1
|
Shahmohamadloo RS, Gabidulin AR, Andrews ER, Fryxell JM, Rudman SM. A test for microbiome-mediated rescue via host phenotypic plasticity in Daphnia. Proc Biol Sci 2025; 292:20250365. [PMID: 40199359 PMCID: PMC11978444 DOI: 10.1098/rspb.2025.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Phenotypic plasticity is a primary mechanism by which organismal phenotypes shift in response to the environment. Host-associated microbiomes often change considerably in response to environmental variation, and these shifts could facilitate host phenotypic plasticity, adaptation, or rescue populations from extinction. However, it is unclear whether changes in microbiome composition contribute to host phenotypic plasticity, limiting our knowledge of the underlying mechanisms of plasticity and, ultimately, the fate of populations inhabiting changing environments. In this study, we examined the phenotypic responses and microbiome composition of 20 genetically distinct Daphnia magna genotypes exposed to non-toxic and toxic diets containing Microcystis, a cosmopolitan cyanobacterium and common stressor for Daphnia. Daphnia exhibited significant plasticity in survival, reproduction and population growth rates upon exposure to Microcystis. However, the effects of Microcystis exposure on the Daphnia microbiome were limited, with the primary effect being differences in abundance observed across five bacterial families. Moreover, there was no significant correlation between the magnitude of microbiome shifts and host phenotypic plasticity. Our results suggest that microbiome composition played a negligible role in driving host phenotypic plasticity or microbiome-mediated rescue.
Collapse
Affiliation(s)
| | - Amir R. Gabidulin
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Ellie R. Andrews
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| |
Collapse
|
2
|
Shahmohamadloo RS, Gabidulin AR, Andrews ER, Fryxell JM, Rudman SM. A test for microbiome-mediated rescue via host phenotypic plasticity in Daphnia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607994. [PMID: 39185203 PMCID: PMC11343196 DOI: 10.1101/2024.08.14.607994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Phenotypic plasticity is a primary mechanism by which organismal phenotypes shift in response to the environment. Host-associated microbiomes often exhibit considerable shifts in response to environmental variation and these shifts could facilitate host phenotypic plasticity, adaptation, or rescue populations from extinction. However, it is unclear how much shifts in microbiome composition contribute to host phenotypic plasticity, limiting our knowledge of the underlying mechanisms of plasticity and, ultimately, the fate of populations inhabiting changing environments. In this study, we examined phenotypic responses and microbiome composition in 20 genetically distinct Daphnia magna clones exposed to non-toxic and toxic diets containing Microcystis, a cosmopolitan cyanobacteria and common stressor for Daphnia. Daphnia exhibited significant plasticity in survival, reproduction, and population growth rates in response to Microcystis exposure. However, the effects of Microcystis exposure on the Daphnia microbiome were limited, with the primary effect being differences in abundance observed across five bacterial families. Moreover, there was no significant correlation between the magnitude of microbiome shifts and host phenotypic plasticity. Our results suggest that microbiome composition played a negligible role in driving host phenotypic plasticity or microbiome-mediated rescue.
Collapse
Affiliation(s)
- René S. Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - Amir R. Gabidulin
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - Ellie R. Andrews
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
3
|
Shahmohamadloo RS, Fryxell JM, Rudman SM. Transgenerational epigenetic inheritance increases trait variation but is not adaptive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589575. [PMID: 38659883 PMCID: PMC11042258 DOI: 10.1101/2024.04.15.589575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Understanding processes that can produce adaptive phenotypic shifts in response to rapid environmental change is critical to reducing biodiversity loss. The ubiquity of environmentally induced epigenetic marks has led to speculation that epigenetic inheritance could potentially enhance population persistence in response to environmental change. Yet, the magnitude and fitness consequences of epigenetic marks carried beyond maternal inheritance are largely unknown. Here, we tested how transgenerational epigenetic inheritance (TEI) shapes the phenotypic response of Daphnia clones to the environmental stressor Microcystis. We split individuals from each of eight genotypes into exposure and control treatments (F0 generation) and tracked the fitness of their descendants to the F3 generation. We found transgenerational epigenetic exposure to Microcystis led to reduced rates of survival and individual growth and no consistent effect on offspring production. Increase in trait variance in the F3 relative to F0 generations suggests potential for heritable bet hedging driven by TEI, which could impact population dynamics. Our findings are counter to the working hypothesis that TEI is a generally adaptive mechanism likely to prevent extinction for populations inhabiting rapidly changing environments.
Collapse
Affiliation(s)
- René S. Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
4
|
Shahmohamadloo RS, Rudman SM, Clare CI, Westrick JA, Wang X, De Meester L, Fryxell JM. Intraspecific genetic variation is critical to robust toxicological predictions of aquatic contaminants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543817. [PMID: 37333160 PMCID: PMC10274664 DOI: 10.1101/2023.06.06.543817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Environmental risk assessment is a critical tool for protecting aquatic life and its effectiveness is predicated on predicting how natural populations respond to contaminants. Yet, routine toxicity testing typically examines only one genotype, which may render risk assessments inaccurate as populations are most often composed of genetically distinct individuals. To determine the importance of intraspecific variation in the translation of toxicity testing to populations, we quantified the magnitude of genetic variation within 20 Daphnia magna clones derived from one lake using whole genome sequencing and phenotypic assays. We repeated these assays across two exposure levels of microcystins, a cosmopolitan and lethal aquatic contaminant produced by harmful algal blooms. We found considerable intraspecific genetic variation in survival, growth, and reproduction, which was amplified by microcystins exposure. Finally, using simulations we demonstrate that the common practice of employing a single genotype to calculate toxicity tolerance failed to produce an estimate within the 95% confidence interval over half of the time. These results illuminate the importance of incorporating intraspecific genetic variation into toxicity testing to reliably predict how natural populations will respond to aquatic contaminants.
Collapse
Affiliation(s)
- René S. Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Seth M. Rudman
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Catherine I. Clare
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States
| | - Judy A. Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, United States
| | - Xueqi Wang
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution, and Conservation, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - John M. Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
5
|
Zhang K, Wu J, Deng D, Zhao H, Liu Q, Peng S, Zhang Y, Zhou Z. Population genetic differentiation of Daphnia sinensis in a lasting high-phosphorus Chinese lake, Lake Chaohu. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.913738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ecological shifts (e.g., eutrophication) can affect the genetic differentiation of zooplankton populations in lakes. However, the role of environmental change in a lasting high-phosphorus lake driving the genetic differentiation of zooplankton population structure over time is poorly understood. In this paper, the changes of the genetic diversity and differentiation of Daphnia sinensis population were studied by using the mitochondrial COI gene and microsatellite markers on modern groups (from January to June 2016) and historic groups (obtained from resting eggs in the sediments) in Lake Chaohu. Based on the microsatellite markers, six modern groups were clustered into two clusters (the WG cluster and SG cluster) during the seasonal dynamics, whereas the genetic differentiation of the five historic groups showed a wave-like pattern and had evolved into four clusters. Moreover, the haplotype network showed that six modern groups had one origin center whereas five historic groups had two origin centers based on the mitochondrial COI gene marker. Fu’s Fs neutral test and Tajima’s test indicated that the five historic groups deviated from neutral evolution and showed a bottleneck effect in the history process. Water temperature and total dissolved phosphorus were obviously associated with the seasonal genetic differentiation of D. sinensis, whereas nitrogen content of the sediments was significantly related to the long-term microevolution of D. sinensis in the high-phosphorus environment. Therefore, the changing pattern of D. sinensis population genetic structure was one of the environmental selections probably combined with co-evolutionary, where rapid-increasing nitrogen level had a large impact on D. sinensis population genetic structure in lasting high phosphorus environment in Lake Chaohu.
Collapse
|
6
|
Miklós M, Laczkó L, Sramkó G, Barta Z, Tökölyi J. Seasonal variation of genotypes and reproductive plasticity in a facultative clonal freshwater invertebrate animal ( Hydra oligactis) living in a temperate lake. Ecol Evol 2022; 12:e9096. [PMID: 35845371 PMCID: PMC9280439 DOI: 10.1002/ece3.9096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
Facultative sexual organisms combine sexual and asexual reproduction within a single life cycle, often switching between reproductive modes depending on environmental conditions. These organisms frequently inhabit variable seasonal environments, where favorable periods alternate with unfavorable periods, generating temporally varying selection pressures that strongly influence life history decisions and hence population dynamics. Due to the rapidly accelerating changes in our global environment today, understanding the population dynamics and genetic changes in facultative sexual populations inhabiting seasonal environments is critical to assess and prepare for additional challenges that will affect such ecosystems. In this study, we aimed at obtaining insights into the seasonal population dynamics of the facultative sexual freshwater cnidarian Hydra oligactis through a combination of restriction site-associated sequencing (RAD-Seq) genotyping and the collection of phenotypic data on the reproductive strategy of field-collected hydra strains in a standard laboratory environment. We reliably detected 42 MlGs from the 121 collected hydra strains. Most of MLGs (N = 35, 83.3%) were detected in only one season. Five MLGs (11.9%) were detected in two seasons, one (2.4%) in three seasons and one (2.4%) in all four seasons. We found no significant genetic change during the 2 years in the study population. Clone lines were detected between seasons and even years, suggesting that clonal lineages can persist for a long time in a natural population. We also found that distinct genotypes differ in sexual reproduction frequency, but these differences did not affect whether genotypes reappeared across samplings. Our study provides key insights into the biology of natural hydra populations, while also contributing to understanding the population biology of facultative sexual species inhabiting freshwater ecosystems.
