1
|
Ostrowski A, Connolly RM, Rasmussen JA, Buelow CA, Sievers M. Stressor fluctuations alter mechanisms underpinning seagrass responses to multiple stressors. MARINE POLLUTION BULLETIN 2025; 211:117444. [PMID: 39700707 DOI: 10.1016/j.marpolbul.2024.117444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Multiple anthropogenic stressors degrade ecosystems globally. A key knowledge gap in multiple stressor research is how variability in stressor intensity (i.e., fluctuations) and synchronicity (i.e., timing of fluctuations) affect biological responses, and the mechanisms underpinning responses. We evaluated the mechanistic effects of reduced light and herbicide contamination on seagrass, and determined how variations in stressor intensity and synchronicity influence the underlying mechanisms of responses. We used structural causal modelling and structural equation modelling to elucidate direct and mediating effects. Out-of-phase introduction (i.e., asynchronous fluctuations) altered the mechanistic pathways of how stressors affect seagrass relative to static stressors, and resulted in the greatest biomass loss (under the most intense stressor combination, ∼50 % reduction). Therefore, previous experiments that predominantly test only static stressor intensities might underestimate detrimental impacts in nature. Future experiments should explore mechanistic effects across realistic stressor intensities and synchronicities to improve our understanding and management of multiple stressors.
Collapse
Affiliation(s)
- Andria Ostrowski
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia; Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, QLD 4680, Australia.
| | - Rod M Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jasmine A Rasmussen
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christina A Buelow
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Michael Sievers
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
2
|
Liu Z, Wang X, Jia G, Jiang J, Liao B. Introduction of broadleaf tree species can promote the resource use efficiency and gross primary productivity of pure forests. PLANT, CELL & ENVIRONMENT 2024; 47:5252-5264. [PMID: 39177516 DOI: 10.1111/pce.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Long-term pure forest (PF) management and successive planting has result resulted in "low-efficiency artificial forests" in large areas. However, controversy persists over the promoting effect of introduction of broadleaf tree species on production efficiency of PF. This study hypothesised that introduced broadleaf tree species can significantly promote both water-nutrient use efficiency and gross primary productivity (GPP)of PF. Tree ring chronologies, water source, water use efficiency and GPP were analysed in coniferous Cunninghamia lanceolata and broadleaved Phoebe zhennan growing over the past three decades. The introduction of P. zhennan into C. lanceolata plantations resulted in inter-specific competition for water, probably because of the similarity of the main water source of these two tree species. However, C. lanceolata absorbed more water with a higher nutrient level from the 40-60-cm soil layer in mixed forests (MF). Although the co-existing tree species limited the basal area increment and growth rates of C. lanceolata in MF plots, the acquisition of dissolved nutrients from the fertile topsoil layer were enhanced; this increased the water use efficiency and GPP of MF plots. To achieve better ecological benefits and GPP, MFs should be constructed in southern China.
Collapse
Affiliation(s)
- Ziqiang Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaodi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guodong Jia
- Key Laboratory of Soil and Water Conservation and Desertification Combating of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jiang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Bin Liao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Quan Q, He N, Zhang R, Wang J, Luo Y, Ma F, Pan J, Wang R, Liu C, Zhang J, Wang Y, Song B, Li Z, Zhou Q, Yu G, Niu S. Plant height as an indicator for alpine carbon sequestration and ecosystem response to warming. NATURE PLANTS 2024; 10:890-900. [PMID: 38755277 PMCID: PMC11208140 DOI: 10.1038/s41477-024-01705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Growing evidence indicates that plant community structure and traits have changed under climate warming, especially in cold or high-elevation regions. However, the impact of these warming-induced changes on ecosystem carbon sequestration remains unclear. Using a warming experiment on the high-elevation Qinghai-Tibetan Plateau, we found that warming not only increased plant species height but also altered species composition, collectively resulting in a taller plant community associated with increased net ecosystem productivity (NEP). Along a 1,500 km transect on the Plateau, taller plant community promoted NEP and soil carbon through associated chlorophyll content and other photosynthetic traits at the community level. Overall, plant community height as a dominant trait is associated with species composition and regulates ecosystem C sequestration in the high-elevation biome. This trait-based association provides new insights into predicting the direction, magnitude and sensitivity of ecosystem C fluxes in response to climate warming.
