1
|
Hu M, Du Y, Li W, Zong X, Du W, Sun H, Liu H, Zhao K, Li J, Farooq MZ, Wu J, Xu Q. Interplay of Food-Derived Bioactive Peptides with Gut Microbiota: Implications for Health and Disease Management. Mol Nutr Food Res 2024:e2400251. [PMID: 39097954 DOI: 10.1002/mnfr.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Indexed: 08/06/2024]
Abstract
Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.
Collapse
Affiliation(s)
- Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyue Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomei Zong
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Jianxiong Li
- Wuhan Jason Biotech Co., Ltd., Wuhan, 430070, China
| | - Muhammad Zahid Farooq
- Department of Animal Science, University of Veterinary and Animal Science, Lahore, 54000, Pakistan
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Yan Z, Gui Y, Liu C, Zhang X, Wen C, Olatunji OJ, Suttikhana I, Ashaolu TJ. Gastrointestinal digestion of food proteins: Anticancer, antihypertensive, anti-obesity, and immunomodulatory mechanisms of the derived peptides. Food Res Int 2024; 189:114573. [PMID: 38876600 DOI: 10.1016/j.foodres.2024.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Food proteins and their peptides play a significant role in the important biological processes and physiological functions of the body. The peptides show diverse biological benefits ranging from anticancer to antihypertensive, anti-obesity, and immunomodulatory, among others. In this review, an overview of food protein digestion in the gastrointestinal tract and the mechanisms involved was presented. As some proteins remain resistant and undigested, the multifarious factors (e.g. protein type and structure, microbial composition, pH levels and redox potential, host factors, etc.) affecting their colonic fermentation, the derived peptides, and amino acids that evade intestinal digestion are thus considered. The section that follows focuses on the mechanisms of the peptides with anticancer, antihypertensive, anti-obesity, and immunomodulatory effects. As further considerations were made, it is concluded that clinical studies targeting a clear understanding of the gastrointestinal stability, bioavailability, and safety of food-based peptides are still warranted.
Collapse
Affiliation(s)
- Zheng Yan
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Yang Gui
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chunhong Liu
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chaoling Wen
- Anhui College of Traditional Chinese Medicine, Wuhu City 241000, Anhui, China.
| | | | - Itthanan Suttikhana
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia.
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
3
|
Wang Y, Wang J, Wen Y, Zhang Y, Wang R, Liu Y, Li H, Li Y, Zhang C. Effect of soybean proteins and peptides on the growth and adhesive ability of Limosilactobacillus Reuteri DSM17938. Arch Microbiol 2024; 206:322. [PMID: 38907754 DOI: 10.1007/s00203-024-04053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Limosilactobacillus reuteri DSM17938 is one of the most pivotal probiotics, whose general beneficial effects on the intestinal microbiota are well recognized. Enhancing their growth and metabolic activity can effectively regulate the equilibrium of intestinal microbiota, leading to improved physical health. A common method to promote the growth of Lactobacillus is the addition of prebiotics. Current research suggests that proteins and their hydrolysates from different sources with potential prebiotic activity can also promote the growth of probiotics. In this study, soybean proteins and peptides were effective in promoting the growth, organic acid secretion, and adhesive properties of Limosilactobacillus reuteri DSM17938 to Caco-2 cells. These results illustrate the feasibility of soybean proteins and peptides as prebiotics, providing theoretical and practical advantages for their application.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Jingyi Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Yanchao Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Yinxiao Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Ran Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Yuan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Yan Li
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Chi Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
4
|
Qoms MS, Arulrajah B, Wan Ibadullah WZ, Ramli NS, Chau DM, Sarbini SR, Saari N. Performance of Azolla pinnata fern protein hydrolysates as an emulsifier and nutraceutical ingredient in an O/W emulsion system and their effect on human gut microbiota and mammalian cells. Food Funct 2024; 15:6578-6596. [PMID: 38809119 DOI: 10.1039/d4fo00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
