1
|
Hasan MM, Islam MR, Haque AR, Kabir MR, Khushe KJ, Hasan SMK. Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. BIORESOUR BIOPROCESS 2024; 11:10. [PMID: 38647952 PMCID: PMC10991904 DOI: 10.1186/s40643-023-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024] Open
Abstract
A significant portion of the human diet is comprised of fruits, which are consumed globally either raw or after being processed. A huge amount of waste and by-products such as skins, seeds, cores, rags, rinds, pomace, etc. are being generated in our homes and agro-processing industries every day. According to previous statistics, nearly half of the fruits are lost or discarded during the entire processing chain. The concern arises when those wastes and by-products damage the environment and simultaneously cause economic losses. There is a lot of potential in these by-products for reuse in a variety of applications, including the isolation of valuable bioactive ingredients and their application in developing healthy and functional foods. The development of novel techniques for the transformation of these materials into marketable commodities may offer a workable solution to this waste issue while also promoting sustainable economic growth from the bio-economic viewpoint. This approach can manage waste as well as add value to enterprises. The goal of this study is twofold based on this scenario. The first is to present a brief overview of the most significant bioactive substances found in those by-products. The second is to review the current status of their valorization including the trends and techniques, safety assessments, sensory attributes, and challenges. Moreover, specific attention is drawn to the future perspective, and some solutions are discussed in this report.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Khursheda Jahan Khushe
- Department of Food Science and Nutrition, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh.
| |
Collapse
|
2
|
Yue Q, Yang X, Cheng P, He J, Shen W, Li Y, Ma F, Niu C, Guan Q. Heterologous Overexpression of Apple MdKING1 Promotes Fruit Ripening in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2848. [PMID: 37571003 PMCID: PMC10421076 DOI: 10.3390/plants12152848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Fruit ripening is governed by a complex regulatory network, and ethylene plays an important role in this process. MdKING1 is a γ subunit of SNF1-related protein kinases (SnRKs), but the function was unclear. Here, we characterized the role of MdKING1 during fruit ripening, which can promote fruit ripening through the ethylene pathway. Our findings reveal that MdKING1 has higher expression in early-ripening cultivars than late-ripening during the early stage of apple fruit development, and its transcription level significantly increased during apple fruit ripening. Overexpression of MdKING1 (MdKING1 OE) in tomatoes could promote early ripening of fruits, with the increase in ethylene content and the loss of fruit firmness. Ethylene inhibitor treatment could delay the fruit ripening of both MdKING1 OE and WT fruits. However, MdKING1 OE fruits turned fruit ripe faster, with an increase in carotenoid content compared with WT. In addition, the expression of genes involved in ethylene biosynthesis (SlACO1, SlACS2, and SlACS4), carotenoid biosynthesis (SlPSY1 and SlGgpps2a), and fruit firmness regulation (SlPG2a, SlPL, and SlCEL2) was also increased in the fruits of MdKING1 OE plants. In conclusion, our results suggest that MdKING1 plays a key role in promoting tomato fruit ripening, thus providing a theoretical basis for apple fruit quality improvement by genetic engineering in the future.
Collapse
Affiliation(s)
- Qianyu Yue
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Xinyue Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Yixuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Chundong Niu
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| | - Qingmei Guan
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (P.C.); (J.H.); (W.S.); (Y.L.); (F.M.)
| |
Collapse
|
3
|
Vilas-Franquesa A, Casertano M, Tresserra-Rimbau A, Vallverdú-Queralt A, Torres-León C. Recent advances in bio-based extraction processes for the recovery of bound phenolics from agro-industrial by-products and their biological activity. Crit Rev Food Sci Nutr 2023; 64:10643-10667. [PMID: 37366277 DOI: 10.1080/10408398.2023.2227261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Usually found bound to other complex molecules (e.g., lignin, hemicellulose), phenolic compounds (PC) are widely present in agro-industrial by-products, and their extraction is challenging. In recent times, research is starting to highlight the bioactive roles played by bound phenolics (BPC) in human health. This review aims at providing a critical update on recent advances in green techniques for the recovery of BPC, focusing on enzymatic-assisted (EAE) and fermentation-assisted extraction (FAE) as well as in the combination of technologies, showing variable yield and features. The present review also summarizes the most recent biological activities attributed to BPC extracts until now. The higher antioxidant activity of BPC-compared to FPC-coupled with their affordable by-product source make them medicinally potent and economically viable, promoting their integral upcycling and generating new revenue streams, business, and employment opportunities. In addition, EAE and FAE can have a biotransformative effect on the PC itself or its moiety, leading to improved extraction outcomes. Moreover, recent research on BPC extracts has reported promising anti-cancer and anti-diabetic activity. Yet further research is needed to elucidate their biological mechanisms and exploit the true potential of their applications in terms of new food products or ingredient development for human consumption.