Collapse
Affiliation(s)
- Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Nianpeng He
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, PR China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Ruomeng Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yiheng Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Bing Song
- School of Resources and Environmental Engineering, Ludong University, Yantai, PR China
| | - Zhaolei Li
- College of Resources and Environment, Southwest University, Chongqing, PR China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, PR China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China.
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China.
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
4
|
Wang Y, Mao J, Brelsford CM, Ricciuto DM, Yuan F, Shi X, Rastogi D, Mayes MM, Kao SC, Warren JM, Griffiths NA, Cheng X, Weston DJ, Zhou Y, Gu L, Thornton PE. Thermal, water, and land cover factors led to contrasting urban and rural vegetation resilience to extreme hot months. PNAS NEXUS 2024; 3:pgae147. [PMID: 38638834 PMCID: PMC11026108 DOI: 10.1093/pnasnexus/pgae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
With continuing global warming and urbanization, it is increasingly important to understand the resilience of urban vegetation to extreme high temperatures, but few studies have examined urban vegetation at large scale or both concurrent and delayed responses. In this study, we performed an urban-rural comparison using the Enhanced Vegetation Index and months that exceed the historical 90th percentile in mean temperature (referred to as "hot months") across 85 major cities in the contiguous United States. We found that hot months initially enhanced vegetation greenness but could cause a decline afterwards, especially for persistent (≥4 months) and intense (≥+2 °C) episodes in summer. The urban responses were more positive than rural in the western United States or in winter, but more negative during spring-autumn in the eastern United States. The east-west difference can be attributed to the higher optimal growth temperatures and lower water stress levels of the western urban vegetation than the rural. The urban responses also had smaller magnitudes than the rural responses, especially in deciduous forest biomes, and least in evergreen forest biomes. Within each biome, analysis at 1 km pixel level showed that impervious fraction and vegetation cover, local urban heat island intensity, and water stress were the key drivers of urban-rural differences. These findings advance our understanding of how prolonged exposure to warm extremes, particularly within urban environments, affects vegetation greenness and vitality. Urban planners and ecosystem managers should prioritize the long and intense events and the key drivers in fostering urban vegetation resilience to heat waves.
Collapse
Affiliation(s)
- Yaoping Wang
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jiafu Mao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Christa M Brelsford
- Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Daniel M Ricciuto
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Fengming Yuan
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xiaoying Shi
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Deeksha Rastogi
- Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Melanie M Mayes
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Shih-Chieh Kao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Natalie A Griffiths
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xinghua Cheng
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06269, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Yuyu Zhou
- Department of Geography, The University of Hong Kong, Hong Kong, 999077, China
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Peter E Thornton
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
5
|
Reese A, Clark CM, Phelan J, Buckley J, Cajka J, Sabo RD, Van Houtven G. Geographic variation in projected US forest aboveground carbon responses to climate change and atmospheric deposition. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2024; 19:1-12. [PMID: 38752201 PMCID: PMC11091792 DOI: 10.1088/1748-9326/ad2739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Forest composition and ecosystem services are sensitive to anthropogenic pressures like climate change and atmospheric deposition of nitrogen (N) and sulfur (S). Here we extend recent forest projections for the current cohort of trees in the contiguous US, characterizing potential changes in aboveground tree carbon at the county level in response to varying mean annual temperature, precipitation, and N and S deposition. We found that relative to a scenario with N and S deposition reduction and no climate change, greater climate change led generally to decreasing aboveground carbon (mean -7.5% under RCP4.5, -16% under RCP8.5). Keeping climate constant, reduced N deposition tended to lessen aboveground carbon (mean -7%), whereas reduced S deposition tended to increase aboveground carbon (+3%) by 2100. Through mid-century (2050), deposition was more important for predicting carbon responses except under the extreme climate scenarios (RCP8.5); but, by 2100, climate drivers generally outweighed deposition. While more than 70% of counties showed reductions in aboveground carbon relative to the reference scenario, these were not evenly distributed across the US. Counties in the Northwest and Northern Great Plains, and the northern parts of New England and the Midwest, primarily showed positive responses, while counties in the Southeast showed negative responses. Counties with greater initial biomass showed less negative responses to climate change while those which exhibited the greatest change in composition (>15%) had a 95% chance of losing carbon relative to a no-climate change scenario. This analysis highlights that declines in forest growth and survival due to increases in mean temperature and reductions in atmospheric N deposition are likely to outweigh positive impacts of reduced S deposition and potential increases in precipitation. These effects vary at the regional and county level, however, so forest managers must consider local rather than national dynamics to maximize forest carbon sinks in the future.