This study investigated the dual potential of Azolla pinnata fern protein hydrolysates (AFPHs) as functional and nutraceutical ingredients in an oil/water emulsion system. The AFPH-stabilised emulsion (AFPH-E) displayed a small and uniform droplet distribution and was stable to aggregation and creaming over a wide range of pH (5-8), salt concentrations ≤ 100 mM, and heat treatment ≤ 70 °C. Besides, the AFPH-E possessed and maintained strong biological activities, including antihypertensive, antidiabetic, and antioxidant, under different food processing conditions (pH 5-8; NaCl: 50-150 mM, and heat treatment: 30-100 °C). Following in vitro gastrointestinal digestion, the antihypertensive and antioxidant activities were unchanged, while a notable increase of 8% was observed for DPPH. However, the antidiabetic activities were partially reduced in the range of 5-11%. Notably, AFPH-E modulated the gut microbiota and short-chain fatty acids (SCFAs), promoting the growth of beneficial bacteria, particularly Bifidobacteria and Lactobacilli, along with increased SCFA acetate, propionate, and butyrate. Also, AFPH-E up to 10 mg mL-1 did not affect the proliferation of the normal colon cells. In the current work, AFPH demonstrated dual functionality as a plant-based emulsifier with strong biological activities in an oil/water emulsion system and promoted healthy changes in the human gut microbiota.
Collapse
Affiliation(s)
- Mohammed S Qoms
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Brisha Arulrajah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Wan Zunairah Wan Ibadullah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nurul Shazini Ramli
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia, Bintulu Campus, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Guilherme-Fernandes J, Aires T, Fonseca AJM, Yergaliyev T, Camarinha-Silva A, Lima SAC, Maia MRG, Cabrita ARJ. Squid meal and shrimp hydrolysate as novel protein sources for dog food. Front Vet Sci 2024; 11:1360939. [PMID: 38450029 PMCID: PMC10915000 DOI: 10.3389/fvets.2024.1360939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
The world's growing pet population is raising sustainability and environmental concerns for the petfood industry. Protein-rich marine by-products might contribute to mitigating negative environmental effects, decreasing waste, and improving economic efficiency. The present study evaluated two marine by-products, squid meal and shrimp hydrolysate, as novel protein sources for dog feeding. Along with the analysis of chemical composition and antioxidant activity, palatability was evaluated by comparing a commercial diet (basal diet) and diets with the inclusion of 150 g kg-1 of squid meal or shrimp hydrolysate using 12 Beagle dogs (2.2 ± 0.03 years). Two in vivo digestibility trials were conducted with six dogs, three experimental periods (10 days each) and three dietary inclusion levels (50, 100 and 150 g kg-1) of squid meal or shrimp hydrolysate in place of the basal diet to evaluate effects of inclusion level on apparent total tract digestibility (ATTD), metabolizable energy content, fecal characteristics, metabolites, and microbiota. Both protein sources presented higher protein and methionine contents than ingredients traditionally used in dog food formulation. Shrimp hydrolysate showed higher antioxidant activity than squid meal. First approach and taste were not affected by the inclusion of protein sources, but animals showed a preference for the basal diet. Effects on nutrient intake reflected the chemical composition of diets, and fecal output and characteristics were not affected by the increasing inclusion levels of both protein sources. The higher ATTD of dry matter, most nutrients and energy of diets with the inclusion of both by-products when compared to the basal diet, suggests their potential to be included in highly digestible diets for dogs. Although not affected by the inclusion level of protein sources, when compared to the basal diet, the inclusion of squid meal decreased butyrate concentration and shrimp hydrolysate increased all volatile fatty acids, except butyrate. Fecal microbiota was not affected by squid meal inclusion, whereas inclusion levels of shrimp hydrolysate significantly affected abundances of Oscillosperaceae (UCG-005), Firmicutes and Lactobacillus. Overall, results suggest that squid meal and shrimp hydrolysate constitute novel and promising protein sources for dog food, but further research is needed to fully evaluate their functional value.
