1
|
Kang JI, Choi YK, Han SC, Hyun JW, Koh YS, Oh J, Boo HJ, Yoo ES, Kang HK. 5-Fluorouracil induces hair loss by inhibiting β-catenin signaling and angiogenesis. Chem Biol Interact 2025; 408:111416. [PMID: 39922517 DOI: 10.1016/j.cbi.2025.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Chemotherapy-induced alopecia (CIA) is a side effect of the anticancer drug 5-fluorouracil (5-FU). However, the mechanism of action in hair follicle cells is unclear. This study investigated the mechanism of action of 5-FU on the hair cycle and growth in vitro and in vivo. Intraperitoneal injection of 5-FU into C57BL/6 mice delayed anagen initiation, resulting in small hair follicles. 5-FU inhibited angiogenesis by reducing cluster of differentiation 31+ cells, vascular endothelial growth factor, and fetal liver kinase-1 expression in mouse skin tissue and rat vibrissa dermal papilla (rDP) cells. 5-FU induced cell death in rDP cells and keratinocytes by enhancing cell cycle arrest or reducing the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2-associated X levels. Immunoblotting and confocal microscopy showed that 5-FU inhibited the nuclear translocation of β-catenin in rDP cells and decreased fibroblast growth factor 7 and 10 secretion. Conversely, molecule-specific inhibitors did not prevent rDP cell death despite protein kinase B and Jun N-terminal kinase activation by 5-FU, indicating their indirect involvement. These results suggest that 5-FU inhibits wingless-related integration site/β-catenin signaling and angiogenesis, resulting in anagen-to-catagen transition and delaying anagen initiation. This study provides foundational data for developing treatments against CIA in patients with cancer undergoing 5-FU chemotherapy.
Collapse
Affiliation(s)
- Jung-Il Kang
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Youn Kyung Choi
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Sang-Chul Han
- Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Young-Sang Koh
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Jaeseong Oh
- Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Eun-Sook Yoo
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Hee-Kyoung Kang
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea.
| |
Collapse
|
2
|
Dong TR, Li YJ, Jin SY, Yang FL, Xiong RX, Dai YQ, Song XZ, Guan CP. Progress on mitochondria and hair follicle development in androgenetic alopecia: relationships and therapeutic perspectives. Stem Cell Res Ther 2025; 16:44. [PMID: 39901201 PMCID: PMC11792644 DOI: 10.1186/s13287-025-04182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Hair loss has long been a significant concern for many individuals. Recent studies have indicated that mitochondria play a more crucial role in hair loss than previously recognized. This review summarizes the connection between mitochondrial dysfunction and hair follicle development, outlines the links between diseases related to mitochondrial disorders and hair issues, and highlights the influence of mitochondrial dysfunction on androgenetic alopecia. We discuss the cellular and signaling mechanisms associated with hair loss and examine how mitochondrial dysfunction, such as insufficient energy supply, signaling irregularities, protein/gene abnormalities, and programmed cell death, can hinder the normal proliferation, differentiation, and growth of hair follicle cells. Furthermore, we discuss current treatment approaches and potential innovative therapies, including mitochondrion-targeting drugs and advanced techniques that directly target hair follicle cells, providing fresh insights into the crucial role of mitochondria in maintaining hair follicle health and managing hair disorders. Furthermore, this review explores future therapeutic strategies and proposes that mitochondrial research could lead to groundbreaking treatments for hair loss, thus providing optimism and new avenues for the treatment of individuals experiencing hair loss. This review not only underscores the central importance of mitochondria in hair health but also emphasizes the importance of advancing research and treatment in this field.
Collapse
Affiliation(s)
- Ting-Ru Dong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Yu-Jie Li
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Shi-Yu Jin
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Feng-Lan Yang
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Ren-Xue Xiong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Ye-Qin Dai
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Xiu-Zu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Cui-Ping Guan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Wang Z, Lai Y, Zhang N, Yang H, Huang Y, Yang Y, Zhang X, Ye J, Xiao M. Fucoidan treats chemotherapy-induced alopecia and helps cyclophosphamide treat tumors. Int J Biol Macromol 2025; 287:138321. [PMID: 39638216 DOI: 10.1016/j.ijbiomac.2024.138321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Chemotherapy-induced alopecia (CIA) represents one of the most common side effects of cancer treatment. Currently, scalp cooling systems are utilized to treat CIA, but their safety and effectiveness remain limited. The objective of this study was to investigate the effect of fucoidan on CIA and to elucidate the possible mechanism of fucoidan in treating CIA. The results showed that when the dosage of fucoidan was 100 mg/kg·d, it could effectively alleviate CIA induced by cyclophosphamide and promote hair recovery. Altering the dosage affected the therapeutic effect. A lower dosage (50 mg/kg·d) could not effectively prevent the hair from falling off, and the regrown hair was sparse, while an increased dosage led to slow hair growth, although the hair regrown was thick and black. It was also found that with the increase in dosage, key CIA proteins P53 and Fas were down-regulated. However, the cyclin was decreased when the dose was too high. In addition, fucoidan proved beneficial to cyclophosphamide treatment, which further inhibited tumor growth, aggravated tumor necrosis, and reduced the side effects of cyclophosphamide, especially at high doses. These results demonstrate that fucoidan has a therapeutic effect on CIA and does not compromise the effect of chemotherapy.
Collapse
Affiliation(s)
- Zhiyan Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yanbin Lai
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Na Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| | - Hongjie Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yayan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yucheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Xueqin Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| |
Collapse
|
4
|
Wang W, Wang H, Luo Y, Li Z, Li J. Discovery of petroleum ether extract of eclipta targeting p53/Fas pathway for the treatment of chemotherapy-induced alopecia: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118405. [PMID: 38844249 DOI: 10.1016/j.jep.2024.118405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ecliptea herba, a traditional Chinese herbal medicine for hair loss, was first recorded in the Tang Dynasty's 'Qian Jin Yue Ling', of which the active ingredients and mechanisms of action in the treatment of chemotherapy-induced hair loss remain poorly investigated. AIM OF THE STUDY To investigate the effects of the petroleum ether extract of Eclipta (PEE) on alopecia and follicle damage and elucidate its potential therapeutic mechanisms using the integration of network pharmacology, bioinformatics, and experimental validation. MATERIALS AND METHODS UPLC-MS was used to analyse the chemical composition of PEE. A network pharmacology approach was employed to establish the 'components-targets-pathways' network of PEE to explore potential therapeutic pathways and targets. Molecular docking was used for validation, and the mechanism of PEE in treating chemotherapy-induced alopecia (CIA) was elucidated using in vitro and in vivo on CIA models. RESULTS UPLC-MS analysis of PEE revealed 185 components, while network pharmacology and molecular docking analyses revealed potential active compounds and their target molecules, suggesting the involvement of core genes, such as TP53, ESR1, AKT1, IL6, TNF, and EGFR. The key components included wedelolactone, dimethyl-wedelolactone, luteoloside, linarin, and hispidulin. In vivo, PEE promoted hair growth, restored the number of hair follicles, and reduced follicle apoptosis. Conversely, in vitro, PEE enhanced cell viability, reduced apoptosis, and protected HaCaT cells from damage induced by 4-hydroperoxycyclophosphamide (4-HC). CONCLUSIONS PEE alleviated hair follicle damage in CIA mice by inhibiting the P53/Fas pathway, which may be associated with inhibiting hair follicle cell apoptosis. This study provides a novel therapeutic strategy for treating cyclophosphamide-induced hair loss.
Collapse
Affiliation(s)
- Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
| | - Honglan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Yang Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
5
|
Luo X, Ni X, Zhi J, Jiang X, Bai R. Small molecule agents against alopecia: Potential targets and related pathways. Eur J Med Chem 2024; 276:116666. [PMID: 39002436 DOI: 10.1016/j.ejmech.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Alopecia has emerged as a global concern, extending beyond the middle-aged and elderly population and increasingly affecting younger individuals. Despite its growing prevalence, the treatment options and effective drugs for alopecia remain limited due to the incomplete understanding of its underlying mechanisms. Therefore, it is urgent to explore the pathogenesis of alopecia and discover novel and safer therapeutic agents. This review provided an overview of the prevailing clinical disorders of alopecia, and the key pathways and targets involved in hair growth process. Additionally, it discusses FDA-approved drugs and clinical candidates for the treatment of alopecia, and explores small molecule compounds with anti-alopecia potential in the drug discovery phase. These endeavors are expected to provide researchers with valuable scientific insights and practical information for anti-alopecia drug discovery.
Collapse
Affiliation(s)
- Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
6
|
Perez AM, Haberland NI, Miteva M, Wikramanayake TC. Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention. Curr Oncol 2024; 31:5709-5721. [PMID: 39330051 PMCID: PMC11431623 DOI: 10.3390/curroncol31090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Docetaxel is a commonly used taxane chemotherapeutic agent in the treatment of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, non-small cell lung cancer, gastric cancer, and head and neck cancer. Docetaxel exerts its anti-cancer effects through inhibition of the cell cycle and induction of proapoptotic activity. However, docetaxel also impacts rapidly proliferating normal cells in the scalp hair follicles (HFs), rendering the HFs vulnerable to docetaxel-induced cell death and leading to chemotherapy-induced alopecia (CIA). In severe cases, docetaxel causes persistent or permanent CIA (pCIA) when hair does not grow back completely six months after chemotherapy cessation. Hair loss has severe negative impacts on patients' quality of life and may even compromise their compliance with treatment. This review discusses the notable prevalence of docetaxel-induced CIA and pCIA, as well as their prevention and management. At this moment, scalp cooling is the standard of care to prevent CIA. Treatment options to promote hair regrowth include but are not limited to minoxidil, photobiomodulation (PBMT), and platelet-rich plasma (PRP). In addition, a handful of current clinical trials are exploring additional agents to treat or prevent CIA. Research models of CIA, particularly ex vivo human scalp HF organ culture and in vivo mouse models with human scalp xenografts, will help expedite the translation of bench findings of CIA prevention and/or amelioration to the clinic.
Collapse
Affiliation(s)
- Aleymi M. Perez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Nicole I. Haberland
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
| | - Tongyu C. Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
- Cancer Control Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Tsuji T, Yoneda K, Igawa Y, Minamino E, Otani N, Yoshida Y, Kohno T. Preventive effect of free radical scavenger edaravone lotion on cyclophosphamide chemotherapy-induced alopecia. Cancer Chemother Pharmacol 2024; 94:467-473. [PMID: 38642149 DOI: 10.1007/s00280-024-04669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE We investigated the inhibitory effect of edaravone (EDR) lotion on chemotherapy-induced alopecia (CIA) to improve the quality of life for patients with cancer. METHODS Wistar rats were intraperitoneally injected with cyclophosphamide (CPA, 75 mg/kg) to induce CIA and divided into six groups: (1) Control; (2) EDR 0%; (3) EDR 0.3%; (4) EDR 3%. The TUNEL-positive area was examined histologically, and mRNA expression levels of the apoptosis-related factors, such as B-cell/CLL lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax), were determined. RESULTS In the three CPA-treated groups, a decrease in the coverage score (percentage of hairs covered) was observed from days 16 to 18. In addition, coverage scores on day 21, the last day of observation, showed a tendency for the suppression of hair loss to increase, though hair loss was observed in all groups. The coverage scores of the EDR 0.3% and 3% groups after day 17 were significantly higher than those of the EDR 0% group. The TUNEL-positive area of skin tissue on day 16 was extensive in the EDR 0% group and decreased in the EDR 0.3% and 3% groups. The mRNA expression ratio of Bcl-2/Bax on day 21 was maintained at the same level as that of the control group only in the EDR 3% group. CONCLUSION This study confirmed the use of EDR lotion to inhibit hair loss, indicating that the clinical application of EDR lotion may improve the quality of life for patients with cancer and their willingness to undergo treatment.