Collapse
Affiliation(s)
- Aspen Reese
- American Association for the Advancement of Science (AAAS) Science and Technology Policy Fellow, at the US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, DC, United States of America
| | - Christopher M Clark
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, DC, United States of America
| | - Jennifer Phelan
- RTI International, Research Triangle Park, NC, United States of America
| | - John Buckley
- RTI International, Research Triangle Park, NC, United States of America
| | - James Cajka
- RTI International, Research Triangle Park, NC, United States of America
| | - Robert D Sabo
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, DC, United States of America
| | | |
Collapse
|
6
|
Shekhar A, Hörtnagl L, Buchmann N, Gharun M. Long-term changes in forest response to extreme atmospheric dryness. GLOBAL CHANGE BIOLOGY 2023; 29:5379-5396. [PMID: 37381105 DOI: 10.1111/gcb.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Atmospheric dryness, as indicated by vapor pressure deficit (VPD), has a strong influence on forest greenhouse gas exchange with the atmosphere. In this study, we used long-term (10-30 years) net ecosystem productivity (NEP) measurements from 60 forest sites across the world (1003 site-years) to quantify long-term changes in forest NEP resistance and NEP recovery in response to extreme atmospheric dryness. We tested two hypotheses: first, across sites differences in NEP resistance and NEP recovery of forests will depend on both the biophysical characteristics (i.e., leaf area index [LAI] and forest type) of the forest as well as on the local meteorological conditions of the site (i.e., mean VPD of the site), and second, forests experiencing an increasing trend in frequency and intensity of extreme dryness will show an increasing trend in NEP resistance and NEP recovery over time due to emergence of long-term ecological stress memory. We used a data-driven statistical learning approach to quantify NEP resistance and NEP recovery over multiple years. Our results showed that forest types, LAI, and median local VPD conditions explained over 50% of variance in both NEP resistance and NEP recovery, with drier sites showing higher NEP resistance and NEP recovery compared to sites with less atmospheric dryness. The impact of extreme atmospheric dryness events on NEP lasted for up to 3 days following most severe extreme events in most forests, indicated by an NEP recovery of less than 100%. We rejected our second hypothesis as we found no consistent relationship between trends of extreme VPD with trends in NEP resistance and NEP recovery across different forest sites, thus an increase in atmospheric dryness as it is predicted might not increase the resistance or recovery of forests in terms of NEP.
Collapse
Affiliation(s)
- Ankit Shekhar
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Lukas Hörtnagl
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Mana Gharun
- Institute of Landscape Ecology, Faculty of Geosciences, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Vinod N, Slot M, McGregor IR, Ordway EM, Smith MN, Taylor TC, Sack L, Buckley TN, Anderson-Teixeira KJ. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. THE NEW PHYTOLOGIST 2023; 237:22-47. [PMID: 36239086 DOI: 10.1111/nph.18539] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.
