1
|
Li Q, Wang J, Lv J, Liu D, Xiao S, Mo J, Lu Z, Qiu R, Li C, Tang L, He S, Tang Z, Cheng Q, Zhan T. Total flavonoids of litchi Seed alleviates schistosomiasis liver fibrosis in mice by suppressing hepatic stellate cells activation and modulating the gut microbiomes. Biomed Pharmacother 2024; 178:117240. [PMID: 39094546 DOI: 10.1016/j.biopha.2024.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Infection with Schistosoma japonicum (S. japonicum) is an important zoonotic parasitic disease that causes liver fibrosis in both human and domestic animals. The activation of hepatic stellate cells (HSCs) is a crucial phase in the development of liver fibrosis, and inhibiting their activation can alleviate this progression. Total flavonoids of litchi seed (TFL) is a naturally extracted drug, and modern pharmacological studies have shown its anti-fibrotic and liver-protective effects. However, the role of TFL in schistosomiasis liver fibrosis is still unclear. This study investigated the therapeutic effects of TFL on liver fibrosis in S. japonicum infected mice and explored its potential mechanisms. Animal study results showed that TFL significantly reduced the levels of Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), Interleukin-4 (IL-4), and Interleukin-6 (IL-6) in the serum of S. japonicum infected mice. TFL reduced the spleen index of mice and markedly improved the pathological changes in liver tissues induced by S. japonicum infection, decreasing the expression of alpha-smooth muscle actin (α-SMA), Collagen I and Collagen III protein in liver tissues. In vitro studies indicated that TFL also inhibited the activation of HCSs induced by Transforming Growth Factor-β1 (TGF-β1) and reduced the levels of α-SMA. Gut microbes metagenomics study revealed that the composition, abundance, and functions of the mice gut microbiomes changed significantly after S. japonicum infection, and TLF treatment reversed these changes. Therefore, our study indicated that TFL alleviated granulomatous lesions and improved S. japonicum induced liver fibrosis in mice by inhibiting the activation of HSCs and by improving the gut microbiomes.
Collapse
Affiliation(s)
- Qing Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jilong Wang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Lv
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dengyu Liu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Suyu Xiao
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingquan Mo
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zuochao Lu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ran Qiu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Caiqi Li
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Qiuchen Cheng
- Department of Gastroenterology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
| | - Tingzheng Zhan
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China; Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Mertelsmann AM, Bowers SF, Wright D, Maganga JK, Mazigo HD, Ndhlovu LC, Changalucha JM, Downs JA. Effects of Schistosoma haematobium infection and treatment on the systemic and mucosal immune phenotype, gene expression and microbiome: A systematic review. PLoS Negl Trop Dis 2024; 18:e0012456. [PMID: 39250522 PMCID: PMC11412685 DOI: 10.1371/journal.pntd.0012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium affects approximately 110 million people globally, with the majority of cases in low- and middle-income countries. Schistosome infections have been shown to impact the host immune system, gene expression, and microbiome composition. Studies have demonstrated variations in pathology between schistosome subspecies. In the case of S. haematobium, infection has been associated with HIV acquisition and bladder cancer. However, the underlying pathophysiology has been understudied compared to other schistosome species. This systematic review comprehensively investigates and assimilates the effects of S. haematobium infection on systemic and local host mucosal immunity, cellular gene expression and microbiome. METHODS We conducted a systematic review assessing the reported effects of S. haematobium infections and anthelmintic treatment on the immune system, gene expression and microbiome in humans and animal models. This review followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42022372607). Randomized clinical trials, cohort, cross-sectional, case-control, experimental ex vivo, and animal studies were included. Two reviewers performed screening independently. RESULTS We screened 3,177 studies and included 94. S. haematobium was reported to lead to: (i) a mixed immune response with a predominant type 2 immune phenotype, increased T and B regulatory cells, and select pro-inflammatory cytokines; (ii) distinct molecular alterations that would compromise epithelial integrity, such as increased metalloproteinase expression, and promote immunological changes and cellular transformation, specifically upregulation of genes p53 and Bcl-2; and (iii) microbiome dysbiosis in the urinary, intestinal, and genital tracts. CONCLUSION S. haematobium induces distinct alterations in the host's immune system, molecular profile, and microbiome. This leads to a diverse range of inflammatory and anti-inflammatory responses and impaired integrity of the local mucosal epithelial barrier, elevating the risks of secondary infections. Further, S. haematobium promotes cellular transformation with oncogenic potential and disrupts the microbiome, further influencing the immune system and genetic makeup. Understanding the pathophysiology of these interactions can improve outcomes for the sequelae of this devastating parasitic infection.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Sheridan F Bowers
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Drew Wright
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Jane K Maganga
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - John M Changalucha
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
- Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
3
|
Xie H, Chen D, Feng Y, Mo F, Liu L, Xing J, Xiao W, Gong Y, Tang S, Tan Z, Liang G, Zhao S, Yin W, Huang J. Evaluation of the TLR3 involvement during Schistosoma japonicum-induced pathology. BMC Immunol 2024; 25:2. [PMID: 38172683 PMCID: PMC10765740 DOI: 10.1186/s12865-023-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Despite the functions of TLRs in the parasitic infections have been extensively reported, few studies have addressed the role of TLR3 in the immune response to Schistosoma japonicum infections. The aim of this study was to investigate the properties of TLR3 in the liver of C57BL/6 mice infected by S. japonicum. METHODS The production of TLR3+ cells in CD4+T cells (CD4+CD3+), CD8+T cells (CD8+CD3+), γδT cells (γδTCR+CD3+), NKT cells (NK1.1+CD3+), B cells (CD19+CD3-), NK (NK1.1-CD3+) cells, MDSC (CD11b+Gr1+), macrophages (CD11b+F4/80+), DCs (CD11c+CD11b+) and neutrophils (CD11b+ Ly6g+) were assessed by flow cytometry. Sections of the liver were examined by haematoxylin and eosin staining in order to measure the area of granulomas. Hematological parameters including white blood cell (WBC), red blood cell (RBC), platelet (PLT) and hemoglobin (HGB) were analyzed. The levels of ALT and AST in the serum were measured using biochemical kits. The relative titers of anti-SEA IgG and anti-SEA IgM in the serum were measured by enzyme-linked immunosorbent assay (ELISA). CD25, CD69, CD314 and CD94 molecules were detected by flow cytometry. RESULTS Flow cytometry results showed that the expression of TLR3 increased significantly after S. japonicum infection (P < 0.05). Hepatic myeloid and lymphoid cells could express TLR3, and the percentages of TLR3-expressing MDSC, macrophages and neutrophils were increased after infection. Knocking out TLR3 ameliorated the damage and decreased infiltration of inflammatory cells in infected C57BL/6 mouse livers.,The number of WBC was significantly reduced in TLR3 KO-infected mice compared to WT-infected mice (P < 0.01), but the levels of RBC, platelet and HGB were significantly increased in KO infected mice. Moreover, the relative titers of anti-SEA IgG and anti-SEA IgM in the serum of infected KO mice were statistically decreased compared with the infected WT mice. We also compared the activation-associated molecules expression between S.japonicum-infected WT and TLR3 KO mice. CONCLUSIONS Taken together, our data indicated that TLR3 played potential roles in the context of S. japonicum infection and it may accelerate the progression of S. japonicum-associated liver pathology.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dianhui Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanfa Feng
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Feng Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Xiao
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanni Tang
- Department of Infectious Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guikuan Liang
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shan Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Weiguo Yin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Jun Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
4
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
5
|
Wan J, Zhang Q, Hao Y, Tao Z, Song W, Chen S, Qin L, Song W, Shan Y. Infiltrated IL-17A-producing gamma delta T cells play a protective role in sepsis-induced liver injury and are regulated by CCR6 and gut commensal microbes. Front Cell Infect Microbiol 2023; 13:1149506. [PMID: 37475963 PMCID: PMC10354519 DOI: 10.3389/fcimb.2023.1149506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Sepsis is a common but serious disease in intensive care units, which may induce multiple organ dysfunctions such as liver injury. Previous studies have demonstrated that gamma delta (γδ) T cells play a protective role in sepsis. However, the function and mechanism of γδ T cells in sepsis-induced liver injury have not been fully elucidated. IL-17A-producing γδ T cells are a newly identified cell subtype. Methods We utilized IL-17A-deficient mice to investigate the role of IL-17A-producing γδ T cells in sepsis using the cecum ligation and puncture (CLP) model. Results Our findings suggested that these cells were the major source of IL-17A and protected against sepsis-induced liver injury. Flow cytometry analysis revealed that these γδ T cells expressed Vγ4 TCR and migrated into liver from peripheral post CLP, in a CCR6-dependent manner. When CLP mice were treated with anti-CCR6 antibody to block CCR6-CCL20 axis, the recruitment of Vγ4+ γδ T cells was abolished, indicating a CCR6-dependent manner of migration. Interestingly, pseudo germ-free CLP mice treated with antibiotics showed that hepatic IL-17A+ γδ T cells were regulated by gut commensal microbes. E. coli alone were able to restore the protective effect in pseudo germ-free mice by rescuing hepatic IL-17A+ γδ T cell population. Conclusion Our research has shown that Vγ4+ IL-17A+ γδ T cells infiltrating into the liver play a crucial role in protecting against sepsis-induced liver injury. This protection was contingent upon the recruitment of CCR6 and regulated by gut commensal microbes.
Collapse
Affiliation(s)
- Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Qian Zhang
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yilong Hao
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Zhang Tao
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Wei Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Song Chen
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Long Qin
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Weidong Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yi Shan
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Qiu H, Wang R, Xing J, Li L, Gao Z, Li J, Fang C, Shi F, Mo F, Liu L, Zhao Y, Xie H, Zhao S, Huang J. Characteristics of Th9 cells in Schistosoma japonicum-infected C57BL/6 mouse mesenteric lymph node. Mol Biochem Parasitol 2023; 254:111561. [PMID: 37086898 DOI: 10.1016/j.molbiopara.2023.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Interleukin 9 (IL-9) is an effective cytokine secreted by newly defined Th9 cells, which is involved in allergic and infectious diseases. In this study, lymphocytes were isolated from mesenteric lymph node (MLN), spleen, liver, lung, and Peyer's patches (PP) of C57BL/6 mice 5-6 weeks after S. japonicum infection, intracellular cytokine staining was done to detect the percentage of IL-9-producing CD4+ T cells. The qPCR and ELISA were used to verify the content of IL-9 in MLN. The population of IL-9-producing lymphocyte subset was identified by FACS. In addition, the dynamic changes and cytokine profiles of Th9 cells in the MLN of infected mice were detected by FACS. ELISA was used to detect IL-9 induced by soluble egg antigen (SEA) from isolated lymphocytes in mouse MLN. The results showed that the percentage of IL-9-secreting Th9 cells in the MLN of the infected mouse was higher than that in the spleen, liver, lung, or PP. Though CD8+ Tc cells, NKT cells, and γδT cells could secrete IL-9, CD4+ Th cells were the main source of IL-9 in S. japonicum-infected C57BL/6 mice (P < 0.05). The percentage of Th9 cells in MLN of infected mouse increased from week 3-4, and reached a peak at week 5-6, then began to decrease from week 7-8 (P < 0.05). Moreover, Th9 cells could also secrete a small amount of IL-4, IFN-γ, IL-5, and IL-10. Our results suggested a higher percentage of Th9 cells was induced in the MLN of S. japonicum-infected mice, which might play an important role in the early stage of S. japonicum-induced disease.