Collapse
Affiliation(s)
- Takumi Tsuji
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Katsuaki Yoneda
- Department of Pharmacy, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara, Nara, 630-8305, Japan
| | - Yu Igawa
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Erika Minamino
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Nodoka Otani
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yuya Yoshida
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Takeyuki Kohno
- Research Institute for Production and Development, 15 Shimogamomorimoto-cho, Sakyo-ku, Kyoto-shi, Kyoto, Japan
| |
Collapse
|
8
|
Hirakata M, Tomikawa E, Sakai C, Uchida M, Okano T, Shimozono R, Kawai M, Itaba S, Munakata L, Suzuki R, Oshida K. TXB-001, a newly-developed polymer-conjugated anthracycline: Significantly lower adverse effects in animal models of alopecia and hand-foot syndrome. Toxicol Appl Pharmacol 2024; 485:116912. [PMID: 38521368 DOI: 10.1016/j.taap.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Anthracycline anti-cancer drugs have been widely used in the treatment of several cancers; however, their use is limited by adverse effects (AEs). Alopecia is a common AE that is minimally invasive, but adversely affects mental health and reduces quality of life (QoL). Hand-foot syndrome (HFS) is a dose-limiting AE of DOXIL, a liposomal formulation of doxorubicin (DOX). Although it is not a life-threatening condition, HFS affects function and reduces QoL. TXB-001 is a new candidate polymer-conjugated anthracycline anti-cancer drug, and modified and optimized polymerized pirarubicin (THP), known as P-THP, is expected to have low toxicity and high efficacy. The anti-cancer effects of TXB-001 were examined using the 4T1 mouse model. An alopecia mouse model and HFS rat model were used to evaluate the alopecia- and HFS-inducing effects of TXB-001 and compare their severity with existing anthracycline anti-cancer drugs. A pharmacokinetic analysis of plasma as well as chest, palmar, and plantar skin samples after the single intravenous administration of DOXIL and TXB-001 to rats was also performed. The results obtained revealed that TXB-001 exerted similar anti-cancer effects to those of DOXIL in mice, weaker alopecia-inducing effects than DOX, DOXIL, and THP in mice, and no or markedly weaker HFS-like changes than DOXIL, which induced significant histopathological changes. The results of the pharmacokinetic analysis showed the accumulation of DOXIL, but not TXB-001, in skin, particularly palmar and plantar skin samples, and these differences were considered to contribute to their HFS-inducing effects.
Collapse
Affiliation(s)
- Mikito Hirakata
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Emi Tomikawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Chizuka Sakai
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Masashi Uchida
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Tsubasa Okano
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Rieko Shimozono
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | - Masakatsu Kawai
- Department of Bio Research, Kamakura Techno-Science, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa, 248-0036, Japan
| | - Shoichi Itaba
- Department of Bio Research, Kamakura Techno-Science, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa, 248-0036, Japan
| | - Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Keiyu Oshida
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan..
| |
Collapse
|
9
|
Chen H, Yamaguchi S, Wang Y, Kaminogo K, Sakai K, Hibi H. Cytoprotective role of human dental pulp stem cell-conditioned medium in chemotherapy-induced alopecia. Stem Cell Res Ther 2024; 15:84. [PMID: 38500206 PMCID: PMC10949570 DOI: 10.1186/s13287-024-03695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Chemotherapy-induced alopecia (CIA) is a distressing adverse effect of chemotherapy, with an estimated incidence of 65% and limited treatment options. Cyclophosphamide (CYP) is a common alopecia-inducing chemotherapy agent. Human dental pulp stem cells (DPSCs) secrete several paracrine factors that up-regulate hair growth. Conditioned medium (CM) collected from DPSCs (DPSC-CM) promotes hair growth; culturing mesenchymal stem cells under hypoxic conditions can enhance this effect. METHODS The effect of DPSC-CM cultured under normoxic (N-) and hypoxic (H-) conditions against CYP-mediated cytotoxicity in keratinocytes was examined using cell viability assay, lactate dehydrogenase (LDH) cytotoxicity assay, and apoptosis detection. The damage-response pathway was determined in a well-established CIA mouse model by analyzing macroscopic effects, histology, and apoptosis. Reverse transcription-quantitative PCR and Caspase-3/7 activity assay were used to investigate the impact of DPSC-CM on the molecular damage-response pathways in CYP-treated mice. The effect of post-CIA DPSC-CM application on post-CIA hair regrowth was analyzed by macroscopic effects and microstructure observation of the hair surface. Furthermore, to investigate the safety of DPSC-CM as a viable treatment option, the effect of DPSC-CM on carcinoma cell lines was examined by cell viability assay and a subcutaneous tumor model. RESULTS In the cell viability assay, DPSC-CM was observed to increase the number of keratinocytes over varying CYP concentrations. Furthermore, it reduced the LDH activity level and suppressed apoptosis in CYP-treated keratinocytes. DPSC-CM exhibited the cytoprotective role in vivo via the dystrophic anagen damage-response pathway. While both N-CM and H-CM downregulated the Caspase-3/7 activity level, H-CM downregulated Caspase-3 mRNA expression. The proportion of post-CIA H-CM-treated mice with > 90% normal hair was nearly twice that of vehicle- or N-CM-treated mice between days 50 and 59 post-depilation, suggesting that post-CIA H-CM application may accelerate hair regrowth and improve hair quality. Furthermore, DPSC-CM suppressed proliferation in vitro in certain carcinoma cell lines and did not promote the squamous cell carcinoma (SCC-VII) tumor growth rate in mice. CONCLUSIONS The potentiality of DPSC-CM and H-CM as a promising cytoprotective agent and hair regrowth stimulant, respectively, for CIA needs in-depth exploration.
Collapse
Affiliation(s)
- Hui Chen
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Yamaguchi
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Yilin Wang
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kento Kaminogo
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
10
|
Edelkamp J, Lousada MB, Pinto D, Chéret J, Calabrese FM, Jiménez F, Erdmann H, Wessel J, Phillip B, Angelis MD, Rinaldi F, Bertolini M, Paus R. Management of the human hair follicle microbiome by a synthetic odorant. J Dermatol Sci 2023; 112:99-108. [PMID: 37858476 DOI: 10.1016/j.jdermsci.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Human scalp hair follicles (HFs) engage in olfactory receptor (OR)-dependent chemosensation. Activation of olfactory receptor family 2 subfamily AT member 4 (OR2AT4) by the synthetic, sandalwood-like odorant Sandalore® up-regulated HF antimicrobial peptide expression of dermcidin (DCD), which had previously been thought to be produced exclusively by sweat and sebaceous glands. OBJECTIVES To understand if intrafollicular DCD production can be stimulated by a commonly used cosmetic odorant, thus altering human HF microbiome composition in a clinically beneficial manner. METHODS DCD expression was compared between fresh-frozen scalp biopsies and microdissected, full-length scalp HFs, organ-cultured in the presence/absence of the OR2AT4 agonist, Sandalore® and/or antibiotics and/or the competitive OR2AT4 antagonist, Phenirat®. Amplicon-based sequencing and microbial growth assays were performed to assess how this treatment affected the HF microbiome. RESULTS Synthetic odorant treatment upregulated epithelial DCD expression and exerted antimicrobial activity in human HFs ex vivo. Combined antibiotic and odorant treatment, during an ex vivo dysbiosis event, prevented HF tissue damage and favoured a more physiological microbiome composition. Sandalore®-conditioned medium, containing higher DCD content, favoured Staphylococcus epidermidis and Malassezia restricta over S. aureus and M. globosa, while exhibiting antimicrobial activity against Cutibacterium acnes. These effects were reversed by co-administration of Phenirat®. CONCLUSIONS We provide the first proof-of-principle that a cosmetic odorant impacts the human HF microbiome by up-regulating antimicrobial peptide production in an olfactory receptor-dependent manner. Specifically, a synthetic sandalwood-like odorant stimulates intrafollicular DCD production, likely via OR2AT4, and thereby controls microbial overgrowth. Thus, deserving further exploration as an adjuvant therapeutic principle in the management of folliculitis and dysbiosis-associated hair diseases.
Collapse
Affiliation(s)
- Janin Edelkamp
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany.
| | - Marta B Lousada
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Zoological Institute, Christian-Albrechts, University Kiel, Kiel, Germany
| | | | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Francisco Jiménez
- Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | | | - Julia Wessel
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Bodo Phillip
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; CUTANEON Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
11
|
Lin SJ, Yue Z, Paus R. Clinical Pathobiology of Radiotherapy-Induced Alopecia: A Guide toward More Effective Prevention and Hair Follicle Repair. J Invest Dermatol 2023; 143:1646-1656. [PMID: 37294241 DOI: 10.1016/j.jid.2023.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 06/10/2023]
Abstract
Because hair follicles (HFs) are highly sensitive to ionizing radiation, radiotherapy-induced alopecia (RIA) is a core adverse effect of oncological radiotherapy. Yet, effective RIA-preventive therapy is unavailable because the underlying pathobiology remains underinvestigated. Aiming to revitalize interest in pathomechanism-tailored RIA management, we describe the clinical RIA spectrum (transient, persistent, progressive alopecia) and our current understanding of RIA pathobiology as an excellent model for studying principles of human organ and stem cell repair, regeneration, and loss. We explain that HFs respond to radiotherapy through two distinct pathways (dystrophic anagen or catagen) and why this makes RIA management so challenging. We discuss the responses of different HF cell populations and extrafollicular cells to radiation, their roles in HF repair and regeneration, and how they might contribute to HF miniaturization or even loss in persistent RIA. Finally, we highlight the potential of targeting p53-, Wnt-, mTOR-, prostaglandin E2-, FGF7-, peroxisome proliferator-activated receptor-γ-, and melatonin-associated pathways in future RIA management.