Collapse
Affiliation(s)
- Nidhi Vinod
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| | - Ian R McGregor
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2DG, UK
| | - Tyeen C Taylor
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| |
Collapse
|
8
|
Ostrowski A, Connolly RM, Brown CJ, Sievers M. Fluctuating fortunes: Stressor synchronicity and fluctuating intensity influence biological impacts. Ecol Lett 2022; 25:2611-2623. [PMID: 36217804 PMCID: PMC9828260 DOI: 10.1111/ele.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Ecosystems remain under enormous pressure from multiple anthropogenic stressors. Manipulative experiments evaluating stressor interactions and impacts mostly apply stressors under static conditions without considering how variable stressor intensity (i.e. fluctuations) and synchronicity (i.e. timing of fluctuations) affect biological responses. We ask how variable stressor intensity and synchronicity, and interaction type, can influence how multiple stressors affect seagrass. At the highest intensities, fluctuating stressors applied asynchronously reduced seagrass biomass 36% more than for static stressors, yet no such difference occurred for photosynthetic capacity. Testing three separate hypotheses to predict underlying drivers of differences in biological responses highlighted alternative modes of action dependent on how stressors fluctuated over time. Given that environmental conditions are constantly changing, assessing static stressors may lead to inaccurate predictions of cumulative effects. Translating multiple stressor experiments to the real world, therefore, requires considering variability in stressor intensity and the synchronicity of fluctuations.
Collapse
Affiliation(s)
- Andria Ostrowski
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| | - Rod M. Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| | - Christopher J. Brown
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| | - Michael Sievers
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and ScienceGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
9
|
Bayesian prediction of wildfire event probability using normalized difference vegetation index data from an Australian forest. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Carter KR, Dickman LT. Recovery of seedling carbon balance despite hydraulic impairment following hot drought. TREE PHYSIOLOGY 2022; 42:1527-1531. [PMID: 35445728 DOI: 10.1093/treephys/tpac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Kelsey R Carter
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - L Turin Dickman
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
11
|
Responses of Tree Growth and Intrinsic Water Use Efficiency to Environmental Factors in Central and Northern China in the Context of Global Warming. FORESTS 2022. [DOI: 10.3390/f13081209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Loess Plateau is a fragile ecological zone that is sensitive to climate change. The response, adaptation, and feedback of tree growth in forest ecosystems to global warming and CO2 enrichment are urgent scientific issues. Intrinsic water use efficiency (iWUE) is an important indicator for understanding forest ecosystem adaptability to climate change and CO2 enrichment. In this study, tree-ring width, tree-ring stable carbon isotope ratio (δ13C), and iWUE of P. tabulaeformis Carr. were established. Climate response analysis showed that temperature was the main limiting factor affecting radial tree growth and that relative humidity significantly affected the stable carbon isotope fractionation of tree rings. During 1645–2011, the iWUE increased by 27.1%. The responses of iWUE to climate factors and atmospheric CO2 concentrations (Ca) showed that the long-term variation in iWUE was affected by Ca, which could explain 69% of iWUE variation, and temperature was the main factor causing iWUE interannual variation. The ecosystem of P. tabulaeformis showed a positive response to rising Ca, as its carbon sequestration capacity increased. In response to global warming and CO2 enrichment, rising Ca promoted increases in iWUE but ultimately failed to offset the negative impact of warming on tree growth in the study area.
