1
|
Altmann DM, Boyton RJ. Protective immunity to repeated COVID-19 breakthrough infections. Clin Immunol 2024; 268:110374. [PMID: 39357633 DOI: 10.1016/j.clim.2024.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Daniel M Altmann
- Departments of Immunology and Inflammation, Faculty of Medicine, Imperial College London, UK.
| | - Rosemary J Boyton
- Departments of Infectious Disease, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
2
|
Meng L, Pan Y, Liu Y, He R, Sun Y, Wang C, Fei L, Zhu A, Wang Z, An Y, Wu Y, Diao B, Chen Y. Individuals carrying the HLA-B*15 allele exhibit favorable responses to COVID-19 vaccines but are more susceptible to Omicron BA.5.2 and XBB.1.16 infection. Front Immunol 2024; 15:1440819. [PMID: 39257586 PMCID: PMC11383769 DOI: 10.3389/fimmu.2024.1440819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024] Open
Abstract
Background Natural infection or vaccination have provided robust immune defense against SARS-CoV-2 invasion, nevertheless, Omicron variants still successfully cause breakthrough infection, and the underlying mechanisms are poorly understood. Methods Sequential blood samples were continuously collected at different time points from 252 volunteers who were received the CanSino Ad5-nCoV (n= 183) vaccine or the Sinovac CoronaVac inactivated vaccine (n= 69). The anti-SARS-CoV-2 prototype and Omicron BA.5.2 as well as XBB.1.16 variant neutralizing antibodies (Nab) in sera were detected by ELISA. Sera were also used to measure pseudo and live virus neutralization assay. The associations between the anti-prototype Nab levels and different HLA-ABC alleles were analyzed using artificial intelligence (AI)-deep learning techniques. The frequency of B cells in PBMCs was investigated by flow cytometry assay (FACs). Results Individuals carrying the HLA-B*15 allele manifested the highest concentrations of anti-SARS-CoV-2 prototype Nab after vax administration. Unfortunately, these volunteers are more susceptible to Omicron BA.5.2 breakthrough infection due to their sera have poorer anti-BA.5.2 Nab and lower levels of viral neutralization efficacy. FACs confirmed that a significant decrease in CD19+CD27+RBD+ memory B cells in these HLA-B*15 population compared to other cohorts. Importantly, generating lower concentrations of cross-reactive anti-XBB.1.16 Nab post-BA.5.2 infection caused HLA-B*15 individuals to be further infected by XBB.1.16 variant. Conclusions Individuals carrying the HLA-B*15 allele respond better to COVID-19 vax including the CanSino Ad5-nCoV and the Sinovac CoronaVac inactivated vaccines, but are more susceptible to Omicron variant infection, thus, a novel vaccine against this population is necessary for COVID-19 pandemic control in the future.
Collapse
Affiliation(s)
- Lingxin Meng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yue Pan
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yueping Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Rui He
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yuting Sun
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Chenhui Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunfei An
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Hypocortisolemic ASIA: a vaccine- and chronic infection-induced syndrome behind the origin of long COVID and myalgic encephalomyelitis. Front Immunol 2024; 15:1422940. [PMID: 39044822 PMCID: PMC11263040 DOI: 10.3389/fimmu.2024.1422940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), long COVID (LC) and post-COVID-19 vaccine syndrome show similarities in their pathophysiology and clinical manifestations. These disorders are related to viral or adjuvant persistence, immunological alterations, autoimmune diseases and hormonal imbalances. A developmental model is postulated that involves the interaction between immune hyperactivation, autoimmune hypophysitis or pituitary hypophysitis, and immune depletion. This process might begin with a deficient CD4 T-cell response to viral infections in genetically predisposed individuals (HLA-DRB1), followed by an uncontrolled immune response with CD8 T-cell hyperactivation and elevated antibody production, some of which may be directed against autoantigens, which can trigger autoimmune hypophysitis or direct damage to the pituitary, resulting in decreased production of pituitary hormones, such as ACTH. As the disease progresses, prolonged exposure to viral antigens can lead to exhaustion of the immune system, exacerbating symptoms and pathology. It is suggested that these disorders could be included in the autoimmune/adjuvant-induced inflammatory syndrome (ASIA) because of their similar clinical manifestations and possible relationship to genetic factors, such as polymorphisms in the HLA-DRB1 gene. In addition, it is proposed that treatment with antivirals, corticosteroids/ginseng, antioxidants, and metabolic precursors could improve symptoms by modulating the immune response, pituitary function, inflammation and oxidative stress. Therefore, the purpose of this review is to suggest a possible autoimmune origin against the adenohypophysis and a possible improvement of symptoms after treatment with corticosteroid replacement therapy.