Collapse
Affiliation(s)
- Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Monasterium Laboratory, Münster, Germany; Cutaneon, Hamburg, Germany.
| |
Collapse
|
12
|
Cheret J, Samra T, Verling SD, Gherardini J, Rodriguez-Feliz J, Bauman AJ, Sanchez CA, Wikramanayake TC, Xu XX, Paus R. Low-Intensity Ultrasound as a Potential Intervention Strategy to Protect Human Scalp Hair Follicles from Taxane-Induced Toxicity. J Invest Dermatol 2023; 143:1809-1813.e2. [PMID: 36990174 DOI: 10.1016/j.jid.2023.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Affiliation(s)
- Jeremy Cheret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Tara Samra
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Samantha D Verling
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | | | - Alan J Bauman
- Bauman Medical Hair Transplant & Hair Loss Treatment Center, Boca Raton, Florida, USA
| | - Celina Amaya Sanchez
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Xiang-Xi Xu
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA; Monasterium Laboratory, Münster, Germany; CUTANEON, Hamburg, Germany.
| |
Collapse
|
13
|
Guan Y, Yan A, Qiang W, Ruan R, Yang C, Ma K, Sun H, Liu M, Zhu H. Selective Delivery of Tofacitinib Citrate to Hair Follicles Using Lipid-Coated Calcium Carbonate Nanocarrier Controls Chemotherapy-Induced Alopecia Areata. Int J Mol Sci 2023; 24:ijms24098427. [PMID: 37176141 PMCID: PMC10179728 DOI: 10.3390/ijms24098427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Chemotherapy-induced alopecia (CIA) is one of the common side effects in cancer treatment. The psychological distress caused by hair loss may cause patients to discontinue chemotherapy, affecting the efficacy of the treatment. The JAK inhibitor, Tofacitinib citrate (TFC), showed huge potential in therapeutic applications for treating baldness, but the systemic adverse effects of oral administration and low absorption rate at the target site limited its widespread application in alopecia. To overcome these problems, we designed phospholipid-calcium carbonate hybrid nanoparticles (PL/ACC NPs) for a topical application to target deliver TFC. The results proved that PL/ACC-TFC NPs showed excellent pH sensitivity and transdermal penetration in vitro. PL/ACC NPs offered an efficient follicular targeting approach to deliver TFC in a Cyclophosphamide (CYP)-induced alopecia areata mouse model. Compared to the topical application of TFC solution, PL/ACC-TFC NPs significantly inhibited apoptosis of mouse hair follicles and accelerated hair growth. These findings support that PL/ACC-TFC NPs has the potential for topical application in preventing and mitigating CYP-induced Alopecia areata.
Collapse
Affiliation(s)
- Yeneng Guan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Aqin Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wei Qiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rui Ruan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Chaobo Yang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Kai Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hongmei Sun
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Mingxing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
14
|
Cui Y, Zhang L, Liu Y, Liu W, Shi W, Bao Y. Compound small peptide of Chinese medicine alleviates cyclophosphamide induced immunosuppression in mice by Th17/Treg and jejunum intestinal flora. Front Microbiol 2023; 14:1039287. [PMID: 37056742 PMCID: PMC10089124 DOI: 10.3389/fmicb.2023.1039287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this study was to explore the efficacy of Compound small peptide of Chinese medicine (CSPCM) on cyclophosphamide (CTX) induced immunosuppression in mice. The 100 male Kunming mice were divided into 5 groups: group A (control group), group B (model group), group C (100 mg/kg.bw CSPCM), group D (200 mg/kg.bw CSPCM) and group E (400 mg/kg.bw CSPCM). At 1–3 days, mice of group B, C, D and E were intraperitoneally injected with 80 mg/kg.bw CTX. The results showed that compared with group A, the immune organ index, body weight change, RORγ T gene expression, RORγ T protein expression, CD3+ cell number, Th17 number and Alpha index, white blood cell count, lymphocyte count and monocyte count were significantly decreased in group B (p < 0.05), while Foxp3 gene expression, Foxp3 protein expression and Treg cell number were significantly increased (p < 0.05), CSPCM has a good therapeutic effect on the above abnormalities caused by CTX. CTX caused the decrease of intestinal flora richness and the abnormal structure of intestinal flora, and CSPCM could change the intestinal flora destroyed by CTX to the direction of intestinal flora of healthy mice. On the whole, CSPCM has a good therapeutic effect on CTX-induced immunosuppression in mice, which is reflected in the index of immune organs, the number of T lymphocytes and Th17 cells increased, the number of Treg cells decreased and the structure of intestinal flora was reconstructed.
Collapse
Affiliation(s)
- Yuqing Cui
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Lu Zhang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wei Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wanyu Shi
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Pharmacoefficacy Laboratory, Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China
- *Correspondence: Wanyu Shi,
| | - Yongzhan Bao
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Pharmacoefficacy Laboratory, Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China
- Yongzhan Bao,
| |
Collapse
|
15
|
Laufer Britva R, Keren A, Bertolini M, Ullmann Y, Paus R, Gilhar A. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. eLife 2023; 12:80768. [PMID: 36930216 PMCID: PMC10023162 DOI: 10.7554/elife.80768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.
Collapse
Affiliation(s)
- Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
- Department of Dermatology, Rambam Health Care CampusHaifaIsrael
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | | | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical CenterHaifaIsrael
| | - Ralf Paus
- Monasterium LaboratoryMünsterGermany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of MiamiMiamiUnited States
- CUTANEONHamburgGermany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
16
|
Aiba T, Kono Y, Etoh T, Kawano Y, Oshima Y, Inomata M. Efficacy of cooling therapy and α-lipoic acid derivative against chemotherapy-induced alopecia in an animal model. Cancer Sci 2023; 114:1007-1014. [PMID: 36337052 PMCID: PMC9986063 DOI: 10.1111/cas.15639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Chemotherapy-induced alopecia is frequently induced by various regimens of chemotherapy and has a significant impact on mental health and quality of life. However, the effect of available current treatment for chemotherapy-induced alopecia is not sufficient. This study aimed to clarify the therapeutic effects and mechanism of skin cooling and the antioxidant α-lipoic acid derivative on chemotherapy-induced alopecia. We developed a chemotherapy-induced alopecia model of cyclophosphamide (120 μg/g) using Institute of Cancer Research mice. We used cooling therapy and α-lipoic acid derivative application as the treatments. We compared the alopecia score, hair bulb diameter, insulin-like growth factor-1 level, vascular permeability, and apoptosis between the control and treatment groups. The alopecia score significantly improved in each treatment group compared with that in the cyclophosphamide group. Hair bulb diameter significantly improved in the cyclophosphamide + cooling group compared with that in the cyclophosphamide group. The insulin-like growth factor-1 level and vascular permeability level was significantly retained and suppressed, respectively, in each treatment group compared with that in the cyclophosphamide group. The number of apoptotic cells in the vascular endothelium significantly decreased in the cyclophosphamide + α-lipoic acid derivative group compared with that in the cyclophosphamide group. In conclusion, cooling therapy and α-lipoic acid derivative facilitated recovery from chemotherapy-induced alopecia caused by cyclophosphamide through decreasing vascular permeability.
Collapse
Affiliation(s)
- Takayuki Aiba
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Yohei Kono
- Department of Advanced Medical Research and Development for Cancer and Hair [Aderans], Oita University Faculty of Medicine, Yufu, Japan
| | - Tsuyoshi Etoh
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoko Kawano
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Yusuke Oshima
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Japan.,Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Japan.,Department of Advanced Medical Research and Development for Cancer and Hair [Aderans], Oita University Faculty of Medicine, Yufu, Japan
| |
Collapse
|
17
|
Dai C, Chen H, Jiao M, Zhang N, Tang X, Fan A, Liu S, Qian Z, Wang C, Xu Y, Tan Z, Zeng F, Zheng F. IL-33 Contributes to the Pathological Changes of Hair Follicles in Psoriasis: A Potential Target for Psoriatic Alopecia. Clin Cosmet Investig Dermatol 2023; 16:639-650. [PMID: 36936754 PMCID: PMC10019523 DOI: 10.2147/ccid.s403075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Purpose IL-33 is constitutively expressed in skin tissues. Alopecia, a T cells-driven disorder of the hair follicles (HFs), is a common complication in the development of psoriasis. However, the role of IL-33 in psoriatic alopecia remains uncovered. Here, we investigated the roles of IL-33 in inducing pathological changes of hair follicles in psoriasis. Patients and Methods Clinical samples and imiquimod (IMQ)-induced psoriatic mice samples were used to investigate the pathological changes and T-cell infiltration of HFs. By using immunohistochemistry staining, the distribution and expression alteration of IL-33 in HFs were determined. Next, by using IL-33 and ST2 knockout mice, we investigated the role of IL-33/ST2 axis in the pathological changes of HFs in psoriasis. Meanwhile, recombinant IL-33 protein was subcutaneous injected to confirm its effect. Finally, RNA sequencing was used to clarify the genes and signaling pathways that involved in this process. Differentially expressed genes were further verified by RT-PCR in cultured HFs in vitro. Results We found that the pathological changes of HFs and T cells infiltration in imiquimod-induced psoriatic mice were similar to that in psoriasis patients. The IL-33 positive keratinocytes in the outer root sheath of HFs were increased in both psoriasis patients and psoriatic model mice compared with the controls. By using gene knockout mice, we found that the pathological changes and T cell infiltration were attenuated in IL-33-/- and ST2-/- psoriatic model mice. In addition, subcutaneous injection of recombinant IL-33 exacerbated the pathological changes of HFs and T cell infiltration. RNA sequencing and RT-RCR revealed that IL-33 upregulated the transcription of genes related to keratinocytes proliferation and T lymphocytes chemotaxis. Conclusion Our study identifies that IL-33 promotes the pathological changes of HFs in psoriasis, which contributes to psoriatic alopecia. Inhibition of IL-33 may be a potential therapeutic approach for psoriatic alopecia.