Collapse
Affiliation(s)
- Máté Miklós
- MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary
- Juhász‐Nagy Pál Doctoral School of Biology and Environmental SciencesUniversity of DebrecenDebrecenHungary
| | - Levente Laczkó
- Juhász‐Nagy Pál Doctoral School of Biology and Environmental SciencesUniversity of DebrecenDebrecenHungary
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research GroupDebrecenHungary
- Department of BotanyUniversity of DebrecenDebrecenHungary
| | - Gábor Sramkó
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research GroupDebrecenHungary
- Department of BotanyUniversity of DebrecenDebrecenHungary
| | - Zoltán Barta
- MTA‐DE Behavioral Ecology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary
| | - Jácint Tökölyi
- MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary ZoologyUniversity of DebrecenDebrecenHungary
| |
Collapse
|
7
|
Shen Q, Zhan Y, Jia X, Li B, Zhu X, Gao T. Combined effects of the pesticide spinetoram and the cyanobacterium Microcystis on the water flea Daphnia pulex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47148-47158. [PMID: 35175534 DOI: 10.1007/s11356-022-18617-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Spinetoram is one of the most worldwidely used pesticides for its high insecticidal efficacy and low human toxicity. Following the large usage of spinetoram, the ecotoxicity and environmental risks to aquatic ecosystems have call for urgent study. In the present study, we investigated the combined effects of spinetoram and the harmful alga Microcystis aeruginosa in freshwater, on survival and reproduction of Daphnia pulex. Acute toxicity test of spinetoram resulted in negative effects on survival, with a 48-h LC50 value of 37.71 μg L-1. Under the long-time exposure to environmentally relevant concentrations (0.18 and 0.35 μg L-1) of spinetoram and a low composition of Microcystis (30%) in the diet, D. pulex showed both shorter longevity and lower fecundity; the time to first brood also increased. At population level, carrying capacity was highly decreased by spinetoram and Microcystis, whereas a significant decrease of intrinsic growth rate was observed at 0.35 μg L-1 spinetoram with 30% Microcystis as food. The present study highlighted that pesticide spinetoram had highly toxic effects on D. pulex and could reduce the tolerance of D. pulex to M. aeruginosa, causing great effects on D. pulex population in natural waterbodies.
Collapse
Affiliation(s)
- Qiutong Shen
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yihe Zhan
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Xuanhe Jia
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Bangping Li
- Shanghai Cremo Laboratory Co, 688 Qiushi Road, Shanghai, 201512, China
| | - Xuexia Zhu
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Tianheng Gao
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| |
Collapse
|
8
|
Isanta-Navarro J, Klauschies T, Wacker A, Martin-Creuzburg D. A sterol-mediated gleaner-opportunist trade-off underlies the evolution of grazer resistance to cyanobacteria. Proc Biol Sci 2022; 289:20220178. [PMID: 35538780 PMCID: PMC9091858 DOI: 10.1098/rspb.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human-caused proliferation of cyanobacteria severely impacts consumers in freshwater ecosystems. Toxicity is often singled out as the sole trait to which consumers can adapt, even though cyanobacteria are not necessarily toxic and the lack of nutritionally critical sterols in cyanobacteria is known to impair consumers. We studied the relative significance of toxicity and dietary sterol deficiency in driving the evolution of grazer resistance to cyanobacteria in a large lake with a well-documented history of eutrophication and oligotrophication. Resurrecting decades-old Daphnia genotypes from the sediment allowed us to show that the evolution and subsequent loss of grazer resistance to cyanobacteria involved an adaptation to changes in both toxicity and dietary sterol availability. The adaptation of Daphnia to changes in cyanobacteria abundance revealed a sterol-mediated gleaner-opportunist trade-off. Genotypes from peak-eutrophic periods showed a higher affinity for dietary sterols at the cost of a lower maximum growth rate, whereas genotypes from more oligotrophic periods showed a lower affinity for dietary sterols in favour of a higher maximum growth rate. Our data corroborate the significance of sterols as limiting nutrients in aquatic food webs and highlight the applicability of the gleaner-opportunist trade-off for reconstructing eco-evolutionary processes.
Collapse
Affiliation(s)
| | - Toni Klauschies
- Institute for Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Alexander Wacker
- Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| | - Dominik Martin-Creuzburg
- Department of Aquatic Ecology, Research Station Bad Saarow, BTU Cottbus-Senftenberg, 15526 Bad Saarow, Germany
| |
Collapse
|
9
|
de Aquino Santos AS, Vilar MCP, Amorim CA, Molica RJR, do Nascimento Moura A. Exposure to toxic Microcystis via intact cell ingestion and cell crude extract differently affects small-bodied cladocerans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23194-23205. [PMID: 34799801 DOI: 10.1007/s11356-021-17402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms are increasingly common in aquatic environments worldwide. These microorganisms cause concern due to their ability to produce cyanotoxins. Aquatic organisms, especially zooplankton, are exposed to cyanobacterial toxins by different routes, depending on the bloom phase. During cyanobacterial dominance, zooplankton is exposed to cyanotoxins through the ingestion of cyanobacterial cells, while at the bloom senescence, dissolved toxins are the most representative route. In this study, we assessed the effects of a microcystin-producing strain of Microcystis aeruginosa (NPLJ-4) on clones of the tropical small cladocerans Macrothrix spinosa (two clones) and Ceriodaphnia cornuta (one clone) exposed to intact cells and aqueous cell crude extracts. Short-term toxicity assays and life-table experiments were performed to assess the effects of the toxic M. aeruginosa on the survival and life history of the cladocerans. In the short-term toxicity assay, we found that cladocerans were more affected by intact cells. Both clones of M. spinosa were more affected when exposed to intact cells, while C. cornuta displayed about 5-fold more resistance. On the other hand, crude extracts had a low impact on cladocerans' survival. Also, we observed a significant decrease in survival, fecundity, and growth of animals exposed to sublethal and environmentally relevant concentrations of M. aeruginosa cellular biomass. However, even at high concentrations of dissolved microcystins, the crude extract did not have significant effects on the life history parameters of the cladocerans. Although they can be found during cyanobacterial bloom events, small-bodied cladocerans are still affected by toxic Cyanobacteria depending on the exposure route.
Collapse
Affiliation(s)
- Alane Silva de Aquino Santos
- Graduate Program in Development and Environment, Geographical Sciences Department, Federal University of Pernambuco, Av. Acadêmico Hélio Ramos, s/n, 50740-530, Recife, Pernambuco, Brazil
| | - Mauro Cesar Palmeira Vilar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro - UFRJ, Av. Carlos Chagas Filho, 373, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Cihelio Alves Amorim
- Department of Biology, Federal Rural University of Pernambuco - UFRPE, Av. Manoel de Medeiros, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil
- Department of Biological Sciences, Middle East Technical University - METU, Üniversiteler Mahallesi, Dumlupınar Bulvarı, 06800, Ankara, Turkey
| | - Renato José Reis Molica
- Federal University of the Agreste of Pernambuco - UFAPE, Av. Bom Pastor, Boa Vista, CEP 55292-270, Garanhuns, PE, Brazil
| | - Ariadne do Nascimento Moura
- Department of Biology, Federal Rural University of Pernambuco - UFRPE, Av. Manoel de Medeiros, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil.
| |
Collapse
|
10
|
Rivi V, Batabyal A, Benatti C, Blom JM, Lukowiak K. Nature versus nurture in heat stress induced learning between inbred and outbred populations of Lymnaea stagnalis. J Therm Biol 2022; 103:103170. [PMID: 35027189 DOI: 10.1016/j.jtherbio.2021.103170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
Changing environmental conditions often lead to microevolution of traits that are adaptive under the current selection pressure. Currently, one of the major selection pressures is the rise in temperatures globally that has a severe impact on the behavioral ecology of animals. However, the role of thermal stress on neuronal plasticity and memory formation is not well understood. Thermal tolerance and sensitivity to heat stress show variation across populations of the same species experiencing different thermal regimes. We used two populations of the pond snail Lymnaea stagnalis: one lab-bred W-snails and the other wild Delta snails to test heat shock induced learning and memory formation for the Garcia effect learning paradigm. In Garcia effect, a single pairing of a heat stressor (30 °C for 1h) with a novel taste results in a taste-specific negative hedonic shift lasting 24h as long-term memory (LTM) in lab bred W-snails. In this study we used a repeated heat stress procedure to test for increased or decreased sensitivity to the heat before testing for the Garcia effect. We found that lab-bred W-snails show increased sensitivity to heat stress after repeated heat exposure for 7days, leading to enhanced LTM for Garcia effect with only 15min of heat exposure instead of standard 1h. Surprisingly, the freshly collected wild snails do not show Garcia effect. Additionally, F1 generation of wild snails raised and maintained under laboratory conditions still retain their heat stress tolerance similar to their parents and do not show a Garcia effect under standard learning paradigm or even after repeated heat stressor. Thus, we found a differential effect of heat stress on memory formation in wild and lab bred snails. Most interestingly we also show that local environmental (temperature) conditions for one generation is not enough to alter thermal sensitivity in a wild population of L. stagnalis.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Mc Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
11
|
Ladds M, Jankowiak J, Gobler CJ. Novel high throughput sequencing - fluorometric approach demonstrates Microcystis blooms across western Lake Erie are promoted by grazing resistance and nutrient enhanced growth. HARMFUL ALGAE 2021; 110:102126. [PMID: 34887006 DOI: 10.1016/j.hal.2021.102126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial harmful algal blooms (CHABs) are a global public health threat. While CHABs are often promoted by nutrients, an important and often overlooked influence on bloom dynamics is zooplankton grazing. In the present study, zooplankton grazing and nutrient enrichment experiments were combined with next generation sequencing and fluorometric analyses to quantify differential grazing and nutrient effects on specific cyanobacterial genera across the western basin of Lake Erie. Grazing by two different sized daphnids, Daphnia magna and Daphnia pulex, was compared to protozooplankton grazing effects assessed via a dilution approach at sites within the Maumee and Sandusky Bays where Planktothrix, Microcystis, Synechococcus, and Dolichospermum were the dominant genera. Daphnid grazing significantly reduced Synechococcus net growth rates at most sites as well as Planktothrix net growth in Sandusky Bay and Dolichospermum in Maumee Bay. Dilution resulted in significant growth increase of Synechococcus at half of the sites and Planktothrix at most sites evidencing substantial grazing pressure by the protozooplankton community on these genera. In contrast, Microcystis populations were largely unaffected by daphnids and protozooplankton grazing but benefitted from nutrient enrichment more than other CHAB genera. When diatoms were present in moderate abundance, grazing rates by daphnids on diatoms were significantly greater than grazing rates on cyanobacteria. The novel approach used in this study established differences in grazing pressure and nutrient effects on differing taxa and revealed that, while many taxa were grazed by multiple classes of zooplankton (e.g. Planktothrix, Synechococcus, Dolichospermum, diatoms), the lack of grazing pressure on Microcystis coupled with nutrient-enhanced growth in western Lake Erie promotes the occurrence of CHABs of this genus.