Collapse
Affiliation(s)
- Manuel Ruiz-Pablos
- Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Bruno Paiva
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Xie J, Mothe B, Alcalde Herraiz M, Li C, Xu Y, Jödicke AM, Gao Y, Wang Y, Feng S, Wei J, Chen Z, Hong S, Wu Y, Su B, Zheng X, Cohet C, Ali R, Wareham N, Alhambra DP. Relationship between HLA genetic variations, COVID-19 vaccine antibody response, and risk of breakthrough outcomes. Nat Commun 2024; 15:4031. [PMID: 38740772 DOI: 10.1038/s41467-024-48339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The rapid global distribution of COVID-19 vaccines, with over a billion doses administered, has been unprecedented. However, in comparison to most identified clinical determinants, the implications of individual genetic factors on antibody responses post-COVID-19 vaccination for breakthrough outcomes remain elusive. Here, we conducted a population-based study including 357,806 vaccinated participants with high-resolution HLA genotyping data, and a subset of 175,000 with antibody serology test results. We confirmed prior findings that single nucleotide polymorphisms associated with antibody response are predominantly located in the Major Histocompatibility Complex region, with the expansive HLA-DQB1*06 gene alleles linked to improved antibody responses. However, our results did not support the claim that this mutation alone can significantly reduce COVID-19 risk in the general population. In addition, we discovered and validated six HLA alleles (A*03:01, C*16:01, DQA1*01:02, DQA1*01:01, DRB3*01:01, and DPB1*10:01) that independently influence antibody responses and demonstrated a combined effect across HLA genes on the risk of breakthrough COVID-19 outcomes. Lastly, we estimated that COVID-19 vaccine-induced antibody positivity provides approximately 20% protection against infection and 50% protection against severity. These findings have immediate implications for functional studies on HLA molecules and can inform future personalised vaccination strategies.
Collapse
Affiliation(s)
- Junqing Xie
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Beatriz Mothe
- Infectious Diseases Department, IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Marta Alcalde Herraiz
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Chunxiao Li
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Annika M Jödicke
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Yaqing Gao
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Yunhe Wang
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jia Wei
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - Zhuoyao Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yeda Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Catherine Cohet
- Real-World Evidence Workstream, Data Analytics and Methods Task Force, European Medicines Agency, Amsterdam, Noord-Holland, The Netherlands
| | - Raghib Ali
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nick Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Daniel Prieto Alhambra
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK.
- Department of Medical Informatics, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Bian S, Guo X, Yang X, Wei Y, Yang Z, Cheng S, Yan J, Chen Y, Chen GB, Du X, Francis SS, Shu Y, Liu S. Genetic determinants of IgG antibody response to COVID-19 vaccination. Am J Hum Genet 2024; 111:181-199. [PMID: 38181733 PMCID: PMC10806743 DOI: 10.1016/j.ajhg.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Human humoral immune responses to SARS-CoV-2 vaccines exhibit substantial inter-individual variability and have been linked to vaccine efficacy. To elucidate the underlying mechanism behind this variability, we conducted a genome-wide association study (GWAS) on the anti-spike IgG serostatus of UK Biobank participants who were previously uninfected by SARS-CoV-2 and had received either the first dose (n = 54,066) or the second dose (n = 46,232) of COVID-19 vaccines. Our analysis revealed significant genome-wide associations between the IgG antibody serostatus following the initial vaccine and human leukocyte antigen (HLA) class II alleles. Specifically, the HLA-DRB1∗13:02 allele (MAF = 4.0%, OR = 0.75, p = 2.34e-16) demonstrated the most statistically significant protective effect against IgG seronegativity. This protective effect was driven by an alteration from arginine (Arg) to glutamic acid (Glu) at position 71 on HLA-DRβ1 (p = 1.88e-25), leading to a change in the electrostatic potential of pocket 4 of the peptide binding groove. Notably, the impact of HLA alleles on IgG responses was cell type specific, and we observed a shared genetic predisposition between IgG status and susceptibility/severity of COVID-19. These results were replicated within independent cohorts where IgG serostatus was assayed by two different antibody serology tests. Our findings provide insights into the biological mechanism underlying individual variation in responses to COVID-19 vaccines and highlight the need to consider the influence of constitutive genetics when designing vaccination strategies for optimizing protection and control of infectious disease across diverse populations.
