1
|
Feng Q, Luo Y, Liang M, Cao Y, Wang L, Liu C, Zhang X, Ren L, Wang Y, Wang D, Zhu Y, Zhang Y, Xiao B, Li N. Rhizobacteria protective hydrogel to promote plant growth and adaption to acidic soil. Nat Commun 2025; 16:1684. [PMID: 39956869 PMCID: PMC11830790 DOI: 10.1038/s41467-025-56988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025] Open
Abstract
Endophytic plant growth promoting rhizobacteria (PGPRs) could replace chemical fertilizers in sustainable agriculture. Unfortunately, they are susceptible to harsh environmental conditions. Here, we proposed a polymeric hydrogel (PMH) consisting of carboxymethyl chitosan, sodium alginate, and calcium chloride for loading and protecting endophytic PGPR. This hydrogel can load endophytic PGPRs to not only boost its growth-promoting efficiency, but also help them adapt more effectively to environments. Using endophytic PGPR Ensifer C5 as model bacteria and Brasscia napus as host, we demonstrate that the PMH facilitate the colonization of endophytic PGPRs in the apical and lateral root primordia regions. Further analysis indicates that the PMH modulate suberin deposition of the endodermal cell layers and regulate the accumulation of auxin at the root tip. Meanwhile, PMH enhances the antioxidant capacity and disease resistance properties of plants by increasing the content of arachidonic acid metabolism intermediates in the plant. Importantly, the combination of PMH and endophytic PGPRs increases the yields of B. napus by approximately 30% in the field. Furthermore, PMH attenuates the loss of endophytic PGPR activity in the acidic environments. Overall, this microbial encapsulation strategy is a promising way to protect fragile endophytic microorganisms, providing attractive avenues in sustainable agriculture.
Collapse
Affiliation(s)
- Qirui Feng
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Hanhong College, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Luo
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Mu Liang
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Hanhong College, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - LingShuang Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Can Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Xiaoyong Zhang
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Lanyang Ren
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yongfeng Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, 475004, China
| | - Daojie Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, 475004, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, Shanxi, 712100, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, Shanxi, 712100, China
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Hanhong College, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, Shanxi, 712100, China.
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
2
|
Li R, Zhang X, Ji W, He X, Li Z. Multivariate and scale-dependent controls of deep soil carbon after afforestation in a typical loess-covered region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120998. [PMID: 38677232 DOI: 10.1016/j.jenvman.2024.120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Afforestation is beneficial to improving soil carbon pools. However, due to the lack of deep databases, the variations in soil carbon and the combined effects of multiple factors after afforestation have yet to be adequately explored in >1 m deep soils, especially in areas with deep-rooted plants and thick vadose zones. This study examined the multivariate controls of soil organic carbon (SOC) and inorganic carbon (SIC) in 0-18 m deep under farmland, grassland, willow, and poplar in loess deposits. The novelty of this study is that the factors concurrently affecting deep soil carbon were investigated by multiwavelet coherence and structural equation models. On average, the SOC density (53.1 ± 5.0 kg m-2) was only 12% of SIC density (425.4 ± 13.8 kg m-2), with depth-dependent variations under different land use types. In the soil profiles, the variations in SOC were more obvious in the 0-6 m layer, while SIC variations were mainly observed in the 6-12 m layer. Compared with farmland (SOC: 17.0 kg m-2; SIC: 122.9 kg m-2), the plantation of deciduous poplar (SOC: 28.5 kg m-2; SIC: 144.2 kg m-2) increased the SOC and SIC density within the 0-6 m layer (p < 0.05), but grassland and evergreen willow impacted SOC and SIC density insignificantly. The wavelet coherence analysis showed that, at the large scale (>4 m), SOC and SIC intensities were affected by total nitrogen-magnetic susceptibility and magnetic susceptibility-water content, respectively. The structural equation model further identified that SOC density was directly controlled by total nitrogen (path coefficient = 0.64) and indirectly affected by magnetic susceptibility (path coefficient = 0.36). Further, SOC stimulated the SIC deposition by improving water conservation and electrical conductivity. This study provides new insights into afforestation-induced deep carbon cycles, which have crucial implications for forest management and enhancing ecosystem sustainability in arid regions.
Collapse
Affiliation(s)
- Ruifeng Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuanhua Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wangjia Ji
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoling He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhi Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Rasmussen LV, Grass I, Mehrabi Z, Smith OM, Bezner-Kerr R, Blesh J, Garibaldi LA, Isaac ME, Kennedy CM, Wittman H, Batáry P, Buchori D, Cerda R, Chará J, Crowder DW, Darras K, DeMaster K, Garcia K, Gómez M, Gonthier D, Guzman A, Hidayat P, Hipólito J, Hirons M, Hoey L, James D, John I, Jones AD, Karp DS, Kebede Y, Kerr CB, Klassen S, Kotowska M, Kreft H, Llanque R, Levers C, Lizcano DJ, Lu A, Madsen S, Marques RN, Martins PB, Melo A, Nyantakyi-Frimpong H, Olimpi EM, Owen JP, Pantevez H, Qaim M, Redlich S, Scherber C, Sciligo AR, Snapp S, Snyder WE, Steffan-Dewenter I, Stratton AE, Taylor JM, Tscharntke T, Valencia V, Vogel C, Kremen C. Joint environmental and social benefits from diversified agriculture. Science 2024; 384:87-93. [PMID: 38574149 DOI: 10.1126/science.adj1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
Agricultural simplification continues to expand at the expense of more diverse forms of agriculture. This simplification, for example, in the form of intensively managed monocultures, poses a risk to keeping the world within safe and just Earth system boundaries. Here, we estimated how agricultural diversification simultaneously affects social and environmental outcomes. Drawing from 24 studies in 11 countries across 2655 farms, we show how five diversification strategies focusing on livestock, crops, soils, noncrop plantings, and water conservation benefit social (e.g., human well-being, yields, and food security) and environmental (e.g., biodiversity, ecosystem services, and reduced environmental externalities) outcomes. We found that applying multiple diversification strategies creates more positive outcomes than individual management strategies alone. To realize these benefits, well-designed policies are needed to incentivize the adoption of multiple diversification strategies in unison.