Collapse
Affiliation(s)
- Megan Ladds
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, USA
| | - Jennifer Jankowiak
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, USA.
| |
Collapse
|
12
|
Clark AD, Howell BK, Wilson AE, Schwartz TS. Draft genomes for one Microcystis-resistant and one Microcystis-sensitive strain of the water flea, Daphnia pulicaria. G3 (BETHESDA, MD.) 2021; 11:jkab266. [PMID: 34849790 PMCID: PMC8527513 DOI: 10.1093/g3journal/jkab266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
Daphnia species are well-suited for studying local adaptation and evolutionary responses to stress(ors) including those caused by algal blooms. Algal blooms, characterized by an overgrowth (bloom) of cyanobacteria, are detrimental to the health of aquatic and terrestrial members of freshwater ecosystems. Some strains of Daphnia pulicaria have demonstrated resistance to toxic algae and the ability to mitigate toxic algal blooms. Understanding the genetic mechanism associated with this toxin resistance requires adequate genomic resources. Using whole-genome sequence data mapped to the Daphnia pulex reference genome (PA42), we present reference-guided draft assemblies from one tolerant and one sensitive strain of D. pulicaria, Wintergreen-6 (WI-6), and Bassett-411 (BA-411), respectively. Assessment of the draft assemblies reveal low contamination levels, and high levels (95%) of genic content. Reference scaffolds had coverage breadths of 98.9-99.4%, and average depths of 33X and 29X for BA-411 and WI-6, respectively. Within, we discuss caveats and suggestions for improving these draft assemblies. These genomic resources are presented with a goal of contributing to the resources necessary to understand the genetic mechanisms and associations of toxic prey resistance observed in this species.
Collapse
Affiliation(s)
- Amanda D Clark
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Bailey K Howell
- Bioinformatics REU Program, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alan E Wilson
- Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Reversed evolution of grazer resistance to cyanobacteria. Nat Commun 2021; 12:1945. [PMID: 33782425 PMCID: PMC8007715 DOI: 10.1038/s41467-021-22226-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
Exploring the capability of organisms to cope with human-caused environmental change is crucial for assessing the risk of extinction and biodiversity loss. We study the consequences of changing nutrient pollution for the freshwater keystone grazer, Daphnia, in a large lake with a well-documented history of eutrophication and oligotrophication. Experiments using decades-old genotypes resurrected from the sediment egg bank revealed that nutrient enrichment in the middle of the 20th century, resulting in the proliferation of harmful cyanobacteria, led to the rapid evolution of grazer resistance to cyanobacteria. We show here that the subsequent reduction in nutrient input, accompanied by a decrease in cyanobacteria, resulted in the re-emergence of highly susceptible Daphnia genotypes. Expression and subsequent loss of grazer resistance occurred at high evolutionary rates, suggesting opposing selection and that maintaining resistance was costly. We provide a rare example of reversed evolution of a fitness-relevant trait in response to relaxed selection. Anthropogenic changes, such as eutrophication from lake pollution, can lead to rapid evolution. Comparing Daphnia resurrected from generations adapted to historical pollution to contemporary, post-cleanup populations finds that Daphnia rapidly reversed their evolved resistance to harmful cyanobacteria.
Collapse
|
14
|
Cordellier M, Wojewodzic MW, Wessels M, Kuster C, von Elert E. Next-generation sequencing of DNA from resting eggs: signatures of eutrophication in a lake's sediment. ZOOLOGY 2021; 145:125895. [PMID: 33561655 DOI: 10.1016/j.zool.2021.125895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/25/2023]
Abstract
Hatching resting stages of ecologically important organisms such as Daphnia from lake sediments, referred to as resurrection ecology, is a powerful approach to assess changes in alleles and traits over time. However, the utility of the approach is constrained by a few obstacles, including low and/or biased hatching among genotypes. Here, we eliminated such bottlenecks by investigating DNA sequences isolated directly (i.e. without hatching) from resting eggs found in the sediments of Lake Constance spanning pre-, peri-, and post-eutrophication. While we expected genome-wide changes, we specifically expected changes in alleles related to pathways involved in mitigating effects of cyanobacterial toxins. We used pairwise FST-analyses to identify transcripts that showed strongest divergence among the four different populations and a clustering analysis to identify correlations between allele frequency shifts and changes in abiotic and biotic lake parameters. In a cluster that correlated with the increased abundance of cyanobacteria in Lake Constance we find genes that have been reported earlier to be differentially expressed in response to the cyanobacterial toxin microcystin and to microcystin-free cyanobacteria. We further reveal the enrichment of gene ontology terms that have been shown to be involved in microcystin-related responses in other organisms but not yet in Daphnia and as such are candidate loci for adaptation of natural Daphnia populations to increased cyanobacterial abundances. In conclusion this approach of investigating DNA extracted from Daphnia resting stages allowed to determine frequency changes of loci in a natural population over time.
Collapse
Affiliation(s)
- Mathilde Cordellier
- Universität Hamburg, Biozentrum Grindel, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.
| | - Marcin W Wojewodzic
- Cancer Registry of Norway (Kreftregisteret), Institute of Population-Based Cancer Research, Etiology Group, NO-0304, Oslo, Norway; School of Biosciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Martin Wessels
- Institute for Lake Research at the Agency for Environment Baden-Württemberg, 88085, Langenargen, Germany.
| | - Christian Kuster
- Aquatic Chemical Ecology, Institute of Zoology, University of Koeln, Biocenter, Zuelpicher Strasse 47 B, 50858, Koeln, Germany.
| | - Eric von Elert
- Aquatic Chemical Ecology, Institute of Zoology, University of Koeln, Biocenter, Zuelpicher Strasse 47 B, 50858, Koeln, Germany.
| |
Collapse
|
15
|
Alberti M, Palkovacs E, Roches S, Meester L, Brans K, Govaert L, Grimm NB, Harris NC, Hendry AP, Schell CJ, Szulkin M, Munshi-South J, Urban MC, Verrelli BC. The Complexity of Urban Eco-evolutionary Dynamics. Bioscience 2020. [DOI: 10.1093/biosci/biaa079] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
Urbanization is changing Earth's ecosystems by altering the interactions and feedbacks between the fundamental ecological and evolutionary processes that maintain life. Humans in cities alter the eco-evolutionary play by simultaneously changing both the actors and the stage on which the eco-evolutionary play takes place. Urbanization modifies land surfaces, microclimates, habitat connectivity, ecological networks, food webs, species diversity, and species composition. These environmental changes can lead to changes in phenotypic, genetic, and cultural makeup of wild populations that have important consequences for ecosystem function and the essential services that nature provides to human society, such as nutrient cycling, pollination, seed dispersal, food production, and water and air purification. Understanding and monitoring urbanization-induced evolutionary changes is important to inform strategies to achieve sustainability. In the present article, we propose that understanding these dynamics requires rigorous characterization of urbanizing regions as rapidly evolving, tightly coupled human–natural systems. We explore how the emergent properties of urbanization affect eco-evolutionary dynamics across space and time. We identify five key urban drivers of change—habitat modification, connectivity, heterogeneity, novel disturbances, and biotic interactions—and highlight the direct consequences of urbanization-driven eco-evolutionary change for nature's contributions to people. Then, we explore five emerging complexities—landscape complexity, urban discontinuities, socio-ecological heterogeneity, cross-scale interactions, legacies and time lags—that need to be tackled in future research. We propose that the evolving metacommunity concept provides a powerful framework to study urban eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, Washington
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology,University of California, Santa Cruz, California
| | | | - Luc De Meester
- Laboratory of Aquatic Ecology Evolution, and Conservation, Katholieke Universiteit Leuven, Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei, Berlin, Germany, and with the Institute of Biology at Freie Universität Berlin, also in Berlin, Germany
| | - Kristien I Brans
- Laboratory of Aquatic Ecology Evolution, and Conservation, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; with the Department of Aquatic Ecology, in the Swiss Federal Institute of Aquatic Science and Technology, in Dübendorf, Switzerland; and with the University Research Priority Programme on Global Change and Biodiversity at the University of Zurich, in Zurich, Switzerland
| | | | - Nyeema C Harris
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Christopher J Schell
- Department of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington
| | | | - Jason Munshi-South
- Louis Calder Center Biological Field Station, Fordham University, Armonk, New York
| | - Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut
| | - Brian C Verrelli
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
16
|
Effects of Harmful Blooms of Large-Sized and Colonial Cyanobacteria on Aquatic Food Webs. WATER 2020. [DOI: 10.3390/w12061587] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobacterial blooms are the most important and best studied type of harmful algal blooms in fresh waters and brackish coastal seas. We here review how and to which extent they resist grazing by zooplankton, how zooplankton responds to cyanobacterial blooms and how these effects are further transmitted to fish. Size, toxicity and poor nutritional value are widespread mechanisms of grazing defense by cyanobacteria. In some cases, defenses are inducible, in some they are obligate. However, to some extent zooplankton overcome grazing resistance, partly after evolutionary adaptation. Cyanotoxins are also harmful to fish and may cause fish kills. However, some fish species feed on Cyanobacteria, are able to reduce their abundance, and grow on a cyanobacterial diet. While reduced edibility for crustacean zooplankton tends to elongate the food chain from primary producers to fish, direct feeding by fish tends to shorten it. The few available comparative studies relating fish yield to nutrients or phytoplankton provide no indication that cyanobacteria should reduce the ratio fish production: primary production.