Collapse
Affiliation(s)
- Arnau Vilas-Franquesa
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain, Bellaterra, Spain
| | - Melania Casertano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Anna Tresserra-Rimbau
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XIA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Cristian Torres-León
- Reaserch Center and Ethnobiological Garden (CIJE), Universidad Autonoma de Coahuila, Unidad Torreón, Viesca, Coahuila, Mexico
| |
Collapse
|
4
|
Macedo MCC, Correia VTDV, Silva VDM, Pereira DTV, Augusti R, Melo JOF, Pires CV, de Paula ACCFF, Fante CA. Development and Characterization of Yellow Passion Fruit Peel Flour ( Passiflora edulis f. flavicarpa). Metabolites 2023; 13:684. [PMID: 37367845 DOI: 10.3390/metabo13060684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, the peels of the yellow passion fruit (Passiflora edulis f. flavicarpa) were used to develop a flour that was evaluated in terms of its physicochemical, microscopic, colorimetric, and granulometric characteristics, its total phenolic compound and carotenoid contents, and its antioxidant capacity. Fourier Transform Infrared (FTIR) spectroscopy measurements were employed to investigate the constituent functional groups, compounds' chemical profiles were assessed by Paper Spray Mass Spectrometry (PS-MS), and the compound's chemical profiles were evaluated by Ultra-Performance Liquid Chromatography (UPLC). This flour presented a light color, heterogeneous granulometry, high carbohydrate, carotenoid, and total phenolic compound contents with high antioxidant capacity. Scanning Electron Microscopy (SEM) showed a particulate flour, which is supposed to contribute to its compactness. FTIR demonstrated the presence of functional groups corresponding to cellulose, hemicellulose, and lignin, constituents of insoluble dietary fiber. The PS-MS analysis suggested the presence of 22 substances, covering diverse component classes such as organic, fatty, and phenolic acids, flavonoids, sugars, quinones, phenylpropanoid glycerides terpenes, and amino acids. This research demonstrated the potential of using Passion Fruit Peel Flour (PFPF) as an ingredient for food products. The advantages of using PFPF comprise the reduction of agro-industrial waste, contribution to the development of a sustainable food system, and increment of food products' functional profile. Moreover, its high content of several bioactive compounds can benefit consumers' health.
Collapse
Affiliation(s)
- Maria Clara Coutinho Macedo
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vinícius Tadeu da Veiga Correia
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Viviane Dias Medeiros Silva
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 35702-031, Brazil
| | - Débora Tamires Vitor Pereira
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 130862-862, Brazil
| | - Rodinei Augusti
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Júlio Onésio Ferreira Melo
- Departamento de Ciências Exatas e Biológicas, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 35702-031, Brazil
| | - Christiano Vieira Pires
- Departamento de Engenharia de Alimentos, Campus Sete Lagoas, Universidade Federal de São João del-Rei, Sete Lagoas 35702-031, Brazil
| | | | - Camila Argenta Fante
- Departamento de Alimentos, Faculdade de Farmácia, Campus Belo Horizonte, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
5
|
Tingting Z, Xiuli Z, Kun W, Liping S, Yongliang Z. A review: extraction, phytochemicals, and biological activities of rambutan (Nephelium lappaceum L) peel extract. Heliyon 2022; 8:e11314. [DOI: 10.1016/j.heliyon.2022.e11314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/05/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
|
6
|
Md Sani AN, Mohd Adzahan N, Ismail-Fitry MR. Valorization of malaysian tropical fruit seeds: A review of their nutrition, bioactivity, processing and food application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Hu X, Yang T, Qi X, Guo X, Hu J. Effects of Different Drying Methods on Phenolic Composition and Antioxidant Activity in Corn Silk (Stigma Maydis). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaodan Hu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou China
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Tianran Yang
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xitao Qi
- Crop Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Xinbo Guo
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Jianguang Hu
- Crop Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou China
| |
Collapse
|
8
|
Ouahrani S, Tzompa‐Sosa DA, Dewettinck K, Zaidi F. Oxidative stability, structural, and textural properties of margarine enriched with
Moringa oleifera
leaves extract. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sara Ouahrani
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Daylan Amelia Tzompa‐Sosa
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Farid Zaidi
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| |
Collapse
|
9
|
Xing Y, Li R, Xue L, Chen M, Lu X, Duan Z, Zhou W, Li J. Double emulsion (W/O/W) gel stabilised by polyglycerol polyricinoleate and calcium caseinate as mangiferin carrier: insights on formulation and stability properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuhang Xing
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
- College of Food Science & Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Lu Xue
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
- College of Food Science & Technology Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
- College of Tropical Crops Yunnan Agricultural University Pu'er, Yunan 665099 China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs Agricultural Products Processing Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang Guangdong 524001 China
| |
Collapse
|
10
|
Le Xuan C, Wannavijit S, Outama P, Montha N, Lumsangkul C, Tongsiri S, Chitmanat C, Hoseinifar SH, Van Doan H. Effects of dietary rambutan (Nephelium lappaceum L.) peel powder on growth performance, immune response and immune-related gene expressions of striped catfish (Pangasianodon hypophthalmus) raised in biofloc system. FISH & SHELLFISH IMMUNOLOGY 2022; 124:134-141. [PMID: 35367378 DOI: 10.1016/j.fsi.2022.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the effects of rambutan peel powder (RP) on growth, skin mucosal and serum immunities, and immune-related gene expression of striped catfish (Pangasianodon hypophthalmus) reared in a biofloc system. Three hundred fingerlings (17.14 ± 0.12 g fish-1) were randomly selected and assigned to five treatments corresponding to five diets: 0 g kg-1 (control - RP0); 10 g kg-1 (RP10); 20 g kg-1 (RP20); 40 g kg-1 (RP40), and 80 g kg-1 (RP80) for 8 weeks. At weeks 4 and 8 post-feeding, growth, skin mucus, and serum immunity parameters were determined, whereas immune-related gene expressions were performed at the end of the feeding trial. Based on the results, skin mucus lysozyme (SML) and skin mucus peroxidase (SMP) were significantly higher in fish fed the RP diets compared to the control diet (P < 0.05). The highest SML and SMP levels were observed in fish fed RP40 diet, followed by RP20, RP80, RP10, and RP0. Fish-fed RP diets had higher serum lysozyme and serum peroxidase activities, with the highest value found in the RP40 diet (P < 0.05), followed by RP20, RP80, and RP10. Similarly, immune-related gene expressions (IFN2a, IFN2b, and MHCII) in the liver were significantly up-regulated in fish fed RP40. Up-regulation (P < 0.05) of IL-1, IFN2a, IFN2b, and MHCII genes was also observed in fish intestines, with the highest values observed in fish fed RP40 diet, followed by RP10, RP20, RP80, and RP0. Fish-fed diet RP diets also showed enhanced growth and FCR compared to the control, with the highest values observed in fish fed diet RP40. However, no significant differences in survival rates were found among diets. In conclusion, dietary inclusion of RP at 40 g kg-1 resulted in better growth performance, immune response, and immune related gene expressions of striped catfish (Pangasianodon hypophthalmus).