Collapse
Affiliation(s)
- Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guizhou, People’s Republic of China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Anqi Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, People’s Republic of China
| | - Shiwang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zhigang Qian
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Chenchen Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People’s Republic of China
| | - Fanfan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Fanfan Zeng, Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, People’s Republic of China, Email
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People’s Republic of China
- Correspondence: Fang Zheng, Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, People’s Republic of China, Email
| |
Collapse
|
18
|
Wang J, Shen H, Chen T, Ma L. Hair growth-promoting effects of Camellia seed cake extract in human dermal papilla cells and C57BL/6 mice. J Cosmet Dermatol 2022; 21:5018-5025. [PMID: 35364626 DOI: 10.1111/jocd.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Camellia seed cake is a byproduct of Camellia oleifera Abel seed after oil extraction. Washing hair with Camellia seed cake extract is a traditional Chinese custom that has lasted for over one thousand years. However, the hair growth-promoting effects of Camellia seed cake extract were not investigated so far. This work examined the effects of de-saponinated Camellia seed cake extracts (DS-CSE) on hair growth, using in vitro and in vivo models. METHODS The studies on cell proliferation, cell cycle regulation and K+ channels activation effects of DS-CSE were performed on human dermal papilla cells (DPCs). Relative expression of insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and transforming growth factor-β (TGF-β1) in DPCs was determined by RT-PCR. Relative expression of ERK and AKT was determined by western blot analysis. Hair growth promoting effects was also measured in C57BL/6J mice model. RESULTS DS-CSE treatment significantly proliferated DPCs, relating to the increased proportion of DPCs in S and G2 /M phases, the activation of potassium channels as well as the promoted phosphorylation of ERK and AKT in DPCs. DS-CSE treatment also significantly upregulated the mRNA levels of HGF, VEGF and IGF-1, and downregulated the mRNA level of TGF-β1. Topical application of DS-CSE promoted hair growth on shaven back mice and also upregulated the expression of VEGF in mice. CONCLUSION Our results demonstrated that DS-CSE exerts a hair growth promoting effect in vitro and in vivo by proliferating DPCs through the ERK and AKT signaling pathways and regulating the expression of growth factors.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huchi Shen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Timson Chen
- Adolph Innovation Laboratory, Guangzhou Degu Personal Care Products Co., Ltd, Guangzhou, 510000, China
| | - Ling Ma
- Adolph Innovation Laboratory, Guangzhou Degu Personal Care Products Co., Ltd, Guangzhou, 510000, China
| |
Collapse
|
19
|
Hair Regeneration Effects of Lespedeza bicolor Extract In Vivo and In Vitro. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Alopecia is a chronic inflammatory skin disease with various causes. Lespedeza bicolor extract (LBE) has been reported to have anti-inflammatory and antioxidative effects. In this study, the activity and mechanisms of LBE as a hair growth agent were investigated. Effects of cell proliferation, cytotoxicity, and cell cycle regulation of LBE and its active component protocatechuic acid (PCA) were evaluated in human dermal papilla cells (DPCs). Hair regeneration effects of LBE in 6-week-old C57BL/6 male mice were also determined using positive control 5% minoxidil. The dose-dependent proliferation of DPCs was estimated in response to LBE treatment (0.8–20 µg/mL). Additionally, significant extension of the anagen phase during the hair cell cycle upon LBE treatment was observed histologically and morphologically. Cell cycle arrest gene expression was determined by quantitative real-time polymerase chain reaction. Lespedezabicolor could be a potent treatment against alopecia through enhancing DPC proliferation and hair regrowth via anagen phase arrest.
Collapse
|
20
|
Yue Z, Lei M, Paus R, Chuong CM. The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biol Rev Camb Philos Soc 2021; 96:2573-2583. [PMID: 34145718 PMCID: PMC10874616 DOI: 10.1111/brv.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
In organ regeneration, the regulatory logic at a systems level remains largely unclear. For example, what defines the quantitative threshold to initiate regeneration, and when does the regeneration process come to an end? What leads to the qualitatively different responses of regeneration, which restore the original structure, or to repair which only heals a wound? Here we discuss three examples in skin regeneration: epidermal recovery after radiation damage, hair follicle fate choice after chemotherapy damage, and wound-induced feather regeneration. We propose that the molecular regulatory circuitry is of paramount significance in organ regeneration. It is conceivable that defects in these controlling pathways may lead to failed regeneration and/or organ renewal, and understanding the underlying logic could help to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400038, China
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
21
|
Network Pharmacology Study and Experimental Confirmation Revealing the Ameliorative Effects of Decursin on Chemotherapy-Induced Alopecia. Pharmaceuticals (Basel) 2021; 14:ph14111150. [PMID: 34832932 PMCID: PMC8618121 DOI: 10.3390/ph14111150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Decursin, a pyranocoumarin compound from the root of Angelica gigas Nakai as a main constituent, has been reported to have various biological activities, including anti-inflammatory, anticancer, and antioxidant effects. This study aimed to predict and confirm the pharmacological relevance of Decursin on chemotherapy-induced alopecia (CIA) with the underlying molecular mechanisms. Decursin-targeted genes were compared with the gene set of alopecia and investigated through functional enrichment analysis. CIA was induced in C57BL/6J mice by injection of cyclophosphamide, and 1, 10, and 100 μM of Decursin were topically treated to depilated dorsal skin. KGF+ expression was detected in the dorsal skin tissues. Based on the predicted results, caspase, PIK3/AKT, and MAPKs protein expressions by Decursin were analyzed in the TNF-α-induced keratinocytes. The Decursin network had 60.20% overlapped genes with the network of alopecia. Biological processes, such as cellular response to chemical stimulus, apoptosis, PI3K-AKT signaling pathway, and MAPK signaling pathway, were derived from the Decursin network. In the Decursin-treated skin, there was morphological hair growth and histological restoration of hair follicles in the CIA mice. The KGF+ fluorescence and protein expressions were significantly increased by Decursin treatment. In addition, caspase-3, -7, and -8 expressions, induced by TNF-α, were dose-dependently decreased along with the inhibition of PI3K, AKT, ERK, and p38 expressions in Decursin-treated keratinocytes. These findings indicated that Decursin would be a potent therapeutic option for hair loss, in response to chemotherapy.
Collapse
|
22
|
Piccini I, Brunken L, Chéret J, Ghatak S, Ramot Y, Alam M, Purba TS, Hardman J, Erdmann H, Jimenez F, Paus R, Bertolini M. PPARγ signaling protects hair follicle stem cells from chemotherapy-induced apoptosis and epithelial-mesenchymal transition. Br J Dermatol 2021; 186:129-141. [PMID: 34496034 DOI: 10.1111/bjd.20745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Permanent chemotherapy-induced alopecia (pCIA), for which preventive interventions remain limited, can manifest with scarring. While the underlying pathomechanisms of pCIA are unclear, depletion of epithelial hair follicle (HF) stem cells (eHFSCs) is likely to play a role. OBJECTIVES To explore the hypothesis that eHFSCs undergo pathological epithelial-mesenchymal transition (EMT) besides apoptosis in pCIA, thus explaining the scarring phenotype. Furthermore, we tested whether a PPARγ modulator can prevent pCIA-associated pathomechanisms. METHODS Organ-cultured human scalp HFs were treated with the cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Additionally, HFs were pre-treated with the agnostic PPARγ modulator, N-Acetyl-GED-0507-34-Levo (NAGED), which we had previously shown to promote K15 expression and antagonize EMT in eHFSCs. RESULTS In accordance with anticipated hair bulb cytotoxicity, dystrophy and catagen induction, 4-HC promoted apoptosis along with increased p53 expression, DNA damage and pathological EMT in keratin 15+ (K15) bulge eHFSCs, as evidenced by decreased E-cadherin expression and the appearance of fibronectin- and vimentin-positive cells in the bulge. Pre-treatment with NAGED protected from 4-HC-induced hair bulb cytotoxicity/dystrophy, and halted apoptosis, p53 up-regulation, and EMT in the bulge, thereby significantly preventing the depletion of K15+ human eHFSCs ex vivo. CONCLUSIONS A cyclophosphamide metabolite alone suffices to damage and deplete human scalp eHFSCs by promoting apoptosis, DNA damage, and EMT ex vivo. Therefore, pCIA-therapeutic strategies need to target these pathological processes. Our data introduce the stimulation of PPARγ signaling as a novel intervention strategy for the prevention of pCIA, given the ability of NAGED to prevent chemotherapy-induced eHFSCs damage ex vivo.
Collapse
Affiliation(s)
- I Piccini
- Monasterium Laboratory, Münster, Germany
| | - L Brunken
- Monasterium Laboratory, Münster, Germany
| | - J Chéret
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S Ghatak
- Monasterium Laboratory, Münster, Germany
| | - Y Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Alam
- Monasterium Laboratory, Münster, Germany.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Dept. of Dermatology & Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Doha, Qatar
| | - T S Purba
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | - J Hardman
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK.,St John's Institute of Dermatology, King's College London, London, United Kingdom
| | | | - F Jimenez
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Mediteknia Dermatology Clinic, Las Palmas de Gran Canaria, Spain
| | - R Paus
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | | |
Collapse
|
23
|
Tiede S, Hundt JE, Paus R. UDP-GlcNAc-1-Phosphotransferase Is a Clinically Important Regulator of Human and Mouse Hair Pigmentation. J Invest Dermatol 2021; 141:2957-2965.e5. [PMID: 34116066 DOI: 10.1016/j.jid.2021.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
UDP-GlcNAc-1-phosphotransferase, a product of two separate genes (GNPTAB, GNPTG), is essential for the sorting and transportation of lysosomal enzymes to lysosomes. GNPTAB gene defects cause extracellular missorting of lysosomal enzymes resulting in lysosomal storage diseases, namely mucolipidosis type II and mucolipidosis type III alpha/beta, which is associated with hair discoloration. Yet, the physiological functions of GNPTAB in the control of hair follicle (HF) pigmentation remain unknown. To elucidate these, we have silenced GNPTAB in organ-cultured human HFs as a human ex vivo model for mucolipidosis type II. GNPTAB silencing profoundly inhibited intrafollicular melanin production, the correct sorting of melanosomes, tyrosinase activity, and HMB45 expression in the HF pigmentary unit and altered HF melanocyte morphology in situ. In isolated primary human HF melanocytes, GNPTAB knockdown significantly reduced melanogenesis, tyrosinase activity, and correct tyrosinase protein sorting as well as POMC expression and caused the expected lysosomal enzyme missorting in vitro. Moreover, transgenic mice overexpressing an inserted missense mutation corresponding to that seen in human mucolipidosis type II and mucolipidosis type III alpha/beta showed significantly reduced HF pigmentation, thus corroborating the in vivo relevance of our ex vivo and in vitro findings in the human system. This identifies GNPTAB as a clinically important enzymatic control of human HF pigmentation, likely by directly controlling tyrosinase sorting and POMC transcription in HF melanocytes.
Collapse
Affiliation(s)
- Stephan Tiede
- International Center for Lysosomal Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; University Children's Research at Kinder-UKE, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; The NIHR Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA; Monasterium Laboratory, Münster, Germany.
| |
Collapse
|
24
|
Yoneda K, Fujii M, Imaoka A, Kobayashi R, Hayashi R, Yoshida Y, Kohno T, Tsuji T. Preventive effect of edaravone ointment on cyclophosphamide-chemotherapy induced alopecia. Support Care Cancer 2021; 29:6127-6134. [PMID: 33797584 DOI: 10.1007/s00520-021-06189-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We evaluated the preventive effect of the antioxidant edaravone (EDR) on chemotherapy-induced alopecia (CIA) to improve quality of life in cancer patients. METHODS Hair loss was induced by intraperitoneally administering cyclophosphamide (CPA, 75 mg/kg) to rats, and topically applying EDR ointment (100 mg/day) once daily for 16 days (when hair loss starts) or 21 days (just before hair growth). The rats were divided into four groups: control group (without CPA or EDR), EDR 0% group (CPA + EDR 0%), EDR 3% group (CPA + EDR 3%), and EDR 30% group (CPA + EDR 30%). The prevention of CIA was evaluated by the hair coverage score (five levels from 0 to 4). Furthermore, we measured the size of the hair follicle area and the expression levels of insulin-like growth factor (IGF)-1 mRNA in dermal papilla cells. RESULTS The EDR 3% and EDR 30% groups exhibited higher hair coverage scores than the EDR 0% group on day 16 and day 21. On day 16, the hair follicle area in the EDR 3% and EDR 30% groups was significantly larger than that in the EDR 0% group. Furthermore, IGF-1 expression levels in the EDR 3% group were significantly higher than those in the EDR 0% group. On day 21, no significant difference was observed in hair follicle area or IGF-1 mRNA levels among the groups. CONCLUSION Our results show that EDR administration lessened hair loss due to CPA in a dose-independent manner above doses of 3%, suggesting potential applications beside chemotherapy.