Collapse
Affiliation(s)
- Laura Vang Rasmussen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany
- Center for Biodiversity and Integrative Taxonomy (KomBioTa), University of Hohenheim, Stuttgart, Germany
| | - Zia Mehrabi
- Department of Environmental Studies, University of Colorado Boulder, Boulder, CO, USA
- Better Planet Laboratory, University of Colorado Boulder, Boulder, CO, USA
- Mortenson Center for Global Engineering and Resilience, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M Smith
- Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | | | - Jennifer Blesh
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Lucas Alejandro Garibaldi
- Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina
| | - Marney E Isaac
- Department of Physical and Environmental Sciences and Department of Global Development Studies, University of Toronto, Toronto, Ontario, Canada
| | | | - Hannah Wittman
- Centre for Sustainable Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
| | - Péter Batáry
- Lendület Landscape and Conservation Ecology, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Vácrátót, Hungary
| | - Damayanti Buchori
- Department of Plant Protection, Bogor Agricultural University, Jalan Kamper, Kampus Darmaga, Bogor, Indonesia
| | - Rolando Cerda
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turri Alba, Costa Rica
| | - Julián Chará
- Center for Research on Sustainable Agricultural Systems (CIPAV), Cali, Colombia
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA
| | | | - Kathryn DeMaster
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Karina Garcia
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Manuel Gómez
- Federación Colombiana de Ganaderos (FEDEGAN), Bogotá, Columbia
| | - David Gonthier
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Aidee Guzman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Purnama Hidayat
- Department of Plant Protection, IPB University, Bogor, Indonesia
| | - Juliana Hipólito
- Federal University of Bahia (UFBA), Biology Institute, Salvador, Brazil
- Universidade Federal de Viçosa, Conselho de Ensino, Pesquisa e Extensão, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG, Brazil
- Brazil Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, AM, Brazil
| | - Mark Hirons
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Lesli Hoey
- Urban and Regional Planning Program, University of Michigan, Ann Arbor, MI, USA
| | - Dana James
- Centre for Sustainable Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
| | - Innocensia John
- Department of Agricultural Economics and Business, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Andrew D Jones
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Daniel S Karp
- Department of Wildlife, Fish, and Conservation Biology, University of California-Davis, Davis, CA, USA
| | - Yodit Kebede
- Eco&Sols, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Susanna Klassen
- Centre for Sustainable Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Sociology, University of Victoria, Victoria, British Columbia, Canada
| | - Martyna Kotowska
- Department of Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
| | | | - Christian Levers
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Environmental Geography, Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Thünen Institute of Biodiversity, Johann Heinrich von Thünen Institute - Federal Research Institute for Rural Areas, Forestry, and Fisheries, Braunschweig, Germany
| | - Diego J Lizcano
- The Nature Conservancy, Latin America North Andes and Central America Region, Bogota, Columbia
| | - Adrian Lu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Sidney Madsen
- Department of Global Development, Cornell University, Ithaca, NY, USA
| | - Rosebelly Nunes Marques
- Applied Ecology Graduate Program, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Pedro Buss Martins
- Applied Ecology Graduate Program, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - America Melo
- The Nature Conservancy, Latin America North Andes and Central America Region, Bogota, Columbia
| | | | | | - Jeb P Owen
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Heiber Pantevez
- Federación Colombiana de Ganaderos (FEDEGAN), Bogotá, Columbia
| | - Matin Qaim
- Center for Development Research (ZEF), University of Bonn, Bonn, Germany
| | - Sarah Redlich
- Department of Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christoph Scherber
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig, Centre for Biodiversity Monitoring and Conservation Science, Bonn, Germany
- Bonn Institute for Organismic Biology, Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
| | | | - Sieglinde Snapp
- Sustainable Agrifood Systems, International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Anne Elise Stratton
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Sustainable Use of Natural Resources Department, Institute of Social Sciences in Agriculture, University of Hohenheim, Stuttgart, Germany
| | - Joseph M Taylor
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Teja Tscharntke
- Department of Agroecology, University of Göttingen, Göttingen, Germany
| | - Vivian Valencia
- Farming Systems Ecology Group, Wageningen University and Research, Wageningen, Netherlands
- Department of Environment, Agriculture and Geography at Bishop's University, Sherbrooke, Quebec, Canada
| | - Cassandra Vogel
- Department of Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Claire Kremen
- Institute for Resources, Environment and Sustainability, Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Thomas A, Bentley L, Feeney C, Lofts S, Robb C, Rowe EC, Thomson A, Warren-Thomas E, Emmett B. Land degradation neutrality: Testing the indicator in a temperate agricultural landscape. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118884. [PMID: 37729834 DOI: 10.1016/j.jenvman.2023.118884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Land degradation directly affects around 25% of land globally, undermining progress on most of the UN Sustainable Development Goals (SDG), particularly target 15.3. To assess land degradation, SDG indicator 15.3.1 combines sub-indicators of productivity, soil carbon and land cover. Over 100 countries have set Land Degradation Neutrality (LDN) targets. Here, we demonstrate application of the indicator for a well-established agricultural landscape using the case study of Great Britain. We explore detection of degradation in such landscapes by: 1) transparently evaluating land cover transitions; 2) comparing assessments using global and national data; 3) identifying misleading trends; and 4) including extra sub-indicators for additional forms of degradation. Our results demonstrate significant impacts on the indicator both from the land cover transition evaluation and choice or availability of data. Critically, we identify a misleading improvement trend due to a trade-off between improvement detected by the productivity sub-indicator, and 30-year soil carbon loss trends in croplands (11% from 1978 to 2007). This carbon loss trend would not be identified without additional data from Countryside Survey (CS). Thus, without incorporating field survey data we risk overlooking the degradation of regulating and supporting ecosystem services (linked to soil carbon), in favour of signals from improving provisioning services (productivity sub-indicator). Relative importance of these services will vary between socioeconomic contexts. Including extra sub-indicators for erosion or critical load exceedance, as additional forms of degradation, produced a switch from net area improving (9%) to net area degraded (58%). CS data also identified additional degradation for soil health, including 44% arable soils exceeding bulk density thresholds and 35% of CS squares exceeding contamination thresholds for metals.