Collapse
Affiliation(s)
- Chinh Le Xuan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supreya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyatida Outama
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Napatsorn Montha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sudaporn Tongsiri
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Chanagun Chitmanat
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
11
|
Sihag S, Pal A, Ravikant, Saharan V. Antioxidant properties and free radicals scavenging activities of pomegranate (Punica granatum L.) peels: An in-vitro study. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Hussain H, Mamadalieva NZ, Hussain A, Hassan U, Rabnawaz A, Ahmed I, Green IR. Fruit Peels: Food Waste as a Valuable Source of Bioactive Natural Products for Drug Discovery. Curr Issues Mol Biol 2022; 44:1960-1994. [PMID: 35678663 PMCID: PMC9164088 DOI: 10.3390/cimb44050134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fruits along with vegetables are crucial for a balanced diet. These not only have delicious flavors but are also reported to decrease the risk of contracting various chronic diseases. Fruit by-products are produced in huge quantity during industrial processing and constitute a serious issue because they may pose a harmful risk to the environment. The proposal of employing fruit by-products, particularly fruit peels, has gradually attained popularity because scientists found that in many instances peels displayed better biological and pharmacological applications than other sections of the fruit. The aim of this review is to highlight the importance of fruit peel extracts and natural products obtained in food industries along with their other potential biological applications.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent 100170, Uzbekistan;
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Uzma Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Aisha Rabnawaz
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK;
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa;
| |
Collapse
|
13
|
Valorisation of plant seed as natural bioactive compounds by various extraction methods: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Huang Y, He M, Kasapis S, Brennan M, Brennan C. The influence of the fortification of red pitaya (
Hylocereus polyrhizus
) powder on the in vitro digestion, physical parameters, nutritional profile, polyphenols and antioxidant activity in the oat‐wheat bread. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yanyi Huang
- School of Science RMIT University Melbourne Australia
| | - Mengya He
- School of Science RMIT University Melbourne Australia
| | | | - Margaret Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Christchurch New Zealand
| | | |
Collapse
|
15
|
Oliver-Simancas R, Labrador-Fernández L, Díaz-Maroto MC, Pérez-Coello MS, Alañón ME. Comprehensive research on mango by-products applications in food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Uslu N, Özcan MM. The effect of ultrasound‐vacuum‐assisted extraction on bioactive properties of pitaya (
Hylocereus undatus
). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nurhan Uslu
- Department of Food Engineering Faculty of Agriculture Selçuk University Konya Turkey
| | - Mehmet Musa Özcan
- Department of Food Engineering Faculty of Agriculture Selçuk University Konya Turkey
| |
Collapse
|
17
|
Tsong JL, Goh LPW, Gansau JA, How SE. Review of Nephelium lappaceum and Nephelium ramboutan-ake: A High Potential Supplement. Molecules 2021; 26:molecules26227005. [PMID: 34834094 PMCID: PMC8620321 DOI: 10.3390/molecules26227005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nephelium lappaceum (N. lappaceum) and Nephelium ramboutan-ake (N. ramboutan-ake) are tropical fruits that gain popularity worldwide due to their tastiness. Currently, their potential to be used as pharmaceutical agents is underestimated. Chronic diseases such as cancer, diabetes and aging have high incidence rates in the modern world. Furthermore, pharmaceutical agents targeting pathogenic microorganisms have been hampered by the growing of antimicrobial resistance threats. The idea of food therapy leads to extensive nutraceuticals research on the potential of exotic fruits such as N. lappaceum and N. ramboutan-ake to act as supplements. Phytochemicals such as phenolic compounds that present in the fruit act as potent antioxidants that contribute to the protective effects against diseases induced by oxidative stress. Fruit residuals such as the peel and seeds hold greater nutraceutical potential than the edible part. This review highlights the antioxidant and biological activities (anti-neoplastic, anti-microbial, hypoglycemic actions and anti-aging), and chemical contents of different parts of N. lappaceum and N. ramboutan-ake. These fruits contain a diverse and important chemical profile that can alleviate or cure diseases.
Collapse
|
18
|
Maturation Process, Nutritional Profile, Bioactivities and Utilisation in Food Products of Red Pitaya Fruits: A Review. Foods 2021; 10:foods10112862. [PMID: 34829143 PMCID: PMC8618204 DOI: 10.3390/foods10112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Red pitaya (Hylocereus polyrhizus, red pulp with pink peel), also known as dragon fruit, is a well-known species of pitaya fruit. Pitaya seeds and peels have been reported to exhibit higher concentrations of total polyphenols, beta-cyanins and amino acid than pulp, while anthocyanins (i.e., cyanidin 3-glucoside, delphinidin 3-glucoside and pelargonidin 3-glucoside) were only detected in the pulp extracts. Beta-cyanins, phenolics and flavonoids were found to increase gradually during fruit maturation and pigmentation appeared earlier in the pulp than peel. The phytochemicals were extracted and purified by various techniques and broadly used as natural, low-cost, and beneficial healthy compounds in foods, including bakery, wine, dairy, meat and confectionery products. These bioactive components also exhibit regulative influences on the human gut microbiota, glycaemic response, lipid accumulation, inflammation, growth of microbials and mutagenicity, but the mechanisms are yet to be understood. The objective of this study was to systematically summarise the effect of red pitaya’s maturation process on the nutritional profile and techno-functionality in a variety of food products. The findings of this review provide valuable suggestions for the red pitaya fruit processing industry, leading to novel formulations supported by molecular research.