Collapse
Affiliation(s)
- Joana Guilherme-Fernandes
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Tiago Aires
- SORGAL, Sociedade de Óleos e Rações S.A., Lugar da Pardala, S. João de Ovar, Portugal
| | - António J. M. Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Timur Yergaliyev
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sofia A. C. Lima
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Margarida R. G. Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana R. J. Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Zhang Y, Zhang C, Wang J, Wen Y, Li H, Liu X, Liu X. Can proteins, protein hydrolysates and peptides cooperate with probiotics to inhibit pathogens? Crit Rev Food Sci Nutr 2023:1-14. [PMID: 38032153 DOI: 10.1080/10408398.2023.2287185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Studies have shown that probiotics can effectively inhibit pathogens in the presence of proteins, protein hydrolysates and peptides (protein derivates). However, it is still unclear the modes of probiotics to inhibit pathogens regulated by protein derivates. Therefore, we summarized the possible effects of protein derivates from different sources on probiotics and pathogens. There is abundant evidence that proteins and peptides from different sources can significantly promote the proliferation of probiotics and increase their secretion of antibacterial substances. Such proteins and peptides can also stimulate the adhesion of probiotics to intestinal epithelial cells and contribute to regulating intestinal immunity, but they seem to have the negative effects on pathogens. Moreover, a direct effect of proteins on intestinal cells is summarized. Whether or not they can cooperate with probiotics to inhibit pathogens using above possible mechanisms were discussed. Furthermore, there seems to be no consistent conclusions that protein derivates have synergistic effects with probiotics, and there is still limited evidence on the inhibiting patterns. Therefore, the existing problems and shortcomings are noted, and future research direction is proposed.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Chi Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Jingyi Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Yanchao Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xiaoyan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
8
|
Ashaolu TJ, Zarei M, Agrawal H, Kharazmi MS, Jafari SM. A critical review on immunomodulatory peptides from plant sources; action mechanisms and recent advances. Crit Rev Food Sci Nutr 2023; 64:7220-7236. [PMID: 36855310 DOI: 10.1080/10408398.2023.2183380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Plant protein components contribute positively to human well-being as they modulate the immune status of a consumer, especially when the enzymatic method is employed in order to release their bioactive peptides. These peptides are derived from plant-based foods such as soy, wheat, barley, rye, oats, rice, corn, sorghum, and millet, the famous staple foods around the world. Since these peptides are crucial to functional food among other key industries, the present study endeavored to scout for relevant information within the past three decades, using the Web of Science, Scopus, and Google search engines. In this review, first, the core of immunomodulation and types of immunomodulatory agents will be discussed, followed by the production of plant-based immunomodulatory peptides and their immunomodulatory mechanisms in cells, animals, and humans are also studied. Finally, applications and challenges associated with plant-based immunomodulatory peptides are put forward.
Collapse
Affiliation(s)
| | - Mohammad Zarei
- Virginia Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA, USA
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Vodolazska D, Hedemann MS, Lauridsen C. Impact of liquid diet supplementation while suckling and weaning age on nutritional status, intestinal health, and immunity of piglets pre- and post-weaning. J Anim Sci 2023; 101:skad231. [PMID: 37434381 PMCID: PMC10362932 DOI: 10.1093/jas/skad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023] Open
Abstract