Collapse
Affiliation(s)
- Amy Thomas
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK.
| | - Laura Bentley
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Chris Feeney
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Stephen Lofts
- UK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Ciaran Robb
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Ed C Rowe
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Amanda Thomson
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | - Eleanor Warren-Thomas
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| | - Bridget Emmett
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, LL57 2UW, UK
| |
Collapse
|
5
|
Liu X, Ding J, Zhao W. Divergent responses of ecosystem services to afforestation and grassland restoration in the Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118471. [PMID: 37364488 DOI: 10.1016/j.jenvman.2023.118471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Afforestation and grassland restoration have been proposed as important pathways for nature-based solutions. However, the effects of different ecological restoration projects on multiple ecosystem services are poorly understood, inhibiting our ability to maximize ecosystem services for further restoration. Here, we provide a comprehensive assessment of the impact of different ecological projects on ecosystem services (carbon storage, water conservation, soil retention), using a pairwise comparative study of samples from 90 project-control pairs in the Tibetan Plateau. Our results found that afforestation increased carbon storage (31.3%) and soil retention (37.6%), but the effects of grassland restoration on services were mixed, while the overall changes in water conservation were negligible. Prior land use/measures and the age of project implementation were key factors in regulating ecosystem service responses. For example, afforestation on bare land increased carbon storage and soil retention but indirectly decreased water conservation by influencing vegetation cover, while cropland afforestation increased water and soil retention. Ecosystem services increased with project age after afforestation. For grassland restoration, short-term recovery increased carbon storage but was not effective in improving water and soil retention. Climate and topography also directly or indirectly controlled the response of ecosystem services by affecting the changes in total nitrogen, total porosity, clay and fractional vegetation cover following the projects. This study improves our current understanding of the mechanisms underlying the responses of ecosystem services to afforestation and grassland restoration. Our results suggest that sustainable restoration management taking into account prior land use/measures, implementation age, climate, topography and other resources is critical for optimizing ecosystem services.
Collapse
Affiliation(s)
- Xiaoxing Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jingyi Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Song W, Song W. Cropland fallow reduces agricultural water consumption by 303 million tons annually in Gansu Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163013. [PMID: 36966822 DOI: 10.1016/j.scitotenv.2023.163013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
The high-intensity utilization of global cropland causes water shortage and food crisis, which seriously affects the realization of SDG 2 (zero hunger), SDG 6 (clean water and sanitation) and SDG 15 (life on land), and threatens the sustainable social, economic and ecological development. Cropland fallow can not only improve the quality of cropland and maintain ecosystem balance, but also have a significant water-saving effect. However, in most developing countries, such as China, cropland fallow has not yet been widely promoted, and there are few reliable fallow cropland fallow identification methods, making it even more challenging to assess the water-saving effect. To remedy this deficit, we propose a framework for mapping cropland fallow and evaluating its water savings. First, we used the Landsat series of data to interpret the annual land use/cover changes in Gansu Province, China from 1991 to 2020. Subsequently, the spatial-temporal variation of cropland fallow in Gansu province (giving up farming for one to two years) was mapped. Finally, we evaluated the water-saving effect of cropland fallow using evapotranspiration, precipitation, irrigation maps, and crop-related data, instead of actual water consumption. The results showed that the mapping accuracy of fallow land in Gansu Province was 79.50 %, which was higher than that of most known fallow mapping studies. From 1993 to 2018, the average annual fallow rate in Gansu Province, China, was 10.86 %, which was at a low level in arid/semi-arid regions worldwide. More importantly, from 2003 to 2018, cropland fallow reduces annual water consumption of 303.26 million tons in Gansu Province, accounting for 3.44 % of agricultural water use in Gansu Province and equivalent to the annual water demand of 655,000 people in Gansu Province. Based on our research, we speculate that the increasing pilot projects of cropland fallow in China can bring significant water-saving effects and help achieve China's Sustainable Development Goals.
Collapse
Affiliation(s)
- Wen Song
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Wei Song
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Hebei Collaborative Innovation Center for Urban-rural Integration development, Shijiazhuang 050061, China.
| |
Collapse
|
7
|
Pörtner HO, Scholes RJ, Arneth A, Barnes DKA, Burrows MT, Diamond SE, Duarte CM, Kiessling W, Leadley P, Managi S, McElwee P, Midgley G, Ngo HT, Obura D, Pascual U, Sankaran M, Shin YJ, Val AL. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 2023; 380:eabl4881. [PMID: 37079687 DOI: 10.1126/science.abl4881] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Earth's biodiversity and human societies face pollution, overconsumption of natural resources, urbanization, demographic shifts, social and economic inequalities, and habitat loss, many of which are exacerbated by climate change. Here, we review links among climate, biodiversity, and society and develop a roadmap toward sustainability. These include limiting warming to 1.5°C and effectively conserving and restoring functional ecosystems on 30 to 50% of land, freshwater, and ocean "scapes." We envision a mosaic of interconnected protected and shared spaces, including intensively used spaces, to strengthen self-sustaining biodiversity, the capacity of people and nature to adapt to and mitigate climate change, and nature's contributions to people. Fostering interlinked human, ecosystem, and planetary health for a livable future urgently requires bold implementation of transformative policy interventions through interconnected institutions, governance, and social systems from local to global levels.
Collapse
Affiliation(s)
- H-O Pörtner
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - R J Scholes
- Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - A Arneth
- Atmospheric Environmental Research, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - D K A Barnes
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - M T Burrows
- Scottish Association for Marine Science, Oban, Argyll, UK
| | - S E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - C M Duarte
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Centre (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - W Kiessling
- Geozentrum Nordbayern, Friedrich-Alexander-Universität, Erlangen, Germany
| | - P Leadley
- Laboratoire d'Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France
| | - S Managi
- Urban Institute, Kyushu University, Fukuoka, Japan
| | - P McElwee
- Department of Human Ecology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - G Midgley
- Global Change Biology Group, Botany and Zoology Department, University of Stellenbosch, 7600 Stellenbosch, South Africa
| | - H T Ngo
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), Bonn, Germany
- Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
| | - D Obura
- Coastal Oceans Research and Development-Indian Ocean (CORDIO) East Africa, Mombasa, Kenya
- Global Climate Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - U Pascual
- Basque Centre for Climate Change (BC3), Leioa, Spain
- Basque Foundation for Science (Ikerbasque), Bilbao, Spain
- Centre for Development and Environment, University of Bern, Bern, Switzerland
| | - M Sankaran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, Karnataka, India
| | - Y J Shin
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Institut de Recherche pour le Développement (IRD), Université Montpellier, Insititut Français de Recherche pour l'Exploitation de la Mer (IFREMER), CNRS, 34000 Montpellier, France
| | - A L Val
- Brazilian National Institute for Research of the Amazon, 69080-971 Manaus, Brazil
| |
Collapse
|
8
|
Williams M, Reay D, Smith P. Avoiding emissions versus creating sinks-Effectiveness and attractiveness to climate finance. GLOBAL CHANGE BIOLOGY 2023; 29:2046-2049. [PMID: 36703026 DOI: 10.1111/gcb.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 05/28/2023]
Abstract
The perception of greater impact via new sinks, as opposed to through avoided emissions, has already led some large investors to focus on sink-related projects. This is a flawed perception when applied universally and carries a risk that effective routes to mitigation through avoiding emissions are side-lined. In reality, both emissions avoidance and emissions removal are needed, and both can be a cost-effective means of delivering mitigation.