Collapse
Affiliation(s)
- Shengzhe Bian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xinxin Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xilai Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yuandan Wei
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Zijing Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Shiyao Cheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Jiaqi Yan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yongkun Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Guo-Bo Chen
- Center for General Practice Medicine, Department of General Practice Medicine, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310059, Zhejiang, P.R. China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310063, Zhejiang, P.R. China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Stephen S Francis
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, P.R. China.
| | - Siyang Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P.R. China.
| |
Collapse
|
6
|
Fanelli M, Petrone V, Maracchioni C, Chirico R, Cipriani C, Coppola L, Malagnino V, Teti E, Sorace C, Zordan M, Vitale P, Iannetta M, Balestrieri E, Rasi G, Grelli S, Malergue F, Sarmati L, Minutolo A, Matteucci C. Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100215. [PMID: 38187999 PMCID: PMC10767315 DOI: 10.1016/j.crmicr.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
The use of CD169 as a marker of viral infection has been widely discussed in the context of COVID-19, and in particular, its crucial role in the early detection of SARS-CoV-2 infection and its association with the severity and clinical outcome of COVID-19 were demonstrated. COVID-19 patients show relevant systemic alteration and immunological dysfunction that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). It is critical to implement the characterization of the disease, focusing also on the possible impact of the different COVID-19 waves and the consequent effects found after infection. On this basis, we evaluated by flow cytometry the expression of CD169 and HLA-DR on monocytes from COVID-19 patients and PASC individuals to better elucidate their involvement in immunological dysfunction, also evaluating the possible impact of different pandemic waves. The results confirm CD169 RMFI is a good marker of viral infection. Moreover, COVID-19 patients and PASC individuals showed high percentage of CD169+ monocytes, but low percentage of HLA-DR+ monocytes and the alteration of systemic inflammatory indices. We have also observed alterations of CD169 and HLA-DR expression and indices of inflammation upon different COVID-19 waves. The persistence of specific myeloid subpopulations suggests a role of CD169+ monocytes and HLA-DR in COVID-19 disease and chronic post-infection inflammation, opening new opportunities to evaluate the impact of specific pandemic waves on the immune response impairment and systemic alterations with the perspective to provide new tools to monitoring new variants and diseases associated to emerging respiratory viruses.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Christian Maracchioni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Luigi Coppola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Elisabetta Teti
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Chiara Sorace
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marta Zordan
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Pietro Vitale
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Fabrice Malergue
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, 13009, France
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- Infectious Diseases Clinic, Policlinic of Tor Vergata, Rome, 00133, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1 - 00133, Rome, 00133, Italy
| |
Collapse
|
7
|
Farnsworth CW, O’Neil CA, Dalton C, McDonald D, Vogt L, Hock K, Arter O, Wallace MA, Muenks C, Amor M, Alvarado K, Peacock K, Jolani K, Fraser VJ, Burnham CAD, Babcock HM, Budge PJ, Kwon JH. Association between SARS-CoV-2 Symptoms, Ct Values, and Serological Response in Vaccinated and Unvaccinated Healthcare Personnel. J Appl Lab Med 2023; 8:871-886. [PMID: 37478837 PMCID: PMC10482509 DOI: 10.1093/jalm/jfad042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND SARS-CoV-2 vaccines are effective at reducing symptomatic and asymptomatic COVID-19. Limited studies have compared symptoms, threshold cycle (Ct) values from reverse transcription (RT)-PCR testing, and serological testing results between previously vaccinated vs unvaccinated populations with SARS-CoV-2 infection. METHODS Healthcare personnel (HCP) with a positive SARS-CoV-2 RT-PCR test within the previous 14 to 28 days completed surveys including questions about demographics, medical conditions, social factors, and symptoms of COVID-19. Ct values were observed, and serological testing was performed for anti-nucleocapsid (anti-N) and anti-Spike (anti-S) antibodies at enrollment and 40 to 90 days later. Serological results were compared to HCP with no known SARS-CoV-2 infection and negative anti-N testing. RESULTS There were 104 unvaccinated/not fully vaccinated and 77 vaccinated HCP with 2 doses of an mRNA vaccine at time of infection. No differences in type or duration of symptoms were reported (P = 0.45). The median (interquartile range [IQR]) Ct was 21.4 (17.6-24.6) and 21.5 (18.1-24.6) for the unvaccinated and vaccinated HCP, respectively. Higher anti-N IgG was observed in unvaccinated HCP (5.08 S/CO, 3.08-6.92) than vaccinated (3.61 signal to cutoff ratio [S/CO], 2.16-5.05). Anti-S IgG was highest among vaccinated HCP with infection (34 285 aribitrary units [AU]/mL, 17 672-61 775), followed by vaccinated HCP with no prior infection (1452 AU/mL, 791-2943), then unvaccinated HCP with infection (829 AU/mL, 290-1555). Anti-S IgG decreased 1.56% (0.9%-1.79%) per day in unvaccinated and 0.38% (0.03%-0.94%) in vaccinated HCP. CONCLUSIONS Vaccinated HCP infected with SARS-CoV-2 reported comparable symptoms and had similar Ct values relative to unvaccinated. However, vaccinated HCP had increased and prolonged anti-S and decreased anti-N response relative to unvaccinated.