Collapse
|
19
|
Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: Comparison of phenolic and organic acids profiles and antioxidant activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021; 10:foods10081952. [PMID: 34441729 PMCID: PMC8393595 DOI: 10.3390/foods10081952] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tropical and subtropical fruits are recognized as a source of a high content of bioactive compounds and health promoting properties due to their nutritional composition. These beneficial health effects are related to the content of several of these bioactive compounds, mainly flavonoids and non-flavonoid phenolics. Many of these compounds are common in different tropical fruits, such as epicatechin in mango, pineapple, and banana, or catechin in pineapple, cocoa or avocado. Many studies of tropical fruits had been carried out, but in this work an examination is made in the current literature of the flavonoids and non-flavonoid phenolics content of some tropical fruits and their coproducts, comparing the content in the same units, as well as examining the role that these compounds play in health benefits.
Collapse
Affiliation(s)
- Sonia Sayago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Diana Laura García-Martínez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Ailin Cecilia Ramírez-Castillo
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Heidi Rubí Ramírez-Concepción
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Agro-Food Technology Department, Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
21
|
Effects of a Diet Supplemented with Fruit Antioxidants (Mango) on the Expression of Kir6.2 (KCNJ11) in the Hippocampus and Kidney of Diabetic Rats. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09901-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Mandha J, Shumoy H, Matemu AO, Raes K. Valorization of Mango By-Products to Enhance the Nutritional Content of Maize Complementary Porridges. Foods 2021; 10:1635. [PMID: 34359505 PMCID: PMC8305312 DOI: 10.3390/foods10071635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Mango by-products are disregarded as waste contributing to greenhouse gas emissions. This study used mango seed and kernel to enhance the nutritional content of maize complementary porridges. Composite maize-based porridges (MBP) were formulated by fortifying maize flour with fine ground mango seed and kernel at different levels (31%, 56%, 81%). The by-products and formulated porridges were characterized for their nutritional composition, mineral content, total phenolic content, and antioxidant capacity. Furthermore, the bioaccessibility of essential minerals during in vitro gastrointestinal digestion of the formulated porridges was determined using inductively coupled plasma optical emission spectrometry. Mango seed had a high fat (12.0 g/100 g dw) and protein content (4.94 g/100 g dw), which subsequently doubled the fat content of the porridges. Mango by-products increased the total phenolic content of maize porridge by more than 40 times and the antioxidant capacity by 500 times. However, fortification with mango by-products significantly decreased the bioaccessibility of minerals, especially manganese, copper, and iron, as the highest percentages of insoluble minerals were recorded in MBP 81 at 78.4%, 71.0%, and 62.1%, respectively. Thus, the results suggest that mango seed and kernel could increase the nutritional value of maize porridge, but fortification should be done at lower levels of about 31-56%.
Collapse
Affiliation(s)
- Juliana Mandha
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; (J.M.); (H.S.)
- Department of Food Biotechnology and Nutritional Sciences, Nelson Mandela African Institution of Science and Technology, Arusha 447, Tanzania;
| | - Habtu Shumoy
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; (J.M.); (H.S.)
| | - Athanasia O. Matemu
- Department of Food Biotechnology and Nutritional Sciences, Nelson Mandela African Institution of Science and Technology, Arusha 447, Tanzania;
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; (J.M.); (H.S.)
| |
Collapse
|
23
|
Asghar A, Tan YC, Zahoor M, Zainal Abidin SA, Yow YY, Khan E, Lahiri C. A scaffolded approach to unearth potential antibacterial components from epicarp of Malaysian Nephelium lappaceum L. Sci Rep 2021; 11:13859. [PMID: 34226594 PMCID: PMC8257635 DOI: 10.1038/s41598-021-92622-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/10/2021] [Indexed: 11/09/2022] Open
Abstract
The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
Collapse
Affiliation(s)
- Ali Asghar
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Yong Chiang Tan
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Mohammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | | | - Yoon-Yen Yow
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Ezzat Khan
- Department of Chemistry, University of Bahrain, Sakhir, Bahrain
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia.
| |
Collapse
|
24
|
Saenjum C, Pattananandecha T, Nakagawa K. Antioxidative and Anti-Inflammatory Phytochemicals and Related Stable Paramagnetic Species in Different Parts of Dragon Fruit. Molecules 2021; 26:molecules26123565. [PMID: 34200974 PMCID: PMC8230633 DOI: 10.3390/molecules26123565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/29/2023] Open
Abstract
In this study, we investigated the antioxidant and anti-inflammatory phytochemicals and paramagnetic species in dragon fruit using high-performance liquid chromatography (HPLC) and electron paramagnetic resonance (EPR). HPLC analysis demonstrated that dragon fruit is enriched with bioactive phytochemicals, with significant variations between each part of the fruit. Anthocyanins namely, cyanidin 3-glucoside, delphinidin 3-glucoside, and pelargonidin 3-glucoside were detected in the dragon fruit peel and fresh red pulp. Epicatechin gallate, epigallocatechin, caffeine, and gallic acid were found in the dragon fruit seed. Additionally, 25–100 mg × L−1 of dragon fruit pulp and peel extracts containing enrichment of cyanidin 3-glucoside were found to inhibit the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cell-based studies without exerted cytotoxicity. EPR primarily detected two paramagnetic species in the red samples. These two different radical species were assigned as stable radicals and Mn2+ (paramagnetic species) based on the g-values and hyperfine components. In addition, the broad EPR line width of the white peel can be correlated to a unique moiety in dragon fruit. Our EPR and HPLC results provide new insight regarding the phytochemicals and related stable intermediates found in various parts of dragon fruit. Thus, we suggest here that there is the potential to use dragon fruit peel, which contains anthocyanins, as a natural active pharmaceutical ingredient.