Collapse
|
12
|
Wardlaw TJ. Eucalyptus obliqua tall forest in cool, temperate Tasmania becomes a carbon source during a protracted warm spell in November 2017. Sci Rep 2022; 12:2661. [PMID: 35177740 PMCID: PMC8854404 DOI: 10.1038/s41598-022-06674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022] Open
Abstract
Tasmania experienced a protracted warm spell in November 2017. Temperatures were lower than those usually characterising heatwaves. Nonetheless the warm spell represented an extreme anomaly based on the historical local climate. Eddy covariance measurements of fluxes in a Eucalyptus obliqua tall forest at Warra, southern Tasmania during the warm spell were compared with measurements in the same period of the previous year when temperatures were closer to average. Compared with previous year, the warm spell resulted in 31% lower gross primary productivity (GPP), 58% higher ecosystem respiration (ER) and the forest switching from a carbon sink to a source. Significantly higher net radiation received during the warm spell was dissipated by increased latent heat flux, while canopy conductance was comparable with the previous year. Stomatal regulation to limit water loss was therefore unlikely as the reason for the lower GPP during the warm spell. Temperatures during the warm spell were supra-optimal for GPP for 75% of the daylight hours. The decline in GPP at Warra during the warm spell was therefore most likely due to temperatures exceeding the optimum for GPP. All else being equal, these forests will be weaker carbon sinks if, as predicted, warming events become more common.
Collapse
Affiliation(s)
- Timothy J Wardlaw
- ARC Training Centre for Forest Values, University of Tasmania, Hobart, Australia.
| |
Collapse
|
13
|
Arain MA, Xu B, Brodeur JJ, Khomik M, Peichl M, Beamesderfer E, Restrepo-Couple N, Thorne R. Heat and drought impact on carbon exchange in an age-sequence of temperate pine forests. ECOLOGICAL PROCESSES 2022; 11:7. [PMID: 35127311 PMCID: PMC8786774 DOI: 10.1186/s13717-021-00349-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Most North American temperate forests are plantation or regrowth forests, which are actively managed. These forests are in different stages of their growth cycles and their ability to sequester atmospheric carbon is affected by extreme weather events. In this study, the impact of heat and drought events on carbon sequestration in an age-sequence (80, 45, and 17 years as of 2019) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada was examined using eddy covariance flux measurements from 2003 to 2019. RESULTS Over the 17-year study period, the mean annual values of net ecosystem productivity (NEP) were 180 ± 96, 538 ± 177 and 64 ± 165 g C m-2 yr-1 in the 80-, 45- and 17-year-old stands, respectively, with the highest annual carbon sequestration rate observed in the 45-year-old stand. We found that air temperature (Ta) was the dominant control on NEP in all three different-aged stands and drought, which was a limiting factor for both gross ecosystem productivity (GEP) and ecosystems respiration (RE), had a smaller impact on NEP. However, the simultaneous occurrence of heat and drought events during the early growing seasons or over the consecutive years had a significant negative impact on annual NEP in all three forests. We observed a similar trend of NEP decline in all three stands over three consecutive years that experienced extreme weather events, with 2016 being a hot and dry, 2017 being a dry, and 2018 being a hot year. The youngest stand became a net source of carbon for all three of these years and the oldest stand became a small source of carbon for the first time in 2018 since observations started in 2003. However, in 2019, all three stands reverted to annual net carbon sinks. CONCLUSIONS Our study results indicate that the timing, frequency and concurrent or consecutive occurrence of extreme weather events may have significant implications for carbon sequestration in temperate conifer forests in Eastern North America. This study is one of few globally available to provide long-term observational data on carbon exchanges in different-aged temperate plantation forests. It highlights interannual variability in carbon fluxes and enhances our understanding of the responses of these forest ecosystems to extreme weather events. Study results will help in developing climate resilient and sustainable forestry practices to offset atmospheric greenhouse gas emissions and improving simulation of carbon exchange processes in terrestrial ecosystem models.