Collapse
|
17
|
Crawford JW, Schrader M, Hall SR, Cáceres CE. Intraspecific variation in resource use is not explained by population persistence or seasonality. Oecologia 2020; 193:135-142. [PMID: 32307672 DOI: 10.1007/s00442-020-04651-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
Populations of generalist grazers often contain genotypes with "powerful" and "efficient" strategies. Powerful genotypes grow rapidly on rich-quality resources, but slowly on poorer-quality ones, while efficient genotypes grow relatively better on poorer resources but cannot exploit richer resources as well. Via a "power-efficiency" trade-off, variation in resource quality could maintain genetic diversity. To evaluate this mechanism, we sampled six populations of the freshwater cladoceran Daphnia pulicaria. In persisting (year-round) populations, Daphnia consume resources that vary in quality, whereas in non-persisting (spring-only) populations, Daphnia primarily encounter rich-quality resources. We hypothesized that non-persisting populations harbor no efficient clones (hence should show lower growth on poor-quality resources). Although individuals from non-persisting populations remained smaller than individuals from persisting populations, no evidence arose for a trade-off between powerful and efficient strategies. In fact, growth rates on the two diets were positively correlated (instead of negatively, as predicted). Furthermore, in the persisting populations, we predicted that clonal selection from spring to summer should shift the distribution of genotypes from powerful (specialists on richer spring resources) to efficient (poorer, summer resources). Genetic composition of populations shifted from spring to summer, but not toward more efficient genotypes. Therefore, in these lakes, maintenance of variation among genotypes must stem from more complicated factors than population persistence patterns or seasonal shifts in resource quality alone.
Collapse
Affiliation(s)
- John W Crawford
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, USA
| | - Matthew Schrader
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, USA.,Department of Biology, University of the South, Sewanee, TN, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carla E Cáceres
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
18
|
Gu L, Qin S, Zhu S, Lu N, Sun Y, Zhang L, Huang Y, Lyu K, Chen Y, Yang Z. Microcystis aeruginosa affects the inducible anti-predator responses of Ceriodaphnia cornuta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113952. [PMID: 31935614 DOI: 10.1016/j.envpol.2020.113952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms are an increasing problem in a more eutrophic world. It is still a challenge to fully understand the influence of cyanobacteria on the interactions between predator and prey at higher trophic levels. The present study was mainly undertaken to understand the inducible anti-predator responses of cladocerans while using cyanobacteria as part of food. Specifically speaking, we focused on the anti-predator strategies of Ceriodaphnia cornuta in response to different predators (fish and Chaoborus larvae) under food with different proportions of Microcystis aeruginosa. The morphological (i.e., body size and the induction of horns) and life history traits (e.g., time to first reproduction, offspring number, and survival time) responses were measured under different proportions of M. aeruginosa (i.e., 0%, 20%, 40%, 60%, 80%, and 100%). Our results showed that both the life history and the inducible anti-predator responses of C. cornuta were significantly affected by different concentrations of M. aeruginosa. Specifically, lower concentrations of Microcystis (20%-60%) can significantly promote the horns induction under Chaoborus predation risks, and higher Microcystis concentrations (60%-100%) tend to enhance reproduction in response to fish predation risks, such as larger body size, decreased time to first reproduction, and increased total offspring number. Additionally, an increasing concentration of M. aeruginosa decreased the ability of C. cornuta to reverse horns when predation risks removed. Our findings indicated that cyanobacteria affecting life history traits and the subsequent indirect effects on anti-predator responses in cladocerans could impact the interactions between predator and prey at higher trophic levels and may consequently contribute to shaping the structure of the community in a cyanobacteria bloom area.
Collapse
Affiliation(s)
- Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shanshan Qin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shuangshuang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Na Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
19
|
Shotgun proteomics analysis reveals sub-lethal effects in Daphnia magna exposed to cell-bound microcystins produced by Microcystis aeruginosa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 33:100656. [DOI: 10.1016/j.cbd.2020.100656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/12/2023]
|
20
|
Shahmohamadloo RS, Poirier DG, Ortiz Almirall X, Bhavsar SP, Sibley PK. Assessing the toxicity of cell-bound microcystins on freshwater pelagic and benthic invertebrates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109945. [PMID: 31753309 DOI: 10.1016/j.ecoenv.2019.109945] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacterial harmful algal blooms dominated by Microcystis frequently produce microcystins, a family of toxins capable of inflicting harm to pelagic and benthic freshwater invertebrates. Research on the effect of microcystins on invertebrates is inconclusive; from one perspective, studies suggest invertebrates can coexist in toxic blooms; however, studies have also measured negative food-associated effects from microcystins. To test the latter perspective, we examined the reproduction, growth, and survival of laboratory-cultured Ceriodaphnia dubia, Daphnia magna, and Hexagenia spp. exposed to cell-bound microcystins through a series of life-cycle bioassays. Test organisms were exposed to a concentration gradient ranging from 0.5 μg L-1 to 300 μg L-1 microcystins, which corresponds to values typically found in freshwaters during bloom season. Lethal concentrations in C. dubia (LC50 = 5.53 μg L-1) and D. magna (LC50 = 85.72 μg L-1) exposed to microcystins were among the lowest recorded to date, and reproductive effects were observed at concentrations as low as 2.5 μg L-1. Length of D. magna was significantly impacted in microcystin treatments great than 2.5 μg L-1. No lethality or growth impairments were observed in Hexagenia. This information will improve our understanding of the risks posed by microcystins to food webs in freshwaters.
Collapse
Affiliation(s)
| | - David G Poirier
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
21
|
Liu Y, El-Kassaby YA. Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden. BMC Evol Biol 2019; 19:231. [PMID: 31878866 PMCID: PMC6933736 DOI: 10.1186/s12862-019-1553-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/05/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Natural selection on fitness-related traits can be temporally heterogeneous among populations. As climate changes, understanding population-level responses is of scientific and practical importance. We examined 18 phenotypic traits associated with phenology, biomass, and ecophysiology in 403 individuals of natural Populus trichocarpa populations, growing in a common garden. RESULTS Compared with tree origin settings, propagules likely underwent drought exposures in the common garden due to significantly low rainfall during the years of measurement. All study traits showed population differentiation reflecting adaptive responses due to local genetic adaptation. Phenology and biomass traits were strongly under selection and showed plastic responses between years, co-varying with latitude. While phenological events (e.g., bud set and growth period) and biomass were under positive directional selection, post-bud set period, particularly from final bud set to the onset of leaf drop, was selected against. With one exception to water-use efficiency, ecophysiology traits were under negative directional selection. Moreover, extended phenological events jointly evolved with source niches under increased temperature and decreased rainfall exposures. High biomass coevolved with climatic niches of high temperature; low rainfall promoted high photosynthetic rates evolution. CONCLUSIONS This work underpins that P. trichocarpa is likely to experience increased fitness (height gain) by evolving toward extended bud set and growth period, abbreviated post-bud set period, and increased drought resistance, potentially constituting a powerful mechanism for long-lived tree species in surviving unpredictably environmental extremes (e.g., drought).
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
22
|
Agasild H, Panksep K, Tõnno I, Blank K, Kõiv T, Freiberg R, Laugaste R, Jones RI, Nõges P, Nõges T. Role of potentially toxic cyanobacteria in crustacean zooplankton diet in a eutrophic lake. HARMFUL ALGAE 2019; 89:101688. [PMID: 31672224 DOI: 10.1016/j.hal.2019.101688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
The coexistence of potentially toxic bloom-forming cyanobacteria (CY) and generally smaller-sized grazer communities has raised the question of zooplankton (ZP) ability to control harmful cyanobacterial blooms and highlighted the need for species-specific research on ZP-CY trophic interactions in naturally occurring communities. A combination of HPLC, molecular and stable isotope analyses was used to assess in situ the importance of CY as a food source for dominant crustacean ZP species and to quantify the grazing on potentially toxic strains of Microcystis during bloom formation in large eutrophic Lake Peipsi (Estonia). Aphanizomenon, Dolichospermum, Gloeotrichia and Microcystis dominated bloom-forming CY, while Microcystis was the major genus producing cyanotoxins all over the lake. Grazing studies showed that CY, and especially colonial CY, formed a significant, and also preferred component of algae ingested by the cladocerans Bosmina spp. and Daphnia spp. while this was not the case for the more selective calanoid copepod Eudiaptomus gracilis. Molecular analyses confirmed the presence of CY, including Microcystis, in ZP guts. Further analyses using qPCR targeting cyanobacterial genus-specific mcyE synthase genes indicated that potentially toxic strains of Microcystis can be ingested directly or indirectly by all the dominant crustacean grazers. However, stable isotope analyses indicated that little, if any, assimilation from ingested bloom-forming CY occurred. The study suggests that CY, and particularly Microcystis with both potentially toxic and non-toxic strains, can be widely ingested by cladoceran grazers during a bloom event with implications for control of CY abundance and for transfer of CY toxins through the food web.