Collapse
Affiliation(s)
- Chalermpong Saenjum
- Cluster of Excellence on Biodiversity-Based Economic and Society (B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.S.); (K.N.); Tel.: +66-53-94-4312 (C.S.); +81-172-39-5921 (K.N.)
| | - Thanawat Pattananandecha
- Cluster of Excellence on Biodiversity-Based Economic and Society (B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kouichi Nakagawa
- Division of Regional Innovation, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-Cho, Hirosaki 036-8564, Japan
- Correspondence: (C.S.); (K.N.); Tel.: +66-53-94-4312 (C.S.); +81-172-39-5921 (K.N.)
| |
Collapse
|
25
|
Domínguez-Rodríguez G, Plaza M, Marina ML. High-performance thin-layer chromatography and direct analysis in real time-high resolution mass spectrometry of non-extractable polyphenols from tropical fruit peels. Food Res Int 2021; 147:110455. [PMID: 34399456 DOI: 10.1016/j.foodres.2021.110455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Passiflora species, mangosteen, and cherimoya peels are a source of bioactive phenolic compounds. Nevertheless, a significant fraction of polyphenols, called non-extractable polyphenols (NEPs), are retained in the extraction residue after a conventional extraction. Thus, alkaline, acid, and enzymatic-assisted extractions to recover high contents of antioxidant NEPs from the extraction residue of fruit peels, were compared in this work. A high-performance thin-layer chromatography method with UV/Vis detection was developed in order to obtain the phenolic profile for the extracts. The most intense bands were further analyzed by direct analysis in real-time-high-resolution mass spectrometry to tentatively identified NEPs in fruit peel extracts. Total phenolic and proanthocyanidin contents and antioxidant capacity of the extracts were measured to carry out a multivariate statistical analysis. Alkaline hydrolysis was the most efficient treatment to recover NEPs from fruit peels as well as a promising treatment to obtain antioxidant extracts along with EAE. Cherimoya peel extracts were the richest in antioxidant NEPs. This work highlights that many NEPs remain on the extraction residue of fruit peels after conventional extraction and are not usually taken into account.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Merichel Plaza
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
26
|
Silva C, Câmara JS, Perestrelo R. A high-throughput analytical strategy based on QuEChERS-dSPE/HPLC–DAD–ESI-MSn to establish the phenolic profile of tropical fruits. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Castañeda-Valbuena D, Ayora-Talavera T, Luján-Hidalgo C, Álvarez-Gutiérrez P, Martínez-Galero N, Meza-Gordillo R. Ultrasound extraction conditions effect on antioxidant capacity of mango by-product extracts. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Lu X, Brennan MA, Guan W, Zhang J, Yuan L, Brennan CS. Enhancing the Nutritional Properties of Bread by Incorporating Mushroom Bioactive Compounds: The Manipulation of the Pre-Dictive Glycaemic Response and the Phenolic Properties. Foods 2021; 10:731. [PMID: 33808231 PMCID: PMC8066703 DOI: 10.3390/foods10040731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Wheat bread supplemented with mushroom powder from three different species of mushrooms was investigated in terms of starch characteristics (content, gelatinisation, and digestibility) and antioxidant capacities. The decrease in total starch contents, and increase in phenolic contents of the breads, were associated with increased mushroom powder contents. Mushroom inclusion reduced the rate of reducing sugar released over 120 min in an in vitro digestion compared to the control sample, implying a lower area under the curve (AUC) value with the inclusion of mushroom powder and a potentially lower predicted glycaemic response of the bread. Mushroom powder incorporation also enhanced the DPPH radical scavenging assay and oxygen radical absorbance capacity (ORAC) compared to control bread. The action of the addition of different mushroom powders on the bread crust and crumb microstructure properties was also studied. Mushroom powder altered the internal microstructure of the bread crust and crumb by affecting the interactions between starch and the other components of the bread. Overall, this shows that mushroom powder could be added to bread to deliver health benefits to consumers.
Collapse
Affiliation(s)
- Xikun Lu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences, Tianjin University of Commerce, Tianjin 300314, China; (X.L.); (W.G.)
| | - Margaret A. Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P.O. Box 84, Lincoln, Christchurch 7647, New Zealand;
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences, Tianjin University of Commerce, Tianjin 300314, China; (X.L.); (W.G.)
| | - Jie Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; (J.Z.); (L.Y.)
| | - Li Yuan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; (J.Z.); (L.Y.)
| | - Charles S. Brennan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Sciences, Tianjin University of Commerce, Tianjin 300314, China; (X.L.); (W.G.)