Collapse
Affiliation(s)
- Katsuaki Yoneda
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.,Department of Pharmacy, Kouseikai Takai Hospital, 470-8 Kuranosho-cho, Tenri, Nara, 632-0006, Japan
| | - Miyu Fujii
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Aoi Imaoka
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Remi Kobayashi
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Ryoya Hayashi
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yuya Yoshida
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Takeyuki Kohno
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Takumi Tsuji
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
25
|
Flores A, Choi S, Hsu YC, Lowry WE. Inhibition of pyruvate oxidation as a versatile stimulator of the hair cycle in models of alopecia. Exp Dermatol 2021; 30:448-456. [PMID: 33739490 DOI: 10.1111/exd.14307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Hair follicle stem cells (HFSCs) are known to be responsible for the initiation of a new hair cycle, but typically remain quiescent for very long periods. In alopecia, or hair loss disorders, follicles can be refractory to activation for years or even permanently. Alopecia can be triggered by autoimmunity, age, chemotherapeutic treatment, stress, disrupted circadian rhythm or other environmental insults. We previously showed that hair follicle stem cells and the hair cycle can be manipulated by regulation of pyruvate entry into mitochondria for subsequent oxidation to fuel the TCA cycle in normal adult mice with typical hair cycling. Here, we present new data from our efforts to develop murine models of alopecia based on environmental triggers that have been shown to do the same in human skin. We found that inhibition of pyruvate transport into mitochondria can accelerate the hair cycle even during refractory hair cycling due to age, repeated chemotherapeutic treatment and stress. Hair cycle acceleration in these alopecia models led to the formation of histologically normal hair follicles within 30-40 days of treatment without any overt signs of toxicity or deleterious effects. Therefore, we propose inhibition of pyruvate entry into mitochondria as a versatile treatment strategy for alopecia in humans.
Collapse
Affiliation(s)
- Aimee Flores
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA, USA.,Pelage Pharmaceuticals, Inc., Los Angeles, CA, USA
| | - Sekyu Choi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA, USA.,Pelage Pharmaceuticals, Inc., Los Angeles, CA, USA.,Division of Dermatology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA.,Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
26
|
Haslam IS, Zhou G, Xie G, Teng X, Ao X, Yan Z, Smart E, Rutkowski D, Wierzbicka J, Zhou Y, Huang Z, Zhang Y, Farjo N, Farjo B, Paus R, Yue Z. Inhibition of Shh Signaling through MAPK Activation Controls Chemotherapy-Induced Alopecia. J Invest Dermatol 2021; 141:334-344. [DOI: 10.1016/j.jid.2020.05.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/16/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
|
27
|
Huang WY, Hong JB, Chang M, Wang SY, Lai SF, Chien HF, Lin SJ. Lower proximal cup and outer root sheath cells regenerate hair bulbs during anagen hair follicle repair after chemotherapeutic injury. Exp Dermatol 2020; 30:503-511. [PMID: 32781495 DOI: 10.1111/exd.14175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/30/2022]
Abstract
The cell dynamics and cell origin for anagen hair follicle (HF) repair following chemotherapeutic injury are unclear. We first mapped the HF response to cyclophosphamide (CYP) at natural anagen VI in mice. We found that 30-60 mg/kg of CYP leads to dose-dependent HF dystrophy that was spontaneously repaired with anagen resumption, while 120 mg/kg of CYP prematurely induced catagen/telogen entry. To explore how anagen HF repair is achieved in the dystrophic anagen pathway, we analysed the cell dynamics at 30 mg/kg of CYP. Hair bulbs first shrunk due to matrix cell apoptosis associated with DNA double-strand breaks. DNA damage was repaired, and ordered hair bulb structures were restored within 96 hours. Bulge stem cells did not undergo apoptosis nor proliferation. K5+ basal lower proximal cup cells and outer root sheath cells quickly replenished the cells in the germinative zone and regenerated the concentric layered structures of the lower HF segment. Therefore, anagen HFs are able to summon extra-bulge progenitor cells in close proximity to the damaged matrix for quick repair after CYP injury.
Collapse
Affiliation(s)
- Wen-Yen Huang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jin-Bon Hong
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael Chang
- Sophie Davis School of Biomedical Education, City University of New York, New York, NY, USA
| | - Shih-Yi Wang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Fan Lai
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiung-Fei Chien
- Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Sagawa N, Oshima Y, Hiratsuka T, Kono Y, Etoh T, Inomata M. Role of increased vascular permeability in chemotherapy-induced alopecia: In vivo imaging of the hair follicular microenvironment in mice. Cancer Sci 2020; 111:2146-2155. [PMID: 32227405 PMCID: PMC7293075 DOI: 10.1111/cas.14396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-induced alopecia is one of the most difficult adverse events of cancer treatment for patients. However, it is still unknown why anticancer drugs cause hair loss. We aimed to clarify the mechanism of chemotherapy-induced alopecia in mice using an in vivo imaging technique with a two-photon microscope, which enables observation of the deep reaction in the living body in real time. In this study, ICR mice were injected intraperitoneally with cyclophosphamide (120 µg/g). Changes in the hair bulb morphology, subcutaneous vessel permeability, and vessel density were evaluated by two-photon microscopy and conventional methods. In order to determine whether there is a causal relationship between vascular permeability and hair loss, we combined cyclophosphamide (50 µg/g) with subcutaneous histamine. Using two‐photon microscopy and conventional examination, we confirmed that the hair bulbs became smaller, blood vessels around the hair follicle decreased, and vascular permeability increased at 24 hours after cyclophosphamide injection [corrected]. Apoptosis occurred in vascular endothelial cells around the hair follicle. Additionally, hair loss was exacerbated by temporarily enhancing vascular permeability with histamine. In conclusion, cyclophosphamide caused a decrease in vascular density and an increase in vascular permeability, therefore increased vascular permeability might be one of the causes of chemotherapy-induced alopecia.
Collapse
Affiliation(s)
- Noriko Sagawa
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Yusuke Oshima
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Yufu, Oita, Japan.,Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Takahiro Hiratsuka
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Yohei Kono
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Tsuyoshi Etoh
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| |
Collapse
|
29
|
Carré J, Suzuki T, Paus R. Do hair follicles operate as primitive, multifocal kidney‐like excretory (mini‐) organs? Exp Dermatol 2020; 29:357-365. [DOI: 10.1111/exd.14076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Jean‐Luc Carré
- Département de Biochimie et Pharmaco‐Toxicologie Hôpital de la Cavale Blanche CHRU Brest France
- EA 4685 Laboratoire des Interactions Epithelium ‐ Neurones University of Brest Brest France
| | - Takahiro Suzuki
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Department of Dermatology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research University of Manchester Manchester UK
- Monasterium Laboratory Münster Germany
| |
Collapse
|
30
|
Ting CH, Pan CY, Chen YC, Lin YC, Chen TY, Rajanbabu V, Chen JY. Impact of Tilapia hepcidin 2-3 dietary supplementation on the gut microbiota profile and immunomodulation in the grouper (Epinephelus lanceolatus). Sci Rep 2019; 9:19047. [PMID: 31836758 PMCID: PMC6910925 DOI: 10.1038/s41598-019-55509-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/30/2019] [Indexed: 12/31/2022] Open
Abstract
Hepcidin regulates iron homeostasis and host-defense mechanisms, while the hepcidin-like protein, Tilapia hepcidin (TH)2-3, functions as an antimicrobial peptide (AMP). Since AMP dietary supplements may be used as alternatives to antibiotics in livestock, we tested the effects of recombinant (r)TH2-3 as a dietary supplement in grouper aquaculture. rTH2-3 was produced by a Pichia pastoris expression system and exhibited thermostability and broad-spectrum antimicrobial activity. The feed conversion ratio and feed efficiency were determined in Epinephelus lanceolatus (grouper) fed with rTH2-3-supplemented diet for 28 days. In addition, grouper showed enhanced superoxide dismutase (SOD) activity after rTH2-3 feeding compared to regular-diet-fed fish. Gut microbiota analysis revealed that microbial diversity was enhanced by feeding grouper with 1% rTH2-3. After challenging grouper with Vibrio alginolyticus, differential regulation of immune-related genes in the liver and spleen was observed between the TH2-3 and regular-diet groups, including for genes associated with antimicrobial and pro-inflammatory functions, complement components, and major histocompatibility complex (Mhc). These findings suggest that overall immunity was improved. Thus, our results suggest long-term supplementation with rTH2-3 may be beneficial for aquacultured grouper. The beneficial effects of the supplement are likely based on changes in the commensal microbial community as well as immunomodulation.
Collapse
Affiliation(s)
- Chen-Hung Ting
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Yi-Chun Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Yu-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan
| | - Tzong-Yueh Chen
- Institute of Biotechnology & Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Venugopal Rajanbabu
- Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural university, Tiruchchirapalli, 620027, Tamil Nadu, India
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan, 262, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202, Taiwan.
| |
Collapse
|
31
|
Purba TS, Ng'andu K, Brunken L, Smart E, Mitchell E, Hassan N, O'Brien A, Mellor C, Jackson J, Shahmalak A, Paus R. CDK4/6 inhibition mitigates stem cell damage in a novel model for taxane-induced alopecia. EMBO Mol Med 2019; 11:e11031. [PMID: 31512803 PMCID: PMC6783643 DOI: 10.15252/emmm.201911031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023] Open
Abstract
Taxanes are a leading cause of severe and often permanent chemotherapy‐induced alopecia. As the underlying pathobiology of taxane chemotherapy‐induced alopecia remains poorly understood, we investigated how paclitaxel and docetaxel damage human scalp hair follicles in a clinically relevant ex vivo organ culture model. Paclitaxel and docetaxel induced massive mitotic defects and apoptosis in transit amplifying hair matrix keratinocytes and within epithelial stem/progenitor cell‐rich outer root sheath compartments, including within Keratin 15+ cell populations, thus implicating direct damage to stem/progenitor cells as an explanation for the severity and permanence of taxane chemotherapy‐induced alopecia. Moreover, by administering the CDK4/6 inhibitor palbociclib, we show that transit amplifying and stem/progenitor cells can be protected from paclitaxel cytotoxicity through G1 arrest, without premature catagen induction and additional hair follicle damage. Thus, the current study elucidates the pathobiology of taxane chemotherapy‐induced alopecia, highlights the paramount importance of epithelial stem/progenitor cell‐protective therapy in taxane‐based oncotherapy, and provides preclinical proof‐of‐principle in a healthy human (mini‐) organ that G1 arrest therapy can limit taxane‐induced tissue damage.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Kayumba Ng'andu
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Lars Brunken
- Monasterium Laboratory - Skin & Hair Research Solutions GmbH, Münster, Germany
| | - Eleanor Smart
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Ellen Mitchell
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Nashat Hassan
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Aaron O'Brien
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Charlotte Mellor
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Jennifer Jackson
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | | | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory - Skin & Hair Research Solutions GmbH, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
32
|
Haslam IS, Smart E. Chemotherapy-Induced Hair Loss: The Use of Biomarkers for Predicting Alopecic Severity and Treatment Efficacy. Biomark Insights 2019; 14:1177271919842180. [PMID: 31037027 PMCID: PMC6475836 DOI: 10.1177/1177271919842180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Damage to hair follicles following exposure to toxic chemotherapeutics can cause substantial hair loss, commonly known as chemotherapy-induced alopecia (CIA). Preventive therapies remain limited; however, recent advances in the use of scalp cooling technologies have proved successful in preventing or reducing hair loss in some patients. Further improvements in scalp cooling efficacy and/or development of novel treatments to prevent chemotherapy-induced hair loss are required. To achieve this, post-chemotherapy assessment of hair follicle damage markers, with and without scalp cooling, would provide invaluable mechanistic and prognostic information. At present, the availability of such data is extremely limited. This article describes the potential utility of a combination of biomarkers in assessing drug-induced alopecia and the protective potential of existing or new treatments. A greater understanding of the precise mechanisms of anti-CIA therapies through biomarker analysis would enhance the rationale, use, and development of such treatments.