New strategies are needed to enhance piglets' robustness and proper functional development and maturation of piglets' intestine before weaning, to reduce the number of antibiotic treatments of diarrheic disorders in newly weaned piglets. It was hypothesized that a liquid nutritional supplement during the suckling period, and/or an increased weaning age, would beneficially impact piglets' gut health and enhance piglets' nutritional status before weaning. Further, it was hypothesized that a high intake of colostrum during the first 24 h after birth would be more advantageous for piglets' growth and robustness when compared to a low colostrum intake (CI). A 2 × 2 factorial design with two nutritional strategies (± supplementation with milk/feed, i.e., milk provided from day 2 shifted to wet feed at day 12 of age) and two weaning ages (days 24 vs. 35) was used. In total, 460 piglets from 24 sows were used for estimation of the individual CI after birth. Provision of the nutritional supplement and the increased weaning age improved the nutritional status of piglets' post-weaning assessed by their blood plasma concentration of albumin (P = 0.04), triglycerides (P = 0.004), and nonesterified fatty acids (P = 0.02). Piglets with high CI demonstrated improved nutritional status when compared to low CI (P = 0.04). Villous height and crypt depth were greater in piglets weaned at day 35 of age in contrast to day 24 of age (P < 0.001) irrespective of the nutritional intervention (P = 0.82). The concentration of branched-chain fatty acids in piglets' digesta was reduced in groups provided the nutritional supplement (P = 0.01), while total short-chain fatty acids were elevated at weaning in large intestinal digesta of piglets weaned at day 35 of age compared to piglets weaned at day 24 of age (P = 0.05). The weaning age in combination with the nutritional supplement had pronounced beneficial effect on gene expression of all investigated genes: interleukin-6, interleukin-10, nuclear factor kappa-beta, occludine, prostaglandin-endoperoxide synthase-2, tumor necrosis factor-alpha, and zonula occludens-1 (ZO-1) (P = 0.04). In conclusion, nutritional supplementation preweaning combined with increased weaning age could be considered as a strategy for improvement of the intestinal health, function, and maturation in piglets pre- and post-weaning, and a high CI enhanced piglets' robustness before weaning.
Collapse
Affiliation(s)
- Darya Vodolazska
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Mette S Hedemann
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Charlotte Lauridsen
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
10
|
Subcritical Fluid Process for Producing Mannooligosaccharide-Rich Carbohydrates from Coconut Meal and Their In Vitro Fermentation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Xia Y, Kuda T, Nakamura S, Yamamoto M, Takahashi H, Kimura B. Effects of soy protein and β-conglycinin on microbiota and in vitro antioxidant and immunomodulatory capacities of human faecal cultures. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Branched-Chain Fatty Acids Alter the Expression of Genes Responsible for Lipid Synthesis and Inflammation in Human Adipose Cells. Nutrients 2022; 14:nu14112310. [PMID: 35684110 PMCID: PMC9183013 DOI: 10.3390/nu14112310] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, we have demonstrated a decreased level of iso-branched-chain fatty acids (iso-BCFAs) in patients with excessive weight. However, it is still unclear whether BCFAs may influence lipid metabolism and inflammation in lipogenic tissues. To verify this, human visceral adipocytes were cultured with three different concentrations of selected iso-BCFA (14-methylpentadecanoic acid) and anteiso-BCFA (12-methyltetradecanoic acid), and then the expression of genes associated with lipid metabolism (FASN-fatty acid synthase; SREBP1-sterol regulatory element-binding protein 1; SCD1-stearoyl-CoA desaturase; ELOVL4-fatty acid elongase 4; ELOVL6-fatty acid elongase 6; FADS2-fatty acid desaturase 2; FADS1-fatty acid desaturase 1) and inflammation (COX-2-cyclooxygenase 2; ALOX-15-lipoxygenase 15; IL-6-interleukin 6) were determined. This study demonstrates for the first time that incubation with iso-BCFA decreases the expression of adipocyte genes that are associated with lipid metabolism (except FASN) and inflammation. These findings suggest that changes in the iso-BCFA profile in obese patients may contribute to adipose inflammation and dyslipidemia. Further studies should evaluate whether iso-BCFA supplementation in obese patients would be beneficial.