Collapse
Affiliation(s)
- Mathew Williams
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Dave Reay
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
9
|
Wang H, Liu Y, Wang Y, Yao Y, Wang C. Land cover change in global drylands: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160943. [PMID: 36526201 DOI: 10.1016/j.scitotenv.2022.160943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
As a sensitive region, identifying land cover change in drylands is critical to understanding global environmental change. However, the current findings related to land cover change in drylands are not uniform due to differences in data and methods among studies. We compared and judged the spatial and temporal characteristics, driving forces, and ecological effects by identifying the main findings of land cover change in drylands at global and regional scales (especially in China) to strengthen the overall understanding of land cover change in drylands. Four main points were obtained. First, while most studies found that drylands were experiencing vegetation greening, some evidence showed decreases in vegetation and large increases in bare land due to inconsistencies in the datasets and the study phases. Second, the dominant factors affecting land cover change in drylands are precipitation, agricultural activities, and urban expansion. Third, the impact of land cover change on the water cycle, especially the impact of afforestation on water resources in drylands, is of great concern. Finally, drylands experience severe land degradation and require dataset matching (classification standards, resolution, etc.) to quantify the impact of human activities on land cover.
Collapse
Affiliation(s)
- Hui Wang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Yijia Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ying Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Chenxu Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Global assessment of nature's contributions to people. Sci Bull (Beijing) 2023; 68:424-435. [PMID: 36732118 DOI: 10.1016/j.scib.2023.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 01/22/2023]
Abstract
Synergistically maintain or enhance the numerous beneficial contributions of nature to the quality of human life is an important but challenging question for achieving Sustainable Development Goals. However, the spatiotemporal distributions of global nature's contributions to people (NCPs) and their interactions remain unclear. We built a rapid assessment indicator framework and produced the first spatially explicit assessment of all 18 NCPs at a global scale. The 18 global NCPs in 1992 and 2018 were globally assessed in 15,204 subbasins based on two spatial indicator dimensions, including nature's potential contribution and the actual contribution to people. The results show that most of the high NCP values are highly localized. From 1992 to 2018, 6 regulating NCPs, 3 material NCPs, and 2 nonmaterial NCPs declined; 29 regulating-material NCP combinations (54 in total) dominated 76% of the terrestrial area, and the area with few NCPs accounted for 22%; and synergistic relationships were more common than tradeoff relationships, while the relationships among regulating and material NCPs generally traded-off with each other. Transitional climate areas contained few NCPs and have strong tradeoff relationships. However, the high synergistic relationship among NCPs in low latitudes could be threatened by future climate change. These findings provide a general spatiotemporal understanding of global NCP distributions and can be used to interpret the biogeographic information in a functional way to support regional coordination and achieve landscape multifunctionality for the enhancement of human well-being.
Collapse
|
11
|
Chaplin-Kramer R, Chappell MJ, Bennett EM. Un-yielding: Evidence for the agriculture transformation we need. Ann N Y Acad Sci 2023; 1520:89-104. [PMID: 36576483 DOI: 10.1111/nyas.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There has been a seismic shift in the center of gravity of scientific writing and thinking about agriculture over the past decades, from a prevailing focus on maximizing yields toward a goal of balancing trade-offs and ensuring the delivery of multiple ecosystem services. Maximizing crop yields often results in a system where most benefits accrue to very few (in the form of profits), alongside irreparable environmental harm to agricultural ecosystems, landscapes, and people. Here, we present evidence that an un-yielding, which we define as de-emphasizing the importance of yields alone, is necessary to achieve the goal of a more Food secure, Agrobiodiverse, Regenerative, Equitable and just (FARE) agriculture. Focusing on yields places the emphasis on one particular outcome of agriculture, which is only an intermediate means to the true endpoint of human well-being. Using yields as a placeholder for this outcome ignores the many other benefits of agriculture that people also care about, like health, livelihoods, and a sense of place. Shifting the emphasis to these multiple benefits rather than merely yields, and to their equitable delivery to all people, we find clear scientific evidence of win-wins for people and nature through four strategies that foster FARE agriculture: reduced disturbance, systems reintegration, diversity, and justice (in the form of securing rights to land and other resources). Through a broad review of the current state of agriculture, desired futures, and the possible pathways to reach them, we argue that while trade-offs between some ecosystem services in agriculture are unavoidable, the same need not be true of the end benefits we desire from them.
Collapse
Affiliation(s)
- Rebecca Chaplin-Kramer
- Natural Capital Project, Stanford University, Stanford, California, USA.,Institute on the Environment, University of Minnesota, St. Paul, Minnesota, USA
| | - M Jahi Chappell
- Center for Regional Food Systems, Department of Community Sustainability, Michigan State University, East Lansing, Michigan, USA.,Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK
| | - Elena M Bennett
- Department of Natural Resource Sciences and Bieler School of Environment, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Smith P, Arneth A, Barnes DKA, Ichii K, Marquet PA, Popp A, Pörtner HO, Rogers AD, Scholes RJ, Strassburg B, Wu J, Ngo H. How do we best synergize climate mitigation actions to co-benefit biodiversity? GLOBAL CHANGE BIOLOGY 2022; 28:2555-2577. [PMID: 34951743 DOI: 10.1111/gcb.16056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
A multitude of actions to protect, sustainably manage and restore natural and modified ecosystems can have co-benefits for both climate mitigation and biodiversity conservation. Reducing greenhouse emissions to limit warming to less than 1.5 or 2°C above preindustrial levels, as outlined in the Paris Agreement, can yield strong co-benefits for land, freshwater and marine biodiversity and reduce amplifying climate feedbacks from ecosystem changes. Not all climate mitigation strategies are equally effective at producing biodiversity co-benefits, some in fact are counterproductive. Moreover, social implications are often overlooked within the climate-biodiversity nexus. Protecting biodiverse and carbon-rich natural environments, ecological restoration of potentially biodiverse and carbon-rich habitats, the deliberate creation of novel habitats, taking into consideration a locally adapted and meaningful (i.e. full consequences considered) mix of these measures, can result in the most robust win-win solutions. These can be further enhanced by avoidance of narrow goals, taking long-term views and minimizing further losses of intact ecosystems. In this review paper, we first discuss various climate mitigation actions that evidence demonstrates can negatively impact biodiversity, resulting in unseen and unintended negative consequences. We then examine climate mitigation actions that co-deliver biodiversity and societal benefits. We give examples of these win-win solutions, categorized as 'protect, restore, manage and create', in different regions of the world that could be expanded, upscaled and used for further innovation.