Collapse
Affiliation(s)
- Helen Agasild
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Kristel Panksep
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Ilmar Tõnno
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Kätlin Blank
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Toomas Kõiv
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - René Freiberg
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Reet Laugaste
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Roger I Jones
- Department of Biological & Environmental Science, University of Jyväskylä, PL35, FI-40014, Finland.
| | - Peeter Nõges
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| | - Tiina Nõges
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Rannu, Tartu County, 61117, Estonia.
| |
Collapse
|
23
|
Chislock MF, Sarnelle O, Jernigan LM, Anderson VR, Abebe A, Wilson AE. Consumer adaptation mediates top-down regulation across a productivity gradient. Oecologia 2019; 190:195-205. [PMID: 30989361 DOI: 10.1007/s00442-019-04401-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
Humans have artificially enhanced the productivity of terrestrial and aquatic ecosystems on a global scale by increasing nutrient loading. While the consequences of eutrophication are well known (e.g., harmful algal blooms and toxic cyanobacteria), most studies tend to examine short-term responses relative to the time scales of heritable adaptive change. Thus, the potential role of adaptation by organisms in stabilizing the response of ecological systems to such perturbations is largely unknown. We tested the hypothesis that adaptation by a generalist consumer (Daphnia pulicaria) to toxic prey (cyanobacteria) mediates the response of plankton communities to nutrient enrichment. Overall, the strength of Daphnia's top-down effect on primary producer biomass increased with productivity. However, these effects were contingent on prey traits (e.g., rare vs. common toxic cyanobacteria) and consumer genotype (i.e., tolerant vs sensitive to toxic cyanobacteria). Tolerant Daphnia strongly suppressed toxic cyanobacteria in nutrient-rich ponds, but sensitive Daphnia did not. In contrast, both tolerant and sensitive Daphnia genotypes had comparable effects on producer biomass when toxic cyanobacteria were absent. Our results demonstrate that organismal adaptation is critical for understanding and predicting ecosystem-level consequences of anthropogenic environmental perturbations.
Collapse
Affiliation(s)
- Michael F Chislock
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA.,Department of Environmental Science and Ecology, The College at Brockport, State University of New York, Brockport, NY, 14420, USA
| | - Orlando Sarnelle
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Lauren M Jernigan
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA
| | - Vernon R Anderson
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA
| | - Ash Abebe
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
24
|
Yamamichi M, Klauschies T, Miner BE, Velzen E. Modelling inducible defences in predator–prey interactions: assumptions and dynamical consequences of three distinct approaches. Ecol Lett 2018; 22:390-404. [DOI: 10.1111/ele.13183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Masato Yamamichi
- Department of General Systems Studies University of Tokyo 3‐8‐1 Komaba Meguro Tokyo153‐8902 Japan
| | - Toni Klauschies
- Department of Ecology and Ecosystem Modelling Institute of Biochemistry and Biology University of Potsdam Am Neuen Palais 10 Potsdam 14469 Germany
| | - Brooks E. Miner
- Department of Biology Ithaca College 953 Danby Rd. Ithaca NY14850 USA
| | - Ellen Velzen
- Department of Ecology and Ecosystem Modelling Institute of Biochemistry and Biology University of Potsdam Am Neuen Palais 10 Potsdam 14469 Germany
| |
Collapse
|
25
|
Hamann E, Weis AE, Franks SJ. Two decades of evolutionary changes in Brassica rapa in response to fluctuations in precipitation and severe drought. Evolution 2018; 72:2682-2696. [PMID: 30478889 DOI: 10.1111/evo.13631] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 01/04/2023]
Abstract
As climate changes at unprecedented rates, understanding population responses is a major challenge. Resurrection studies can provide crucial insights into the contemporary evolution of species to climate change. We used a seed collection of two Californian populations of the annual plant Brassica rapa made over two decades of dramatic precipitation fluctuations, including increasingly severe droughts. We compared flowering phenology, other drought response traits, and seed production among four generations, grown under drought and control conditions, to test for evolutionary change and to characterize the strength and direction of selection. Postdrought generations flowered earlier, with a reduced stem diameter, and lower water-use efficiency (WUE), while intervening wet seasons reversed these adaptations. There was selection for earlier flowering, which was adaptive, but delayed flowering after wet years resulted in reduced total seed mass, indicating a maladaptive response caused by brief wet periods. Furthermore, evolutionary changes and plastic responses often differed in magnitude between populations and drought periods, suggesting independent adaptive pathways. While B. rapa rapidly evolved a drought escape strategy, plant fitness was reduced in contemporary generations, suggesting that rapid shifts in flowering time may no longer keep up with the increasing severity of drought periods, especially when drought adaptation is slowed by occasional wet seasons.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Biological Sciences, Fordham University, Bronx, New York, 10458
| | - Arthur E Weis
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, New York, 10458
| |
Collapse
|
26
|
Schuurmans JM, Brinkmann BW, Makower AK, Dittmann E, Huisman J, Matthijs HCP. Microcystin interferes with defense against high oxidative stress in harmful cyanobacteria. HARMFUL ALGAE 2018; 78:47-55. [PMID: 30196924 DOI: 10.1016/j.hal.2018.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Harmful cyanobacteria producing toxic microcystins are a major concern in water quality management. In recent years, hydrogen peroxide (H2O2) has been successfully applied to suppress cyanobacterial blooms in lakes. Physiological studies, however, indicate that microcystin protects cyanobacteria against oxidative stress, suggesting that H2O2 addition might provide a selective advantage for microcystin-producing (toxic) strains. This study compares the response of a toxic Microcystis strain, its non-toxic mutant, and a naturally non-toxic Microcystis strain to H2O2 addition representative of lake treatments. All three strains initially ceased growth upon H2O2 addition. Contrary to expectation, the non-toxic strain and non-toxic mutant rapidly degraded the added H2O2 and subsequently recovered, whereas the toxic strain did not degrade H2O2 and did not recover. Experimental catalase addition enabled recovery of the toxic strain, demonstrating that rapid H2O2 degradation is indeed essential for cyanobacterial survival. Interestingly, prior to H2O2 addition, gene expression of a thioredoxin and peroxiredoxin was much lower in the toxic strain than in its non-toxic mutant. Thioredoxin and peroxiredoxin are both involved in H2O2 degradation, and microcystin may potentially suppress their activity. These results show that microcystin-producing strains are less prepared for high levels of oxidative stress, and are therefore hit harder by H2O2 addition than non-toxic strains.
Collapse
Affiliation(s)
- J Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, P.O. Box 94248, 1090 GE, The Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 6, Wageningen, The Netherlands
| | - Bregje W Brinkmann
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, P.O. Box 94248, 1090 GE, The Netherlands
| | - A Katharina Makower
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, Potsdam, Germany
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, Potsdam, Germany
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, P.O. Box 94248, 1090 GE, The Netherlands.
| | - Hans C P Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, P.O. Box 94248, 1090 GE, The Netherlands
| |
Collapse
|
27
|
|
28
|
Microbial parasites make cyanobacteria blooms less of a trophic dead end than commonly assumed. ISME JOURNAL 2018; 12:1008-1020. [PMID: 29416126 DOI: 10.1038/s41396-018-0045-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 11/15/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022]
Abstract
Parasites exist in every ecosystem and can have large influence on food web structure and function, yet, we know little about parasites' effect on food web dynamics. Here we investigate the role of microbial parasitism (viruses of bacteria, phytoplankton and cyanobacteria, and parasitic chytrids on cyanobacteria) on the dynamics of trophic pathways and food web functioning during a cyanobacteria bloom, using linear inverse food web modeling parameterized with a 2-month long data set (biomasses, infection parameters, etc.). We show the importance of grazing on heterotrophic bacteria (the microbial pathway: DOC → bacteria → consumer) and how consumers depended on bacteria during peak-cyanobacteria bloom, which abundance was partly driven by the viral activity. As bacteria become the main energy pathway to the consumers, the system takes a more web-like structure through increased omnivory, and may thereby facilitate the system's persistence to the cyanobacteria outbreak. We also showed how the killing of cyanobacteria host cells by chytrids had important impact on the food web dynamics by facilitating grazing on the cyanobacteria, and by offering alternative pathways to the consumers. This seemed to increase the system's ability to return to a mix of trophic pathways, which theoretically increases the stability of the system.
Collapse
|
29
|
Turko P, Tellenbach C, Keller E, Tardent N, Keller B, Spaak P, Wolinska J. Parasites driving host diversity: Incidence of disease correlated with Daphnia clonal turnover. Evolution 2018; 72:619-629. [PMID: 29238958 DOI: 10.1111/evo.13413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/16/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
According to the Red Queen hypothesis, clonal diversity in asexual populations could be maintained by negative frequency-dependant selection by coevolving parasites. If common clones are selected against and rare clones gain a concomitant advantage, we expect that clonal turnover should be faster during parasite epidemics than between them. We tested this hypothesis exploring field data of the Daphnia-Caullerya host-parasite system. The clonal make-up and turnover of the Daphnia host population was tracked with high temporal resolution from 1998 until 2013, using first allozyme and later microsatellite markers. Significant differences in the clonal composition between random and infected subsamples of Daphnia populations were detected on six of seven tested occasions, confirming genetic specificity of the host-parasite interaction in this system. We used time series analysis to compare the rates of host clonal turnover to the incidence of parasitism, and found that Caullerya prevalence was significantly associated with microsatellite-based clonal turnover. As alternate hypotheses, we further tested whether turnover was related to a variety of biotic, abiotic, and host demographic parameters. Other significant correlates of turnover were cyanobacterial biomass and (weakly) temperature. Overall, parasitism seems to be a strong driver of host clonal turnover, in support of the Red Queen hypothesis.
Collapse
Affiliation(s)
- Patrick Turko
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Christoph Tellenbach
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Esther Keller
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Nadine Tardent
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Barbara Keller
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.,Department of Systematic and Evolutionary Botany, University of Zurich, 8008 Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany
| |
Collapse
|
30
|
Houwenhuyse S, Macke E, Reyserhove L, Bulteel L, Decaestecker E. Back to the future in a petri dish: Origin and impact of resurrected microbes in natural populations. Evol Appl 2018; 11:29-41. [PMID: 29302270 PMCID: PMC5748525 DOI: 10.1111/eva.12538] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
Current natural populations face new interactions because of the re-emergence of ancient microbes and viruses. These risks come from the re-emergence of pathogens kept in laboratories or from pathogens that are retained in the permafrost, which become available upon thawing due to climate change. We here focus on the effects of such re-emergence in natural host populations based on evolutionary theory of virulence and long-term studies, which investigate host-pathogen adaptations. Pathogens tend to be locally and temporally adapted to their co-occurring hosts, but when pathogens from a different environment or different time enter the host community, the degree to which a new host-pathogen interaction is a threat will depend on the specific genotypic associations, the time lag between the host and the pathogen, and the interactions with native or recent host and pathogen species. Some insights can be obtained from long-term studies using a resurrection ecology approach. These long-term studies based on time-shift experiments are essential to obtain insight into the mechanisms underlying host-pathogen coevolution at several ecological and temporal scales. As past pathogens and their corresponding host(s) can differ in infectivity and susceptibility, strong reciprocal selective pressures can be induced by the pathogen. These strong selective pressures often result in an escalating arms race, but do not necessarily result in increased infectivity over time. Human health can also be impacted by these resurrected pathogens as the majority of emerging infectious diseases are zoonoses, which are infectious diseases originating from animal populations naturally transmitted to humans. The sanitary risk associated with pathogen emergence from different environments (spatial or temporal) depends on a combination of socioeconomic, environmental, and ecological factors that affect the virulence or the pathogenic potential of microbes and their ability to infect susceptible host populations.