Collapse
|
13
|
Czerwińska-Rogowska M, Skonieczna-Żydecka K, Kaseja K, Jakubczyk K, Palma J, Bott-Olejnik M, Brzozowski S, Stachowska E. Kitchen Diet vs. Industrial Diets-Impact on Intestinal Barrier Parameters among Stroke Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106168. [PMID: 35627704 PMCID: PMC9141131 DOI: 10.3390/ijerph19106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022]
Abstract
Background and aims: Strokes are the second highest cause of death in the world and the most common cause of permanent disability in adults. Intestinal barrier permeability thus contributes to diminished homeostasis within the body, which further affects the healing process and convalescence. Each stroke patient should be administered with ingredients that support the intestinal barrier (e.g., protein and fiber). The aim of this study was to compare the effect of various types of diet (enteral with or without fiber vs. a mixed kitchen diet) on the metabolic activity of intestinal microbiota, namely short chain fatty acids, and gut barrier integrity parameters (zonulin and calprotectin. Methods: Patients (n = 59), after suffering an ischemic stroke, were randomly allocated to three groups receiving: the kitchen diet (n = 32; 1.2 g fiber in 100 mL); Nutrison Energy® (n = 14; 0.02 g fiber in 100 mL); and Nutrison Diason Energy HP® (n = 13; 1.8 g fiber in 100 mL). The patients underwent anthropometric measurements and blood samples (for prealbumin measurements), and stool samples (for zonulin and calprotectin determinations) were taken twice, on admission and a week later. Results: Industrial diets enriched with fiber maintained nutritional status and had a beneficial effect on intestinal barrier permeability parameters. Patients fed with kitchen diets demonstrated a decreased number of lymphocytes, hemoglobin, erythrocytes, and increased serum concentration of C-reactive protein, but improved gut barrier markers. Proton pump inhibitors were shown to increase the inflammatory process in gut. Conclusions: Stroke patients should be administered with industrial diets enriched with fiber to improve gut barrier integrity and nutritional parameters.
Collapse
Affiliation(s)
- Maja Czerwińska-Rogowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (M.C.-R.); (K.J.)
| | - Karolina Skonieczna-Żydecka
- Department od Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.-Ż.); (J.P.)
| | - Krzysztof Kaseja
- Department of General and Transplant Surgery, Pomeranian Medical University, 71-460 Szczecin, Poland;
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (M.C.-R.); (K.J.)
| | - Joanna Palma
- Department od Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland; (K.S.-Ż.); (J.P.)
| | - Marta Bott-Olejnik
- Neurology Department Regional Specialist Hospital in Gryfice, 72-300 Gryfice, Poland; (M.B.-O.); (S.B.)
| | - Sławomir Brzozowski
- Neurology Department Regional Specialist Hospital in Gryfice, 72-300 Gryfice, Poland; (M.B.-O.); (S.B.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (M.C.-R.); (K.J.)
- Correspondence:
| |
Collapse
|
14
|
Omer AK, Khorshidi S, Mortazavi N, Rahman HS. A Review on the Antiviral Activity of Functional Foods Against COVID-19 and Viral Respiratory Tract Infections. Int J Gen Med 2022; 15:4817-4835. [PMID: 35592539 PMCID: PMC9112189 DOI: 10.2147/ijgm.s361001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of successful therapy, vaccines for protection are continuously being developed. Since vaccines must be thoroughly tested, viral respiratory tract infections (VRTIs), mainly coronaviruses, have seriously affected human health worldwide in recent years. In this review, we presented the relevant data which originated from trusted publishers regarding the practical benefits of functional foods (FFs) and their dietary sources, in addition to natural plant products, in viral respiratory and COVID-19 prevention and immune-boosting activities. As a result, FFs were confirmed to be functionally active ingredients for preventing COVID-19 and VRTIs. Furthermore, the antiviral activity and immunological effects of FFs against VRTIs and COVID-19 and their potential main mechanisms of action are also being reviewed. Therefore, to prevent COVID-19 and VRTIs, it is critical to identify controlling the activities and immune-enhancing functional food constituents as early as possible. We further aimed to summarize functional food constituents as a dietary supplement that aids in immune system boosting and may effectively reduce VRTIs and COVID-19 and promote therapeutic efficacy.