Collapse
Affiliation(s)
- Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Almut Arneth
- Atmospheric Environmental Research, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | | | - Kazuhito Ichii
- Center for Environmental Remote Sensing (CeRES), Chiba University, Chiba, Japan
| | - Pablo A Marquet
- Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alexander Popp
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Hans-Otto Pörtner
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Alex D Rogers
- Somerville College, University of Oxford, Oxford, UK
- REV Ocean, Lysaker, Norway
| | - Robert J Scholes
- Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Bernardo Strassburg
- Rio Conservation and Sustainability Science Centre, Department of Geography and Environment, Pontifical Catholic University, Rio de Janeiro, Brazil
- International Institute for Sustainability, Rio de Janeiro, Brazil
| | - Jianguo Wu
- The Institute of Environmental Ecology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Hien Ngo
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| |
Collapse
|
13
|
Hagerman S, Satterfield T, Nawaz S, St‐Laurent GP, Kozak R, Gregory R. Social comfort zones for transformative conservation decisions in a changing climate. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1932-1943. [PMID: 33993550 PMCID: PMC9487985 DOI: 10.1111/cobi.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Novel management interventions intended to mitigate the impacts of climate change on biodiversity are increasingly being considered by scientists and practitioners. However, resistance to more transformative interventions remains common across both specialist and lay communities and is generally assumed to be strongly entrenched. We used a decision-pathways survey of the public in Canada and the United States (n = 1490) to test two propositions relating to climate-motivated interventions for conservation: most public groups are uncomfortable with interventionist options for conserving biodiversity and given the strong values basis for preferences regarding biodiversity and natural systems more broadly, people are unlikely to change their minds. Our pathways design tested and retested levels of comfort with interventions for forest ecosystems at three different points in the survey. Comfort was reexamined given different nudges (including new information from trusted experts) and in reference to a particular species (bristlecone pine [Pinus longaeva]). In contrast with expectations of public unease, baseline levels of public comfort with climate interventions in forests was moderately high (46% comfortable) and increased further when respondents were given new information and the opportunity to change their choice after consideration of a particular species. People who were initially comfortable with interventions tended to remain so (79%), whereas 42% of those who were initially uncomfortable and 40% of those who were uncertain shifted to comfortable by the end of the survey. In short and across questions, comfort levels with interventions were high, and where discomfort or uncertainty existed, such positions did not appear to be strongly held. We argue that a new decision logic, one based on anthropogenic responsibility, is beginning to replace a default reluctance to intervene with nature.
Collapse
Affiliation(s)
- Shannon Hagerman
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Terre Satterfield
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sara Nawaz
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Robert Kozak
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Robin Gregory
- Faculty of ForestryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
14
|
Rippin HL, Cade JE, Berrang-Ford L, Benton TG, Hancock N, Greenwood DC. Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the United Kingdom. PLoS One 2021; 16:e0259418. [PMID: 34813623 PMCID: PMC8610494 DOI: 10.1371/journal.pone.0259418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Food production accounts for 30% of global greenhouse gas (GHG) emissions. Less environmentally sustainable diets are also often more processed, energy-dense and nutrient-poor. To date, the environmental impact of diets have mostly been based on a limited number of broad food groups. OBJECTIVES We link GHG emissions to over 3000 foods, assessing associations between individuals' GHG emissions, their nutrient requirements and their demographic characteristics. We also identify additional information required in dietary assessment to generate more accurate environmental impact data for individual-level diets. METHODS GHG emissions of individual foods, including process stages prior to retail, were added to the UK Composition Of Foods Integrated Dataset (COFID) composition tables and linked to automated online dietary assessment for 212 adults over three 24-hour periods. Variations in GHG emissions were explored by dietary pattern, demographic characteristics and World Health Organization Recommended Nutrient Intakes (RNIs). RESULTS GHG emissions estimates were linked to 98% (n = 3233) of food items. Meat explained 32% of diet-related GHG emissions; 15% from drinks; 14% from dairy; and 8% from cakes, biscuits and confectionery. Non-vegetarian diets had GHG emissions 59% (95% CI 18%, 115%) higher than vegetarian. Men had 41% (20%, 64%) higher GHG emissions than women. Individuals meeting RNIs for saturated fats, carbohydrates and sodium had lower GHG emissions compared to those exceeding the RNI. DISCUSSION Policies encouraging sustainable diets should focus on plant-based diets. Substituting tea, coffee and alcohol with more sustainable alternatives, whilst reducing less nutritious sweet snacks, presents further opportunities. Healthier diets had lower GHG emissions, demonstrating consistency between planetary and personal health. Further detail could be gained from incorporating brand, production methods, post-retail emissions, country of origin, and additional environmental impact indicators.