Collapse
Affiliation(s)
- Iain S Haslam
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Eleanor Smart
- Centre for Dermatology Research, University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Lim YC, Kim H, Lim SM, Kim JS. Genetic analysis of a novel antioxidant multi-target iron chelator, M30 protecting against chemotherapy-induced alopecia in mice. BMC Cancer 2019; 19:149. [PMID: 30760223 PMCID: PMC6374887 DOI: 10.1186/s12885-019-5323-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
Background Chemotherapy-induced alopecia has been well documented as a cause of distress to patients undergoing cancer treatment. Almost all traditional chemotherapeutic agents cause severe alopecia. Despite advances in the treatment of chemotherapy-induced alopecia, there is no effective treatment for preventing chemotherapy-induced alopecia. Methods In the present study, we investigated the potential role of a multi-target iron chelator, M30 in protecting against cyclophosphamide-induced alopecia in C57BL/6 mice implanted with an osmotic pump. M30 enhanced hair growth and prevented cyclophosphamide-induced abnormal hair in the mice. Furthermore, we examined the gene expression profiles derived from skin biopsy specimens of normal mice, cyclophosphamide-treated mice, and cyclophosphamide treated mice with M30 supplement. Results The top genes namely Tnfrsf19, Ercc2, Lama5, Ctsl, and Per1 were identified by microarray analysis. These genes were found to be involved in the biological processes of hair cycle, hair cycle phase, hair cycle process, hair follicle development, hair follicle maturation, hair follicle morphogenesis, regulation of hair cycle. Conclusion Our study demonstrates that M30 treatment is a promising therapy for cyclophosphamide-induced alopecia and suggests that the top five genes have unique preventive effects in cyclophosphamide-induced transformation.
Collapse
Affiliation(s)
- Young-Cheol Lim
- Division of RI application, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Korea.,Research support team, ANDIVA Inc., Chuncheon, Korea
| | - Hyeongi Kim
- Division of RI application, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Korea
| | - Sang Moo Lim
- Division of RI application, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Korea.,Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jin Su Kim
- Division of RI application, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812, Korea. .,Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea.
| |
Collapse
|
34
|
Trastuzumab Induced Chemobrain, Atorvastatin Rescued Chemobrain with Enhanced Anticancer Effect and without Hair Loss-Side Effect. J Clin Med 2019; 8:jcm8020234. [PMID: 30754707 PMCID: PMC6406319 DOI: 10.3390/jcm8020234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022] Open
Abstract
The authors identified that chemo-brain was induced after trastuzumab (TZB) therapy. In addition, atorvastatin (ATV) could rescue chemo-brain during trastuzumab (TZB) therapy. Enhanced therapeutic effect of TZB was confirmed after ATV therapy. We also investigated that there was no hair loss side effect due to ATV therapy. In an animal model, 150 μg TZB and five serial doses of 20 mg/kg ATV were administered. 18F-fluorodeoxyglucose Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) data were acquired. Statistical parametric mapping analysis and voxel-based morphometry analysis were performed to identify differences in glucose metabolism and gray matter concentration. The enhanced therapeutic efficacy of TZB after ATV treatment was assessed using a human epidermal growth factor receptor 2-positive gastric cancer model. We found a decrease in cerebral glucose metabolism and gray matter concentration in the frontal lobe following TZB therapy (p < 0.005). After subsequent ATV administration, glucose metabolism and regional gray matter concentration were rescued (p < 0.005). Cognitive impairment due to TZB and the rescue effect of ATV were confirmed using a passive avoidance test and quantitative real-time reverse transcription PCR. Furthermore, the penetration and accumulation of TZB in tumors increased by 100% after ATV co-administration, which resulted in an enhanced anti-cancer effect. Our study collectively demonstrates that ATV co-administration with TZB rescued the TZB-induced chemo-brain and enhances the therapeutic efficacy of TZB in tumors. We also showed that there was no hair loss during ATV therapy.
Collapse
|
35
|
Gao Q, Zhou G, Lin SJ, Paus R, Yue Z. How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models. Exp Dermatol 2018; 28:413-418. [PMID: 30457678 DOI: 10.1111/exd.13846] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Chemotherapy and radiotherapy are common modalities for cancer treatment. While targeting rapidly growing cancer cells, they also damage normal tissues and cause adverse effects. From the initial insult such as DNA double-strand break, production of reactive oxygen species (ROS) and a general stress response, there are complex regulatory mechanisms that control the actual tissue damage process. Besides apoptosis, a range of outcomes for the damaged cells are possible including cell cycle arrest, senescence, mitotic catastrophe, and inflammatory responses and fibrosis at the tissue level. Feather and hair are among the most actively proliferating (mini-)organs and are highly susceptible to both chemotherapy and radiotherapy damage, thus provide excellent, experimentally tractable model systems for dissecting how normal tissues respond to such injuries. Taking a comparative biology approach to investigate this has turned out to be particularly productive. Started in chicken feather and then extended to murine hair follicles, it was revealed that in addition to p53-mediated apoptosis, several other previously overlooked mechanisms are involved. Specifically, Shh, Wnt, mTOR, cytokine signalling and ROS-mediated degradation of adherens junctions have been implicated in the damage and/or reparative regeneration process. Moreover, we show here that inflammatory responses, which can be prominent upon histological examination of chemo- or radiotherapy-damaged hair follicle, may not be essential for the hair loss phenotype. These studies point to fundamental, evolutionarily conserved mechanisms in controlling tissue responses in vivo, and suggest novel strategies for the prevention and management of adverse effects that arise from chemo- or radiotherapy.
Collapse
Affiliation(s)
- QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - GuiXuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Centre for Dermatology Research, University of Manchester, Manchester, UK
| | - ZhiCao Yue
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
36
|
Riccio G, Sommella E, Badolati N, Salviati E, Bottone S, Campiglia P, Dentice M, Tenore GC, Stornaiuolo M, Novellino E. Annurca Apple Polyphenols Protect Murine Hair Follicles from Taxane Induced Dystrophy and Hijacks Polyunsaturated Fatty Acid Metabolism toward β-Oxidation. Nutrients 2018; 10:nu10111808. [PMID: 30463345 PMCID: PMC6267362 DOI: 10.3390/nu10111808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced alopecia (CIA) is a common side effect of conventional chemotherapy and represents a major problem in clinical oncology. Even months after the end of chemotherapy, many cancer patients complain of hair loss, a condition that is psychologically difficult to manage. CIA disturbs social and sexual interactions and causes anxiety and depression. Synthetic drugs protecting from CIA and endowed with hair growth stimulatory properties are prescribed with caution by oncologists. Hormones, growth factors, morphogens could unwontedly protect tumour cells or induce cancer cell proliferation and are thus considered incompatible with many chemotherapy regimens. Nutraceuticals, on the contrary, have been shown to be safe and effective treatment options for hair loss. We here show that polyphenols from Malus Pumila Miller cv Annurca are endowed with hair growth promoting activity and can be considered a safe alternative to avoid CIA. In vitro, Annurca Apple Polyphenolic Extract (AAE) protects murine Hair Follicles (HF) from taxanes induced dystrophy. Moreover, in virtue of its mechanism of action, AAE is herein proven to be compatible with chemotherapy regimens. AAE forces HFs to produce ATP using mitochondrial β-oxidation, reducing Pentose Phosphate Pathway (PPP) rate and nucleotides production. As consequence, DNA replication and mitosis are not stimulated, while a pool of free amino acids usually involved in catabolic reactions are spared for keratin production. Moreover, measuring the effect exerted on Poly Unsaturated Fatty Acid (PUFA) metabolism, we prove that AAE promotes hair-growth by increasing the intracellular levels of Prostaglandins F2α (PGF2α) and by hijacking PUFA catabolites toward β-oxidation.
Collapse
Affiliation(s)
- Gennaro Riccio
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Nadia Badolati
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Sara Bottone
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| |
Collapse
|
37
|
Nosanchuk JD, Jeyakumar A, Ray A, Revskaya E, Jiang Z, Bryan RA, Allen KJH, Jiao R, Malo ME, Gómez BL, Morgenstern A, Bruchertseifer F, Rickles D, Thornton GB, Bowen A, Casadevall A, Dadachova E. Structure-function analysis and therapeutic efficacy of antibodies to fungal melanin for melanoma radioimmunotherapy. Sci Rep 2018; 8:5466. [PMID: 29615812 PMCID: PMC5882926 DOI: 10.1038/s41598-018-23889-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Metastatic melanoma remains difficult to treat despite recent approvals of several new drugs. Recently we reported encouraging results of Phase I clinical trial of radiolabeled with 188Re murine monoclonal IgM 6D2 to melanin in patients with Stage III/IV melanoma. Subsequently we generated a novel murine IgG 8C3 to melanin. IgGs are more amenable to humanization and cGMP (current Good Manufacturing Practice) manufacturing than IgMs. We performed comparative structural analysis of melanin-binding IgM 6D2 and IgG 8C3. The therapeutic efficacy of 213Bi- and 188Re-labeled 8C3 and its comparison with anti-CTLA4 immunotherapy was performed in B16-F10 murine melanoma model. The primary structures of these antibodies revealed significant homology, with the CDRs containing a high percentage of positively charged amino acids. The 8C3 model has a negatively charged binding surface and significant number of aromatic residues in its H3 domain, suggesting that hydrophobic interactions contribute to the antibody-melanin interaction. Radiolabeled IgG 8C3 showed significant therapeutic efficacy in murine melanoma, safety towards healthy melanin-containing tissues and favorable comparison with the anti-CTLA4 antibody. We have demonstrated that antibody binding to melanin relies on both charge and hydrophobic interactions while the in vivo data supports further development of 8C3 IgG as radioimmunotherapy reagent for metastatic melanoma.