Collapse
|
31
|
Franch-Gras L, García-Roger EM, Serra M, José Carmona M. Adaptation in response to environmental unpredictability. Proc Biol Sci 2017; 284:20170427. [PMID: 29212717 PMCID: PMC5740265 DOI: 10.1098/rspb.2017.0427] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/02/2017] [Indexed: 11/12/2022] Open
Abstract
Understanding how organisms adaptively respond to environmental fluctuations is a fundamental question in evolutionary biology. The Mediterranean region typically exhibits levels of environmental unpredictability that vary greatly in habitats over small geographical scales. In cyclically parthenogenetic rotifers, clonal proliferation occurs along with occasional bouts of sex. These bouts contribute to the production of diapausing eggs, which allows survival between growing seasons. Here, we studied two diapause-related traits in rotifers using clones from nine Brachionus plicatilis natural populations that vary in the degree of environmental unpredictability. We tested the hypothesis that the level of environmental unpredictability is directly related to the propensity for sex and inversely related to the hatching fraction of diapausing eggs. We found significant levels of genetic variation within populations for both traits. Interestingly, a positive correlation between pond unpredictability-quantified in a previous study from satellite imagery-and the propensity for sex was found. This correlation suggests a conservative, bet-hedging strategy that provides protection against unexpectedly short growing seasons. By contrast, the hatching fraction of diapausing eggs was not related to the level of environmental predictability. Our results highlight the ability of rotifer populations to locally adapt to time-varying environments, providing an evolutionarily relevant step forward in relating life-history traits to a quantitative measure of environmental unpredictability.
Collapse
Affiliation(s)
- Lluis Franch-Gras
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, A.O. 22085, 46071 Valencia, Spain
| | - Eduardo M García-Roger
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, A.O. 22085, 46071 Valencia, Spain
| | - Manuel Serra
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, A.O. 22085, 46071 Valencia, Spain
| | - María José Carmona
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, A.O. 22085, 46071 Valencia, Spain
| |
Collapse
|
32
|
Barrios CAZ, Nandini S, Sarma SSS. Effect of crude extracts from cyanobacterial blooms in Lake Texcoco (Mexico) on the population growth of Brachionus calyciflorus (Rotifera). Toxicon 2017; 139:45-53. [PMID: 28958830 DOI: 10.1016/j.toxicon.2017.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/28/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
Abstract
Unlike temperate regions, tropical ecosystems are characterized by high temperatures (>18 °C) all year, promoting blooms of cyanobacteria which often produce secondary metabolites toxic to zooplankton. Nabor Carillo and the Recreational Lake are part of the saline, Lake Texcoco, in Central Mexico which is filled nowadays with treated waste water. Both water bodies are dominated by Planktothrix, Anabaenopsis, Spirulina and Microcystis. In this study we present the concentration of microcystins in these waterbodies over an annual cycle. We also evaluated the chronic effects of cyanobacterial crude extracts from both lakes on two clones of the rotifer Brachionus calyciflorus, one from Nabor Carrillo Lake and the other from a canal in the shallow, Lake Xochimilco. The experiments on population growth were performed, beginning with 10 individuals per container for each of the following treatments: control (no crude extract), concentrated crude extract, and diluted crude extract (50:50) with moderately hard water and Chlorella vulgaris in a concentration of 0.5 × 106 cells ml-1. The cyanotoxin levels were measured using an ELISA test and ranged between 0.20 and 2.4 μg L-1 in the lake water. The results showed that the Recreational Lake extracts were more toxic, killing the rotifers in less than five days. The r values ranged from -1.74 to 0.48 in the presence of the crude extracts and 0.16 and 0.24 in the controls. The results have been discussed with emphasis on the importance of conducting regular studies to test ecotoxicological impacts of cyanobacterial blooms in tropical waters.
Collapse
Affiliation(s)
- Cesar Alejandro Zamora Barrios
- Laboratory of Aquatic Zoology, Division of Research and Postgraduate Studies, National Autonomous University of Mexico, Campus Iztacala, Av. de Los Barrios No. 1, C.P. 54090, Los Reyes, Tlalnepantla, State of Mexico, Mexico
| | - S Nandini
- Laboratory of Aquatic Zoology, Division of Research and Postgraduate Studies, National Autonomous University of Mexico, Campus Iztacala, Av. de Los Barrios No. 1, C.P. 54090, Los Reyes, Tlalnepantla, State of Mexico, Mexico.
| | - S S S Sarma
- Laboratory of Aquatic Zoology, Division of Research and Postgraduate Studies, National Autonomous University of Mexico, Campus Iztacala, Av. de Los Barrios No. 1, C.P. 54090, Los Reyes, Tlalnepantla, State of Mexico, Mexico
| |
Collapse
|
33
|
Cáceres CE, Mulvany SL, Paczolt KA, Steiner C. Cladoceran community assembly in a recently created lake. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/03680770.2005.11902838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Weider LJ, Jeyasingh PD, Frisch D. Evolutionary aspects of resurrection ecology: Progress, scope, and applications-An overview. Evol Appl 2017; 11:3-10. [PMID: 29302267 PMCID: PMC5748524 DOI: 10.1111/eva.12563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023] Open
Abstract
This perspective provides an overview to the Special Issue on Resurrection Ecology (RE). It summarizes the contributions to this Special Issue, and provides background information and future prospects for the use of RE in both basic and applied evolutionary studies.
Collapse
Affiliation(s)
- Lawrence J Weider
- Department of Biology Program in Ecology and Evolutionary Biology University of Oklahoma Norman OK USA
| | - Punidan D Jeyasingh
- Department of Integrative Biology Oklahoma State University Stillwater OK USA
| | - Dagmar Frisch
- School of Biosciences University of Birmingham Birmingham UK
| |
Collapse
|
35
|
Macke E, Callens M, De Meester L, Decaestecker E. Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria. Nat Commun 2017; 8:1608. [PMID: 29151571 PMCID: PMC5694789 DOI: 10.1038/s41467-017-01714-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota impacts many aspects of its host's biology, and is increasingly considered as a key factor mediating performance of host individuals in continuously changing environments. Here we use gut microbiota transplants to show that both host genotype and gut microbiota mediate tolerance to toxic cyanobacteria in the freshwater crustacean Daphnia magna. Interclonal variation in tolerance to cyanobacteria disappears when Daphnia are made germ-free and inoculated with an identical microbial inoculum. Instead, variation in tolerance among recipient Daphnia mirrors that of the microbiota donors. Metagenetic analyses point to host genotype and external microbial source as important determinants of gut microbiota assembly, and reveal strong differences in gut microbiota composition between tolerant and susceptible genotypes. Together, these results show that both environmentally and host genotype-induced variations in gut microbiota structure mediate Daphnia tolerance to toxic cyanobacteria, pointing to the gut microbiota as a driver of adaptation and acclimatization to cyanobacterial harmful algal blooms in zooplankton.
Collapse
Affiliation(s)
- Emilie Macke
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, B-8500, Kortrijk, Belgium.
| | - Martijn Callens
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, B-8500, Kortrijk, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, B-8500, Kortrijk, Belgium.
| |
Collapse
|
36
|
Schwarzenberger A, Keith NR, Jackson CE, Von Elert E. Copy number variation of a protease gene of Daphnia
: Its role in population tolerance. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:119-126. [DOI: 10.1002/jez.2077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/16/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Anke Schwarzenberger
- Cologne Biocenter, Aquatic Chemical Ecology, University of Cologne; Cologne Germany
- School of Public and Environmental Affairs (SPEA), Indiana University; Bloomington Indiana
- Limnological Institute, Konstanz University; Konstanz Germany
| | - Nathan R. Keith
- School of Public and Environmental Affairs (SPEA), Indiana University; Bloomington Indiana
| | - Craig E. Jackson
- School of Public and Environmental Affairs (SPEA), Indiana University; Bloomington Indiana
| | - Eric Von Elert
- Cologne Biocenter, Aquatic Chemical Ecology, University of Cologne; Cologne Germany
| |
Collapse
|
37
|
Tellenbach C, Tardent N, Pomati F, Keller B, Hairston NG, Wolinska J, Spaak P. Cyanobacteria facilitate parasite epidemics in Daphnia. Ecology 2017; 97:3422-3432. [PMID: 27912017 DOI: 10.1002/ecy.1576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/14/2016] [Accepted: 08/24/2016] [Indexed: 11/06/2022]
Abstract
The seasonal dominance of cyanobacteria in the phytoplankton community of lake ecosystems can have severe implications for higher trophic levels. For herbivorous zooplankton such as Daphnia, cyanobacteria have poor nutritional value and some species can produce toxins affecting zooplankton survival and reproduction. Here we present another, hitherto largely unexplored aspect of cyanobacteria, namely that they can increase Daphnia susceptibility to parasites. In a 12-yr monthly time-series analysis of the Daphnia community in Greifensee (Switzerland), we observed that cyanobacteria density correlated significantly with the epidemics of a common gut parasite of Daphnia, Caullerya mesnili, regardless of what cyanobacteria species was present or whether it was colonial or filamentous. The temperature from the previous month also affected the occurrence of Caullerya epidemics, either directly or indirectly by the promotion of cyanobacterial growth. A laboratory experiment confirmed that cyanobacteria increase the susceptibility of Daphnia to Caullerya, and suggested a possible involvement of cyanotoxins or other chemical traits of cyanobacteria in this process. These findings expand our understanding of the consequences of toxic cyanobacterial blooms for lake ecosystems and might be relevant for epidemics experienced by other aquatic species.