Collapse
Affiliation(s)
- Christopher W Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Caroline A O’Neil
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Claire Dalton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - David McDonald
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Lucy Vogt
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Karl Hock
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Olivia Arter
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Meghan A Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Carol Muenks
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Mostafa Amor
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Kelly Alvarado
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kate Peacock
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevin Jolani
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Victoria J Fraser
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hilary M Babcock
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Phillip J Budge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Jennie H Kwon
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
Banerjee U, Chunchanur S, R A, Balaji KN, Singh A, Chakravortty D, Chandra N. Systems-level profiling of early peripheral host-response landscape variations across COVID-19 severity states in an Indian cohort. Genes Immun 2023; 24:183-193. [PMID: 37438430 DOI: 10.1038/s41435-023-00210-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Host immune response to COVID-19 plays a significant role in regulating disease severity. Although big data analysis has provided significant insights into the host biology of COVID-19 across the world, very few such studies have been performed in the Indian population. This study utilizes a transcriptome-integrated network analysis approach to compare the immune responses between asymptomatic or mild and moderate-severe COVID-19 patients in an Indian cohort. An immune suppression phenotype is observed in the early stages of moderate-severe COVID-19 manifestation. A number of pathways are identified that play crucial roles in the host control of the disease such as the type I interferon response and classical complement pathway which show different activity levels across the severity spectrum. This study also identifies two transcription factors, IRF7 and ESR1, to be important in regulating the severity of COVID-19. Overall this study provides a deep understanding of the peripheral immune landscape in the COVID-19 severity spectrum in the Indian genetic background and opens up future research avenues to compare immune responses across global populations.
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Sneha Chunchanur
- Bangalore Medical College and Research Institute (BMCRI), Bengaluru, India
| | - Ambica R
- Bangalore Medical College and Research Institute (BMCRI), Bengaluru, India
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
9
|
Augusto DG, Murdolo LD, Chatzileontiadou DSM, Sabatino JJ, Yusufali T, Peyser ND, Butcher X, Kizer K, Guthrie K, Murray VW, Pae V, Sarvadhavabhatla S, Beltran F, Gill GS, Lynch KL, Yun C, Maguire CT, Peluso MJ, Hoh R, Henrich TJ, Deeks SG, Davidson M, Lu S, Goldberg SA, Kelly JD, Martin JN, Vierra-Green CA, Spellman SR, Langton DJ, Dewar-Oldis MJ, Smith C, Barnard PJ, Lee S, Marcus GM, Olgin JE, Pletcher MJ, Maiers M, Gras S, Hollenbach JA. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 2023; 620:128-136. [PMID: 37468623 PMCID: PMC10396966 DOI: 10.1038/s41586-023-06331-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Studies have demonstrated that at least 20% of individuals infected with SARS-CoV-2 remain asymptomatic1-4. Although most global efforts have focused on severe illness in COVID-19, examining asymptomatic infection provides a unique opportunity to consider early immunological features that promote rapid viral clearance. Here, postulating that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection, we enrolled 29,947 individuals, for whom high-resolution HLA genotyping data were available, in a smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n = 1,428) comprised unvaccinated individuals who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci with disease course and identified a strong association between HLA-B*15:01 and asymptomatic infection, observed in two independent cohorts. Suggesting that this genetic association is due to pre-existing T cell immunity, we show that T cells from pre-pandemic samples from individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF. The majority of the reactive T cells displayed a memory phenotype, were highly polyfunctional and were cross-reactive to a peptide derived from seasonal coronaviruses. The crystal structure of HLA-B*15:01-peptide complexes demonstrates that the peptides NQKLIANQF and NQKLIANAF (from OC43-CoV and HKU1-CoV) share a similar ability to be stabilized and presented by HLA-B*15:01. Finally, we show that the structural similarity of the peptides underpins T cell cross-reactivity of high-affinity public T cell receptors, providing the molecular basis for HLA-B*15:01-mediated pre-existing immunity.