Collapse
Affiliation(s)
- J D Nosanchuk
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - A Jeyakumar
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - A Ray
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - E Revskaya
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Z Jiang
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - R A Bryan
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - K J H Allen
- University of Saskatchewan, Saskatoon, SK, Canada
| | - R Jiao
- University of Saskatchewan, Saskatoon, SK, Canada
| | - M E Malo
- University of Saskatchewan, Saskatoon, SK, Canada
| | - B L Gómez
- School of Medicine and Health Sciences, Universidad Rosario, Bogota, Colombia
| | - A Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - F Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - D Rickles
- RadImmune Therapeutics, Tarrytown, NY, USA
| | | | - A Bowen
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A Casadevall
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - E Dadachova
- University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
38
|
Onaolapo A, Adebayo A, Onaolapo O. Oral phenytoin protects against experimental cyclophosphamide-chemotherapy induced hair loss. PATHOPHYSIOLOGY 2018; 25:31-39. [DOI: 10.1016/j.pathophys.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/25/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
|
39
|
Gold thread implantation promotes hair growth in human and mice. Lab Anim Res 2018; 33:291-297. [PMID: 29399026 PMCID: PMC5792530 DOI: 10.5625/lar.2017.33.4.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/30/2017] [Accepted: 01/05/2018] [Indexed: 11/27/2022] Open
Abstract
Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated dorsal skin of mice, gold thread or polyglycolic acid (PGA) thread, similarly to 5% minoxidil, significantly increased the number of hair follicles on day 14 after implantation. And, hair re-growth promotion in the gold threadimplanted mice were significantly higher than that in PGA thread group on day 11 after depilation. In particular, the skin tissue of gold thread-implanted mice showed stronger PCNA staining and higher collagen density compared with control mice. These results indicate that gold thread implantation can be an effective way to promote hair re-growth although further confirmatory study is needed for more information on therapeutic mechanisms and long-term safety.
Collapse
|
40
|
Sardella C, Winkler C, Quignodon L, Hardman JA, Toffoli B, Giordano Attianese GMP, Hundt JE, Michalik L, Vinson CR, Paus R, Desvergne B, Gilardi F. Delayed Hair Follicle Morphogenesis and Hair Follicle Dystrophy in a Lipoatrophy Mouse Model of Pparg Total Deletion. J Invest Dermatol 2017; 138:500-510. [PMID: 28964716 DOI: 10.1016/j.jid.2017.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023]
Abstract
PPARγ regulates multiple aspects of skin physiology, including sebocyte differentiation, keratinocyte proliferation, epithelial stem cell survival, adipocyte biology, and inflammatory skin responses. However, the effects of its global deletion, namely of nonredundant key functions of PPARγ signaling in mammalian skin, are yet unknown because of embryonic lethality. Here, we describe the skin and hair phenotype of a whole-body PPARγ-null mouse (PpargΔ/Δ), obtained by preserving PPARγ expression in the placenta. PpargΔ/Δ mice exhibited total lipoatrophy and complete absence of sebaceous glands. Right after birth, hair follicle (HF) morphogenesis was transiently delayed, along with reduced expression of HF differentiation markers and of transcriptional regulators necessary for HF development. Later, adult PpargΔ/Δ mice developed scarring alopecia and severe perifollicular inflammation. Skin analyses in other models of lipodystrophy, AZIPtg/+ and Adipoq-Cretg/+Ppargfl/fl mice, coupled with skin graft experiments, showed that the early defects observed in hair morphogenesis were caused by the absence of adipose tissue. In contrast, the late alteration of HF cycle and appearance of inflammation were observed only in PpargΔ/Δ mice and likely were due to the lack sebaceous glands. Our findings underscore the increasing appreciation for the importance of adipose tissue-mediated signals in HF development and function.
Collapse
Affiliation(s)
- Chiara Sardella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carine Winkler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Laure Quignodon
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jonathan A Hardman
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Barbara Toffoli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Jennifer E Hundt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Liliane Michalik
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Charles R Vinson
- Center for Cancer Research, National Cancer Institute, Laboratory of Metabolism, Bethesda, Maryland, USA
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Béatrice Desvergne
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
41
|
McCart EA, Thangapazham RL, Lombardini ED, Mog SR, Panganiban RAM, Dickson KM, Mansur RA, Nagy V, Kim SY, Selwyn R, Landauer MR, Darling TN, Day RM. Accelerated senescence in skin in a murine model of radiation-induced multi-organ injury. JOURNAL OF RADIATION RESEARCH 2017; 58:636-646. [PMID: 28340212 PMCID: PMC5737212 DOI: 10.1093/jrr/rrx008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/10/2017] [Indexed: 05/24/2023]
Abstract
Accidental high-dose radiation exposures can lead to multi-organ injuries, including radiation dermatitis. The types of cellular damage leading to radiation dermatitis are not completely understood. To identify the cellular mechanisms that underlie radiation-induced skin injury in vivo, we evaluated the time-course of cellular effects of radiation (14, 16 or 17 Gy X-rays; 0.5 Gy/min) in the skin of C57BL/6 mice. Irradiation of 14 Gy induced mild inflammation, observed histologically, but no visible hair loss or erythema. However, 16 or 17 Gy radiation induced dry desquamation, erythema and mild ulceration, detectable within 14 days post-irradiation. Histological evaluation revealed inflammation with mast cell infiltration within 14 days. Fibrosis occurred 80 days following 17 Gy irradiation, with collagen deposition, admixed with neutrophilic dermatitis, and necrotic debris. We found that in cultures of normal human keratinocytes, exposure to 17.9 Gy irradiation caused the upregulation of p21/waf1, a marker of senescence. Using western blot analysis of 17.9 Gy-irradiated mice skin samples, we also detected a marker of accelerated senescence (p21/waf1) 7 days post-irradiation, and a marker of cellular apoptosis (activated caspase-3) at 30 days, both preceding histological evidence of inflammatory infiltrates. Immunohistochemistry revealed reduced epithelial stem cells from hair follicles 14-30 days post-irradiation. Furthermore, p21/waf1 expression was increased in the region of the hair follicle stem cells at 14 days post 17 Gy irradiation. These data indicate that radiation induces accelerated cellular senescence in the region of the stem cell population of the skin.
Collapse
Affiliation(s)
- Elizabeth A McCart
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Rajesh L Thangapazham
- Department of Dermatology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Eric D Lombardini
- Current address: Public Health Activity-Fort Carson, 1661 O'Connell Blvd, Fort Carson, CO 80913, USA
| | - Steven R Mog
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740, USA
| | - Ronald Allan M Panganiban
- Current address: Molecular and Integrative Physiological Sciences, Harvard TH Chan School of Public Health, 677 Huntington Ave., Boston, MA 02115, USA
| | - Kelley M Dickson
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Rihab A Mansur
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Vitaly Nagy
- Department of Radiation Dosimetry, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Sung-Yop Kim
- Current address: Department of Radiology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Reed Selwyn
- Current address: Department of Radiology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael R Landauer
- Radiation Countermeasures Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Thomas N Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
42
|
Kawano M, Umeda S, Yasuda T, Fujita M, Ishikawa A, Imamura T, Imai T, Nakayama F. FGF18 signaling in the hair cycle resting phase determines radioresistance of hair follicles by arresting hair cycling. Adv Radiat Oncol 2017; 1:170-181. [PMID: 28740887 PMCID: PMC5514016 DOI: 10.1016/j.adro.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose Telogen (resting phase) hair follicles (HFs) are more radioresistant than their anagen (growth phase) counterparts. Fibroblast growth factor (FGF) 18 is strongly expressed in telogen HFs to maintain the telogen phase, whereas several other FGFs exert radioprotective effects; however, the role of FGF18 in the radioresistance of HFs remains unknown. This study focused on clarifying the role of FGF18 in the radioresistance of telogen HFs and its potential as a radioprotector. Methods and materials BALB/c mice with telogen or plucking-induced anagen HFs were exposed to total body irradiation with γ-rays at 4 to 12 Gy after intraperitoneal treatment with FGF18 or an FGF receptor inhibitor. A time course analysis was performed histologically and hair growth was observed 14 or 15 days after depilation. Skin specimens were analyzed by DNA microarrays and Western blotting. Results Telogen irradiation at 6 Gy resulted in transient cell growth arrest, leading to successful hair growth, whereas anagen irradiation failed to promote hair growth. Telogen irradiation did not induce apoptosis in HFs or reduce HF stem cells, whereas anagen irradiation induced apoptosis and reduced stem cell numbers. The Inhibition of FGF receptor signaling during the telogen phase promoted HF cell proliferation; however, hair failed to grow after irradiation. In contrast, recombinant FGF18 induced transient cell growth arrest after anagen irradiation with enhanced DNA repair, leading to the inhibition of apoptosis, maintenance of HF stem cells, and successful hair growth. Moreover, FGF18 reduced the expression levels of genes promoting G2/M transition as well as the protein expression levels of cyclin B1 and cdc2 in skin, and induced G2/M arrest in the keratinocyte cell line HaCaT. Conclusions These results suggest that FGF18 signaling mediates radioresistance in telogen HFs by arresting the cell cycle, and that FGF18 has potential as a radioprotector for radiation-induced alopecia.
Collapse
Affiliation(s)
- Mitsuko Kawano
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Sachiko Umeda
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Takeshi Yasuda
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Mayumi Fujita
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Atsuko Ishikawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Toru Imamura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Takashi Imai
- Medical Databank Section, Hospital, National Institute of Radiological Sciences, Chiba, Japan
| | - Fumiaki Nakayama
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
43
|
Fonia A, Cota C, Setterfield JF, Goldberg LJ, Fenton DA, Stefanato CM. Permanent alopecia in patients with breast cancer after taxane chemotherapy and adjuvant hormonal therapy: Clinicopathologic findings in a cohort of 10 patients. J Am Acad Dermatol 2017; 76:948-957. [DOI: 10.1016/j.jaad.2016.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
|
44
|
Peters EMJ, Müller Y, Snaga W, Fliege H, Reißhauer A, Schmidt-Rose T, Max H, Schweiger D, Rose M, Kruse J. Hair and stress: A pilot study of hair and cytokine balance alteration in healthy young women under major exam stress. PLoS One 2017; 12:e0175904. [PMID: 28423056 PMCID: PMC5397031 DOI: 10.1371/journal.pone.0175904] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/02/2017] [Indexed: 12/25/2022] Open
Abstract
Mouse models show that experimental stress mimicking prolonged life-stress exposure enhances neurogenic inflammation, induces adaptive immunity cytokine-imbalance characterized by a shift to Type 1 T-helper cell cytokines and increases apoptosis of epithelial cells. This affects hair growth in otherwise healthy animals. In this study, we investigate whether a prolonged naturalistic life-stress exposure affects cytokine balance and hair parameters in healthy humans. 33 (18 exam, 15 comparison) female medical students with comparable sociobiological status were analyzed during a stressful final examination period, at three points in time (T) 12 weeks apart. T1 was before start of the learning period, T2 between the three-day written exam and an oral examination, and T3 after a 12 week rest and recovery from the stress of the examination period. Assessments included: self-reported distress and coping strategies (Perceived Stress Questionnaire [PSQ], Trier Inventory for the Assessment of Chronic Stress [TICS]), COPE), cytokines in supernatants of stimulated peripheral blood mononucleocytes (PBMCs), and trichogram (hair cycle and pigmentation analysis). Comparison between students participating in the final medical exam at T2 and non-exam students, revealed significantly higher stress perception in exam students. Time-wise comparison revealed that stress level, TH1/TH2 cytokine balance and hair parameters changed significantly from T1 to T2 in the exam group, but not the control. However, no group differences were found for cytokine balance or hair parameters at T2. The study concludes that in humans, naturalistic stress, as perceived during participation in a major medical exam, has the potential to shift the immune response to TH1 and transiently hamper hair growth, but these changes stay within a physiological range. Findings are instructive for patients suffering from hair loss in times of high stress. Replication in larger and more diverse sample populations is required, to assess suitability of trichogram analysis as biological outcome for stress studies.