Collapse
Affiliation(s)
- C Tellenbach
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - N Tardent
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland
| | - F Pomati
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,Institute of Integrative Biology, ETH Zurich, Zurich, 8092, Switzerland
| | - B Keller
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,Department of Systematic and Evolutionary Botany, University of Zurich, Zürich, 8008, Switzerland
| | - N G Hairston
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - J Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587, Germany.,Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universitat Berlin, Königin-Luise-Strasse 1-3, Berlin, 14195, Germany
| | - P Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,Institute of Integrative Biology, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
38
|
Akbar S, Du J, Lin H, Kong X, Sun S, Tian X. Understanding interactive inducible defenses of Daphnia and its phytoplankton prey. HARMFUL ALGAE 2017; 66:47-56. [PMID: 28602253 DOI: 10.1016/j.hal.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial and zooplankton inducible defenses are important but understudied process that regulate the trophic interactions of freshwater ecosystem. Daphnia due to its large size is considered an important zooplankton with the high potential to control cyanobacterial blooms. It has been shown that Daphnia through maternal induction transfer tolerance to their next generation against Microcystis toxicity. Maternal induction has been investigated in different Daphnia species without considering phenotypic plasticity of prey. Laboratory experiments were performed to explore cyanobacteria-Daphnia inducible defenses in order to better understand their interactions. Two Daphnia species were fed either with Microcystis aeruginosa PCC7806 (Ma) or Microcystis flos-aquae (Mf) mixed with Chlorella vulgaris (Cv) (exposed Daphnia), and or pure Cv (unexposed Daphnia). Exposed prey cultures were produced by prior exposure to Daphnia infochemicals. Neonates produced by exposed and unexposed Daphnia were fed with mixed diet (Microcystis+Cv) of either exposed and or unexposed prey. Growth parameters and toxin production of exposed prey cultures were significantly different than that of control. Exposed Daphnia fecundity and survival was higher as compared to unexposed Daphnia. Growth and reproduction was reduced in exposed Daphnia when fed with exposed prey as compared to those fed with unexposed prey. This study provides information on the interactive inducible defenses between cyanobacteria and its grazer under laboratory conditions and may increase our understanding of cyanobacteria and Daphnia interactions in the freshwater ecosystem.
Collapse
Affiliation(s)
- Siddiq Akbar
- School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Jingjing Du
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Hong Lin
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xiangshi Kong
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Shucun Sun
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
39
|
Groendahl S, Fink P. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms. BMC Ecol 2017; 17:20. [PMID: 28521755 PMCID: PMC5437396 DOI: 10.1186/s12898-017-0130-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/09/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mass occurrences of cyanobacteria frequently cause detrimental effects to the functioning of aquatic ecosystems. Consequently, attempts haven been made to control cyanobacterial blooms through naturally co-occurring herbivores. Control of cyanobacteria through herbivores often appears to be constrained by their low dietary quality, rather than by the possession of toxins, as also non-toxic cyanobacteria are hardly consumed by many herbivores. It was thus hypothesized that the consumption of non-toxic cyanobacteria may be improved when complemented with other high quality prey. We conducted a laboratory experiment in which we fed the herbivorous freshwater gastropod Lymnaea stagnalis single non-toxic cyanobacterial and unialgal diets or a mixed diet to test if diet-mixing may enable these herbivores to control non-toxic cyanobacterial mass abundances. RESULTS The treatments where L. stagnalis were fed non-toxic cyanobacteria and a mixed diet provided a significantly higher shell and soft-body growth rate than the average of all single algal, but not the non-toxic cyanobacterial diets. However, the increase in growth provided by the non-toxic cyanobacteria diets could not be related to typical determinants of dietary quality such as toxicity, nutrient stoichiometry or essential fatty acid content. CONCLUSIONS These results strongly contradict previous research which describes non-toxic cyanobacteria as a low quality food resource for freshwater herbivores in general. Our findings thus have strong implications to gastropod-cyanobacteria relationships and suggest that freshwater gastropods may be able to control mass occurrences of benthic non-toxic cyanobacteria, frequently observed in eutrophied water bodies worldwide.
Collapse
Affiliation(s)
- Sophie Groendahl
- Cologne Biocenter, Workgroup Aquatic Chemical Ecology, University of Cologne, Zuelpicher Strasse 47b, 50674 Koeln, Germany
| | - Patrick Fink
- Cologne Biocenter, Workgroup Aquatic Chemical Ecology, University of Cologne, Zuelpicher Strasse 47b, 50674 Koeln, Germany
- Institute for Zoomorphology and Cell Biology, Heinrich-Heine University of Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| |
Collapse
|
40
|
Jia J, Shi W, Chen Q, Lauridsen TL. Spatial and temporal variations reveal the response of zooplankton to cyanobacteria. HARMFUL ALGAE 2017; 64:63-73. [PMID: 28427573 DOI: 10.1016/j.hal.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 06/07/2023]
Abstract
The effects of cyanobacteria on zooplankton abundance, structure and diversity were investigated, based on a systematic study on spatial and temporal variations of cyanobacteria and zooplankton in Lake Taihu from 1998 to 2007. It was found that similar increasing trends of cyanobacteria/phytoplankton ratios were accompanied by different trends in biomass, composition and biodiversity of zooplankton in different regions of the lake; the cladocerans benefitted from the increase in cyanobacteria; however, rotifers and protozoans were negatively affected by cyanobacteria. The biomass-based biodiversity of phytoplankton and zooplankton was negatively affected by cyanobacteria as well, and the adverse effects were in proportion to the cyanobacteria/phytoplankton ratio. These results indicated interestingly that higher amounts of cyanobacteria do not necessarily reduce zooplankton biomass, as the biomass of larger zooplankton such as cladocerans was positively related to cyanobacteria. The findings are essential to understand the complex ecological effects of cyanobacteria blooms in lakes.
Collapse
Affiliation(s)
- Junmei Jia
- RCEES, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Centre for Education and Research (SDC), Beijing, 100190, China
| | - Wenqing Shi
- CEER, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Qiuwen Chen
- CEER, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Torben L Lauridsen
- Sino-Danish Centre for Education and Research (SDC), Beijing, 100190, China; Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| |
Collapse
|
41
|
Rudman SM, Kreitzman M, Chan KMA, Schluter D. Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services. Trends Ecol Evol 2017; 32:403-415. [PMID: 28336183 DOI: 10.1016/j.tree.2017.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022]
Abstract
Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services.
Collapse
Affiliation(s)
- Seth M Rudman
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada.
| | - Maayan Kreitzman
- Institute for Resources, Environment, and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kai M A Chan
- Institute for Resources, Environment, and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
42
|
Rogalski MA. Maladaptation to Acute Metal Exposure in Resurrected Daphnia ambigua Clones after Decades of Increasing Contamination. Am Nat 2017; 189:443-452. [PMID: 28350505 DOI: 10.1086/691077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Human environmental impacts have driven some of the strongest and fastest phenotypic changes recorded in wild animal populations. Across populations, this variation is often adaptive, because populations evolve fitness advantages in response to human-modified environments. Yet some populations fail to adapt to changing environments. Evidenced by declines in relative fitness, such seemingly maladaptive outcomes are less common but may be more likely in human-modified contexts. Further, our ability to investigate the dynamics of these adaptive and maladaptive responses over time is typically limited in natural systems. I combined resurrection ecology and paleolimnology approaches to examine evolutionary responses of the freshwater zooplankter Daphnia to exposure to heavy metal contamination over the past 50-75 years, using animals hatched from diapausing egg banks. In contrast to the predicted trend of adaptation to metal exposure over time, I observed an increase in sensitivity to both copper and cadmium exposure associated with increasing historic contamination. This potentially maladaptive trend occurred in Daphnia populations in three lakes. Given that the release of toxicants such as heavy metals is widespread and that other researchers have observed local maladaptation to toxicant exposure, it is important to understand the drivers and implications of this pattern.
Collapse
|
43
|
Frisch D, Morton PK, Culver BW, Edlund MB, Jeyasingh PD, Weider LJ. Paleogenetic records of Daphnia pulicaria in two North American lakes reveal the impact of cultural eutrophication. GLOBAL CHANGE BIOLOGY 2017; 23:708-718. [PMID: 27474788 DOI: 10.1111/gcb.13445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Understanding the evolutionary consequences of the green revolution, particularly in wild populations, is an important frontier in contemporary biology. Because human impacts have occurred at varying magnitudes or time periods depending on the study ecosystem, evolutionary histories may vary considerably among populations. Paleogenetics in conjunction with paleolimnology enable us to associate microevolutionary dynamics with detailed information on environmental change. We used this approach to reconstruct changes in the temporal population genetic structure of the keystone zooplankton grazer, Daphnia pulicaria, using dormant eggs extracted from sediments in two Minnesota lakes (South Center, Hill). The extent of agriculture and human population density in the catchment of these lakes has differed markedly since European settlement in the late 19th century and is reflected in their environmental histories reconstructed here. The reconstructed environments of these two lakes differed strongly in terms of environmental stability and their associated patterns of Daphnia population structure. We detected long periods of stability in population structure and environmental conditions in South Center Lake that were followed by a dramatic temporal shift in population genetic structure after the onset of European settlement and industrialized agriculture in its watershed. In particular, we noted a 24.3-fold increase in phosphorus (P) flux between pre-European and modern sediment P accumulation rates (AR) in this lake. In contrast, no such shifts were detected in Hill Lake, where the watershed was not as impacted by European settlement and rates of change were less directional with a much smaller increase in sediment P AR (2.3-fold). We identify direct and indirect effects of eutrophication proxies on genetic structure in these lake populations and demonstrate the power of using this approach in understanding the consequences of anthropogenic environmental change on natural populations throughout historic time periods.