Collapse
Affiliation(s)
- Danillo G Augusto
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lawton D Murdolo
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Joseph J Sabatino
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Tasneem Yusufali
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Noah D Peyser
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Xochitl Butcher
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Kerry Kizer
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Karoline Guthrie
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Victoria W Murray
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Vivian Pae
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Sannidhi Sarvadhavabhatla
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Fiona Beltran
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Gurjot S Gill
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Cassandra Yun
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Colin T Maguire
- Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Michelle Davidson
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Scott Lu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sarah A Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- F.I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Cynthia A Vierra-Green
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Stephen R Spellman
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | | | - Michael J Dewar-Oldis
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development Brisbane, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter J Barnard
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Sulggi Lee
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Gregory M Marcus
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeffrey E Olgin
- Division of Cardiology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Mark J Pletcher
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Division of General Internal Medicine, University of California, San Francisco, CA, USA
| | - Martin Maiers
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jill A Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Talotta R. Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms 2023; 11:1686. [PMID: 37512859 PMCID: PMC10384367 DOI: 10.3390/microorganisms11071686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND After the start of the worldwide COVID-19 vaccination campaign, there were increased reports of autoimmune diseases occurring de novo after vaccination. This in silico analysis aimed to investigate the presence of protein epitopes encoded by the BNT-162b2 mRNA vaccine, one of the most widely administered COVID-19 vaccines, which could induce autoimmunity in predisposed individuals. METHODS The FASTA sequence of the protein encoded by the BNT-162b2 vaccine served as the key input to the Immune Epitope Database and Analysis Resource. Linear peptides with 90% BLAST homology were selected, and T-cell, B-cell, and MHC-ligand assays without MHC restriction were searched and analyzed. HLA disease associations were screened on the HLA-SPREAD platform by selecting only positive markers. RESULTS By 7 May 2023, a total of 5693 epitopes corresponding to 21 viral but also human proteins were found. The latter included CHL1, ENTPD1, MEAF6, SLC35G2, and ZFHX2. Importantly, some autoepitopes may be presented by HLA alleles positively associated with various immunological diseases. CONCLUSIONS The protein product of the BNT-162b2 mRNA vaccine contains immunogenic epitopes that may trigger autoimmune phenomena in predisposed individuals through a molecular mimicry mechanism. Genotyping for HLA alleles may help identify individuals at risk. However, further wet-lab studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
11
|
Milighetti M, Peng Y, Tan C, Mark M, Nageswaran G, Byrne S, Ronel T, Peacock T, Mayer A, Chandran A, Rosenheim J, Whelan M, Yao X, Liu G, Felce SL, Dong T, Mentzer AJ, Knight JC, Balloux F, Greenstein E, Reich-Zeliger S, Pade C, Gibbons JM, Semper A, Brooks T, Otter A, Altmann DM, Boyton RJ, Maini MK, McKnight A, Manisty C, Treibel TA, Moon JC, Noursadeghi M, Chain B. Large clones of pre-existing T cells drive early immunity against SARS-COV-2 and LCMV infection. iScience 2023; 26:106937. [PMID: 37275518 PMCID: PMC10201888 DOI: 10.1016/j.isci.2023.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
T cell responses precede antibody and may provide early control of infection. We analyzed the clonal basis of this rapid response following SARS-COV-2 infection. We applied T cell receptor (TCR) sequencing to define the trajectories of individual T cell clones immediately. In SARS-COV-2 PCR+ individuals, a wave of TCRs strongly but transiently expand, frequently peaking the same week as the first positive PCR test. These expanding TCR CDR3s were enriched for sequences functionally annotated as SARS-COV-2 specific. Epitopes recognized by the expanding TCRs were highly conserved between SARS-COV-2 strains but not with circulating human coronaviruses. Many expanding CDR3s were present at high frequency in pre-pandemic repertoires. Early response TCRs specific for lymphocytic choriomeningitis virus epitopes were also found at high frequency in the preinfection naive repertoire. High-frequency naive precursors may allow the T cell response to respond rapidly during the crucial early phases of acute viral infection.
Collapse
Affiliation(s)
- Martina Milighetti
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Michal Mark
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gayathri Nageswaran
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Suzanne Byrne
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tahel Ronel
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tom Peacock
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Matthew Whelan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Xuan Yao
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Guihai Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | | | - Julian C Knight
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Erez Greenstein
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shlomit Reich-Zeliger
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Amanda Semper
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Tim Brooks
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London SW7 2BX, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- Lung Division, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Aine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Thomas A Treibel
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - James C Moon
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Benny Chain