Collapse
Affiliation(s)
- Huaina Qiu
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Ruohan Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Lu Li
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhiyan Gao
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiajie Li
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Chao Fang
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Feihu Shi
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Feng Mo
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Zhao
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongyan Xie
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| | - Shan Zhao
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jun Huang
- China Sino-French Hoffmann Institute, Department of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
7
|
Amajala KC, Gudivada IP, Malla RR. Gamma Delta T Cells: Role in Immunotherapy of Hepatocellular Carcinoma. Crit Rev Oncog 2023; 28:41-50. [PMID: 38050980 DOI: 10.1615/critrevoncog.2023049893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The most typical type of liver cancer or hepatocellular carcinoma (HCC) develops from hepatocyte loss. Non-alcoholic fatty liver disease (NAFLD), viral hepatitis C and cirrhosis are the leading causes of HCC. With the Hepatitis B vaccine and medicines, there are several treatments for HCC, including liver resection, ablation, transplantation, immunotherapy, gene therapy, radiation embolization, and targeted therapy. Currently, a wide range of studies are carried out on gene therapy to identify biomarkers and pathways, which help us identify the exact stage of the disorder and reduce its effects. γδT cells have recently received much interest as a potential cancer treatment method in adaptive immunotherapy. γδT cells can quickly form connections between receptor and ligand activation. They can clonally expand and are a significant source of cytokines and chemokines. The present review provides a comprehensive understanding on the function of γδT cells in immunotherapies and how they are used to treat HCC.
Collapse
Affiliation(s)
- Krishna Chaitanya Amajala
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Indu Priya Gudivada
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
8
|
Liu Z, Zhang L, Liang Y, Lu L. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis. Front Cell Infect Microbiol 2022; 12:1035765. [PMID: 36389166 PMCID: PMC9650140 DOI: 10.3389/fcimb.2022.1035765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Schistosomiasis has been widely disseminated around the world, and poses a significant threat to human health. Schistosoma eggs and soluble egg antigen (SEA) mediated inflammatory responses promote the formation of egg granulomas and liver fibrosis. With continuous liver injuries and inflammatory stimulation, liver fibrosis can develop into liver cirrhosis and liver cancer. Therefore, anti-fibrotic therapy is crucial to increase the survival rate of patients. However, current research on antifibrotic treatments for schistosomiasis requires further exploration. In the complicated microenvironment of schistosome infections, it is important to understand the mechanism and pathology of schistosomiasis-associated liver fibrosis(SSLF). In this review, we discuss the role of SEA in inhibiting liver fibrosis, describe its mechanism, and comprehensively explore the role of host-derived and schistosome-derived microRNAs (miRNAs) in SSLF. Inflammasomes and cytokines are significant factors in promoting SSLF, and we discuss the mechanisms of some critical inflammatory signals and pro-fibrotic cytokines. Natural killer(NK) cells and Natural killer T(NKT) cells can inhibit SSLF but are rarely described, therefore, we highlight their significance. This summarizes and provides insights into the mechanisms of key molecules involved in SSLF development.
Collapse
Affiliation(s)
- Zhilong Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| |
Collapse
|
9
|
Yang ZJ, Wang TT, Wang BY, Gao H, He CW, Shang HW, Lu X, Wang Y, Xu JD. Deeper insight into the role of IL-17 in the relationship beween hypertension and intestinal physiology. J Inflamm (Lond) 2022; 19:14. [PMID: 36195874 PMCID: PMC9530412 DOI: 10.1186/s12950-022-00311-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
With the incidence of hypertension increasing worldwide, more and more the mechanisms of hypertension from the perspective of immunity have found. Intestinal microbiota as well as its metabolites relationship with hypertension has attracted great attention from both clinicians and investigators. However, the associations of hypertension with lesions of a large number of immune factors including IL-17, MCP-1, IL-6, TGF-β, IL-10 and others have not been fully characterized. In this review, after introducing the immune factors as the most potent anti/pro-hypertension agents known, we provide detailed descriptions of the IL-17 involved in the pathology of hypertension, pointing out the underlying mechanisms and suggesting the clinical indications.
Collapse
Affiliation(s)
- Ze-Jun Yang
- grid.24696.3f0000 0004 0369 153XClinical Medicine of “5+3”program, School of Basic Medical Science, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XDepartment of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Tian-Tian Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- grid.411634.50000 0004 0632 4559Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Han Gao
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cheng-Wei He
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hong-Wei Shang
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Lu
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- grid.414373.60000 0004 1758 1243Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Medrano-Garcia S, Morales-Cano D, Barreira B, Vera-Zambrano A, Kumar R, Kosanovic D, Schermuly RT, Graham BB, Perez-Vizcaino F, Mathie A, Savai R, Pullamseti S, Butrous G, Fernández-Malavé E, Cogolludo A. HIV and Schistosoma Co-Exposure Leads to Exacerbated Pulmonary Endothelial Remodeling and Dysfunction Associated with Altered Cytokine Landscape. Cells 2022; 11:cells11152414. [PMID: 35954255 PMCID: PMC9368261 DOI: 10.3390/cells11152414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.
Collapse
Affiliation(s)
- Sandra Medrano-Garcia
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alba Vera-Zambrano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Rahul Kumar
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ralph Theo Schermuly
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Soni Pullamseti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Edgar Fernández-Malavé
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| |
Collapse
|
11
|
Jiang J, Li J, Zhang Y, Zhou C, Guo C, Zhou Z, Ming Y. The Protective Effect of the Soluble Egg Antigen of Schistosoma japonicum in A Mouse Skin Transplantation Model. Front Immunol 2022; 13:884006. [PMID: 35911717 PMCID: PMC9332893 DOI: 10.3389/fimmu.2022.884006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background Organ transplantation is currently an effective method for treating organ failure. Long-term use of immunosuppressive drugs has huge side effects, which severely restricts the long-term survival of patients. Schistosoma can affect the host’s immune system by synthesizing, secreting, or excreting a variety of immunomodulatory molecules, but its role in transplantation was not well defined. In order to explore whether Schistosoma-related products can suppress rejection and induce long-term survival of the transplant, we used soluble egg antigen (SEA) of Schistosoma japonicum in mouse skin transplantation models. Materials and methods Each mouse was intraperitoneally injected with 100 μg of SEA three times a week for four consecutive weeks before allogenic skin transplant. Skin transplants were performed on day 0 to observe graft survival. Pathological examination of skin grafts was conducted 7 days post transplantation. The skin grafts were subjected to mRNA sequencing. Bioinformatics analysis was conducted and the expression of hub genes was verified by qPCR. Flow cytometry analysis was performed to evaluate the immune status and validate the results from bioinformatic analysis. Results The mean survival time (MST) of mouse skin grafts in the SEA-treated group was 11.67 ± 0.69 days, while that of the control group was 8.00 ± 0.36 days. Pathological analysis showed that Sj SEA treatment led to reduced inflammatory infiltration within skin grafts 7 days after allogenic skin transplantation. Bioinformatics analysis identified 86 DEGs between the Sj SEA treatment group and the control group, including 39 upregulated genes and 47 downregulated genes. Further analysis revealed that Sj SEA mediated regulation on cellular response to interferon-γ, activation of IL-17 signaling and chemokine signaling pathways, as well as cytokine–cytokine receptor interaction. Flow cytometry analysis showed that SEA treatment led to higher percentages of CD4+IL-4+ T cells and CD4+Foxp3+ T cells and decreased CD4+IFN-γ+ T cells in skin transplantation. Conclusion Sj SEA treatment suppressed rejection and prolonged skin graft survival by regulating immune responses. Sj SEA treatment might be a potential new therapeutic strategy to facilitate anti-rejection therapy and even to induce tolerance.
Collapse
Affiliation(s)
- Jie Jiang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junhui Li
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Zhou
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Guo
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqin Zhou
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Ming
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yingzi Ming,
| |
Collapse
|
12
|
Oliveira FMS, Kraemer L, Cavalcanti da Silva C, Nogueira DS, Gazzinelli-Guimarães AC, Gazzinelli-Guimarães PH, Barbosa FS, Resende NM, Caliari MV, Gaze ST, Bartholomeu DC, Fujiwara RT, Bueno LL. Nitric oxide contributes to liver inflammation and parasitic burden control in Ascaris suum infection. Exp Parasitol 2022; 238:108267. [PMID: 35550886 DOI: 10.1016/j.exppara.2022.108267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Human ascariasis is one of the most prevalent neglected tropical diseases worldwide. The immune response during human ascariasis is characterized by Th2 polarization and a mixed Th2/Th17 response during the pathogenesis of experimental larval ascariasis. Cytokines and other pro-inflammatory mediators, such as nitric oxide (NO), are involved in helminthic infections. However, the role of NO in ascariasis remains unclear. OBJECTIVES Given the importance of NO in inflammation, we aimed to determine the immunological and histopathological alterations in the livers of C57BL/6 iNOS-/- mice during A. suum infection. METHODS In this study, parasitic load was evaluated in the livers of wild type C57BL/6 and C57BL/6 iNOS-/- mice infected with A. suum. Histopathological and morphometric analyses and analysis of serum cytokines via Cytometric Bead Array were performed, and the activity of eosinophil peroxidase and myeloperoxidase of neutrophils in the tissues were determined. RESULTS The results showed that NO is important for controlling parasitic load during infection by A. suum. C57BL/6iNOS-/- mice showed reduced inflammatory processes and less tissue damage during liver larval migration of A. suum, which is associated with a reduction in serum levels of pro-inflammatory cytokines. CONCLUSIONS We demonstrated that NO is a crucial inflammatory molecule during Ascaris sp. infection and controls the establishment of the parasite and the development of the host immune response in the liver.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Caroline Cavalcanti da Silva
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Ana Clara Gazzinelli-Guimarães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Pedro Henrique Gazzinelli-Guimarães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | | | - Nathalia Maria Resende
- Laboratory of Sciences Applied to Immunology and Biochemistry of Health and Sport. Department of of Physical Education, Universidade Federal de Lavras, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Soraya Torres Gaze
- Cellular and Molecular Immunology Group, René Rachou Institute, Oswaldo Cruz Foundation - FIOCRUZ, Brazil
| | - Daniella Castanheira Bartholomeu
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
13
|
Qi Z, Lan C, Xiaofang J, Juanjuan T, Cheng F, Ting H, Erxia S, Zi L. Inhibition of COX-2 ameliorates murine liver schistosomiasis japonica through splenic cellular immunoregulation. Parasit Vectors 2022; 15:144. [PMID: 35461268 PMCID: PMC9034617 DOI: 10.1186/s13071-022-05201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background We have reported the positive association of the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) axis with liver fibrosis induced by Schistosoma japonicum (Sj) infection, and TLR4 signaling controlled this axis. However, how COX-2 regulates immune response during Sj infection is still unclear. Methods Hematoxylin and eosin staining was used to evaluate the effect of the COX-2-specific inhibitor NS398 on liver granulomatous inflammation and fibrosis. Flow cytometry was used to explore the frequency and amount of different immune cell infiltration in the spleen during Sj infection. Results NS398 significantly reduced the size of liver granuloma, spleen, and mesenteric lymph node (MLN) and alleviated chronic granulomatous inflammation. Mechanically, this might be by decreasing the number of Sj-induced macrophages and T helper type 1 (Th1), Th2, T follicular helper (Tfh), T follicular regulatory (Tfr), and germinal center B (GC B) cells. There were no differences in the number of neutrophils, myeloid-derived suppressor cells, Th17 cells, regulatory T cells (Treg), or total B cells in the spleen of the mice with or without NS398 treatment. Conclusions COX-2/PGE2 inhibition may represent a potential therapeutic approach for schistosomiasis japonica through splenic cellular immunoregulation. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Zhang Qi
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China.,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Chen Lan