Collapse
Affiliation(s)
- M. Altaf Arain
- School of Earth, Environment and Society and McMaster Centre for Climate Change, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - Bing Xu
- School of Earth, Environment and Society and McMaster Centre for Climate Change, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | - Jason J. Brodeur
- School of Earth, Environment and Society and McMaster Centre for Climate Change, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - Myroslava Khomik
- School of Earth, Environment and Society and McMaster Centre for Climate Change, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON Canada
| | - Matthias Peichl
- School of Earth, Environment and Society and McMaster Centre for Climate Change, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Eric Beamesderfer
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ USA
| | - Natalia Restrepo-Couple
- School of Earth, Environment and Society and McMaster Centre for Climate Change, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Robin Thorne
- School of Earth, Environment and Society and McMaster Centre for Climate Change, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
- Department of Geography, Wilfrid Laurier University, Waterloo, ON Canada
| |
Collapse
|
14
|
The aboveground and belowground growth characteristics of juvenile conifers in the southwestern United States. Ecosphere 2021. [DOI: 10.1002/ecs2.3839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
15
|
Nadal-Sala D, Grote R, Birami B, Lintunen A, Mammarella I, Preisler Y, Rotenberg E, Salmon Y, Tatarinov F, Yakir D, Ruehr NK. Assessing model performance via the most limiting environmental driver in two differently stressed pine stands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02312. [PMID: 33630380 DOI: 10.1002/eap.2312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Climate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements. However, direct comparison of model outputs against observational data is often not reliable, as models may provide the right answers due to the wrong reasons. This would severely hinder forecasting abilities under unprecedented climate conditions. Here, we present a methodology for model assessment, which supplements the traditional output-to-observation model validation. It evaluates model performance through its ability to reproduce observed seasonal changes of the most limiting environmental driver (MLED) for a given process, here daily gross primary productivity (GPP). We analyzed seasonal changes of the MLED for GPP in two contrasting pine forests, the Mediterranean Pinus halepensis Mill. Yatir (Israel) and the boreal Pinus sylvestris L. Hyytiälä (Finland) from three years of eddy-covariance flux data. Then, we simulated the same period with a state-of-the-art process-based simulation model (LandscapeDNDC). Finally, we assessed if the model was able to reproduce both GPP observations and MLED seasonality. We found that the model reproduced the seasonality of GPP in both stands, but it was slightly overestimated without site-specific fine-tuning. Interestingly, although LandscapeDNDC properly captured the main MLED in Hyytiälä (temperature) and in Yatir (soil water availability), it failed to reproduce high-temperature and high-vapor pressure limitations of GPP in Yatir during spring and summer. We deduced that the most likely reason for this divergence is an incomplete description of stomatal behavior. In summary, this study validates the MLED approach as a model evaluation tool, and opens up new possibilities for model improvement.
Collapse
Affiliation(s)
- Daniel Nadal-Sala
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Benjamin Birami
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| | - Anna Lintunen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Gustaf Hällströmin katu 2b, Helsinki,, 00014, Finland
| | - Ivan Mammarella
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
| | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Eyal Rotenberg
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yann Salmon
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Latokartanonkaari 7, P.O. Box 27, Helsinki,, 00014, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, Gustaf Hällströmin katu 2b, Helsinki,, 00014, Finland
| | - Fedor Tatarinov
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan Yakir
- Deptartment of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, 82467, Germany
| |
Collapse
|
16
|
Cochavi A, Amer M, Stern R, Tatarinov F, Migliavacca M, Yakir D. Differential responses to two heatwave intensities in a Mediterranean citrus orchard are identified by combining measurements of fluorescence and carbonyl sulfide (COS) and CO 2 uptake. THE NEW PHYTOLOGIST 2021; 230:1394-1406. [PMID: 33525059 DOI: 10.1111/nph.17247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The impact of extreme climate episodes such as heatwaves on plants physiological functioning and survival may depend on the event intensity, which requires quantification. We unraveled the distinct impacts of intense (HW) and intermediate (INT) heatwave days on carbon uptake, and the underlying changes in the photosynthetic system, in a Mediterranean citrus orchard using leaf active (pulse amplitude modulation; PAM) and canopy level passive (sun-induced; SIF) fluorescence measurements, together with CO2 , water vapor, and carbonyl sulfide (COS) exchange measurements. Compared to normal (N) days, gross CO2 uptake fluxes (gross primary production, GPP) were significantly reduced during HW days, but only slightly decreased during INT days. By contrast, COS uptake flux and SIFA (at 760 nm) decreased during both HW and INT days, which was reflected in leaf internal CO2 concentrations and in nonphotochemical quenching, respectively. Intense (HW) heatwave conditions also resulted in a substantial decrease in electron transport rates, measured using leaf-scale fluorescence, and an increase in the fractional energy consumption in photorespiration. Using the combined proxy approach, we demonstrate a differential ecosystem response to different heatwave intensities, which allows the trees to preserve carbon assimilation during INT days but not during HW days.
