain.
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, S. Maria di Galeria, Rome 00123, Italy.
| | - Yasutomo Hoshika
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, BP 234, Sophia Antipolis Cedex 06904, France.
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
31
|
Xu X, Yan L, Xia J. A threefold difference in plant growth response to nitrogen addition between the laboratory and field experiments. Ecosphere 2019. [DOI: 10.1002/ecs2.2572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Xiaoni Xu
- Tiantong National Field Observation Station for Forest Ecosystem Center for Global Change and Ecological Forecasting School of Ecological and Environmental Sciences East China Normal University Shanghai 200062 China
- Institute of Eco‐Chongming Shanghai 200062 China
| | - Liming Yan
- Tiantong National Field Observation Station for Forest Ecosystem Center for Global Change and Ecological Forecasting School of Ecological and Environmental Sciences East China Normal University Shanghai 200062 China
- Institute of Eco‐Chongming Shanghai 200062 China
| | - Jianyang Xia
- Tiantong National Field Observation Station for Forest Ecosystem Center for Global Change and Ecological Forecasting School of Ecological and Environmental Sciences East China Normal University Shanghai 200062 China
- Institute of Eco‐Chongming Shanghai 200062 China
| |
Collapse
|
32
|
Feng Z, Jiang L, Calatayud V, Dai L, Paoletti E. Intraspecific variation in sensitivity of winter wheat (Triticum aestivum L.) to ambient ozone in northern China as assessed by ethylenediurea (EDU). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29208-29218. [PMID: 30117025 DOI: 10.1007/s11356-018-2782-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Wheat is a major staple food and its sensitivity to the gas pollutant ozone (O3) depends on the cultivar. However, few chamber-less studies assessed current ambient O3 effects on a large number of wheat cultivars. In this study, we used ethylenediurea (EDU), an O3 protectant whose protection mechanisms are still unclear, to test photosynthetic pigments, gas exchange, antioxidants, and yield of 15 cultivars exposed to 17.4 ppm h AOT40 (accumulated O3 over an hourly concentration threshold of 40 ppb) over the growing season at Beijing suburb, China. EDU significantly increased light-saturated photosynthesis rate (Asat), photosynthetic pigments (i.e., chlorophyll and carotenoid), and total antioxidant capacity, while reduced malondialdehyde and reduced ascorbate contents. In comparison with EDU-treated plants (control), plants treated with water (no protection from ambient O3) significantly decreased yield, weight of 1000 grains, and harvest index by 20.3%, 15.1%, and 14.2%, respectively, across all cultivars. There was a significant interaction between EDU and cultivars in all tested variables with exception of Asat, chlorophyll, and carotenoid. The cultivar-specific sensitivity to O3 was ranked from highly sensitive (> 25% change) to less sensitive (< 10% change) by comparing the difference of the average grain yield of plants applied with and without EDU. Neither stomatal conductance nor antioxidant capacity contributed to the different response of the cultivars to EDU, suggesting that another mechanism contributes to the large variation in response to O3 among cultivars. Generally, the results indicate that present O3 concentration is threatening wheat production in Northern China, highlighting the urgent need for policy-making actions to protect this critical staple food.
Collapse
Affiliation(s)
- Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, Italy.
| | - Lijun Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, 46980, Paterna, Valencia, Spain
| | - Lulu Dai
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|