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Ji Xiaofang
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Tang Juanjuan
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Fu Cheng
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China.,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Huang Ting
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China.,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Shen Erxia
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China. .,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China. .,The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Li Zi
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China. .,The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
14
|
Koda S, Zhu XQ, Zheng KY, Yan C. Molecular Mechanisms of Clonorchis sinensis-Host Interactions and Implications for Vaccine Development. Front Cell Dev Biol 2022; 9:781768. [PMID: 35118069 PMCID: PMC8804234 DOI: 10.3389/fcell.2021.781768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Clonorchis sinensis remain a significant public health challenge for both humans and animals, causing pyogenic cholangitis, cholelithiasis, cholecystitis, biliary fibrosis, and even cholangiocarcinoma. However, the strategies used by the parasite and the immunological mechanisms used by the host have not yet been fully understood. With the advances in technologies and the accumulated knowledge of host-parasite interactions, many vaccine candidates against liver flukes have been investigated using different strategies. In this review, we explore and analyze in-depth the immunological mechanisms involved in the pathogenicity of C. sinensis. We highlight the different mechanisms by which the parasite interacts with its host to induce immune responses. All together, these data will allow us to have a better understanding of molecular mechansism of host-parasite interactions, which may shed lights on the development of an effective vaccine against C. sinensis.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| |
Collapse
|
15
|
Lagatie O, Batsa Debrah L, Debrah AY, Stuyver LJ. Whole blood transcriptome analysis in onchocerciasis. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100100. [PMID: 36082138 PMCID: PMC9445278 DOI: 10.1016/j.crpvbd.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Identifying the molecular mechanisms controlling the host’s response to infection with Onchocerca volvulus is important to understand how the human host controls such parasitic infection. Little is known of the cellular immune response upon infection with O. volvulus. We performed a transcriptomic study using PAXgene-preserved whole blood from 30 nodule-positive individuals and 21 non-endemic controls. It was found that of the 45,042 transcripts that were mapped to the human genome, 544 were found to be upregulated and 447 to be downregulated in nodule-positive individuals (adjusted P-value < 0.05). Pathway analysis was performed on this set of differentially expressed genes, which demonstrated an impact on oxidative phosphorylation and protein translation. Upstream regulator analysis showed that the mTOR associated protein RICTOR appears to play an important role in inducing the transcriptional changes in infected individuals. Functional analysis of the genes affected by infection indicated a suppression of antibody response, Th17 immune response and proliferation of activated T lymphocytes. Multiple regression models were used to select 22 genes that could contribute significantly in the generation of a classifier to predict infection with O. volvulus. For these 22 genes, as well as for 8 reference target genes, validated RT-qPCR assays were developed and used to re-analyze the discovery sample set. These data were used to perform elastic net regularized logistic regression and a panel of 7 genes was found to be the best performing classifier. The resulting algorithm returns a value between 0 and 1, reflecting the predicted probability of being infected. A validation panel of 69 nodule-positive individuals and 5 non-endemic controls was used to validate the performance of this classifier. Based on this validation set only, a sensitivity of 94.2% and a specificity of 60.0% was obtained. When combining the discovery test set and validation set, a sensitivity of 96.0% and a specificity of 92.3% was obtained. Large-scale validation approaches will be necessary to define the intended use for this classifier. Besides the use as marker for infection in MDA efficacy surveys and epidemiological transmission studies, this classifier might also hold potential as pharmacodynamic marker in macrofilaricide clinical trials. Whole blood transcriptome analysis was performed in onchocerciasis patients. Suppression of antibodies, Th17, and proliferation of activated T cells. RICTOR plays an important role in inducing the transcriptional changes. A 7-gene expression classifier was built as a tool for onchocerciasis detection.
Collapse
Affiliation(s)
- Ole Lagatie
- Johnson & Johnson Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
- Corresponding author.
| | - Linda Batsa Debrah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Y. Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lieven J. Stuyver
- Johnson & Johnson Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
16
|
Wei H, Xie H, Qu J, Xie A, Xie S, Huang H, Li J, Fang C, Shi F, Qiu H, Qi Y, Tian X, Yang Q, Huang J. TLR7 modulating B-cell immune responses in the spleen of C57BL/6 mice infected with Schistosoma japonicum. PLoS Negl Trop Dis 2021; 15:e0009943. [PMID: 34788282 PMCID: PMC8598019 DOI: 10.1371/journal.pntd.0009943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
B cells played an important role in Schistosoma infection-induced diseases. TLR7 is an intracellular member of the innate immune receptor. The role of TLR7 on B cells mediated immune response is still unclear. Here, C57BL/6 mice were percutaneously infected by S. japonicum for 5-6 weeks. The percentages and numbers of B cells increased in the infected mice (p < 0.05), and many activation and function associated molecules were also changed on B cells. More splenic cells of the infected mice expressed TLR7, and B cells were served as the main cell population. Moreover, a lower level of soluble egg antigen (SEA) specific antibody and less activation associated molecules were found on the surface of splenic B cells from S. japonicum infected TLR7 gene knockout (TLR7 KO) mice compared to infected wild type (WT) mice (p < 0.05). Additionally, SEA showed a little higher ability in inducing the activation of B cells from naive WT mice than TLR7 KO mice (p < 0.05). Finally, the effects of TLR7 on B cells are dependent on the activation of NF-κB p65. Altogether, TLR7 was found modulating the splenic B cell responses in S. japonicum infected C57BL/6 mice.
Collapse
Affiliation(s)
- Haixia Wei
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiale Qu
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He Huang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Tian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- * E-mail: (XT); (QY); (JH)
| | - Quan Yang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail: (XT); (QY); (JH)
| | - Jun Huang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- * E-mail: (XT); (QY); (JH)
| |
Collapse
|
17
|
Eosinophils participate in modulation of liver immune response and tissue damage induced by Schistosoma mansoni infection in mice. Cytokine 2021; 149:155701. [PMID: 34741881 DOI: 10.1016/j.cyto.2021.155701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
The severity of chronic schistosomiasis has been mainly associated with the intensity and extension of the inflammatory response induced by egg-secreted antigens in the host tissue, especially in the liver and intestine. During acute schistosomiasis, eosinophils account for approximately 50% of the cells that compose the liver granulomas; however, the role of this cell-type in the pathology of schistosomiasis remains controversial. In the current study, we compared the parasite burden and liver immunopathological changes during experimental schistosomiasis in wild-type (WT) BALB/c mice and BALB/c mice selectively deficient for the differentiation of eosinophils (ΔdblGATA). Our data demonstrated that the absence of eosinophil differentiation did not alter the S. mansoni load or the liver retention of parasite eggs; however, there were significant changes in the liver immune response profile and tissue damage. S. mansoni infection in ΔdblGATA mice resulted in significantly lower liver concentrations of IL-5, IL-13, IL-33, IL-17, IL-10, and TGF-β and higher concentrations of IFN-γ and TNF-α, as compared to WT mice. The changes in liver immune response observed in infected ΔdblGATA mice were accompanied by lower collagen deposition, but higher liver damage and larger granulomas. Moreover, the absence of eosinophils resulted in a higher mortality rate in mice infected with a high parasite load. Therefore, the data indicated that eosinophils participate in the establishment and/or amplification of liver Th-2 and regulatory response induced by S. mansoni, which is necessary for the balance between liver damage and fibrosis, which in turn is essential for modulating disease severity.
Collapse
|
18
|
Zheng L, Wang L, Hu Y, Yi J, Wan L, Shen Y, Liu S, Zhou X, Cao J. Higher frequency of circulating Vδ1 γδT cells in patients with advanced schistosomiasis. Parasite Immunol 2021; 43:e12871. [PMID: 34037255 PMCID: PMC9285544 DOI: 10.1111/pim.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
Gamma‐delta (γδ) T cells are the bridge between natural and adaptive immunity. In the present study, peripheral blood was collected from 13 patients with advanced schistosomiasis (schistosomiasis group) and 13 uninfected people (control group) to investigate the γδ T cells and their subtypes in human schistosomiasis. Compared with the control group, the proportion of Vδ1 cells and CD27+Vδ1+ cells in the schistosomiasis group increased significantly, while CD27− cells and CD27−Vδ1− cells decreased. Only the level of IL‐17A differed between the groups, being significantly decreased in the schistosomiasis group. In the schistosomiasis group, there were no correlations between the liver fibrosis and subsets of γδ T cells, or the level of cytokines. Additionally, the level of IL‐17A correlated positively with the proportion of CD27− Vδ1− cells. Thus, there was a higher frequency of circulating Vδ1 γδT cells in patients with advanced schistosomiasis. The decreased IL‐17A might be related to the reduction in CD27−Vδ1− cell.
Collapse
Affiliation(s)
- Li Zheng
- Department of Immunology, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China
| | - Lixia Wang
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People's Republic of China, WHO Collaborating Center for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yi
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Lun Wan
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People's Republic of China, WHO Collaborating Center for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Liu
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaorong Zhou
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People's Republic of China, WHO Collaborating Center for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Maggi L, Rocha IC, Camelo GMA, Fernandes VR, Negrão-Corrêa D. The IL-33/ST2 pathway is not essential to Th2 stimulation but is key for modulation and survival during chronic infection with Schistosoma mansoni in mice. Cytokine 2020; 138:155390. [PMID: 33341001 DOI: 10.1016/j.cyto.2020.155390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Morbidity during chronic schistosomiasis has been associated with the induction and modulation of type-2 granulomatous inflammatory response induced by antigens secreted by the eggs, which become trapped in capillary venules of the host tissues, especially in the liver and intestines. IL-33, an alarmin released after cell damage, binds to its ST2 (suppressor of tumorigenicity 2) receptor, expressed in an variety of immune cells, including ILC2 and macrophages, and stimulates the early production of IL-5 and IL-13, which leads to eosinophil infiltration and activation of a Th2 response. However, the role of IL-33/ST2 activation on Schistosoma-induced granuloma formation and modulation is mostly unknown. In the current work, we comparatively evaluated the immune response and granuloma formation in wild-type BALB/c (WT) and BALB/c mice genetically deficient in the IL-33 receptor (ST2-/-) experimentally infected with Schistosoma mansoni. Mice were infected with 25 or 50 S. mansoni cercariae and followed for up to 14 weeks to assess mortality. Mice from each experimental group were comparatively evaluated for parasite burden, liver immune response, and granuloma appearance during acute and chronic schistosomiasis. Our data showed that the number of circulating worms and eggs retained in the liver and eliminated in the feces was similar in WT and ST2-/- infected mice, but infected ST2-/- mice presented an enhanced rate of mortality. Interestingly, the production of type-2 cytokines by soluble egg antigens (SEA)-stimulated spleen cells, the serum concentrations of IL-5 and Immunoglobulin (Ig)-E, and the level of parasite-reactive IgG1 were similar in infected mice of both experimental groups. The concentrations of IL-4, IL-5, IL-13, and IFN-γ in liver homogenate of infected mice also did not differ between the strains at acute schistosomiasis, but there was a significant increase in IL-17 levels in ST2-/- infected mice at this phase. On the other hand, IL-4, IL-13, IL-10, IL-17, and IFN-γ concentrations were reduced and the ratios of IL-4/IFN-γ and IL-17/IFN-γ were higher in liver homogenate of chronically infected ST2-/- mice, suggesting unbalanced Th2 and Th17 responses. Moreover, liver granulomas of ST2-/- mice were larger and disorganized, showing an intense cellular infiltrate, rich in eosinophils and neutrophils. Our results suggest that the absence of the IL-33/ST2 pathway is not essential for the Schistosoma-induced Th2 response, but is necessary to prevent host mortality by modulating granuloma-mediated pathology.