Collapse
Affiliation(s)
- Holly L. Rippin
- School of Medicine, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | - Janet E. Cade
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Lea Berrang-Ford
- Priestley International Centre for Climate, University of Leeds, Leeds, United Kingdom
| | - Tim G. Benton
- School of Biology, University of Leeds, Leeds, United Kingdom
- Royal Institute of International Affairs, Chatham House, London, United Kingdom
| | - Neil Hancock
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Darren C. Greenwood
- School of Medicine, University of Leeds, Leeds, United Kingdom
- Leeds Institute for Data Analytics, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Reisinger A, Clark H, Cowie AL, Emmet-Booth J, Gonzalez Fischer C, Herrero M, Howden M, Leahy S. How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200452. [PMID: 34565223 PMCID: PMC8480228 DOI: 10.1098/rsta.2020.0452] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 05/05/2023]
Abstract
Agriculture is the largest single source of global anthropogenic methane (CH4) emissions, with ruminants the dominant contributor. Livestock CH4 emissions are projected to grow another 30% by 2050 under current policies, yet few countries have set targets or are implementing policies to reduce emissions in absolute terms. The reason for this limited ambition may be linked not only to the underpinning role of livestock for nutrition and livelihoods in many countries but also diverging perspectives on the importance of mitigating these emissions, given the short atmospheric lifetime of CH4. Here, we show that in mitigation pathways that limit warming to 1.5°C, which include cost-effective reductions from all emission sources, the contribution of future livestock CH4 emissions to global warming in 2050 is about one-third of that from future net carbon dioxide emissions. Future livestock CH4 emissions, therefore, significantly constrain the remaining carbon budget and the ability to meet stringent temperature limits. We review options to address livestock CH4 emissions through more efficient production, technological advances and demand-side changes, and their interactions with land-based carbon sequestration. We conclude that bringing livestock into mainstream mitigation policies, while recognizing their unique social, cultural and economic roles, would make an important contribution towards reaching the temperature goal of the Paris Agreement and is vital for a limit of 1.5°C. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Collapse
Affiliation(s)
| | - Harry Clark
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
| | - Annette L. Cowie
- New South Wales Department of Primary Industries/University of New England, Armidale, Australia
| | - Jeremy Emmet-Booth
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
| | - Carlos Gonzalez Fischer
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
| | - Mario Herrero
- Department of Global Development, College of Agriculture and Life Sciences, and Cornell Atkinson Centre for Sustainability, Cornell University, Ithaca, USA
| | - Mark Howden
- Australian National University, Canberra, Australia
| | - Sinead Leahy
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
| |
Collapse
|
16
|
Xia M, Jia K, Wang X, Bai X, Li C, Zhao W, Hu X, Cherubini F. A framework for regional ecosystem authenticity evaluation–a case study on the Qinghai-Tibet Plateau of China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Edwards DP, Cerullo GR, Chomba S, Worthington TA, Balmford AP, Chazdon RL, Harrison RD. Upscaling tropical restoration to deliver environmental benefits and socially equitable outcomes. Curr Biol 2021; 31:R1326-R1341. [PMID: 34637743 DOI: 10.1016/j.cub.2021.08.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The UN Decade on Ecosystem Restoration offers immense potential to return hundreds of millions of hectares of degraded tropical landscapes to functioning ecosystems. Well-designed restoration can tackle multiple Sustainable Development Goals, driving synergistic benefits for biodiversity, ecosystem services, agricultural and timber production, and local livelihoods at large spatial scales. To deliver on this potential, restoration efforts must recognise and reduce trade-offs among objectives, and minimize competition with food production and conservation of native ecosystems. Restoration initiatives also need to confront core environmental challenges of climate change and inappropriate planting in savanna biomes, be robustly funded over the long term, and address issues of poor governance, inadequate land tenure, and socio-cultural disparities in benefits and costs. Tackling these issues using the landscape approach is vital to realising the potential for restoration to break the cycle of land degradation and poverty, and deliver on its core environmental and social promises.
Collapse
Affiliation(s)
- David P Edwards
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | - Andrew P Balmford
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Robin L Chazdon
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | | |
Collapse
|
18
|
Saco PM, McDonough KR, Rodriguez JF, Rivera-Zayas J, Sandi SG. The role of soils in the regulation of hazards and extreme events. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200178. [PMID: 34365831 PMCID: PMC8349632 DOI: 10.1098/rstb.2020.0178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The frequency and intensity of natural hazards and extreme events has increased throughout the last century, resulting in adverse socioeconomic and ecological impacts worldwide. Key factors driving this increase include climate change, the growing world population, anthropogenic activities and ecosystem degradation. One ecologically focused approach that has shown potential towards the mitigation of these hazard events is the concept of nature's contributions to people (or NCP), which focuses on enhancing the material and non-material benefits of an ecosystem to reduce hazard vulnerability and enhance overall human well-being. Soils, in particular, have been identified as a key ecosystem component that may offer critical hazard regulating functionality. Thus, this review investigates the modulating role of soils in the regulation of natural hazards and extreme events, with a focus on floods, droughts, landslides and sand/dust storms, within the context of NCP. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- P. M. Saco
- Centre for Water Security and Environmental Sustainability (CWSES) and School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - K. R. McDonough
- Centre for Water Security and Environmental Sustainability (CWSES) and School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - J. F. Rodriguez
- Centre for Water Security and Environmental Sustainability (CWSES) and School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - J. Rivera-Zayas
- Department of Natural Resources and Environmental Management, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - S. G. Sandi
- Centre for Water Security and Environmental Sustainability (CWSES) and School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
19
|
Smith P, Keesstra SD, Silver WL, Adhya TK. The role of soils in delivering Nature's Contributions to People. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200169. [PMID: 34365820 DOI: 10.1098/rstb.2020.0169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This theme issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). The papers in this issue show that soils can contribute positively to the delivery of all NCP. These contributions can be maximized through careful soil management to provide healthy soils, but poorly managed, degraded or polluted soils may contribute negatively to the delivery of NCP. Soils are also shown to contribute positively to the UN Sustainable Development Goals. Papers in the theme issue emphasize the need for careful soil management. Priorities for soil management must include: (i) for healthy soils in natural ecosystems, protect them from conversion and degradation, (ii) for managed soils, manage in a way to protect and enhance soil biodiversity, health, productivity and sustainability and to prevent degradation, and (iii) for degraded soils, restore to full soil health. Our knowledge of what constitutes sustainable soil management is mature enough to implement best management practices, in order to maintain and improve soil health. The papers in this issue show the vast potential of soils to contribute to NCP. This is not only desirable, but essential to sustain a healthy planet and if we are to deliver sustainable development in the decades to come. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Pete Smith