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Haq IU, Krukiewicz K, Tayyab H, Khan I, Khan M, Yahya G, Cavalu S. Molecular Understanding of ACE-2 and HLA-Conferred Differential Susceptibility to COVID-19: Host-Directed Insights Opening New Windows in COVID-19 Therapeutics. J Clin Med 2023; 12:jcm12072645. [PMID: 37048725 PMCID: PMC10095019 DOI: 10.3390/jcm12072645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The genetic variants of HLAs (human leukocyte antigens) play a crucial role in the virus–host interaction and pathology of COVID-19. The genetic variants of HLAs not only influence T cell immune responses but also B cell immune responses by presenting a variety of peptide fragments of invading pathogens. Peptide cocktail vaccines produced by using various conserved HLA-A2 epitopes provoke substantial specific CD8+ T cell responses in experimental animals. The HLA profiles vary among individuals and trigger different T cell-mediated immune responses in COVID-19 infections. Those with HLA-C*01 and HLA-B*44 are highly susceptible to the disease. However, HLA-A*02:01, HLA-DR*03:01, and HLA-Cw*15:02 alleles show resistance to SARS infection. Understanding the genetic association of HLA with COVID-19 susceptibility and severity is important because it can help in studying the transmission of COVID-19 and its physiopathogenesis. The HLA-C*01 and B*44 allele pathways can be studied to gain insight into disease transmission and physiopathogenesis. Therefore, integrating HLA testing is suggested in the ongoing pandemic, which will help in the rapid identification of highly susceptible populations worldwide and possibly acclimate vaccine development. Therefore, understanding the correlation between HLA and SARS-CoV-2 is critical in opening new insights into COVID-19 therapeutics, based on previous studies conducted.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Hamnah Tayyab
- Department of Internal Medicine, King Edward Medical College, Lahore 54000, Pakistan
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
13
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
14
|
Kakodkar P, Dokouhaki P, Wu F, Shavadia J, Nair R, Webster D, Sawyer T, Huan T, Mostafa A. The role of the HLA allelic repertoire on the clinical severity of COVID-19 in Canadians, living in the Saskatchewan province. Hum Immunol 2023; 84:163-171. [PMID: 36707385 PMCID: PMC9852320 DOI: 10.1016/j.humimm.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
AIMS The HLA system has been implicated as an underlying determinant for modulating the immune response to SARS-CoV-2. In this study, we aimed to determine the association of patients' HLA genetic profiles with the disease severity of COVID-19 infection. METHODS Prospective study was conducted on COVID-19 patients (n = 40) admitted to hospitals in Saskatoon, Canada, between March and December 2020. Next-generation sequencing was performed on the patient samples to obtain high-resolution HLA typing profiles. The statistical association between HLA allelic frequency and disease severity was examined. The disease severity was categorized based on the length of hospital stay and intensive care needs or demise during the hospital stay. RESULTS HLA allelic frequencies of the high and low-severity cohorts were normalized against corresponding background allelic frequencies. In the high-severity cohort, A*02:06 (11.8-fold), B*51:01 (2.4-fold), B*15:01(3.1-fold), C*01:02 (3.3-fold), DRB1*08:02 (31.2-fold), DQ*06:09 (11-fold), and DPB1*04:02(4-fold) were significantly overrepresented (p < 0.05) making these deleterious alleles. In the low-severity cohort, A*24:02 (2.8-fold), B*35:01 (2.8-fold), DRB1*04:07 (5.3-fold), and DRB1*08:11 (22-fold) were found to be significantly overrepresented (p < 0.05) making these protective alleles. These above alleles interact with NK cell antiviral activity via the killer immunoglobulin-like receptors (KIR). The high-severity cohort had a higher predilection for HLA alleles associated with KIR subgroups; Bw4-80I (1.1-fold), and C1 (1.6-fold) which promotes NK cell inhibition, while the low-severity cohort had a higher predilection for Bw4-80T (1.6-fold), and C2 (1.6-fold) which promote NK cell activation. CONCLUSION In this study, the HLA allelic repository with the distribution of deleterious and protective alleles was found to correlate with the severity of the clinical course in COVID-19. Moreover, the interaction of specific HLA alleles with the KIR-associated subfamily modulates the NK cell-mediated surveillance of SARS-CoV-2. Both deleterious HLA alleles and inhibitory KIR appear prominently in the severe COVID-19 group focusing on the importance of NK cells in the convalescence of COVID-19.
Collapse
Affiliation(s)
- Pramath Kakodkar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Pouneh Dokouhaki
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Fang Wu
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Jay Shavadia
- Division of Cardiology, Department of Medicine, University of Saskatchewan, Canada.
| | - Revathi Nair
- College of Medicine, University of Saskatchewan, Canada.
| | - Destinie Webster
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Terry Sawyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Canada.
| | - Ahmed Mostafa
- Department of Pathology and Laboratory Medicine, University of Saskatchewan College of Medicine, Canada.
| |
Collapse
|
15
|
Keeton R, Tincho MB, Suzuki A, Benede N, Ngomti A, Baguma R, Chauke MV, Mennen M, Skelem S, Adriaanse M, Grifoni A, Weiskopf D, Sette A, Bekker LG, Gray G, Ntusi NA, Burgers WA, Riou C. Impact of SARS-CoV-2 exposure history on the T cell and IgG response. Cell Rep Med 2022; 4:100898. [PMID: 36584684 PMCID: PMC9771741 DOI: 10.1016/j.xcrm.2022.100898] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposures, from infection or vaccination, can potently boost spike antibody responses. Less is known about the impact of repeated exposures on T cell responses. Here, we compare the prevalence and frequency of peripheral SARS-CoV-2-specific T cell and immunoglobulin G (IgG) responses in 190 individuals with complex SARS-CoV-2 exposure histories. As expected, an increasing number of SARS-CoV-2 spike exposures significantly enhances the magnitude of IgG responses, while repeated exposures improve the number of T cell responders but have less impact on SARS-CoV-2 spike-specific T cell frequencies in the circulation. Moreover, we find that the number and nature of exposures (rather than the order of infection and vaccination) shape the spike immune response, with spike-specific CD4 T cells displaying a greater polyfunctional potential following hybrid immunity compared with vaccination only. Characterizing adaptive immunity from an evolving viral and immunological landscape may inform vaccine strategies to elicit optimal immunity as the pandemic progress.