Collapse
Affiliation(s)
- Laura Maggi
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabella Chrystina Rocha
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Curso de Enfermagem, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Mato Grosso, Barra do Garça, Brazil
| | - Genil Mororó Araújo Camelo
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Rodrigues Fernandes
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Negrão-Corrêa
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
20
|
McLaughlin TA, Khayumbi J, Ongalo J, Matete D, Tonui J, Muchiri B, Sasser LE, Campbell A, Allana S, Ouma SG, Hayara FO, Gandhi NR, Day CL. Adults from Kisumu, Kenya have robust γδ T cell responses to Schistosoma mansoni, which are modulated by tuberculosis. PLoS Negl Trop Dis 2020; 14:e0008764. [PMID: 33044959 PMCID: PMC7580987 DOI: 10.1371/journal.pntd.0008764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/22/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022] Open
Abstract
Schistosoma mansoni (SM) is a parasitic helminth that infects over 200 million people and causes severe morbidity. It undergoes a multi-stage life cycle in human hosts and as such stimulates a stage-specific immune response. The human T cell response to SM is complex and varies throughout the life cycle of SM. Relative to the wealth of information regarding the immune response to SM eggs, little is known about the immune response to the adult worm. In addition, while a great deal of research has uncovered mechanisms by which co-infection with helminths modulates immunity to other pathogens, there is a paucity of data on the effect of pathogens on immunity to helminths. As such, we sought to characterize the breadth of the T cell response to SM and determine whether co-infection with Mycobacterium tuberculosis (Mtb) modifies SM-specific T cell responses in a cohort of HIV-uninfected adults in Kisumu, Kenya. SM-infected individuals were categorized into three groups by Mtb infection status: active TB (TB), Interferon-γ Release Assay positive (IGRA+), and Interferon-γ Release Assay negative (IGRA-). U.S. adults that were seronegative for SM antibodies served as naïve controls. We utilized flow cytometry to characterize the T cell repertoire to SM egg and worm antigens. We found that T cells had significantly higher proliferation and cytokine production in response to worm antigen than to egg antigen. The T cell response to SM was dominated by γδ T cells that produced TNFα and IFNγ. Furthermore, we found that in individuals infected with Mtb, γδ T cells proliferated less in response to SM worm antigens and had higher IL-4 production compared to naïve controls. Together these data demonstrate that γδ T cells respond robustly to SM worm antigens and that Mtb infection modifies the γδ T cell response to SM. Schistosomiasis, a disease caused by parasitic helminths including Schistosoma mansoni (SM), affects hundreds of millions of people globally. SM undergoes a complex life cycle within humans resulting in adult worm pairs that release eggs into the circulatory system. The human immune response to SM, especially to adult worms, is not well characterized. In addition, the impact of co-infections, which are common in SM endemic regions, on the immune response to SM is unknown. In this study, we first sought to characterize the T cell response to different stages of the SM life cycle. We next evaluated whether T cell responses to SM were altered in the setting of co-infection with Mycobacterium tuberculosis, the bacteria that causes tuberculosis. We determined that human T cell responses to SM adult worm antigen are more robust than to SM egg antigen. This response is dominated by a non-classical T cell subset of γδ T cells producing IFNγ and TNFα. Lastly, we found that the ability of γδ T cells to proliferate in response to SM worm was lower in individuals with tuberculosis compared to naïve controls. This study provides novel insights into the immune response to SM and how tuberculosis may impair SM immunity.
Collapse
Affiliation(s)
- Taryn A. McLaughlin
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Jeremiah Khayumbi
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joshua Ongalo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daniel Matete
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joan Tonui
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Benson Muchiri
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Loren E. Sasser
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Angela Campbell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Salim Allana
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Samuel Gurrion Ouma
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Neel R. Gandhi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cheryl L. Day
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Pamplona A, Silva-Santos B. γδ T cells in malaria: a double-edged sword. FEBS J 2020; 288:1118-1129. [PMID: 32710527 PMCID: PMC7983992 DOI: 10.1111/febs.15494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Malaria remains a devastating global health problem, resulting in many annual deaths due to the complications of severe malaria. However, in endemic regions, individuals can acquire ‘clinical immunity’ to malaria, characterized by a decrease in severe malaria episodes and an increase of asymptomatic Plasmodium falciparum infections. Recently, it has been reported that tolerance to ‘clinical malaria’ and reduced disease severity correlates with a decrease in the numbers of circulating Vγ9Vδ2 T cells, the major subset of γδ T cells in the human peripheral blood. This is particularly interesting as this population typically undergoes dramatic expansions during acute Plasmodium infections and was previously shown to play antiparasitic functions. Thus, regulated γδ T‐cell responses may be critical to balance immune protection with severe pathology, particularly as both seem to rely on the same pro‐inflammatory cytokines, most notably TNF and IFN‐γ. This has been clearly demonstrated in mouse models of experimental cerebral malaria (ECM) based on Plasmodium berghei ANKA infection. Furthermore, our recent studies suggest that the natural course of Plasmodium infection, mimicked in mice through mosquito bite or sporozoite inoculation, includes a major pathogenic component in ECM that depends on γδ T cells and IFN‐γ production in the asymptomatic liver stage, where parasite virulence is seemingly set and determines pathology in the subsequent blood stage. Here, we discuss these and other recent advances in our understanding of the complex—protective versus pathogenic—functions of γδ T cells in malaria.
Collapse
Affiliation(s)
- Ana Pamplona
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
22
|
Wang L, Liao Y, Yang R, Yu Z, Zhang L, Zhu Z, Wu X, Shen J, Liu J, Xu L, Wu Z, Sun X. Sja-miR-71a in Schistosome egg-derived extracellular vesicles suppresses liver fibrosis caused by schistosomiasis via targeting semaphorin 4D. J Extracell Vesicles 2020; 9:1785738. [PMID: 32944173 PMCID: PMC7480424 DOI: 10.1080/20013078.2020.1785738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Schistosomiasis is characterized by liver fibrosis, and studies have indicated that Schistosoma japonicum (S. japonicum) eggs can limit the progression of liver fibrosis. However, the detailed molecular mechanisms are yet unclear. Extracellular vesicles (EVs) contain a selection of miRNAs for long-distance exchange of information and act as an important pathway for host-parasite communication. This study aimed to explore the potential role of S. japonicum egg-derived EVs and its key miRNA in liver fibrosis. Herein, we found that S. japonicum egg-derived EVs can inhibit the activation of hepatic stellate cells, which is mediated via the high expression of Sja-miR-71a. Sja-miR-71a in EVs attenuates the pathological progression and liver fibrosis in S. japonicum infection. Sja-miR-71a inhibiting TGF-β1/SMAD and interleukin (IL)-13/STAT6 pathways via directly targeting semaphorin 4D (Sema4D). In addition, Sja-miR-71a can also suppress liver fibrosis by regulating Th1/Th2/Th17 and Treg balance. This study contributes to further understanding of the molecular mechanisms underlying Schistosoma-host interactions, and Sema4D may be a potential target for schistosomiasis liver fibrosis treatment.
Collapse
Affiliation(s)
- Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Ruibing Yang
- Medical Department of Xizang Minzu University, Xianyang, China
| | - Zilong Yu
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiaoying Wu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jiahua Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lian Xu
- Nantong University, Nantong, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
23
|
IL-17A-producing γδ T cells promote liver pathology in acute murine schistosomiasis. Parasit Vectors 2020; 13:334. [PMID: 32611373 PMCID: PMC7329544 DOI: 10.1186/s13071-020-04200-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background The main symptoms of schistosomiasis are granuloma and fibrosis, caused by Schistosoma eggs. Numerous types of cells and cytokines are involved in the progression of Schistosoma infection. As a class of innate immune cells, γδ T cells play critical roles in the early immune response. However, their role in modulating granuloma and fibrosis remains to be clarified. Methods Liver fibrosis in wild-type (WT) mice and T cell receptor (TCR) δ knockout (KO) mice infected with Schistosoma japonicum was examined via Masson’s trichrome staining of collagen deposition and quantitative reverse transcriptase-PCR (RT-PCR) of fibrosis-related genes. Granuloma was detected by hematoxylin-eosin (H&E) staining and quantified. Flow cytometry was used for immune cell profiling and for detecting cytokine secretion. The abundance of the related cytokines was measured using quantitative RT-PCR. Results The livers of S. japonicum-infected mice had significantly increased proportions of interleukin (IL)-17A producing γδ T cells and secreted IL-17A. Compared with the WT mice, TCR δ deficiency resulted in reduced pathological impairment and fibrosis in the liver and increased survival in infected mice. In addition, the profibrogenic effects of γδ T cells in infected mice were associated with enhanced CD11b+Gr-1+ cells, concurrent with increased expression of transforming growth factor (TGF)-β in the liver. Conclusions In this mouse model of Schistosoma infection, γδ T cells may promote liver fibrosis by recruiting CD11b+Gr-1+ cells. These findings shed new light on the pathogenesis of liver pathology in murine schistosomiasis.![]()
Collapse
|
24
|
Angeles JMM, Mercado VJP, Rivera PT. Behind Enemy Lines: Immunomodulatory Armamentarium of the Schistosome Parasite. Front Immunol 2020; 11:1018. [PMID: 32582161 PMCID: PMC7295904 DOI: 10.3389/fimmu.2020.01018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The deeply rooted, intricate relationship between the Schistosoma parasite and the human host has enabled the parasite to successfully survive within the host and surreptitiously evade the host's immune attacks. The parasite has developed a variety of strategies in its immunomodulatory armamentarium to promote infection without getting harmed or killed in the battlefield of immune responses. These include the production of immunomodulatory molecules, alteration of membranes, and the promotion of granuloma formation. Schistosomiasis thus serves as a paradigm for understanding the Th2 immune responses seen in various helminthiases. This review therefore aims to summarize the immunomodulatory mechanisms of the schistosome parasites to survive inside the host. Understanding these immunomodulatory strategies not only provides information on parasite-host interactions, but also forms the basis in the development of novel drugs and vaccines against the schistosome infection, as well as various types of autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jose Ma M Angeles
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Van Jerwin P Mercado
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
25
|
Cha H, Xie H, Jin C, Feng Y, Xie S, Xie A, Yang Q, Qi Y, Qiu H, Wu Q, Yin Z, Mu J, Huang J. Adjustments of γδ T Cells in the Lung of Schistosoma japonicum-Infected C56BL/6 Mice. Front Immunol 2020; 11:1045. [PMID: 32582168 PMCID: PMC7287124 DOI: 10.3389/fimmu.2020.01045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Many kinds of lymphocytes are involved in Schistosoma japonicum (S. japonicum) infection-induced disease. γδ T cells comprise a small number of innate lymphocytes that quickly respond to foreign materials. In this study, the role of γδ T cells in the lung of S. japonicum-infected C56BL/6 mice was investigated. The results demonstrated that S. japonicum infection induces γδ T cell accumulation in the lung, expressing higher levels of CD25, MHCII, CD80, and PDL1, and lower levels of CD127 and CD62L (P < 0.05). The intracellular cytokines staining results illustrated higher percentages of IL-4-, IL-10-, IL-21-, and IL-6-producing γδ T cells and lower percentages of IFN-γ-expressing γδ T cells in the lung of infected mice (P < 0.05). Moreover, the granuloma size in lung tissue was significantly increased in Vδ−/− mice (P < 0.05). In the lung of S. japonicum-infected Vδ−/− mice, both type 1 and type 2 immune responses were decreased significantly (P < 0.05). In addition, the expression of CD80 and CD69 on B cells was decreased significantly (P < 0.05), and the SEA-specific antibody was markedly decreased (P < 0.05) in the blood of infected Vδ−/− mice. In conclusion, this study indicates that γδ T cells could adjust the Th2 dominant immune response in the lung of S. japonicum-infected mice.