Collapse
Affiliation(s)
- Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
- Razga Company, Sulaimaniyah, Kurdistan Region, Iraq
| | - Sonia Khorshidi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Negar Mortazavi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| |
Collapse
|
15
|
Ashaolu TJ, Adeyeye SA. African Functional Foods and Beverages: A Review. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2034697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tolulope J. Ashaolu
- Institute of Research and Development, Duy Tan UniversityDa NangVietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan UniversityDa NangVietnam
| | - Samuel A.O. Adeyeye
- Department of Food Technology, Hindustan Institute of Technology and Science, Hindustan University, Padur, Chennai, India
| |
Collapse
|
16
|
Ashaolu TJ, Fernández-Tomé S. Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Ashaolu TJ, Ashaolu JO. Prebiotic peptides, their formation, fermentation in the gut, and health implications. Biotechnol Prog 2021; 37:e3142. [PMID: 33666376 DOI: 10.1002/btpr.3142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022]
Abstract
Prebiotics can be synthesized from sources other than dietary fibers, such as proteins. The proteins, when processed into peptides have healthful or deleterious effects on the host. Outside living systems, prebiotic peptides (PP) are formed via preformation of amino acids or related monomeric building blocks, resulting in nonenzymatic polymerization/ligation to produce peptides. Whereas, inside living systems like the human gut, many metabolic pathways are involved in PP production, and mostly involve host-microbiota interactions. The interplay is responsible for PP activities and their implications on host amino acid balance and metabolism. Similar to carbohydrates fermentation, PP will yield short chain fatty acids (SCFA), but also branched chain fatty acids (BCFAs), phenols, indole, hydrogen sulfide, amines, and ammonia, capable of biologically mediating molecular signals. This holistic review considers a brief description of prebiotics, and tracks down prebiotic peptides formation processes, interactions with gut microbes, and health outcomes.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| | - Joseph O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Ashaolu TJ, Ashaolu JO. Prebiotics in vitro digestion by gut microbes, products' chemistry, and clinical relevance. Appl Microbiol Biotechnol 2020; 105:13-19. [PMID: 33201272 DOI: 10.1007/s00253-020-11021-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023]
Abstract
Several investigations have elucidated the chemistry of prebiotics based on their fermentation by the colonic microbes, which release metabolites that are often implicated in host's gut and whole body health. The present study aims at providing a preview of prebiotics and their interactions with the colonic microbiota for a slow fermentation in vitro. The metabolites produced, mainly short chain fatty acids (SCFA), their chemistry, interactions with prebiotic structural mechanisms, and beneficial impacts on the host were also reported. The present review further considers the clinical relevance of the SCFAs produced. It was deduced that the physicochemical properties of prebiotics would influence their colonic fermentation rate, microbial choice, and growth as well as SCFA type and ratios. This will in turn be of utmost clinical significance. KEY POINTS: • Prebiotics affect the composition of gut microorganisms. • The chemistry of short chain fatty acids are described. • Microbial and clinical applications of SCFAs were provided.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam. .,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Joseph O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
19
|
Edwards JS, Hettiarachchy NS, Kumar TKS, Carbonero F, Martin EM, Benamara M. Physicochemical properties of soy protein hydrolysate and its formulation and stability with encapsulated probiotic under in vitro gastrointestinal environment. J Food Sci 2020; 85:3543-3551. [PMID: 32869300 DOI: 10.1111/1750-3841.15399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/27/2020] [Accepted: 07/09/2020] [Indexed: 11/27/2022]
Abstract
The objective of this study was to prepare protein isolate from defatted soybean and identify an optimal hydrolysis protocol to create improved hydrolysates and ascertain the optimum encapsulation technique for probiotics. Soy protein isolate (SPI) was prepared using an alkaline extraction procedure for solubility within a neutral, beverage-specific pH range. The soy protein hydrolysate (SPH) was prepared from aqueous extracted SPI using pepsin. The physicochemical properties of the SPH were investigated by solubility, degree of hydrolysis (DH), surface hydrophobicity, and electrophoresis. Hydrolysates from 2, 2.5, and 3 hr of hydrolysis time achieved the suitable DH between 2.5% to 5.0%. The 2.5 to 3 hr hydrolysates were also significantly more soluble than SPI at all pH levels from 85% to 95% solubility. Surface hydrophobicity of the hydrolysates ranged from 15 to 20 S0 values. Alginate (1%), resistant starch (2%), and probiotic culture (0.1%) were used as an encapsulation agent to protect probiotics. Alginate microcapsules were observed to be 1 mm in size using environmental scanning electron microscopy. The dried SPH and encapsulated probiotics with alginate in a dry powder formulation were tested for its gastrointestinal resistance and probiotic viability under in vitro simulated digestion. Approximately 1-log decrease was observed for all experimental groups after simulated digestion (final log colony forming units [CFU]/mL range: 6.55 to 6.19) with free probiotics having the lowest log CFU/mL (6.10 ± 0.10) value. No significant difference was observed among experimental groups for probiotic viability (P = 0.445). The findings of this research will provide an understanding of formulation for easily digestible protein and encapsulated probiotics. PRACTICAL APPLICATION: The findings of this research provide an understanding of improved formulation for more suitable soy protein hydrolysate and viability of encapsulated probiotics in gastrointestinal environment. Probiotics with the prebiotics in an encapsulated environment provide a technology for the enhancement of probiotics viability and for applications in suitable products for health and wellness.