Collapse
Affiliation(s)
- Amnon Cochavi
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Madi Amer
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rafael Stern
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Fyodor Tatarinov
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mirco Migliavacca
- Max Planck Institute for Biogeochemistry, Hans Knoell Straße 10, Jena, D-07745, Germany
| | - Dan Yakir
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
17
|
Knowles JF, Scott RL, Biederman JA, Blanken PD, Burns SP, Dore S, Kolb TE, Litvak ME, Barron-Gafford GA. Montane forest productivity across a semiarid climatic gradient. GLOBAL CHANGE BIOLOGY 2020; 26:6945-6958. [PMID: 32886444 DOI: 10.1111/gcb.15335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
High-elevation montane forests are disproportionately important to carbon sequestration in semiarid climates where low elevations are dry and characterized by low carbon density ecosystems. However, these ecosystems are increasingly threatened by climate change with seasonal implications for photosynthesis and forest growth. As a result, we leveraged eddy covariance data from six evergreen conifer forest sites in the semiarid western United States to extrapolate the status of carbon sequestration within a framework of projected warming and drying. At colder locations, the seasonal evolution of gross primary productivity (GPP) was characterized by a single broad maximum during the summer that corresponded to snow melt-derived moisture and a transition from winter dormancy to spring activity. Conversely, winter dormancy was transient at warmer locations, and GPP was responsive to both winter and summer precipitation such that two distinct GPP maxima were separated by a period of foresummer drought. This resulted in a predictable sequence of primary limiting factors to GPP beginning with air temperature in winter and proceeding to moisture and leaf area during the summer. Due to counteracting winter (positive) and summer (negative) GPP responses to warming, leaf area index and moisture availability were the best predictors of annual GPP differences across sites. Overall, mean annual GPP was greatest at the warmest site due to persistent vegetation photosynthetic activity throughout the winter. These results indicate that the trajectory of this region's carbon sequestration will be sensitive to reduced or delayed summer precipitation, especially if coupled to snow drought and earlier soil moisture recession, but summer precipitation changes remain highly uncertain. Given the demonstrated potential for seasonally offsetting responses to warming, we project that decadal semiarid montane forest carbon sequestration will remain relatively stable in the absence of severe disturbance.