Collapse
Affiliation(s)
- Hefei Cha
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenxi Jin
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanfa Feng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quan Yang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiongli Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Zhou QH, Wu FT, Pang LT, Zhang TB, Chen Z. Role of γδT cells in liver diseases and its relationship with intestinal microbiota. World J Gastroenterol 2020; 26:2559-2569. [PMID: 32523311 PMCID: PMC7265152 DOI: 10.3748/wjg.v26.i20.2559] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
γδT cells are unconventional T lymphocytes that bridge innate and adaptive immunity. Based on the composition of T cell receptor and the cytokines produced, γδT cells can be divided into diverse subsets that may be present at different locations, including the liver, epithelial layer of the gut, the dermis and so on. Many of these cells perform specific functions in liver diseases, such as viral hepatitis, autoimmune liver diseases, non-alcoholic fatty liver disease, liver cirrhosis and liver cancers. In this review, we discuss the distribution, subsets, functions of γδT cells and the relationship between the microbiota and γδT cells in common hepatic diseases. As γδT cells have been used to cure hematological and solid tumors, we are interested in γδT cell-based immunotherapies to treat liver diseases.
Collapse
Affiliation(s)
- Qi-Hui Zhou
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Feng-Tian Wu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Lan-Tian Pang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Tian-Bao Zhang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Zhi Chen
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
27
|
Huang Y, Lu J, Xu Y, Xiong C, Tong D, Hu N, Yang H. Xiaochaihu decorction relieves liver fibrosis caused by Schistosoma japonicum infection via the HSP47/TGF-β pathway. Parasit Vectors 2020; 13:254. [PMID: 32410640 PMCID: PMC7227055 DOI: 10.1186/s13071-020-04121-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatic fibrosis caused by chronic infection with Schistosoma japonica remains a serious public health problem in the world. Symptoms include inflammation, liver granuloma and fibrosis, whilst treatment options are still limited. This study aims to investigate whether and how traditional Chinese medicine Xiaochaihu decoction (XCH) could mitigate liver fibrosis caused by S. japonicum infection. Methods BALB/c mice were infected with S. japonicum cercariae and treated with XCH for 16 weeks. Liver pathological changes were assessed by H&E and Masson staining. NIH3T3 and Raw264.7 cells were treated with S. japonicum egg antigens with or without XCH treatment. Quantitative real-time PCR, western blot, immunfluorescence and ELISA were performed to determine the changes of levels of fibrogenic markers. Results XCH protected mouse liver from injuries and fibrosis caused by S. japonicum infection and considerably reduced egg burden in a dose-dependent manner. Infection with S. japonicum caused elevation of serum ALT, AST, ALP, HA and PIIINP levels and reduction of ALB and GLOB levels, which was markedly suppressed by XCH. The upregulation of TGF-β1, Hsp47, α-SMA, Col1A1 and Col3A1 in S. japonicum-infected mouse liver was also significantly inhibited by XCH. Schistosoma japonicum egg antigens promoted the expression of Hsp47, TGF-β1, Timp-1, α-SMA, Col1A1 and Col3A1 in NIH3T3 cells, and TGF-β1, CTGF, IL-13, IL-17 and IL-6 in Raw264.7 cells, which was inhibited by XCH, LY2157299 and shRNA-Hsp47. Conclusions These results demonstrated that the hepatic protective effects of Xiaochaihu decoction were mediated by HSP47/TGF-β axis.![]()
Collapse
Affiliation(s)
- Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China. .,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Jin Lu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Deshen Tong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Nannan Hu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haitao Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China. .,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
28
|
Zheng B, Zhang J, Chen H, Nie H, Miller H, Gong Q, Liu C. T Lymphocyte-Mediated Liver Immunopathology of Schistosomiasis. Front Immunol 2020; 11:61. [PMID: 32132991 PMCID: PMC7040032 DOI: 10.3389/fimmu.2020.00061] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
The parasitic worms, Schistosoma mansoni and Schistosoma japonicum, reside in the mesenteric veins, where they release eggs that induce a dramatic granulomatous response in the liver and intestines. Subsequently, infection may further develop into significant fibrosis and portal hypertension. Over the past several years, uncovering the mechanism of immunopathology in schistosomiasis has become a major research objective. It is known that T lymphocytes, especially CD4+ T cells, are essential for immune responses against Schistosoma species. However, obtaining a clear understanding of how T lymphocytes regulate the pathological process is proving to be a daunting challenge. To date, CD4+ T cell subsets have been classified into several distinct T helper (Th) phenotypes including Th1, Th2, Th17, T follicular helper cells (Tfh), Th9, and regulatory T cells (Tregs). In the case of schistosomiasis, the granulomatous inflammation and the chronic liver pathology are critically regulated by the Th1/Th2 responses. Animal studies suggest that there is a moderate Th1 response to parasite antigens during the acute stage, but then, egg-derived antigens induce a sustained and dominant Th2 response that mediates granuloma formation and liver fibrosis. In addition, the newly discovered Th17 cells also play a critical role in the hepatic immunopathology of schistosomiasis. Within the liver, Tregs are recruited to hepatic granulomas and exert an immunosuppressive role to limit the granulomatous inflammation and fibrosis. Moreover, recent studies have shown that Tfh and Th9 cells might also promote liver granulomas and fibrogenesis in the murine schistosomiasis. Thus, during infection, T-cell subsets undergo complicated cross-talk with antigen presenting cells that then defines their various roles in the local microenvironment for regulating the pathological progression of schistosomiasis. This current review summarizes a vast body of literature to elucidate the contribution of T lymphocytes and their associated cytokines in the immunopathology of schistosomiasis.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
29
|
Chen D, Zhao Y, Feng Y, Jin C, Yang Q, Qiu H, Xie H, Xie S, Zhou Y, Huang J. Expression of TLR2, TLR3, TLR4, and TLR7 on pulmonary lymphocytes of Schistosoma japonicum-infected C57BL/6 mice. Innate Immun 2020; 25:224-234. [PMID: 31018808 PMCID: PMC6830883 DOI: 10.1177/1753425919840424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the paramount role of TLRs in the induction of innate immune and
inflammatory responses, there is a paucity of studies on the role of TLRs in
Schistosoma japonicum infection. Here, we observed obvious
infiltration of inflammatory cells in S. japonicum-infected
C57BL/6 mouse lungs. Expression and release of IFN-γ, IL-4, and IL-17 were
significantly higher in pulmonary lymphocytes from infected mice compared with
control mice in response to anti-CD3 plus anti-CD28 mAbs. Higher percentages of
TLR2, TLR3, TLR4, and TLR7 were expressed on such lymphocytes, and the TLR
agonists PGN, Poly I:C, LPS, and R848 induced a higher level of IFN-γ. However,
a higher level of IL-4 was found in the supernatant of pulmonary lymphocytes
from infected mice stimulated by these TLR agonists plus CD3 Ab. Only R848 plus
anti-CD3 mAb could induce a higher level of IFN-γ in such lymphocytes. TLR
expressions were then compared on different pulmonary lymphocytes after
infection, including T cells, B cells, NK cells, NKT cells, and γδT cells. The
expression levels of TLR3 on T cells, B cells, NK cells, and γδT cells were
increased in the lungs after infection. NK cells also expressed higher levels of
TLR4 after infection of control mice. Collectively, these findings highlight the
potential role of TLR expression in the context of S. japonicum
infection.
Collapse
Affiliation(s)
- Dianhui Chen
- 1 The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou Medical University, China
| | - Yi Zhao
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Yuanfa Feng
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Chenxi Jin
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Quan Yang
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Huaina Qiu
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Hongyan Xie
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Sihao Xie
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| | - Yi Zhou
- 3 College of Pharmacy, Guangzhou Medical University, China
| | - Jun Huang
- 2 Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China
| |
Collapse
|
30
|
TLR7 Modulated T Cell Response in the Mesenteric Lymph Node of Schistosoma japonicum-Infected C57BL/6 Mice. J Immunol Res 2019; 2019:2691808. [PMID: 31930147 PMCID: PMC6942828 DOI: 10.1155/2019/2691808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in regulating immune responses during pathogen infection. However, roles of TLRs on T cells reside in the mesenteric lymph node (MLN) were not be fully elucidated in the course of S. japonicum infection. In this study, T lymphocytes from the mesenteric lymph node (MLN) of S. japonicum-infected mice were isolated and the expression and roles of TLR2, TLR3, TLR4, and TLR7 on both CD4+ and CD8+ T cells were compared. We found that the expression of TLR7 was increased in the MLN cells of S. japonicum-infected mice, particularly in CD4+ and CD8+ T cells (P < 0.05). R848, a TLR7 agonist, could enhance the production of IFN-γ from MLN T cells of infected mice (P < 0.05), especially in CD8+ T cells (P < 0.01). In TLR7 gene knockedout (KO) mice, the S. japonicum infection caused a significant decrease (P < 0.05) of the expression of CD25 and CD69, as well as the production of IFN-γ and IL-4 inducted by PMA plus ionomycin on both CD4+ and CD8+ T cells. Furthermore, the decreased level of IFN-γ and IL-4 in the supernatants of SEA- or SWA-stimulated mesenteric lymphocytes was detected (P < 0.05). Our results indicated that S. japonicum infection could induce the TLR7 expression on T cells in the MLN of C57BL/6 mice, and TLR7 mediates T cell response in the early phase of infection.
Collapse
|
31
|
Inhibition of Rho-Kinase Downregulates Th17 Cells and Ameliorates Hepatic Fibrosis by Schistosoma japonicum Infection. Cells 2019; 8:cells8101262. [PMID: 31623153 PMCID: PMC6829618 DOI: 10.3390/cells8101262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schistosomiasis is an immunopathogenic disease in which Th17 cells play vital roles. Hepatic granuloma formation and subsequent fibrosis are its main pathologic manifestations and the leading causes of hepatic cirrhosis, and effective therapeutic interventions are lacking. In this study, we explored the effects of fasudil, a selective RhoA-Rho-associated kinase (ROCK) inhibitor, on Th17 cells and the pathogenesis of schistosomiasis. METHODS Mice were infected with Schistosoma japonicum and treated with fasudil. The worm burden, hepatic granuloma formation, and fibrosis were evaluated. The roles of fasudil on Th17, Treg, and hepatic stellate cells were analyzed. RESULTS Fasudil therapy markedly reduced the granuloma size and collagen deposit in livers from mice infected with S. japonicum. However, fasudil therapy did not affect the worm burden in infected mice. The underlying cellular and molecular mechanisms were investigated. Fasudil suppressed the activation and induced the apoptosis of CD4+ T cells. Fasudil inhibited the differentiation and effector cytokine secretion of Th17 cells, whereas it upregulated Treg cells in vitro. It also restrained the in vivo interleukin (IL)-4 and IL-17 levels in infected mice. Fasudil directly induced the apoptosis of hepatic stellate cells and downregulated the expressions of hepatic fibrogenic genes, such as collagen type I (Col-I), Col-III, and transforming growth factor-1 (TGF-β1). These effects may contribute to its anti-pathogenic roles in schistosomiasis. CONCLUSIONS Fasudil inhibits hepatic granuloma formation and fibrosis with downregulation of Th17 cells. Fasudil might serve as a novel therapeutic agent for hepatic fibrosis due to schistosome infections and perhaps other disorders.