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P.O. Box 84, Lincoln, Christchurch 7647, New Zealand;
- School of Science, RMIT, Melbourne, VIC 3000, Australia
| |
Collapse
|
29
|
Electrostatic Spraying of Passion Fruit (Passiflora edulis L.) Peel Extract for Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on Fresh-Cut Lollo Rossa and Beetroot Leaves. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02608-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Wu G, Hui X, Mu J, Brennan MA, Brennan CS. Functionalization of whey protein isolate fortified with blackcurrant concentrate by spray-drying and freeze-drying strategies. Food Res Int 2021; 141:110025. [PMID: 33641954 DOI: 10.1016/j.foodres.2020.110025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
A solution of whey protein isolate was combined with blackcurrant concentrate via spray-drying and freeze-drying techniques separately to develop novel protein ingredients, (SWB and FWB). Chemical compositions, colour profiles, total anthocyanin content and encapsulation efficacy of the protein ingredients were evaluated. An in vitro digestion process was employed to observe the changes in total phenolic content, antioxidant activity, and predictive in vitro glycaemic response of the protein ingredients. The half maximal inhibitory concentration (IC50) towards α-Amylase, and a molecular docking study on the interactions of α-Amylase with anthocyanins, were both performed to investigate the potential mechanisms of hypoglycaemic properties of these protein ingredients. The protein contents of SWB and FWB were 67.94 ± 0.47% and 68.16 ± 0.77%, respectively. Blackcurrant concentrate significantly (p < 0.001) changed the colour profiles of whey protein isolate. SWB obtained a higher total phenol content (3711.28 ± 4.36 μg/g), total anthocyanin content (85390.80 ± 162.81 μg/100 g), and greater encapsulation efficacy (99.64 ± 0.16%) than those of FWB (3413.03 ± 20.60 μg/g, 64230.24 ± 441.08 μg/100 g, and 95.43 ± 0.14%, respectively). Total phenolic content and antioxidant activities of SWB and FWB decreased after the in vitro digestion. The reducing sugar released during the in vitro digestion from SWB and FWB decreased compared with their corresponding controls (SWC and FWC). FWB (IC50 = 73.46 μg/mL) exhibited stronger α-Amylase inhibitory activity than SWB (IC50 = 81.46 μg/mL). Different anthocyanins differed from binding affinities to bind with the active sites of α-Amylase via formation of hydrogen bonds. This study suggested whey protein encapsulated-blackcurrant concentrate might be an innovative food product with improved nutritional profiles. Both spray- and freeze-drying are potential options to this encapsulation.
Collapse
Affiliation(s)
- Gang Wu
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Margaret A Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Charles S Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
31
|
Xu F, Liu Y, Dong S, Wang S. Effect of 1‐methylcyclopropene (1‐MCP) on ripening and volatile compounds of blueberry fruit. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Fangxu Xu
- Experimental Teaching Center Shenyang Normal University Shenyang P.R. China
| | - Yefei Liu
- Experimental Teaching Center Shenyang Normal University Shenyang P.R. China
| | - Shengzhong Dong
- Experimental Teaching Center Shenyang Normal University Shenyang P.R. China
| | - Shenghou Wang
- Experimental Teaching Center Shenyang Normal University Shenyang P.R. China
| |
Collapse
|
32
|
Suleria HAR, Barrow CJ, Dunshea FR. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020; 9:E1206. [PMID: 32882848 PMCID: PMC7556026 DOI: 10.3390/foods9091206] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Fruit peels have a diverse range of phytochemicals including carotenoids, vitamins, dietary fibres, and phenolic compounds, some with remarkable antioxidant properties. Nevertheless, the comprehensive screening and characterization of the complex array of phenolic compounds in different fruit peels is limited. This study aimed to determine the polyphenol content and their antioxidant potential in twenty different fruit peel samples in an ethanolic extraction, including their comprehensive characterization and quantification using the LC-MS/MS and HPLC. The obtained results showed that the mango peel exhibited the highest phenolic content for TPC (27.51 ± 0.63 mg GAE/g) and TFC (1.75 ± 0.08 mg QE/g), while the TTC (9.01 ± 0.20 mg CE/g) was slightly higher in the avocado peel than mango peel (8.99 ± 0.13 mg CE/g). In terms of antioxidant potential, the grapefruit peel had the highest radical scavenging capacities for the DPPH (9.17 ± 0.19 mg AAE/g), ABTS (10.79 ± 0.56 mg AAE/g), ferric reducing capacity in FRAB (9.22 ± 0.25 mg AA/g), and total antioxidant capacity, TAC (8.77 ± 0.34 mg AAE/g) compared to other fruit peel samples. The application of LC-ESI-QTOF-MS/MS tentatively identified and characterized a total of 176 phenolics, including phenolic acids (49), flavonoids (86), lignans (11), stilbene (5) and other polyphenols (25) in all twenty peel samples. From HPLC-PDA quantification, the mango peel sample showed significantly higher phenolic content, particularly for phenolic acids (gallic acid, 14.5 ± 0.4 mg/g) and flavonoids (quercetin, 11.9 ± 0.4 mg/g), as compared to other fruit peel samples. These results highlight the importance of fruit peels as a potential source of polyphenols. This study provides supportive information for the utilization of different phenolic rich fruit peels as ingredients in food, feed, and nutraceutical products.
Collapse
Affiliation(s)
- Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
33
|
Probiotic low-fat fermented goat milk with passion fruit by-product: In vitro effect on obese individuals' microbiota and on metabolites production. Food Res Int 2020; 136:109453. [PMID: 32846548 DOI: 10.1016/j.foodres.2020.109453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to evaluate the impact of a two-week treatment period with probiotic low-fat fermented goat milk by Lactobacillus casei Lc-1, supplemented with passion fruit by-product (1%), on the modulation of gut microbiota from obese individuals using the Simulator of Human Intestinal Microbial Ecosystem (SHIME) system. The effects were carried out through the study of gut microbiota composition, using 16S rRNA next generation sequencing, quantification of short-chain fatty acids (SCFA) and ammonium ions. The microbiota composition changed across three vessels representing the colon regions, because of fermented milk treatment. Fermented goat milk administration caused a reduction of bacteria belonging to genera Prevotella, Megamonas and Succinivibrio, which can produce SCFA, and an increase of Lactobacillus and Bifidobacterium genera in all simulated colon regions. There was no effect on SCFA and on ammonium ions concentration during treatment period. Fermented milk shifted the obese donors' microbiota without changing metabolites production. It happens, possibly, due to a balance in abundances among bacterial genera that can produce or not SCFA, and among bacterial genera with high or low proteolytic activity. Our outcomes help to clarify the effects of the ingestion of a probiotic low-fat fermented goat milk product on colon microbiota composition.