Collapse
Affiliation(s)
- John S Edwards
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR, 72704, U.S.A
| | - Navam S Hettiarachchy
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR, 72704, U.S.A
| | | | - Franck Carbonero
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, U.S.A
| | - Elizabeth M Martin
- Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson St., Fayetteville, AR, 72704, U.S.A
| | - Mourad Benamara
- Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson St., Fayetteville, AR, 72704, U.S.A
| |
Collapse
|
20
|
Ashaolu TJ, Ashaolu JO, Adeyeye SAO. Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. J Appl Microbiol 2020; 130:677-687. [PMID: 32892434 DOI: 10.1111/jam.14843] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Prebiotics are known for their health benefits to man, including reducing cardiovascular disease and improving gut health. This review takes a critical assessment of the impact of dietary fibres and prebiotics on the gastrointestinal microbiota in vitro. The roles of colonic organisms, slow fermentation of prebiotics, production of high butyric and propionic acids and positive modulation of the host health were taken into cognizance. Also, the short-chain fatty acids (SCFAs) molecular signalling mechanisms associated with their prebiotic substrate structural conformations and the phenotypic responses related to the gut microbes composition were discussed. Furthermore, common dietary fibres such as resistant starch, pectin, hemicelluloses, β-glucan and fructan in context of their prebiotic potentials for human health were also explained. Finally, the in vitro human colonic fermentation depends on prebiotic type and its physicochemical characteristics, which will then affect the rate of fermentation, selectivity of micro-organisms to multiply, and SCFAs concentrations and compositions.
Collapse
Affiliation(s)
- T J Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - J O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - S A O Adeyeye
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
21
|
Soy bioactive peptides and the gut microbiota modulation. Appl Microbiol Biotechnol 2020; 104:9009-9017. [PMID: 32945899 DOI: 10.1007/s00253-020-10799-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
The balance of protein, carbohydrate, and fat affect the composition and functions of the gut microbiota. The complexities involved thereof require insights into the roles and impacts of individual dietary components due to the difficulty of defining such in a group of others. Peptides and proteins from several animal and plant sources have been widely explored in relation to the gut microbiome modulation, but the effects of soy peptides and other soy derivatives on the gut microbiota are largely unexplored. This piece considered an overview of the production and interventions of soy bioactive peptides on gut, as they affect the composition and functions of the gut microorganisms. A mini review on the production of soy protein hydrolysates/peptides and highlights of the most recent knowledge regarding their physiological effects on host's gut microbiota cum health were investigated. Overall deductions and research gaps were critically evaluated for futuristic interventions and relevance. Key points • Diet affects the composition of gut microorganisms. • Modulation of the gut microbiota by soy biopeptides is described. • Critical deductions on personal and commercial use are provided.