Collapse
Affiliation(s)
- Eva M. J. Peters
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
- * E-mail:
| | - Yvonne Müller
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
| | - Wenke Snaga
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
| | - Herbert Fliege
- Foreign Office, Health Service, Psychosocial Counseling, Auswärtiges Amt, Berlin, Germany
| | - Anett Reißhauer
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for Physical Medicine and Rehabilitation, Berlin, Germany
| | | | | | | | - Matthias Rose
- Universitätsmedizin Charité, Center 12 for Internal Medicine and Dermatology, Division for General Internal Medicine, Psychosomatics and Psychotherapy: Psycho-Neuro-Immunology Skin Research Group, Berlin, Germany
| | - Johannes Kruse
- Justus-Liebig-University, Department of Psychosomatics and Psychotherapy, Psychoneuroimmunology Laboratory, Gießen, Germany
| |
Collapse
|
45
|
Hair and Nail Manifestations of Systemic Disease. CURRENT DERMATOLOGY REPORTS 2017. [DOI: 10.1007/s13671-017-0169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Falk EF, Lam ATH, Barber LG, Ferrer L. Clinical characteristics of doxorubicin-associated alopecia in 28 dogs. Vet Dermatol 2016; 28:207-e48. [PMID: 27976832 DOI: 10.1111/vde.12409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chemotherapy-induced alopecia (CIA) is common in humans, but there are limited reports describing the clinical features of CIA in dogs. OBJECTIVES To describe the epidemiological and clinical characteristics of doxorubicin-associated alopecia (DAA) in canine patients at a teaching hospital from 2012 to 2014. ANIMALS Signalment, diagnosis, treatment protocols and clinical examination findings were recorded in 150 dogs treated with doxorubicin from 2012 to 2014. METHODS Medical records were searched retrospectively for the keywords "alopecia" and "hypotrichosis." Dogs were excluded if the causal link of hair loss was unclear. RESULTS Doxorubicin-associated alopecia was reported in 28 of 150 dogs (19%). Two parameters were statistically associated with the development of DAA: coat-type and cumulative doxorubicin dose. Dogs with curly or wire-haired coat-type were significantly more likely to develop DAA than dogs with straight-haired coat-type [χ2 (1, N = 147) = 30, P < 0.0001]. After adjusting for sex, weight and doxorubicin dose, the odds of dogs with curly or wire-haired coat-type developing DAA were 22 times higher than those with straight-haired coat-type (P < 0.0001). Dogs that developed DAA received a significantly higher median cumulative doxorubicin dose (103.0 versus 84.5 mg/m2 ; P = 0.0039) than those that did not develop DAA. CONCLUSIONS AND CLINICAL IMPORTANCE Dogs treated with doxorubicin may be at risk for developing DAA. This risk increases as the cumulative dose of doxorubicin increases, and with a curly or wire-haired coat-type.
Collapse
Affiliation(s)
- Elizabeth F Falk
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA
| | - Andrea T H Lam
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA
| | - Lisa G Barber
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA
| | - Lluis Ferrer
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA
| |
Collapse
|
47
|
Wang AB, Zhang YV, Tumbar T. Gata6 promotes hair follicle progenitor cell renewal by genome maintenance during proliferation. EMBO J 2016; 36:61-78. [PMID: 27908934 DOI: 10.15252/embj.201694572] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 01/29/2023] Open
Abstract
Cell proliferation is essential to rapid tissue growth and repair, but can result in replication-associated genome damage. Here, we implicate the transcription factor Gata6 in adult mouse hair follicle regeneration where it controls the renewal of rapidly proliferating epithelial (matrix) progenitors and hence the extent of production of terminally differentiated lineages. We find that Gata6 protects against DNA damage associated with proliferation, thus preventing cell cycle arrest and apoptosis. Furthermore, we show that in vivo Gata6 stimulates EDA-receptor signaling adaptor Edaradd level and NF-κB pathway activation, known to be important for DNA damage repair and stress response in general and for hair follicle growth in particular. In cultured keratinocytes, Edaradd rescues DNA damage, cell survival, and proliferation of Gata6 knockout cells and restores MCM10 expression. Our data add to recent evidence in embryonic stem and neural progenitor cells, suggesting a model whereby developmentally regulated transcription factors protect from DNA damage associated with proliferation at key stages of rapid tissue growth. Our data may add to understanding why Gata6 is a frequent target of amplification in cancers.
Collapse
Affiliation(s)
- Alex B Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ying V Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
48
|
Uh KJ, Hwang WS, Bae JH, Jang DE, Yeom SC. 5-Bromo-2'-deoxyuridine induced effluvium via p53-mediated CD326-positive keratinocyte apoptosis in C57BL/6 mice. J Dermatol 2016; 44:180-185. [PMID: 27543435 DOI: 10.1111/1346-8138.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/07/2016] [Indexed: 11/28/2022]
Abstract
Anagen effluvium develops because of disturbances in the hair follicle cycle, leading to acute and severe hair loss in humans. The objective of this study was to establish a mouse model of anagen effluvium by 5-bromo-2'-deoxyuridine (BrdU) treatment, and evaluate the pathological changes and underlying mechanisms. We treated 9-10-day-old pups and 3-7-week-old C57BL/6 mice with BrdU. After successfully inducing hair loss in the neonatal pups, microscopic, immunohistochemical and flow cytometry analyses were conducted. BrdU induced early onset alopecia in neonates and caused epidermal thickening and hair shaft breakage. BrdU appeared to incorporate the CD326-positive keratinocyte layer and induced p53-related apoptosis. Keratinocyte apoptosis caused immune cell infiltration in the dermal region; M2 macrophages and neutrophils were dominant. The BrdU-induced hair loss was dose-dependent, and alopecia was visible at a dose range of 25-200 μg/g bodyweight. The BrdU-induced anagen effluvium mouse model is novel and easily established by administrating four simple BrdU injections to pups; these mice showed synchronized onset of alopecia symptoms with little individual variation. Moreover, this model showed an alopecia phenotype similar to that of human anagen effluvium with acute, severe and widespread hair loss.
Collapse
Affiliation(s)
- Kyung-Jun Uh
- Designed Animal and Transplantation Research Institute, Institute of Greenbio Research and Technology, Seoul National University, Pyeongchang, Korea
| | - Woo-Sung Hwang
- Designed Animal and Transplantation Research Institute, Institute of Greenbio Research and Technology, Seoul National University, Pyeongchang, Korea
| | - Ji-Hyun Bae
- Designed Animal and Transplantation Research Institute, Institute of Greenbio Research and Technology, Seoul National University, Pyeongchang, Korea
| | - Da-Eun Jang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Korea
| | - Su-Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|
49
|
Botchkarev VA, Sharov AA. Modeling Chemotherapy-Induced Hair Loss: From Experimental Propositions toward Clinical Reality. J Invest Dermatol 2016; 136:557-559. [PMID: 26902124 DOI: 10.1016/j.jid.2015.10.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022]
Abstract
Chemotherapy-induced hair loss is one of the most devastating side effects of cancer treatment. To study the effects of chemotherapeutic agents on the hair follicle, a number of experimental models have been proposed. Yoon et al. report that transplantation of human scalp hair follicles onto chemotherapy-treated immunodeficient mice serves as an excellent in vivo model for chemotherapy-induced hair loss. Yoon et al. demonstrate that (i) the response of human hair follicles grafted onto immunodeficient mice to cyclophosphamide resembles the key features of the chemotherapy-induced hair loss seen in patients with cancer and (ii) this human in vivo model for chemotherapy-induced hair loss is closer to clinical reality than to any earlier models. Undoubtedly, this model will serve as a valuable tool for analyses of the mechanisms that underlie this devastating side effect of anti-cancer therapy.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Departments of Dermatology, Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Andrey A Sharov
- Departments of Dermatology, Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
50
|
Bichsel KJ, Hammiller B, Trempus CS, Li Y, Hansen LA. The epidermal growth factor receptor decreases Stathmin 1 and triggers catagen entry in the mouse. Exp Dermatol 2016; 25:275-81. [PMID: 26661905 DOI: 10.1111/exd.12921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/29/2022]
Abstract
The epidermal growth factor receptor (EGFR) is necessary for normal involution of hair follicles after the growth phase of anagen, although the mechanisms through which it acts are not well understood. In this report, we used transcriptional profiling of microdissected hair follicles from mice with skin-targeted deletion of Egfr to investigate how EGFR activation triggers catagen. Immunofluorescence for phospho-EGFR in mouse skin revealed increased activation of EGFR in follicular keratinocytes at catagen onset. Consistent with other models of EGFR deficiency, mice with skin-targeted deletion of Egfr (Krt14-Cre(+) /Egfr(fl/fl) ) exhibited a delayed and asynchronous catagen entry. Transcriptional profiling at the time of normal catagen onset at post-natal day (P) 17 revealed increased expression of the mitotic regulator Rcc2 in hair follicles lacking EGFR. Rcc2 protein was strongly immunopositive in the nuclei of control follicular keratinocytes at P16 then rapidly decreased until it was undetectable between P18 and 21. In contrast, Rcc2 expression continued in Egfr mutant follicles throughout this period. Proliferation, measured by bromodeoxyuridine incorporation, was also significantly increased in Egfr mutant follicular keratinocytes compared to controls at P18-21. Similarly, Rcc2-regulated mitotic regulator Stathmin 1 was strikingly reduced in control but not Egfr mutant follicles between P17 and P19. Deletion of Stmn1, in turn, accelerated catagen entry associated with premature cessation of proliferation in the hair follicles. These data reveal EGFR suppression of mitotic regulators including Rcc2 and Stathmin 1 as a mechanism for catagen induction in mouse skin.
Collapse
Affiliation(s)
- Kyle J Bichsel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| | - Brianna Hammiller
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| | - Carol S Trempus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Yanhua Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| | - Laura A Hansen
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|