Collapse
Affiliation(s)
- Dagmar Frisch
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, 73071, USA
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Philip K Morton
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, 73071, USA
- Division of Science, Murray State College, Tishomingo, OK, 73460, USA
| | - Billy W Culver
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, 73071, USA
| | - Mark B Edlund
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, MN, 55047, USA
| | - Punidan D Jeyasingh
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK, 74078, USA
| | - Lawrence J Weider
- Program in Ecology and Evolutionary Biology, Department of Biology, University of Oklahoma, Norman, OK, 73071, USA
| |
Collapse
|
44
|
Leal MC, Seehausen O, Matthews B. The Ecology and Evolution of Stoichiometric Phenotypes. Trends Ecol Evol 2016; 32:108-117. [PMID: 28017452 DOI: 10.1016/j.tree.2016.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Ecological stoichiometry has generated new insights into how the balance of elements affects ecological interactions and ecosystem processes, but little is known about the ecological and evolutionary dynamics of stoichiometric traits. Understanding the origins and drivers of stoichiometric trait variation between and within species will improve our understanding about the ecological responses of communities to environmental change and the ecosystem effects of organisms. In addition, studying the plasticity, heritability, and genetic basis of stoichiometric traits might improve predictions about how organisms adapt to changing environmental conditions, and help to identify interactions and feedbacks between phenotypic evolution and ecosystem processes.
Collapse
Affiliation(s)
- Miguel C Leal
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Center for Ecology, Evolution, and Biogeochemistry, 6047 Kastanienbaum, Switzerland.
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Center for Ecology, Evolution, and Biogeochemistry, 6047 Kastanienbaum, Switzerland; Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Blake Matthews
- Department of Aquatic Ecology, Eawag, Center for Ecology, Evolution, and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
45
|
Sedimentary DNA Reveals Cyanobacterial Community Diversity over 200 Years in Two Perialpine Lakes. Appl Environ Microbiol 2016; 82:6472-6482. [PMID: 27565621 DOI: 10.1128/aem.02174-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/22/2016] [Indexed: 02/01/2023] Open
Abstract
We reconstructed cyanobacterial community structure and phylogeny using DNA that was isolated from layers of stratified sediments spanning 200 years of lake history in the perialpine lakes Greifensee and Lake Zurich (Switzerland). Community analysis based on amplification and sequencing of a 400-nucleotide (nt)-long 16S rRNA fragment specific to Cyanobacteria revealed operational taxonomic units (OTUs) capturing the whole phylum, including representatives of a newly characterized clade termed Melainabacteria, which shares common ancestry with Cyanobacteria and has not been previously described in lakes. The reconstruction of cyanobacterial richness and phylogenetic structure was validated using a data set consisting of 40 years of pelagic microscopic counts from each lake. We identified the OTUs assigned to common taxa known to be present in Greifensee and Lake Zurich and found a strong and significant relationship (adjusted R2 = 0.89; P < 0.001) between pelagic species richness in water and OTU richness in the sediments. The water-sediment richness relationship varied between cyanobacterial orders, indicating that the richness of Chroococcales and Synechococcales may be underestimated by microscopy. PCR detection of the microcystin synthetase gene mcyA confirmed the presence of potentially toxic cyanobacterial taxa over recent years in Greifensee and throughout the last century in Lake Zurich. The approach presented in this study demonstrates that it is possible to reconstruct past pelagic cyanobacterial communities in lakes where the integrity of the sedimentary archive is well preserved and to explore changes in phylogenetic and functional diversity over decade-to-century timescales. IMPORTANCE Cyanobacterial blooms can produce toxins that affect water quality, especially under eutrophic conditions, which are a consequence of human-induced climate warming and increased nutrient availability. Lakes worldwide have suffered from regular cyanobacterial blooms over the last century. The lack of long-term data limits our understanding of how these blooms form. We successfully reconstructed the past diversity of whole cyanobacterial communities over two hundred years by sequencing genes preserved in the sediments of two perialpine lakes in Switzerland. We identified changes in diversity over time and validated our results using existing data collected in the same two lakes over the past 40 years. This work shows the potential of our approach for addressing important ecological questions about the effects of a changing environment on lake ecology.
Collapse
|
46
|
Sanchez JL, Trexler JC. The adaptive evolution of herbivory in freshwater systems. Ecosphere 2016. [DOI: 10.1002/ecs2.1414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jessica L Sanchez
- Department of Biological SciencesFlorida International University Florida 33181 USA
| | - Joel C Trexler
- Department of Biological SciencesFlorida International University Florida 33181 USA
| |
Collapse
|
47
|
Messer PW, Ellner SP, Hairston NG. Can Population Genetics Adapt to Rapid Evolution? Trends Genet 2016; 32:408-418. [DOI: 10.1016/j.tig.2016.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
48
|
Rapid evolution of tolerance to toxic Microcystis in two cladoceran grazers. Sci Rep 2016; 6:25319. [PMID: 27122137 PMCID: PMC4848493 DOI: 10.1038/srep25319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/15/2016] [Indexed: 01/17/2023] Open
Abstract
Evolutionary adaptation could assist organisms to cope with environmental changes, yet few experimental systems allow us to directly track evolutionary trajectory. Using experimental evolution, evolutionary tolerance to Microcystis aeruginosa was investigated in two cladocerans (Daphnia pulex and Simocephalus vetulus) to test the hypothesis that cladoceran grazers rapidly adapt to toxic cyanobacteria. After exposure for either three or six months, both grazers evolved a higher tolerance. The intrinsic rate of population increases in S. vetulus feeding on cyanobacteria was negatively correlated with that on green algae, which suggests that evolutionary adaptation in tolerance would carry a cost in the absence of cyanobacteria. However, the cyanobacterial selection resulted in a general increase in D. pulex when fed both cyanobacteria and green algae. Following a three-month relaxation of selection, S. vetulus in the selection line exhibited reverse evolution back to their original state when their diets were switched back to pure green algae. The present experimental evolution, both forwards and reverse, not only demonstrates the evolutionary responses of cladoceran grazers to toxic cyanobacterial cells in the laboratory, but also indicates that the grazer-cyanobacteria interaction would be an effective system to empirically study rapid evolution to environmental changes.
Collapse
|
49
|
Kinnison MT, Hairston NG, Hendry AP. Cryptic eco-evolutionary dynamics. Ann N Y Acad Sci 2016; 1360:120-44. [PMID: 26619300 DOI: 10.1111/nyas.12974] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022]
Abstract
Natural systems harbor complex interactions that are fundamental parts of ecology and evolution. These interactions challenge our inclinations and training to seek the simplest explanations of patterns in nature. Not least is the likelihood that some complex processes might be missed when their patterns look similar to predictions for simpler mechanisms. Along these lines, theory and empirical evidence increasingly suggest that environmental, ecological, phenotypic, and genetic processes can be tightly intertwined, resulting in complex and sometimes surprising eco-evolutionary dynamics. The goal of this review is to temper inclinations to unquestioningly seek the simplest explanations in ecology and evolution, by recognizing that some eco-evolutionary outcomes may appear very similar to purely ecological, purely evolutionary, or even null expectations, and thus be cryptic. We provide theoretical and empirical evidence for observational biases and mechanisms that might operate among the various links in eco-evolutionary feedbacks to produce cryptic patterns. Recognition that cryptic dynamics can be associated with outcomes like stability, resilience, recovery, or coexistence in a dynamically changing world provides added impetus for finding ways to study them.
Collapse
Affiliation(s)
| | - Nelson G Hairston
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Ger KA, Urrutia-Cordero P, Frost PC, Hansson LA, Sarnelle O, Wilson AE, Lürling M. The interaction between cyanobacteria and zooplankton in a more eutrophic world. HARMFUL ALGAE 2016; 54:128-144. [PMID: 28073472 DOI: 10.1016/j.hal.2015.12.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 06/06/2023]
Abstract
As blooms of cyanobacteria expand and intensify in freshwater systems globally, there is increasing interest in their ecological effects. In addition to being public health hazards, cyanobacteria have long been considered a poor quality food for key zooplankton grazers that link phytoplankton to higher trophic levels. While past laboratory studies have found negative effects of nutritional constraints and defensive traits (i.e., toxicity and colonial or filamentous morphology) on the fitness of large generalist grazers (i.e., Daphnia), cyanobacterial blooms often co-exist with high biomass of small-bodied zooplankton in nature. Indeed, recent studies highlight the remarkable diversity and flexibility in zooplankton responses to cyanobacterial prey. Reviewed here are results from a wide range of laboratory and field experiments examining the interaction of cyanobacteria and a diverse zooplankton taxa including cladocerans, copepods, and heterotrophic protists from temperate to tropical freshwater systems. This synthesis shows that longer exposure to cyanobacteria can shift zooplankton communities toward better-adapted species, select for more tolerant genotypes within a species, and induce traits within the lifetime of individual zooplankton. In turn, the function of bloom-dominated plankton ecosystems, the coupling between primary producers and grazers, the stability of blooms, and the potential to use top down biomanipulation for controlling cyanobacteria depend largely on the species, abundance, and traits of interacting cyanobacteria and zooplankton. Understanding the drivers and consequences of zooplankton traits, such as physiological detoxification and selective vs. generalist grazing behavior, are therefore of major importance for future studies. Ultimately, co-evolutionary dynamics between cyanobacteria and their grazers may emerge as a critical regulator of blooms.
Collapse
Affiliation(s)
- Kemal Ali Ger
- Department of Ecology, Center for Biosciences, Federal University of Rio Grande do Norte, RN, Brazil.
| | - Pablo Urrutia-Cordero
- Center for Environmental and Climate Research, Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | | | - Orlando Sarnelle
- Department of Fisheries and Wildlife, 163A Natural Resources Building, Michigan State University, East Lansing, MI 48824, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Miquel Lürling
- Department of Environmental Sciences, Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology - Royal Netherlands Academy of Arts and Science, Wageningen, The Netherlands
| |
Collapse
|