Collapse
Affiliation(s)
- Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Akiko Suzuki
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Masego V. Chauke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Ntobeko A.B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa,Corresponding author
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
16
|
Abstract
Die Weltgesundheitsorganisation (WHO) definiert Post-COVID-19(„coronavirus disease 2019“) als Zustand, der bei Personen mit einer anamnestisch wahrscheinlichen oder bestätigten SARS-CoV-2(„severe acute respiratory syndrome coronavirus type 2“)-Infektion 3 Monate nach Beginn der COVID-19-Symptome und mindestens 2 Monate andauernd vorhanden ist und durch eine alternative Diagnose nicht erklärbar ist. Kernsymptome des Post-COVID-Syndroms umfassen Atemnot, Fatigue und kognitive Dysfunktion, welche das alltägliche Funktionsniveau beeinflussen. Neuropsychiatrische Spätfolgen sind bei COVID-19-Patienten mit Inzidenzraten von über 30 % häufig. Neben den genannten Kernsymptomen zeigen Schlafstörungen, Depression und Angsterkrankungen erhöhte Inzidenzen. Nach gegenwärtiger Meinung werden assoziierte neuropsychiatrische Symptome sowohl unter dem Begriff Post-COVID-Syndrom subsumiert, aber auch als Komorbiditäten interpretiert, welche die Manifestation eines Post-COVID-Syndroms begünstigen können. So zeigt das Kernsymptom Fatigue Symptomüberlappung und Komorbidität mit psychischen Erkrankungen. Bildgebungsstudien deuten auf ein organisches Korrelat der Fatigue bei Post-COVID-Patienten hin, darüber hinaus wurden psychosoziale Aspekte und psychiatrische Komorbiditäten wie Depression und Angsterkrankungen als modulierende und damit potenziell behandelbare Faktoren identifiziert. Die Therapie der Fatigue umfasst neben dem pharmakologischen Management mit u. a. Stimulanzien und Antidepressiva auch nichtpharmakologische Strategien, hier vor allem die kognitive Verhaltenstherapie sowie körper- und bewegungsfokussierte Interventionen. Die Evidenz hierfür erwächst aus Metaanalysen bei tumorassoziierter oder postviraler Fatigue.
Collapse
|
17
|
Astbury S, Reynolds CJ, Butler DK, Muñoz‐Sandoval DC, Lin K, Pieper FP, Otter A, Kouraki A, Cusin L, Nightingale J, Vijay A, Craxford S, Aithal GP, Tighe PJ, Gibbons JM, Pade C, Joy G, Maini M, Chain B, Semper A, Brooks T, Ollivere BJ, McKnight Á, Noursadeghi M, Treibel TA, Manisty C, Moon JC, Valdes AM, Boyton RJ, Altmann DM. HLA-DR polymorphism in SARS-CoV-2 infection and susceptibility to symptomatic COVID-19. Immunology 2022; 166:68-77. [PMID: 35156709 PMCID: PMC9111350 DOI: 10.1111/imm.13450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.