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| | - Saskia D Keesstra
- Team Soil, Water and Land Use, Wageningen Environmental Research, Wageningen, The Netherlands.,Civil, Surveying and Environmental Engineering and Centre for Water Security and Environmental Sustainability, The University of Newcastle, Callaghan, Australia
| | - Whendee L Silver
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Tapan K Adhya
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
20
|
Smith P, Keesstra SD, Silver WL, Adhya TK, De Deyn GB, Carvalheiro LG, Giltrap DL, Renforth P, Cheng K, Sarkar B, Saco PM, Scow K, Smith J, Morel JC, Thiele-Bruhn S, Lal R, McElwee P. Soil-derived Nature's Contributions to People and their contribution to the UN Sustainable Development Goals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200185. [PMID: 34365826 DOI: 10.1098/rstb.2020.0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This special issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). Here, we combine this assessment and previously published relationships between NCP and delivery on the UN Sustainable Development Goals (SDGs) to infer contributions of soils to the SDGs. We show that in addition to contributing positively to the delivery of all NCP, soils also have a role in underpinning all SDGs. While highlighting the great potential of soils to contribute to sustainable development, it is recognized that poorly managed, degraded or polluted soils may contribute negatively to both NCP and SDGs. The positive contribution, however, cannot be taken for granted, and soils must be managed carefully to keep them healthy and capable of playing this vital role. A priority for soil management must include: (i) for healthy soils in natural ecosystems, protect them from conversion and degradation; (ii) for managed soils, manage in a way to protect and enhance soil biodiversity, health and sustainability and to prevent degradation; and (iii) for degraded soils, restore to full soil health. We have enough knowledge now to move forward with the implementation of best management practices to maintain and improve soil health. This analysis shows that this is not just desirable, it is essential if we are to meet the SDG targets by 2030 and achieve sustainable development more broadly in the decades to come. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Pete Smith
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Saskia D Keesstra
- Soil, Water and Land Use Team, Wageningen University and Research, Wageningen, The Netherlands.,Civil, Surveying and Environmental Engineering and Centre for Water Security and Environmental Sustainability, University of Newcastle, Callaghan, Australia
| | - Whendee L Silver
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | | - Gerlinde B De Deyn
- Soil, Water and Land Use Team, Wageningen University and Research, Wageningen, The Netherlands
| | - Luísa G Carvalheiro
- Departamento de Ecologia, Universidade Federal de Goiás, 74001-970, Goiânia, Brazil.,Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Donna L Giltrap
- Manaaki Whenua Landcare Research, Palmerston North, New Zealand
| | - Phil Renforth
- Research Centre for Carbon Solutions, Heriot Watt University, Edinburgh, UK
| | - Kun Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Patricia M Saco
- Civil, Surveying and Environmental Engineering and Centre for Water Security and Environmental Sustainability, University of Newcastle, Callaghan, Australia
| | - Kate Scow
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Jo Smith
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Jean-Claude Morel
- Tribology and Systems Dynamics Laboratory (LTDS-UMR CNRS 5513), National School of Civil Engineering (ENTPE), University of Lyon, Lyon, France
| | | | - Rattan Lal
- Carbon Management and Sequestration Center, Ohio State University, Columbus, OH, USA
| | - Pam McElwee
- Department of Human Ecology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
21
|
Upadhaya S, Arbuckle JG. Understanding Factors Influencing Farmers' Engagement in Watershed Management Activities. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.669571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies have pointed to a positive relationship between farmers' active engagement in watershed management (WM) and soil and water conservation practice adoption. If farmers' involvement in WM leads to more conservation, what predicts WM participation? This study seeks to answer that question through binomial logistic regression analysis of data from a survey of 6,006 Iowa farmers conducted to support the implementation of the Iowa Nutrient Reduction Strategy (NRS). Results indicate that public and private sector information sources, awareness of and attitudes regarding nutrient loss reduction strategies, farm contiguity to water bodies, and cost-share and technical assistance were positive predictors of farmers' engagement in WM, while lower agronomic self-efficacy, farm press as an information source, greater age, and higher farm sales were negative. Findings point to several potential actions to improve farmer involvement in WM: (1) more effectively engage with the farm press to disseminate information about the benefits of WM, (2) increase outreach to larger-scale farmers, and (3) focus on nutrient loss management capacity building. Further, a continued emphasis on awareness and attitudes related to the NRS and related actions, such as watershed management, may guide efforts to recruit farmers into watershed groups to help improve soil and water conservation outcomes.
Collapse
|
22
|
Govaerts B, Negra C, Camacho Villa TC, Chavez Suarez X, Espinosa AD, Fonteyne S, Gardeazabal A, Gonzalez G, Gopal Singh R, Kommerell V, Kropff W, Lopez Saavedra V, Mena Lopez G, Odjo S, Palacios Rojas N, Ramirez-Villegas J, Van Loon J, Vega D, Verhulst N, Woltering L, Jahn M, Kropff M. One CGIAR and the Integrated Agri-food Systems Initiative: From short-termism to transformation of the world's food systems. PLoS One 2021; 16:e0252832. [PMID: 34086831 PMCID: PMC8177634 DOI: 10.1371/journal.pone.0252832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/23/2021] [Indexed: 11/25/2022] Open
Abstract
Agri-food systems are besieged by malnutrition, yield gaps, and climate vulnerability, but integrated, research-based responses in public policy, agricultural, value chains, and finance are constrained by short-termism and zero sum thinking. As they respond to current and emerging agri-food system challenges, decision makers need new tools that steer toward multi-sector, evidence-based collaboration. To support national agri-food system policy processes, the Integrated Agri-food System Initiative (IASI) methodology was developed and validated through case studies in Mexico and Colombia. This holistic, multi-sector methodology builds on diverse existing data resources and leverages situation analysis, modeled predictions, and scenarios to synchronize public and private action at the national level toward sustainable, equitable, and inclusive agri-food systems. Culminating in collectively agreed strategies and multi-partner tactical plans, the IASI methodology enabled a multi-level systems approach by mobilizing design thinking to foster mindset shifts and stakeholder consensus on sustainable and scalable innovations that respond to real-time dynamics in complex agri-food systems. To build capacity for these types of integrated, context-specific approaches, greater investment is needed in supportive international institutions that function as trusted in-region 'innovation brokers.' This paper calls for a structured global network to advance adaptation and evolution of essential tools like the IASI methodology in support of the One CGIAR mandate and in service of positive agri-food systems transformation.