Collapse
|
32
|
Yang Q, Qu J, Jin C, Feng Y, Xie S, Zhu J, Liu G, Xie H, Qiu H, Qi Y, Mu J, Huang J. Schistosoma japonicum Infection Promotes the Response of Tfh Cells Through Down-Regulation of Caspase-3-Mediating Apoptosis. Front Immunol 2019; 10:2154. [PMID: 31572373 PMCID: PMC6753327 DOI: 10.3389/fimmu.2019.02154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/28/2019] [Indexed: 01/13/2023] Open
Abstract
CD4+ T follicular helper (Tfh) cells, a new subset of immune cells, have been demonstrated to be involved in granulomatous responses to Schistosoma japonicum (S. japonicum) infection. However, the role and underlying mechanisms of Tfh cell aggregation in S. japonicum infection remain incompletely understood. In this study, we provide evidence that S. japonicum infection enhances the accumulation of Tfh cells in the spleen, lymph nodes, and peripheral blood of C57BL/6 mice. Infection-induced Tfh cells exhibited more potent effects directly on B cell responses than the control Tfh cells (P < 0.05). Furthermore, reduced apoptosis of Tfh cells was found both in S. japonicum infected mice and in soluble egg antigen (SEA) treated Tfh cells (P < 0.05). Mechanistic studies reveal that caspase-3 is the primary drivers of down-regulated apoptotic Tfh cell death in S. japonicum infection. In summary, this study demonstrates that Tfh cell accumulation might have an impact on the generation of immune responses in S. japonicum infection, and caspase-3 signaling mediated apoptosis down-regulation might responsible for the accumulation of Tfh cell in this course.
Collapse
Affiliation(s)
- Quan Yang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiale Qu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chenxi Jin
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuanfa Feng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jinxin Zhu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gaoshen Liu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Tebeje BM, Harvie M, You H, Rivera V, McManus DP. T cell-mediated immunity in CBA mice during Schistosoma japonicum infection. Exp Parasitol 2019; 204:107725. [PMID: 31306646 DOI: 10.1016/j.exppara.2019.107725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/23/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Characterisation of the cellular immune response to schistosomiasis is well established for Schistosoma mansoni but a comprehensive description of T cell-mediated immune responses against S. japonicum infection is lacking. Accordingly, 20 CBA mice were infected with cercariae of S. japonicum and the immune response at different time points was determined. Mouse spleen and liver lymphocytes were isolated from the mice and stimulated with schistosomal adult worm antigen preparation (SWAP) and schistosomal soluble egg antigen (SEA). There was a relatively higher Th1 immune response to SWAP compared to SEA at the early phase of infection (up to week 5 post challenge). However, a Th2 immune response directed against SEA was dominant at week 6 post-infection, a time point when the highest IgG response against both SWAP and, especially, SEA was generated. The regulatory immune response was highest at the early phase of the immune response (up to week 5 post challenge) followed by a rapid decline at week 6-post infection. Before egg-laying, S. japonicum induced a regulatory T cell immune response which may limit the early Th1-mediated immune response that is believed to be protective in murine schistosomiasis. Following egg laying, the immune response was polarized to a Th2 immune response mainly directed against the eggs and this may contribute to parasite survival.
Collapse
Affiliation(s)
- Biniam Mathewos Tebeje
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia; School of Public Health, University of Queensland, Brisbane, Australia.
| | - Marina Harvie
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Vanessa Rivera
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
34
|
Kalantari P, Bunnell SC, Stadecker MJ. The C-type Lectin Receptor-Driven, Th17 Cell-Mediated Severe Pathology in Schistosomiasis: Not All Immune Responses to Helminth Parasites Are Th2 Dominated. Front Immunol 2019; 10:26. [PMID: 30761125 PMCID: PMC6363701 DOI: 10.3389/fimmu.2019.00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Schistosomiasis is a major helminthic disease in which damage to the affected organs is orchestrated by a pathogenic host CD4 T helper (Th) cell-mediated immune response against parasite eggs. In the case of the species Schistosoma mansoni, the resulting granulomatous inflammation and fibrosis takes place in the liver and intestines. The magnitude of disease varies greatly from individual to individual but in a minority of patients, there is severe disease and death. S. mansoni infection in a murine model similarly results in marked strain variation of immunopathology. In the most commonly examined mouse strain, C57BL/6 (BL/6), there is relatively mild hepatic pathology arising in a Th2-dominated cytokine environment. In contrast, CBA mice develop decisively more severe lesions largely driven by proinflammatory IL-17-producing Th17 cells. Dendritic cells (DCs) from CBA mice differ sharply with those from BL/6 mice in that they vastly over-express the C-type lectin receptor (CLR) CD209a (SIGNR5), a homolog of human DC-SIGN, which senses glycans such as those produced by schistosome eggs. Silencing of CD209a, and recent studies with CD209a KO CBA mice have shown that this receptor is crucial to induce the pathogenic Th17 cell response; indeed, CD209a KO mice display markedly reduced immunopathology akin to that seen in BL/6 mice. Mechanistically, CD209a synergizes with the related CLRs Dectin-2 and Mincle to stimulate increased DC production of IL-1β and IL-23, necessary for pathogenic Th17 cell development. These findings denote key molecular underpinnings of disease variability based on selection and function of contrasting Th cell subsets.
Collapse
Affiliation(s)
- Parisa Kalantari
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Stephen C Bunnell
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Miguel J Stadecker
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
35
|
Wang X, Fu Q, Song R, Duan B, Bergquist R, Xu J, Li S, Zhou D, Qin Z. Antinuclear antibodies and interleukin responses in patients with Schistosoma japonicum infection. Parasite Immunol 2018; 40:e12577. [PMID: 30074250 DOI: 10.1111/pim.12577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 01/12/2023]
Abstract
Schistosomiasis poses a serious threat to public health, and the infection will develop into chronic and advanced late-stage disease if not treated. Apart from the clinical signs due to immune reactions to schistosome eggs trapped in host tissues, it also increases the risk for the development of autoimmunity reflected by dysfunctional, auto-reactive antibodies. Antinuclear antibodies (ANA) have been reported in schistosomiasis due to S. mansoni and S. haematobium. We demonstrate ANA in schistosomiasis japonica and explore the relationship between this infection and autoimmune disease by measuring ANA and interleukin (IL)-10, IL-12 and IL-17 responses in the sera of 125 Chinese patients with different stages of schistosomiasis japonica. The incidence rates of ANA in the patients with acute, chronic and late stages of schistosomiasis infection were 6.7%, 23.3% and 70.0%, respectively, with statistically significant differences between each stage (P = 0.000). IL-17 concentrations were high at the acute stage of schistosomiasis compared to the other stages of the disease (P = 0.000). This pattern was also seen for IL-10 and IL-12 concentrations (P = 0.01). IL concentrations in patients in the chronic and late stages of the disease were low and showed no difference compared to the healthy adults.
Collapse
Affiliation(s)
- Xiang Wang
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qiong Fu
- RenjiHospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Song
- RenjiHospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Duan
- Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | - Jing Xu
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Shizhu Li
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Dongming Zhou
- Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqiang Qin
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
36
|
|
37
|
Mutengo MM, Mduluza T, Kelly P, Mwansa JCL, Kwenda G, Musonda P, Chipeta J. Low IL-6, IL-10, and TNF- α and High IL-13 Cytokine Levels Are Associated with Severe Hepatic Fibrosis in Schistosoma mansoni Chronically Exposed Individuals. J Parasitol Res 2018; 2018:9754060. [PMID: 29610679 PMCID: PMC5828471 DOI: 10.1155/2018/9754060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/21/2017] [Indexed: 01/29/2023] Open
Abstract
Several studies have attributed the etiopathogenesis of chronic Schistosoma mansoni related hepatic fibrosis to unregulated immune responses against trapped parasite ova in the host. However, there is limited data on immune profiles associated with varying degrees of the disease in a population under chronic exposure to the parasite. We therefore investigated the role of selected T-helper (Th)1, Th2, and Th17 cytokines in relation to hepatic fibrosis severity among individuals resident in a hyper-Schistosoma mansoni endemic region of Western Zambia. Two hundred and forty-four S. mansoni infected individuals with and without fibrosis were analysed for cytokine profiles. Based on hepatic fibrosis stage as determined by ultrasound, participants were categorized into Group 0, Group I, Group II, and Group III. Cytokines were measured in S. mansoni egg stimulated whole blood culture supernatants using the BD Cytometric Bead Array kits. Compared to the nonfibrotic group, participants in the severe hepatic fibrotic group produced less interleukin- (IL-) 6, IL-10, and tumour necrosis factor-alpha (TNF-α). On the other hand, IL-13 was significantly elevated in this group compared to the nonfibrotic group (p < 0.001). Our results suggest that low IL-6, IL-10, and TNF-α and high IL-13 levels may influence S. mansoni disease progression.