Collapse
|
34
|
Marić B, Abramović B, Ilić N, Krulj J, Kojić J, Perović J, Bodroža‐Solarov M, Teslić N. Valorization of red raspberry (
Rubus idaeus
L.) seeds as a source of health beneficial compounds: Extraction by different methods. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Boško Marić
- University of Novi Sad Institute of Food Technology Novi Sad Serbia
- Department of Chemistry, Biochemistry and Environmental Protection University of Novi Sad Faculty of Science Novi Sad Serbia
| | - Biljana Abramović
- Department of Chemistry, Biochemistry and Environmental Protection University of Novi Sad Faculty of Science Novi Sad Serbia
| | - Nebojša Ilić
- University of Novi Sad Institute of Food Technology Novi Sad Serbia
| | - Jelena Krulj
- University of Novi Sad Institute of Food Technology Novi Sad Serbia
| | - Jovana Kojić
- University of Novi Sad Institute of Food Technology Novi Sad Serbia
| | - Jelena Perović
- University of Novi Sad Institute of Food Technology Novi Sad Serbia
| | | | - Nemanja Teslić
- University of Novi Sad Institute of Food Technology Novi Sad Serbia
| |
Collapse
|
35
|
Phuong NNM, Le TT, Dang MQ, Van Camp J, Raes K. Selection of extraction conditions of phenolic compounds from rambutan (Nephelium lappaceum L.) peel. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Active Compound Identification in Extracts of N. lappaceum Peel and Evaluation of Antioxidant Capacity. J CHEM-NY 2020. [DOI: 10.1155/2020/4301891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nephelium lappaceum and its by-products have great potential in the agricultural, pharmaceutical, and food industries. Some studies have shown that N. lappaceum by-products exhibit antimicrobial, antioxidant, antidiabetic, and anticancer properties. However, studies focused on identifying these compounds are rare. The availability of polyphenolic compounds can vary according to environmental conditions, soil, plant variety, and agronomic management. Therefore, in this study, the active compounds in extracts of the N. lappaceum peel were identified, and their antioxidant properties were evaluated using various extraction solvents and both ultrasonic and boiling extraction techniques. The chemical characterization of the N. lappaceum peel exhibited carbohydrate and reducing sugar contents of 12 and 2%, respectively. Phytochemical analysis indicated the presence of flavonoids, tannins, terpenes, and steroids. The total phenolic and flavonoid contents and total antioxidant capacity were the highest in the hydroethanolic extract obtained by ultrasound, with values of 340 mg gallic acid equivalents g−1, 76 mg quercetin equivalents g−1, and 2.9 mmol of Trolox equivalents g−1, respectively. Contrarily, the total anthocyanin content was higher in the acid extract obtained by ultrasound, with a value of 0.7 mg cyanidin-3-O-glucoside equivalents g−1. A total of 18 compounds—including hydroxybenzene, phenolic acid, flavonoids, fatty acids (saturated, unsaturated, and ester), vitamin, arenecarbaldehyde, and phthalate—were identified for the first time in the N. lappaceum peel using gas chromatography-mass spectrometry. The identified compounds have been previously isolated from other plants and reportedly exhibit anticancer, anti-inflammatory, antimicrobial, and antioxidant activities. Thus, the N. lappaceum peel was shown to be a potential source of bioactive compounds of immense importance in the pharmacological and food industries.
Collapse
|
37
|
Phuong NNM, Le TT, Van Camp J, Raes K. Evaluation of antimicrobial activity of rambutan (Nephelium lappaceum L.) peel extracts. Int J Food Microbiol 2020; 321:108539. [PMID: 32062528 DOI: 10.1016/j.ijfoodmicro.2020.108539] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/28/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022]
Abstract
Microbial safety in food products is not always adequately controlled. Chemical antimicrobials which are recognized as hazards to human health are gradually replaced by natural antimicrobial compounds. In the current study, the antimicrobial activity against some Gram-positive and Gram- negative bacteria by the methanolic extract from rambutan fruit peels was evaluated using both in vitro (medium) and in situ (food matrices i.e. raw chicken breast and pangasius fillet fish) methods. Methanolic rambutan peel extract (lyophilized to powder with total phenolic content of 310 ± 14.5 mg GAE/g) with geraniin, ellagic acid, rutin, quercetin, and corilagin as main phenolic compounds was a potent inhibitor towards E. coli, V. campbellii, V. parahaemolyticus, V. anguillarum, P. aeruginosa, S. enteritidis, St. aureus, L. monocytogenes, and C. albicans using in vitro tests. In in situ tests, the extract inhibited S. enteritidis in raw chicken breast during 14 days of cold storage at 4 °C. Even though food matrices partly protected bacteria, the extract showed a 1.5 log CFU/g reduction of V. parahaemolyticus in fish during 10 days of cold storage. These results provide useful information on the utilization of rambutan fruit peel as natural antimicrobial agent in food products.