Collapse
Affiliation(s)
- Bram Govaerts
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
- Cornell University, Ithaca, New York, United States of America
| | | | | | | | | | - Simon Fonteyne
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Andrea Gardeazabal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Gabriela Gonzalez
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Ravi Gopal Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Victor Kommerell
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | | | | | - Sylvanus Odjo
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | | | - Jelle Van Loon
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Daniela Vega
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Nele Verhulst
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Lennart Woltering
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Molly Jahn
- Jahn Research Group, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Martin Kropff
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
23
|
Bravo-Monroy L. Coffee and Potato Agroecosystems: Social Construction of Spaces as a Concept to Analyse Nature's Contributions to People. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.607230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Achieving goals for conservation and sustainability using nature, decision-making, and policy planning requires accurate modes of description to understand the relationship between society and the environment. Despite most planning strategies being constrained by policy objectives, planning is expected to be more participatory and inclusive of the plurality of values and all types of socio-spatial relationships. Based on Lefebvre's social theory, the objectives of this work are to propose a triad of spaces as a helpful framework to analyse nature's contributions to people (NCP), describe different spaces socially constructed by coffee and potato farmer communities in Colombia, and explore the implications for various kinds of decision-making. Using qualitative research methods, this manuscript describes three spaces:lived spacesas intangible spaces based on local, religious, and ceremonial values of NCP;perceived spacesinclude farmer spatial organization according to the ties of kinship and the downward course of streams, the incidence of negative NCP, such as plant diseases, and types of management crops; andconceived spacesas the overlapping of different spatial views of territorial planning. Given that NCP has great potential to integrate diversity of values about nature and cultural contexts into decision-making, the triad of social spaces offers a spatial dimension to the analyses of NCP. Lived spaces make non-material NCP and non-instrumental values more visible. Perceived spaces highlight material NCP and regulating NCP with the view that maintenance of NCP in the future is essential for relational and instrumental values, e.g., how material NCP and regulating NCP of landscapes are perceived and by whom. Conceived spaces emphasize the predominance of the intrinsic biophysical values of NCP. Thus, the triad of social spaces as a conceptual framework can be useful in the operationalization of NCP in environmental management, the governance of schemes, and the implementation of land-use plans at the local scale. By thinking of these spaces relationally, such insight can inform and enhance decisions and policymaking about the value of places toward the priorities of meeting management. The results of the study emphasize the important policy implications of recognizinglivedandperceivedspaces in decision-making and highlight the role of NCP in facilitating the communication of these spaces to support spatial management of land use.
Collapse
|
24
|
Hua T, Zhao W, Cherubini F, Hu X, Pereira P. Sensitivity and future exposure of ecosystem services to climate change on the Tibetan Plateau of China. LANDSCAPE ECOLOGY 2021; 36:3451-3471. [PMID: 34456507 PMCID: PMC8382670 DOI: 10.1007/s10980-021-01320-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
CONTEXT Climate change has imposed tremendous impacts on ecosystem services. Recent attempts to quantify such impacts mainly focused on a basin or larger scale, or used limited time periods that largely ignore observations of long-term trends at a fine resolution, thereby affecting the recognition of climate change's effect on ecosystem services. OBJECTIVES This study conducts a detailed and spatially explicit recognition of climate change's effect on ecosystem services and provides an intuitive map for decision-making and climate change adaptation planning. METHODS We used long-term time series of ecosystem service assessments and various future climate scenarios to quantify the sensitivity and future exposure of ecosystem services to climate change on the Tibetan Plateau. RESULTS Carbon sequestration (CS) and habitat quality experience significant growth, while water retention did not show any trend. Sensitivity patterns of these ecosystem services vary largely. For CS, more than half of the pixels showed a positive sensitivity to climate change, even though the degree of sensitivity is not high. There is substantial spatial heterogeneity in the exposure of ecosystem services to future climate changes, and high levels of future climate change increase the intensity of exposure. CONCLUSIONS This study illustrates the complex spatial association between ecosystem services and climatic drivers, and these findings can help optimize local response strategies in the context of global warming. For example, the existing protected areas have notable conservation gaps for disturbance of future climate change on ecosystem services, especially in the southeastern part of the study area. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10980-021-01320-9.
Collapse
Affiliation(s)
- Ting Hua
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875 China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875 China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875 China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875 China
| | - Francesco Cherubini
- Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Xiangping Hu
- Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Paulo Pereira
- Environmental Management Center, Mykolas Romeris University, Ateities g. 20, 08303 Vilnius, Lithuania
| |
Collapse
|
25
|
Abstract
Food, energy and water are important basic resources that affect the sustainable development of a region. The influence of food–energy–water (FEW) nexus on sustainable development has quickly become a frontier topic since the Sustainable Development Goals (SDGs) were put forward. However, the overall context and core issues of the FEW nexus contributions to SDGs are still unclear. Using co-citation analysis, this paper aims to map the knowledge domains of FEW nexus research, disentangles its evolutionary context, and analyzes the core issues in its research, especially the progress of using quantitative simulation models to study the FEW nexus. We found that (1) studies within the FEW nexus focused on these following topics: correlation mechanisms, influencing factors, resource footprints, and sustainability management policies; (2) frontier of FEW studies have evolved from silo-oriented perspective on single resource system to nexus-oriented perspective on multiple systems; (3) quantitative research on the FEW nexus was primarily based on spatiotemporal evolution analysis, input–output analysis and scenario analysis; (4) the resource relationship among different sectors was synergies and tradeoffs within a region. In general, current research still focuses on empirical data, mostly qualitative and semiquantitative analyses, and there is a lack of research that can systematically reflect the temporal and spatial contribution of the FEW nexus to multiple SDGs. We believe that future research should focus more on how FEW nexus can provide mechanistic tools for achieving sustainable development.
Collapse
|
26
|
Abstract
A framework was developed to elucidate (1) the drivers of land degradation, (2) pressures, (3) local impacts and vulnerabilities and (4) adaptation strategies. The combination of participatory approaches, statistical data analysis, time series Landsat imagery and spatial data mining was tested in southeast Vietnam where the impacts of land degradation on the environment and economy are considerable. The major drivers of land degradation are climate, notably drought, and population density. The pressures include natural resource management and land use/cover change. A Landsat archive analysis showed an increase in agricultural land use from 31% to 50%, mostly at the expense of forests, from 1990 to 2019. Farmers adapted by investing in the irrigation of rice and dragon fruit, and by selecting their rainfed crops in line with the changing environment. The most vulnerable were the rural poor and farmers without access to land and water resources. The best protection against land degradation was prosperity, which is enhanced by the region’s location along Vietnam’s major national route, connecting major cities along a north–south axis. Our analysis shows that southeast Vietnam emerged as a region with an important human ecological resilience strengthened by increased prosperity. The current adaptation options and limitations warrant further research.
Collapse
|