Collapse
Affiliation(s)
- Mable M. Mutengo
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
- University of Zambia, Lusaka, Zambia
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Paul Kelly
- Department of Internal Medicine, School of Medicine, University of Zambia, Lusaka, Zambia
| | - James C. L. Mwansa
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
- University of Zambia, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Patrick Musonda
- Department of Epidemiology and Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia
| | - James Chipeta
- Department of Pediatrics and Child Health, School of Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
38
|
Tang CL, Liu ZM, Gao YR, Xiong F. Schistosoma Infection and Schistosoma-Derived Products Modulate the Immune Responses Associated with Protection against Type 2 Diabetes. Front Immunol 2018; 8:1990. [PMID: 29387059 PMCID: PMC5776330 DOI: 10.3389/fimmu.2017.01990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022] Open
Abstract
Studies on parasite-induced immunoregulatory mechanisms could contribute to the development of new therapies for inflammatory diseases such as type 2 diabetes (T2D), which is a chronic inflammatory disease characterized by persistent elevated glucose levels due to insulin resistance. The association between previous Schistosoma infection and T2D has been confirmed—Schistosoma infection and Schistosoma-derived products modulate the immune system, including innate and acquired immune responses, contributing to T2D disease control. Schistosoma infections and Schistosoma-derived molecules affect the immune cell composition in adipose tissue, dampening inflammation and improving glucose tolerance. This protective role includes the polarization of immune cells to alternatively activated macrophages, dendritic cells, eosinophils, and group 2 innate lymphoid cells. Furthermore, Schistosoma infection and Schistosoma products are effective for the treatment of T2D, as they increase the number of type 2 helper T cells (Th2) and regulatory T cells (Tregs) and decrease type 1 helper T cells (Th1) and type 17 helper T cells (Th17) cells. Thus, our aim was to comprehensively review the mechanism through which Schistosoma infection and Schistosoma products modulate the immune response against T2D.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Department of Science and Education, Wuchang Hospital, Wuhan, China
| | - Zhi-Ming Liu
- Department of Science and Education, Wuchang Hospital, Wuhan, China
| | - Yan Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Molehin AJ, Sennoune SR, Zhang W, Rojo JU, Siddiqui AJ, Herrera KA, Johnson L, Sudduth J, May J, Siddiqui AA. Cross-species prophylactic efficacy of Sm-p80-based vaccine and intracellular localization of Sm-p80/Sm-p80 ortholog proteins during development in Schistosoma mansoni, Schistosoma japonicum, and Schistosoma haematobium. Parasitol Res 2017; 116:3175-3188. [PMID: 29026995 PMCID: PMC5660642 DOI: 10.1007/s00436-017-5634-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Schistosomiasis remains a major global health problem. Despite large-scale schistosomiasis control efforts, clear limitations such as possible emergence of drug resistance and reinfection rates highlight the need for an effective schistosomiasis vaccine. Schistosoma mansoni large subunit of calpain (Sm-p80)-based vaccine formulations have shown remarkable efficacy in protecting against S. mansoni challenge infections in mice and baboons. In this study, we evaluated the cross-species protective efficacy of Sm-p80 vaccine against S. japonicum and S. haematobium challenge infections in rodent models. We also elucidated the expression of Sm-p80 and Sm-p80 ortholog proteins in different developmental stages of S. mansoni, S. haematobium, and S. japonicum. Immunization with Sm-p80 vaccine reduced worm burden by 46.75% against S. japonicum challenge infection in mice. DNA prime/protein boost (1 + 1 dose administered on a single day) resulted in 26.95% reduction in worm burden in S. haematobium-hamster infection/challenge model. A balanced Th1 (IFN-γ, TNF-α, IL-2, and IL-12) and Th2 (IL-4, IgG1) type of responses were observed following vaccination in both S. japonicum and S. haematobium challenge trials and these are associated with the prophylactic efficacy of Sm-p80 vaccine. Immunohistochemistry demonstrated that Sm-p80/Sm-p80 ortholog proteins are expressed in different life cycle stages of the three major human species of schistosomes studied. The data presented in this study reinforce the potential of Sm-p80-based vaccine for both hepatic/intestinal and urogenital schistosomiasis occurring in different geographical areas of the world. Differential expression of Sm-p80/Sm-p80 protein orthologs in different life cycle makes this vaccine potentially useful in targeting different levels of infection, disease, and transmission.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Souad R Sennoune
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Juan U Rojo
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karlie A Herrera
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Laura Johnson
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Justin Sudduth
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jordan May
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
40
|
Paquissi FC. Immunity and Fibrogenesis: The Role of Th17/IL-17 Axis in HBV and HCV-induced Chronic Hepatitis and Progression to Cirrhosis. Front Immunol 2017; 8:1195. [PMID: 29033929 PMCID: PMC5626935 DOI: 10.3389/fimmu.2017.01195] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis is a common final pathway for most chronic liver diseases; representing an increasing burden worldwide and is associated with increased morbidity and mortality. Current evidence has shown that, after an initial injury, the immune response has a significant participation in the ongoing damage, and progression from chronic viral hepatitis (CVH) to cirrhosis, driving the activation and maintenance of main fibrogenic pathways. Among immune deregulations, those related to the subtype 17 of T helper lymphocytes (Th17)/interleukin-17 (IL-17) axis have been recognized as key immunopathological and prognostic elements in patients with CVH. The Th17/IL-17 axis has been found involved in several points of fibrogenesis chain from the activation of stellate cells, increased expression of profibrotic factors as TGF-β, promotion of the myofibroblastic or epithelial–mesenchymal transition, stimulation of the synthesis of collagen, and induction of imbalance between matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). It also promotes the recruitment of inflammatory cells and increases the expression of proinflammatory cytokines such as IL-6 and IL-23. So, the Th17/IL-17 axis is simultaneously the fuel and the flame of a sustained proinflammatory and profibrotic environment. This work aims to present the immunopathologic and prognostic role of the Th17/IL-17 axis and related pathways in fibrogenesis and progression to cirrhosis in patients with liver disease due to hepatitis B virus (HBV) and hepatitis C virus (HCV).
Collapse
|
41
|
Bhat SA, Mounsey KE, Liu X, Walton SF. Host immune responses to the itch mite, Sarcoptes scabiei, in humans. Parasit Vectors 2017; 10:385. [PMID: 28797273 PMCID: PMC5553898 DOI: 10.1186/s13071-017-2320-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Scabies is a parasitic disease due to infestation of skin by the burrowing mite Sarcoptes scabiei. Scabies is a major public health problem and endemic in resource poor communities worldwide affecting over 100 million people. Associated bacterial infections cause substantial morbidity, and in severe cases can lead to renal and cardiac diseases. Mite infestation of the skin causes localised cutaneous inflammation, pruritus, skin lesions, and allergic and inflammatory responses are mounted by the host against the mite and its products. Our current understanding of the immune and inflammatory responses associated with the clinical manifestations in scabies is far outweighed by the significant global impact of the disease. This review aims to provide a better understanding of human immune responses to S. scabiei in ordinary and crusted scabies phenotypes.
Collapse
Affiliation(s)
- Sajad A. Bhat
- Inflammation & Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558 Australia
| | - Kate E. Mounsey
- Inflammation & Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558 Australia
| | - Xiaosong Liu
- Inflammation & Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558 Australia
| | - Shelley F. Walton
- Inflammation & Healing Research Cluster, School of Health and Sport Sciences, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD 4558 Australia
| |
Collapse
|
42
|
Recruitment of Neutrophils Mediated by Vγ2 γδ T Cells Deteriorates Liver Fibrosis Induced by Schistosoma japonicum Infection in C57BL/6 Mice. Infect Immun 2017; 85:IAI.01020-16. [PMID: 28507072 PMCID: PMC5520426 DOI: 10.1128/iai.01020-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/01/2017] [Indexed: 12/13/2022] Open
Abstract
Conventional adaptive T cell responses contribute to the pathogenesis of Schistosoma japonicum infection, leading to liver fibrosis. However, the role of gamma-delta (γδ) T cells in this disease is less clear. γδ T cells are known to secrete interleukin-17 (IL-17) in response to infection, exerting either protective or pathogenic functions. In the present study, mice infected with S. japonicum are used to characterize the role of γδ T cells. Combined with the infection of S. japonicum, an extremely significant increase in the percentage of neutrophils in the CD45+ cells was detected (from approximately 2.45% to 46.10% in blood and from 0.18% to 7.34% in spleen). Further analysis identified two different γδ T cell subsets that have different functions in the formation of granulomas in S. japonicum-infected mice. The Vγ1 T cells secrete gamma interferon (IFN-γ) only, while the Vγ2 T cells secrete both IL-17A and IFN-γ. Both subtypes lose the ability to secrete cytokine during the late stage of infection (12 weeks postinfection). When we depleted the Vγ2 T cells in infected mice, the percentage of neutrophils in blood and spleen decreased significantly, the liver fibrosis in the granulomas was reduced, and the level of IL-17A in the serum decreased (P < 0.05). These results suggest that during S. japonicum infection, Vγ2 T cells can recruit neutrophils and aggravate liver fibrosis by secreting IL-17A. This is the first report that a subset of γδ T cells plays a partial role in the pathological process of schistosome infection.
Collapse
|
43
|
Characteristics of IL-9 induced by Schistosoma japonicum infection in C57BL/6 mouse liver. Sci Rep 2017; 7:2343. [PMID: 28539607 PMCID: PMC5443805 DOI: 10.1038/s41598-017-02422-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Liver granulomatous inflammation and fibrosis were the primary pathological changes observed during Schistosoma japonicum (S. japonicum) infection. In the present study, the characteristics of IL-9 were investigated in the liver of S. japonicum infection C57BL/6 mice. Immunofluorescence, qRT-PCR, and ELISA results demonstrated that the expression of IL-9 significantly increased after infection (P < 0.01). FACS results indicated that the peak of IL-9+ Th9 cells in the liver mononuclear cells appeared at the early phase of infection (week 5), except that Th9 cells, CD8+ Tc cells, NKT and γδT cells could secrete IL-9 in this model. Although IL-9 neutralization has a limited effect on liver granulomatous inflammation, it could decrease the level of fibrosis-associated factor, PC-III, in the serum of infected mice (P < 0.05). Taken together, our results indicated that IL-9 was an important type of cytokine involved in the progression of S. japonicum infection-induced hepatic damage.
Collapse
|
44
|
Chen D, Xie H, Cha H, Qu J, Wang M, Li L, Yu S, Wu C, Tang X, Huang J. Characteristics of Schistosoma japonicum infection induced IFN-γ and IL-4 co-expressing plasticity Th cells. Immunology 2017; 149:25-34. [PMID: 27242265 DOI: 10.1111/imm.12623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Schistosoma japonicum infection can induce granulomatous inflammation and cause tissue damage in the mouse liver. The cytokine secretion profile of T helper (Th) cells depends on both the nature of the activating stimulus and the local microenvironment (e.g. cytokines and other soluble factors). In the present study, we found an accumulation of large numbers of IFN-γ(+) IL-4(+) CD4(+) T cells in mouse livers. This IFN-γ(+) IL-4(+) cell population increased from 0·68 ± 0·57% in uninfected mice to 7·05 ± 3·0% by week 4 following infection and to 9·6 ± 5·28% by week 6, before decreasing to 6·3 ± 5·9% by week 8 in CD4 T cells. Moreover, IFN-γ(+) IL-4(+) Th cells were also found in mouse spleen and mesenteric lymph nodes 6 weeks after infection. The majority of the IFN-γ(+) IL-4(+) Th cells were thought to be related to a state of immune activation, and some were memory T cells. Moreover, we found that these S. japonicum infection-induced IFN-γ(+) IL-4(+) cells could express interleukin-2 (IL-2), IL-9, IL-17 and high IL-10 levels at 6 weeks after S. japonicum infection. Taken together, our data suggest the existence of a population of IFN-γ(+) IL-4(+) plasticity effector/memory Th cells following S. japonicum infection in C57BL/6 mice.
Collapse
Affiliation(s)
- Dianhui Chen
- Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Functional Experiment Centre, Guangzhou, China
| | - Hefei Cha
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiale Qu
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Mei Wang
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Lu Li
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Sifei Yu
- Institute of Immunology, Guangzhou, China
| | - Changyou Wu
- Institute of Immunology, Guangzhou, China.,Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Tang
- Department of Infectious Diseases, Affiliated No. 8 Guangzhou People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Yang Q, Qiu H, Xie H, Qi Y, Cha H, Qu J, Wang M, Feng Y, Ye X, Mu J, Huang J. A Schistosoma japonicum Infection Promotes the Expansion of Myeloid-Derived Suppressor Cells by Activating the JAK/STAT3 Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 198:4716-4727. [PMID: 28476935 DOI: 10.4049/jimmunol.1601860] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/06/2017] [Indexed: 11/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immune cells from the myeloid lineage, play an important part in suppression of host immune responses during many pathologic conditions, including cancer and infectious diseases. Thus, understanding the functional diversity of these cells as well as the underlying mechanisms is crucial for the development of disease control strategies. The role of MDSCs during Schistosoma japonicum infection, however, is not clear, and there is a lack of systematic study so far. In this study, we provide strong evidence that the soluble egg Ag (SEA) and schistosome worm Ag (SWA) of S. japonicum enhance the accumulation of MDSCs. Ag-induced MDSCs have more potent suppressive effects on T cell responses than do control MDSCs in both in vivo S. japonicum infection and in vitro SEA- and SWA-treated mouse bone marrow cells experiments. Interestingly, the enhanced suppressive activity of MDSCs by Ag administration was coupled with a dramatic induction of the NADPH oxidase subunits gp91phox and p47phox and was dependent on the production of reactive oxygen species. Moreover, mechanistic studies revealed that the Ag effects are mediated by JAK/STAT3 signaling. Inhibition of STAT3 phosphorylation by the JAK inhibitor JSI-124 almost completely abolished the Ag effects on the MDSCs. In summary, this study sheds new light on the immune modulatory role of SEA and SWA and demonstrates that the expansion of MDSCs may be an important element of a cellular network regulating immune responses during S. japonicum infection.