Collapse
Affiliation(s)
- John F Knowles
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
- School of Geography, Development & Environment, University of Arizona, Tucson, AZ, USA
| | - Russell L Scott
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
| | - Joel A Biederman
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, AZ, USA
| | - Peter D Blanken
- Department of Geography, University of Colorado Boulder, Boulder, CO, USA
| | - Sean P Burns
- Department of Geography, University of Colorado Boulder, Boulder, CO, USA
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Sabina Dore
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Thomas E Kolb
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Marcy E Litvak
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Greg A Barron-Gafford
- School of Geography, Development & Environment, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
18
|
Lindroth A, Holst J, Linderson ML, Aurela M, Biermann T, Heliasz M, Chi J, Ibrom A, Kolari P, Klemedtsson L, Krasnova A, Laurila T, Lehner I, Lohila A, Mammarella I, Mölder M, Löfvenius MO, Peichl M, Pilegaard K, Soosar K, Vesala T, Vestin P, Weslien P, Nilsson M. Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190516. [PMID: 32892726 PMCID: PMC7485108 DOI: 10.1098/rstb.2019.0516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2020] [Indexed: 12/03/2022] Open
Abstract
The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m-2 yr-1 during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m-2 yr-1 with a median value of -59 g C m-2 yr-1. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
Collapse
Affiliation(s)
- Anders Lindroth
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Jutta Holst
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Maj-Lena Linderson
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Mika Aurela
- Finnish Meteorological Institute, Helsinki, Finland
| | - Tobias Biermann
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Michal Heliasz
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Jinshu Chi
- Department of Forest Ecology and Management, The Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andreas Ibrom
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research, Helsinki University, Helsinki, Finland
| | - Leif Klemedtsson
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Alisa Krasnova
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | - Irene Lehner
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Annalea Lohila
- Finnish Meteorological Institute, Helsinki, Finland
- Institute for Atmospheric and Earth System Research, Helsinki University, Helsinki, Finland
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research, Helsinki University, Helsinki, Finland
| | - Meelis Mölder
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Mikaell Ottosson Löfvenius
- Department of Forest Ecology and Management, The Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Matthias Peichl
- Department of Forest Ecology and Management, The Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Kim Pilegaard
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Kaido Soosar
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research, Helsinki University, Helsinki, Finland
| | - Patrik Vestin
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Per Weslien
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mats Nilsson
- Department of Forest Ecology and Management, The Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
19
|
Murphy PC, Knowles JF, Moore DJP, Anchukaitis K, Potts DL, Barron-Gafford GA. Topography influences species-specific patterns of seasonal primary productivity in a semiarid montane forest. TREE PHYSIOLOGY 2020; 40:1343-1354. [PMID: 32597974 DOI: 10.1093/treephys/tpaa083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Semiarid forests in the southwestern USA are generally restricted to mountain regions where complex terrain adds to the challenge of characterizing stand productivity. Among the heterogeneous features of these ecosystems, topography represents an important control on system-level processes including snow accumulation and melt. This basic relationship between geology and hydrology affects radiation and water balances within the forests, with implications for canopy structure and function across a range of spatial scales. In this study, we quantify the effect of topographic aspect on primary productivity by observing the response of two codominant native tree species to seasonal changes in the timing and magnitude of energy and water inputs throughout a montane headwater catchment in Arizona, USA. On average, soil moisture on north-facing aspects remained higher during the spring and early summer compared with south-facing aspects. Repeated measurements of net carbon assimilation (Anet) showed that Pinus ponderosa C. Lawson was sensitive to this difference, while Pseudotsuga menziesii (Mirb.) Franco was not. Irrespective of aspect, we observed seasonally divergent patterns at the species level where P. ponderosa maintained significantly greater Anet into the fall despite more efficient water use by P. menziesii individuals during that time. As a result, this study at the southern extent of the geographical P. menziesii distribution suggests that this species could increase water-use efficiency as a response to future warming and/or drying, but at lower rates of production relative to the more drought-adapted P. ponderosa. At the sub-landscape scale, opposing aspects served as a mesocosm of current versus anticipated climate conditions. In this way, these results also constrain the potential for changing carbon sequestration patterns from Pinus-dominated landscapes due to forecasted changes in seasonal moisture availability.
Collapse
Affiliation(s)
- Patrick C Murphy
- School of Geography, Development & Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
- Department of Geosciences, University of Arizona, 1040 E. 4th St., Tucson, AZ 85721, USA
| | - John F Knowles
- School of Geography, Development & Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
- Southwest Watershed Research Center, USDA ARS, 2000 E Allen Rd, Tucson, AZ 85719, USA
| | - David J P Moore
- School of Natural Resources & the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
| | - Kevin Anchukaitis
- School of Geography, Development & Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
- Department of Geosciences, University of Arizona, 1040 E. 4th St., Tucson, AZ 85721, USA
| | - Daniel L Potts
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
| | - Greg A Barron-Gafford
- School of Geography, Development & Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ 85721, USA
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd., Oracle, AZ 85623, USA
| |
Collapse
|