Collapse
Affiliation(s)
- Nguyen Nhat Minh Phuong
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium; Department of Food Engineering, Faculty of Food Science and Technology, Nong Lam University, Block 6, Ward Linh Trung, Thu Duc District, Ho Chi Minh City, Viet Nam; Department of Food Technology, College of Agriculture, Can Tho University, Campus 2, 3/2 Street, Ward An Khanh, Ninh Kieu District, Can Tho City, Viet Nam.
| | - Thien Trung Le
- Department of Food Engineering, Faculty of Food Science and Technology, Nong Lam University, Block 6, Ward Linh Trung, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - John Van Camp
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Katleen Raes
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
38
|
Phuong NNM, Le TT, Nguyen MVT, Van Camp J, Raes K. Antioxidant Activity of Rambutan (
Nephelium lappaceum
L.) Peel Extract in Soybean Oil during Storage and Deep Frying. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nguyen Nhat Minh Phuong
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5 8500 Kortrijk Belgium
- Department of Food Engineering Faculty of Food Science and Technology Nong Lam University Block 6, Ward Linh Trung, Thu Duc District Ho Chi Minh City Vietnam
- Department of Food Technology, College of Agriculture Can Tho University Campus 2, 3/2 Street, Ward An Khanh, Ninh Kieu District, Can Tho City Vietnam
| | - Thien Trung Le
- Department of Food Engineering Faculty of Food Science and Technology Nong Lam University Block 6, Ward Linh Trung, Thu Duc District Ho Chi Minh City Vietnam
| | - Minh Viet Thao Nguyen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5 8500 Kortrijk Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5 8500 Kortrijk Belgium
| | - Katleen Raes
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5 8500 Kortrijk Belgium
| |
Collapse
|
39
|
Alañón ME, Palomo I, Rodríguez L, Fuentes E, Arráez-Román D, Segura-Carretero A. Antiplatelet Activity of Natural Bioactive Extracts from Mango ( Mangifera Indica L.) and its By-Products. Antioxidants (Basel) 2019; 8:E517. [PMID: 31671743 PMCID: PMC6912241 DOI: 10.3390/antiox8110517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 11/23/2022] Open
Abstract
The potential antiplatelet aggregation effects of mango pulp and its by-products (peel, husk seed, and seed) due to the presence of bioactive compounds were explored. Among them, mango seed exhibited a 72% percentage inhibition of platelet aggregation induced by adenosine 5'-diphosphate (ADP) agonist with a demonstrated dose-dependent effect. This biological feature could be caused by the chemical differences in phenolic composition. Mango seed was especially rich in monogalloyl compounds, tetra- and penta-galloylglucose, ellagic acid, mangiferin, and benzophenones such as maclurin derivatives and iriflophenone glucoside. Mangiferin showed an inhibitory effect of 31%, suggesting its key role as one of the main contributors to the antiplatelet activity of mango seed. Therefore, mango seed could be postulated as a natural source of bioactive compounds with antiplatelet properties to design functional foods or complementary therapeutic treatments.
Collapse
Affiliation(s)
- María Elena Alañón
- Area of Food Technology, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha. Avda. Camilo José Cela, 10, 13071 Ciudad Real, Spain.
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging (CIE), University of Talca, 3460000 Talca, Chile.
| | - Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging (CIE), University of Talca, 3460000 Talca, Chile.
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging (CIE), University of Talca, 3460000 Talca, Chile.
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| |
Collapse
|
40
|
Barraza-Elenes C, Camacho-Hernández IL, Yahia EM, Zazueta-Morales JJ, Aguilar-Palazuelos E, Heredia JB, Muy-Rangel D, Delgado-Nieblas CI, Carrillo-López A. Analysis by UPLC-DAD-ESI-MS of Phenolic Compounds and HPLC-DAD-Based Determination of Carotenoids in Noni ( Morinda citrifolia L.) Bagasse. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7365-7377. [PMID: 31184123 DOI: 10.1021/acs.jafc.9b02716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Noni bagasse is usually wasted after the noni juice extraction process. The purpose of this study was to investigate the phytochemical composition of noni bagasse (with and without seeds) obtained after a 1 week period of a short-term juice drip-extraction process from over-ripe noni fruit. Totals of free phenolics, flavonoids, condensed tannins, carotenoids, and most of the minerals were higher in bagasse without seeds (NSB) than in bagasse with seeds (WSB), whereas bound phenolics and total and insoluble dietary fiber were higher in WSB than in NSB. β-Carotene and lutein, quantified by HPLC-DAD, were higher in both bagasse than in juice. A total of 16 phenolic compounds and 2 iridoids were determined by UPLC-DAD-ESI-MS. Among them, procyanidin B-type dimer, caffeoylquinic-acid-hexoside, and quercetin-hexose-deoxyhexose have not been previously reported in noni bagasse, noni juice, or noni fruit. Isorhamnetin-3- O-rutinoside was the most abundant compound in both bagasses. In conclusion, both bagasses are potential sources of phytochemical compounds for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Claudia Barraza-Elenes
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas , Universidad Autónoma de Sinaloa , CP 80013 Culiacán , Sinaloa , México
| | - Irma L Camacho-Hernández
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas , Universidad Autónoma de Sinaloa , CP 80013 Culiacán , Sinaloa , México
| | - Elhadi M Yahia
- Facultad de Ciencias Naturales , Universidad Autónoma de Querétaro , CP 76230 Juriquilla , Querétaro , México
| | - José J Zazueta-Morales
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas , Universidad Autónoma de Sinaloa , CP 80013 Culiacán , Sinaloa , México
| | - Ernesto Aguilar-Palazuelos
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas , Universidad Autónoma de Sinaloa , CP 80013 Culiacán , Sinaloa , México
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo A.C. , Unidad Culiacán , CP 80110 Culiacán , Sinaloa , México
| | - Dolores Muy-Rangel
- Centro de Investigación en Alimentación y Desarrollo A.C. , Unidad Culiacán , CP 80110 Culiacán , Sinaloa , México
| | - Carlos I Delgado-Nieblas
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas , Universidad Autónoma de Sinaloa , CP 80013 Culiacán , Sinaloa , México
| | - Armando Carrillo-López
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas , Universidad Autónoma de Sinaloa , CP 80013 Culiacán , Sinaloa , México
| |
Collapse
|