Collapse
Affiliation(s)
- Quan Yang
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Huaina Qiu
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Hongyan Xie
- Functional Experiment Center, Guangzhou Medical University, 511436 Guangzhou, China
| | - Yanwei Qi
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Hefei Cha
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Jiale Qu
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Mei Wang
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Yuanfa Feng
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Xin Ye
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China
| | - Jianbing Mu
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China; .,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Sino-French Hoffmann Institute, Second Affiliated Hospital, Guangzhou Medical University, 511436 Guangzhou, China; .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436 Guangzhou, China
| |
Collapse
|
46
|
Hoe E, Anderson J, Nathanielsz J, Toh ZQ, Marimla R, Balloch A, Licciardi PV. The contrasting roles of Th17 immunity in human health and disease. Microbiol Immunol 2017; 61:49-56. [PMID: 28225165 DOI: 10.1111/1348-0421.12471] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/16/2017] [Indexed: 12/18/2022]
Abstract
The human immune system is a tightly regulated network that protects the host from disease. An important aspect of this is the balance between pro-inflammatory Th17 cells and anti-inflammatory T regulatory (Treg) cells in maintaining immune homeostasis. Foxp3+ Treg are critical for sustaining immune tolerance through IL-10 and transforming growth factor-β while related orphan receptor-γt+ Th17 cells promote immunopathology and auto-inflammatory diseases through the actions of IL-17A, IL-21 and IL-22. Therefore, imbalance between Treg and Th17 cells can result in serious pathology in many organs and tissues. Recently, certain IL-17-producing cells have been found to be protective against infectious disease, particularly in relation to extracellular bacteria such Streptococcus pneumoniae; a number of other novel IL-17-secreting cell populations have also been reported to protect against a variety of other pathogens. In this mini-review, the dual roles of Treg and Th17 cells are discussed in the context of autoimmunity and infections, highlighting recent advances in the field. Development of novel strategies specifically designed to target these critical immune response pathways will become increasingly important in maintenance of human health.
Collapse
Affiliation(s)
- Edwin Hoe
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Jeremy Anderson
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Jordan Nathanielsz
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Zheng Quan Toh
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Rachel Marimla
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Anne Balloch
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia
| | - Paul V Licciardi
- Pneumococcal Research Group, Murdoch Children's Research Institute, Melbourne, Vic, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
47
|
Enhanced Wnt Signalling in Hepatocytes is Associated with Schistosoma japonicum Infection and Contributes to Liver Fibrosis. Sci Rep 2017; 7:230. [PMID: 28331224 PMCID: PMC5428310 DOI: 10.1038/s41598-017-00377-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Liver fibrosis is the most serious pathology caused by Schistosoma japonicum infection, which arises when schistosome eggs are deposited in the liver. Eosinophils, macrophages and hepatic stellate cells (HSCs) have been identified as major cellular contributors to the development of granulomas and fibrosis, but little is known about the effects of hepatocytes on granuloma formation. Here, we found that the levels of Wnt signalling-related molecules, transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF) in hepatocytes were markedly elevated after S. japonicum infection. Liver fibrosis was exacerbated when exogenous Wnt3a was introduced, but was alleviated when Wnt signalling was suppressed by DKK1, accompanied by the reduced expression of TGF-β and CTGF in hepatocytes. These results indicate that the hepatocytic expression of TGF-β and CTGF is mediated by Wnt signalling. Additionally, the hepatocytes isolated from infected mice promoted the activation of primary HSCs in vitro, however, this effect was not observed when hepatocytes from DKK1 treated S. japonicum-infected mice was employed in the co-culture system. Our findings identify a novel pro-fibrogenic role of hepatocytes in schistosomiasis-induced liver fibrosis that is dependent on Wnt signalling, which may serve as a potential target for ameliorating hepatic fibrosis caused by helminths.
Collapse
|
48
|
Jan NU, Ahmad B, Ali S, Adhikari A, Ali A, Jahan A, Ali A, Ali H. Steroidal Alkaloids as an Emerging Therapeutic Alternative for Investigation of Their Immunosuppressive and Hepatoprotective Potential. Front Pharmacol 2017; 8:114. [PMID: 28377714 PMCID: PMC5359222 DOI: 10.3389/fphar.2017.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
The compounds, sarcovagine-D, alkaloid-C, and holaphylline isolated from Sarcococca saligna were found to possess immunosuppressive activities. These compounds were characterized for in vitro inhibition on human T-cells proliferation and IL-2 production. The compounds showed significant immunosuppressive effect on IL-2 production as well as on phytohemagglutinin stimulated T-cell proliferation in a dose dependent manner. Of all the tested compounds holaphylline was found to be less toxic and safe. These compounds were then evaluated for their in vivo hepatoprotective potential against CCl4, in which alkaloid-C and holaphylline showed markedly reduced liver inflammation and biochemical parameter (ALT, AST, and ALP) of liver injury. The decrease in the activity of hepatic antioxidant enzyme (SOD) was significantly prevented by holaphylline, likewise gradually the levels of MDA and GSH were also normalized compared to silymarin. The CCl4 induced inflammation and necrosis around the central vein of liver was reduced by sarcovagine-D, alkaloid-C and holaphylline, to 8%, 4% to 1% respectively as assessed by histopathology, thus having better hepatoprotective effect compared to positive control. Steroidal alkaloids attenuated the inflammation of liver around the injured central vein region by down regulating the CCl4 induced activation of hepatic macrophages as well as their number respectively. Therefore, the in vitro and in vivo results suggest that steroidal alkaloids from S. saligna could be excellent immunosuppressive and hepatoprotective agents.
Collapse
Affiliation(s)
- Naeem U Jan
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar Pakistan
| | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar Pakistan
| | - Safdar Ali
- Pakistan Institute of Engineering and Applied Sciences, Islamabad Pakistan
| | - Achyut Adhikari
- Hussain Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical Sciences, University of Karachi, Karachi Pakistan
| | - Amjad Ali
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad Pakistan
| | - Azra Jahan
- Department of Zoology, Abdul Wali Khan University, Mardan Pakistan
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular Breeding, Department of Vegetable Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou China
| | - Hamid Ali
- Department of Biosciences, COMSATS Institute of Information Technology, IslamabadPakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, KarachiPakistan
| |
Collapse
|
49
|
Yang LY, Li X, Li WT, Huang JC, Wang ZY, Huang ZZ, Chang LH, Zhang GH. Vγ1⁺ γδT Cells Are Correlated With Increasing Expression of Eosinophil Cationic Protein and Metalloproteinase-7 in Chronic Rhinosinusitis With Nasal Polyps Inducing the Formation of Edema. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:142-151. [PMID: 28102059 PMCID: PMC5266113 DOI: 10.4168/aair.2017.9.2.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/16/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022]
Abstract
PURPOSE We have found that expression of γδT cells is increased in pathological mucosa of chronic rhinosinusitis with nasal polyps (CRSwNP) compared with normal nasal mucosa. This increase is correlated with the infiltration of eosinophils in CRSwNP. Here, we investigated the expression of γδT cells, inflammation and tissue remodeling factors as well as their probable relationships in different types of chronic rhinosinusitis (CRS) in China. METHODS A total of 76 surgical tissue samples that included 43 CRSwNP samples (15 eosinophilic and 28 non-eosinophilic), 17 CRS samples without nasal polyps (CRSsNP), and 16 controls were obtained. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the mRNA expression levels of Vγ1⁺ γδT cells, Vγ4⁺ γδT cells, eosinophil cationic protein (ECP), interleukin (IL)-8, transforming growth factor (TGF)-β2, metalloproteinase (MMP)-7, tissue inhibitor of metalloproteinase (TIMP)-4 and hypoxia-inducible factor (HIF)-1α. Enzyme linked immunosorbent assay (ELISA) was used to measure the protein level of ECP and MMP-7 in CRSwNP. The eosinophils were counted and the level of edema was analyzed with HE staining. RESULTS The mRNA expression levels of the Vγ1 subset, ECP and MMP-7 were significantly increased in CRSwNP with histological characteristics of eosinophilic infiltration and edema. The expression of the Vγ1 gene in CRSwNP correlated positively with the expression of both ECP and MMP-7. No significant decreases in the mRNA expression levels of TGF-β2, TIMP-4 or HIF-1α were observed in the CRSwNP samples. The expression levels of Vγ1 gene, ECP and MMP-7 were significantly increased in eosinophilic CRSwNP compared to non-eosinophilic CRSwNP. CONCLUSIONS Our results suggest the associations between Vγ1⁺ γδT cells, ECP and MMP-7 in CRSwNP, indicating that Vγ1⁺ γδT cells can induce the eosinophilic inflammation, which has a further effect on the formation of edema.
Collapse
Affiliation(s)
- Luo Ying Yang
- Department of Otorhinolaryngology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xia Li
- Department of Otorhinolaryngology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen Ting Li
- Department of Otorhinolaryngology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Cong Huang
- Department of Otorhinolaryngology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhi Yuan Wang
- Department of Otorhinolaryngology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zi Zhen Huang
- Department of Otorhinolaryngology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Hong Chang
- Department of Otorhinolaryngology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Ge Hua Zhang
- Department of Otorhinolaryngology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
50
|
Chen L, He B, Hou W, He L. Cysteine protease inhibitor of Schistosoma japonicum - A parasite-derived negative immunoregulatory factor. Parasitol Res 2017; 116:901-908. [PMID: 28066871 DOI: 10.1007/s00436-016-5363-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/20/2016] [Indexed: 01/10/2023]
Abstract
Studies have shown that cysteine protease inhibitors from some parasites have immunosuppressive effects on the host. We previously have cloned a novel cysteine protease inhibitor from Schistosoma japonicum and purified its recombinant version (protein named rSj-C). Its possible inhibitory effect on the host immune response has not been described.This study shows that rSj-C inhibits lysosomal cysteine protease of murine dendritic cells (DCs). After DCs were incubated with rSj-C and then with soluble adult worm antigen (AWA) of S. japonicum, the mean fluorescence intensity of MHC class II antigens on the surface of DCs decreased significantly by flow cytometry. These results indirectly proved that rSj-C can suppress exogenous-antigen presentation by DCs. The flow cytometric assay revealed that in comparison with control groups, the proportion of CD4+CD25+Foxp3+ T cells among CD4+CD25+ T cells of Schistosom-infected mice increased significantly 8 weeks after the infected mice were injected with rSj-C (p ˂ 0.05). Additionally, the expression levels of cytokines IL-4 and TGF-β produced by T cells increased significantly as compared with these levels in the normal group (p ˂ 0.05). These results clearly show that the cysteine protease inhibitor from S. japonicum is a new parasite-derived immunosuppressive factor.
Collapse
Affiliation(s)
- Lin Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Baohua He
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Li He
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|