Collapse
|
22
|
Ashaolu TJ. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomed Pharmacother 2020; 130:110625. [PMID: 32795926 DOI: 10.1016/j.biopha.2020.110625] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive studies conducted on the link between the gut microbiome and immunity in recent decades have correspondingly led to ever increasing interests in functional foods, especially probiotics and prebiotics. Probiotics and prebiotics play crucial roles in managing the intestinal microbiota in order to improve host health, even though their influence on other body sites are being investigated. Different colonic bacteria metabolize dietary prebiotics to produce beneficial metabolites, especially short chain fatty acids (SCFAs) that improve luminal contents and intestinal performance, while positively affecting overall host physiology. Thus, this review provides a general perspective of the immune system, the gut immune system and its microbiota. The review also evaluates functional foods with critical but comprehensive perspectives into probiotics and prebiotics, their immune boosting and mechanisms of action. It is recommended that further mechanistic and translational studies are conducted to promote health, social life and also empower poverty-stricken communities.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
23
|
Ashaolu TJ, Reale A. A Holistic Review on Euro-Asian Lactic Acid Bacteria Fermented Cereals and Vegetables. Microorganisms 2020; 8:E1176. [PMID: 32756333 PMCID: PMC7463871 DOI: 10.3390/microorganisms8081176] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Lactic acid fermentation is one of the oldest methods used worldwide to preserve cereals and vegetables. Europe and Asia have long and huge traditions in the manufacturing of lactic acid bacteria (LAB)-fermented foods. They have different cultures, religions and ethnicities with the available resources that strongly influence their food habits. Many differences and similarities exist with respect to raw substrates, products and microbes involved in the manufacture of fermented products. Many of them are produced on industrial scale with starter cultures, while others rely on spontaneous fermentation, produced homemade or in traditional events. In Europe, common LAB-fermented products made from cereals include traditional breads, leavened sweet doughs, and low and non-alcoholic cereal-based beverages, whereas among vegetable ones prevail sauerkraut, cucumber pickles and olives. In Asia, the prevailing LAB-fermented cereals include acid-leavened steamed breads or pancakes from rice and wheat, whereas LAB-fermented vegetables are more multifarious, such as kimchi, sinki, khalpi, dakguadong, jiang-gua, soidon and sauerkraut. Here, an overview of the main Euro-Asiatic LAB-fermented cereals and vegetables was proposed, underlining the relevance of fermentation as a tool for improving cereals and vegetables, and highlighting some differences and similarities among the Euro-Asiatic products. The study culminated in "omics"-based and future-oriented studies of the fermented products.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Anna Reale
- Institute of Food Science, National Research Council, ISA-CNR, 83100 Avellino, Italy
| |
Collapse
|
24
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, Yang Y, Yin Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020; 12:E1299. [PMID: 32370170 PMCID: PMC7282259 DOI: 10.3390/nu12051299] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is an important and complex biochemical process involved in the storage of energy and maintenance of normal biological functions. Leucine, a branched amino acid, has anti-obesity effects on glucose tolerance, lipid metabolism, and insulin sensitivity. Leucine also modulates mitochondrial dysfunction, representing a new strategy to target aging, neurodegenerative disease, obesity, diabetes, and cardiovascular disease. Although various studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between leucine and lipid metabolism. This review offers an up-to-date report on leucine, as key roles in both lipid metabolism and energy homeostasis in vivo and in vitro by acceleration of fatty acid oxidation, lipolysis, activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-silent information regulator of transcription 1 (SIRT1)-proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, synthesis, and/or secretion of adipokines and stability of the gut microbiota.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, China
| | - Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China;
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| |
Collapse
|
25
|
Ashaolu TJ. Antioxidative peptides derived from plants for human nutrition: their production, mechanisms and applications. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03479-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Gut microbiota metabolism of functional carbohydrates and phenolic compounds from soaked and germinated purple rice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103787] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
|
28
|
Ashaolu TJ. Applications of soy protein hydrolysates in the emerging functional foods: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14380] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tolulope Joshua Ashaolu
- Department for Management of Science and Technology Development Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|