Collapse
Affiliation(s)
- Stuart Astbury
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust and the University of NottinghamNottinghamUK
- Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | | | - David K. Butler
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | | - Kai‐Min Lin
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | | - Ashley Otter
- National Infection ServicePublic Health EnglandPorton DownUK
| | - Afroditi Kouraki
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Lola Cusin
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Jessica Nightingale
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Amrita Vijay
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Simon Craxford
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Guruprasad P. Aithal
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust and the University of NottinghamNottinghamUK
- Nottingham Digestive Diseases CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | | | - Joseph M. Gibbons
- Barts and the London School of Medicine and DentistryBlizard InstituteQueen Mary University of LondonLondonUK
| | - Corinna Pade
- Barts and the London School of Medicine and DentistryBlizard InstituteQueen Mary University of LondonLondonUK
| | - George Joy
- Barts Heart CentreSt. Bartholomew's HospitalLondonUK
| | - Mala Maini
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Benny Chain
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - Amanda Semper
- National Infection ServicePublic Health EnglandPorton DownUK
| | - Timothy Brooks
- National Infection ServicePublic Health EnglandPorton DownUK
| | - Benjamin J. Ollivere
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Áine McKnight
- Barts and the London School of Medicine and DentistryBlizard InstituteQueen Mary University of LondonLondonUK
| | | | - Thomas A. Treibel
- Barts Heart CentreSt. Bartholomew's HospitalLondonUK
- Institute of Cardiovascular SciencesUniversity College LondonLondonUK
| | - Charlotte Manisty
- Barts Heart CentreSt. Bartholomew's HospitalLondonUK
- Institute of Cardiovascular SciencesUniversity College LondonLondonUK
| | - James C. Moon
- Barts Heart CentreSt. Bartholomew's HospitalLondonUK
- Institute of Cardiovascular SciencesUniversity College LondonLondonUK
| | - Ana M. Valdes
- NIHR Nottingham Biomedical Research CentreNottingham University Hospitals NHS Trust and the University of NottinghamNottinghamUK
- Division of Rheumatology, Orthopaedics and DermatologySchool of MedicineUniversity of NottinghamNottinghamUK
| | - Rosemary J. Boyton
- Department of Infectious DiseaseImperial College LondonLondonUK
- Lung DivisionRoyal Brompton and Harefield HospitalsGuy’s and St Thomas’ NHS Foundation TrustLondonUK
| | - Daniel M. Altmann
- Department of Immunology and InflammationImperial College LondonLondonUK
| |
Collapse
|
18
|
Hammad R, Kotb HG, Eldesoky GAR, Mosaad AM, El-Nasser AM, Abd El Hakam FELZ, Eldesoky NAR, Mashaal A, Farhoud H. Utility of Monocyte Expression of HLA-DR versus T Lymphocyte Frequency in the Assessment of COVID-19 Outcome. Int J Gen Med 2022; 15:5073-5087. [PMID: 35615469 PMCID: PMC9126655 DOI: 10.2147/ijgm.s359690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022] Open
Abstract
Background Dysregulated immunity is a hallmark of SARS-CoV-2 infection. Immune suppression is indicated by low monocyte expression of human leukocyte antigen D-related (mHLA-DR). T cells are important antiviral cells. We aimed to assess the role of mHLA-DR and T lymphocyte frequency in predicting COVID-19 severity. Patients and Methods This cross-sectional study enrolled 97 SARS-CoV-2 positive patients, including mild to moderate (n = 49) and severe cases admitted to intensive care unit (ICU) (n = 48). These ICU cases were further subdivided into survivors (n = 35) and non-survivors (n = 13). Results Severe cases had a significant decrease in the mHLA-DR mean fluorescence intensity (MFI) and T lymphocyte percentage compared to mild to moderate cases (P<0.001). Non-survivors had a lower T lymphocyte percentage (P=0.004) than survivors. The mHLA-DR MFI and T lymphocyte percentage correlated with oxygen saturation (r=0.632, P<0.001) and (r=0.669, P<0.001), respectively. According to the ROC curves, mHLA-DR MFI, at a cutoff of 143 and an AUC of 0.9, is a reliable biomarker for distinguishing severe COVID-19 cases, with 89.6% sensitivity and 81.6% specificity, while T lymphocyte frequency had 81.3% sensitivity and 81.6% specificity at a cutoff of 54.4% and an AUC of 0.9. The T lymphocyte percentage as a predictor of ICU survival at a cutoff of 38.995% exhibited 100% sensitivity and 57.1% specificity. According to multivariate regression analysis, reduced mHLA-DR MFI and T lymphocyte percentage are independent predictors of COVID-19 severity (OR = 0.976, 95% CI: 0.955–0.997, P = 0.025) and (OR = 0.849, 95% CI: 0.741–0.972, P = 0.018), respectively. Conclusion Reduced mHLA-DR expression and T-lymphocyte percentage are independent predictors of COVID-19 severity. Oxygen saturation percentage is correlated with mHLA-DR MFI and T lymphocyte frequency. The T lymphocyte frequency is a proposed predictor of COVID-19 survival in ICU admitted patients.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Hend G Kotb
- Internal Medicine Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Gehan Abdel-Rahman Eldesoky
- Anesthesia, Intensive Care and Pain Management Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alshaimaa Mohamed Mosaad
- Hepatogastroenterology and Infectious Diseases Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa M El-Nasser
- Medical Microbiology & Immunology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | | | - Noha Abdel-Rahman Eldesoky
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alya Mashaal
- Immunology, Zoology & Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
- Correspondence: Alya Mashaal, Immunology, Zoology & Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt, Email
| | - Hesham Farhoud
- Orthopedic Surgery Department, Former Dean of Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Delgoffe GM. Editorial: Diverse responses to SARS-CoV-2 in the human population. Immunology 2022; 166:1. [PMID: 35434812 PMCID: PMC9111717 DOI: 10.1111/imm.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Greg M Delgoffe
- Department of Immunology, Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|