1
|
Chanda MM, Purse BV, Sedda L, Benz D, Prasad M, Reddy YN, Yarabolu KR, Byregowda SM, Carpenter S, Prasad G, Rogers DJ. Bluetongue Risk Map for Vaccination and Surveillance Strategies in India. Pathogens 2024; 13:590. [PMID: 39057817 PMCID: PMC11280473 DOI: 10.3390/pathogens13070590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Bluetongue virus (BTV, Sedoreoviridae: Orbivirus) causes an economically important disease, namely, bluetongue (BT), in domestic and wild ruminants worldwide. BTV is endemic to South India and has occurred with varying severity every year since the virus was first reported in 1963. BT can cause high morbidity and mortality to sheep flocks in this region, resulting in serious economic losses to subsistence farmers, with impacts on food security. The epidemiology of BTV in South India is complex, characterized by an unusually wide diversity of susceptible ruminant hosts, multiple vector species biting midges (Culicoides spp., Diptera: Ceratopogonidae), which have been implicated in the transmission of BTV and numerous co-circulating virus serotypes and strains. BT presence data (1997-2011) for South India were obtained from multiple sources to develop a presence/absence model for the disease. A non-linear discriminant analysis (NLDA) was carried out using temporal Fourier transformed variables that were remotely sensed as potential predictors of BT distribution. Predictive performance was then characterized using a range of different accuracy statistics (sensitivity, specificity, and Kappa). The top ten variables selected to explain BT distribution were primarily thermal metrics (land surface temperature, i.e., LST, and middle infrared, i.e., MIR) and a measure of plant photosynthetic activity (the Normalized Difference Vegetation Index, i.e., NDVI). A model that used pseudo-absence points, with three presence and absence clusters each, outperformed the model that used only the recorded absence points and showed high correspondence with past BTV outbreaks. The resulting risk maps may be suitable for informing disease managers concerned with vaccination, prevention, and control of BT in high-risk areas and for planning future state-wide vector and virus surveillance activities.
Collapse
Affiliation(s)
- Mohammed Mudassar Chanda
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Ramagondanahalli, Yelahanka, Bengaluru 560064, India
| | - Bethan V. Purse
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB, UK;
| | - Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Furness Building, Lancaster LA1 4YG, UK;
| | - David Benz
- Department of Biology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK; (D.B.); (D.J.R.)
| | - Minakshi Prasad
- National Research Centre on Equines, Sirsa Road, Hisar 125001, India;
| | - Yella Narasimha Reddy
- Department of Animal Biotechnology, P.V. Narsimha Rao Telangana University, Hyderabad 500030, India;
| | - Krishnamohan Reddy Yarabolu
- Vaccine Research Centre-Viral Vaccines, Centre for Animal Health Studies Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, India;
| | - S. M. Byregowda
- Institute of Animal Health and Veterinary Biological, Bengaluru 560024, India;
| | - Simon Carpenter
- School of the Biological Sciences, 17 Mill Lane, Cambridge CB2 1RX, UK;
| | - Gaya Prasad
- International Institute of Veterinary Education & Research, Rohtak 124001, India;
| | - David John Rogers
- Department of Biology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK; (D.B.); (D.J.R.)
| |
Collapse
|
2
|
Hudson AR, McGregor BL, Shults P, England M, Silbernagel C, Mayo C, Carpenter M, Sherman TJ, Cohnstaedt LW. Culicoides-borne Orbivirus epidemiology in a changing climate. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1221-1229. [PMID: 37862060 DOI: 10.1093/jme/tjad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 10/21/2023]
Abstract
Orbiviruses are of significant importance to the health of wildlife and domestic animals worldwide; the major orbiviruses transmitted by multiple biting midge (Culicoides) species include bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus. The viruses, insect vectors, and hosts are anticipated to be impacted by global climate change, altering established Orbivirus epidemiology. Changes in global climate have the potential to alter the vector competence and extrinsic incubation period of certain biting midge species, affect local and long-distance dispersal dynamics, lead to range expansion in the geographic distribution of vector species, and increase transmission period duration (earlier spring onset and later fall transmission). If transmission intensity is associated with weather anomalies such as droughts and wind speeds, there may be changes in the number of outbreaks and periods between outbreaks for some regions. Warmer temperatures and changing climates may impact the viral genome by facilitating reassortment and through the emergence of novel viral mutations. As the climate changes, Orbivirus epidemiology will be inextricably altered as has been seen with recent outbreaks of bluetongue, epizootic hemorrhagic disease, and African horse sickness outside of endemic areas, and requires interdisciplinary teams and approaches to assess and mitigate future outbreak threats.
Collapse
Affiliation(s)
- Amy R Hudson
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | - Bethany L McGregor
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | - Phillip Shults
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | | | - Constance Silbernagel
- Center for Epidemiology and Animal Health, USDA APHIS, 2150 Centre Ave, Bldg B, Fort Collins, CO 80526, USA
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University (CSU), 1601 Campus Delivery, Fort Collins, CO 80526, USA
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University (CSU), 1601 Campus Delivery, Fort Collins, CO 80526, USA
| | - Tyler J Sherman
- Diagnostic Medicine Center, Colorado State University (CSU), 2450 Gillette Drive, Fort Collins, CO 80526, USA
| | - Lee W Cohnstaedt
- The National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), 1980 Denison Ave., Manhattan, KS 66505, USA
| |
Collapse
|
3
|
Gomontean B, Vaisusuk K, Chatan W, Wongpakam K, Sankul P, Lachanthuek L, Mintara R, Thanee I, Pramual P. Diversity, Abundance and Host Blood Meal Analysis of Culicoides Latreille (Diptera: Ceratopogonidae) from Cattle Pens in Different Land Use Types from Thailand. INSECTS 2023; 14:574. [PMID: 37504581 PMCID: PMC10380999 DOI: 10.3390/insects14070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Biting midges of the genus Culicoides Latreille are significant pests and vectors that transmit pathogens to humans and other animals. Cattle are among the important livestock that can potentially be severely affected by Culicoides. In this study, we examined the species diversity, abundance, and host blood meal identification of biting midges in cattle pens located in three different land use types: villages, agricultural areas, and the forest edge. A total of 12,916 biting midges were collected, and most of these were from cattle pens located in villages (34%) and agricultural land (52%). Morphological identification revealed 29 Culicoides species. The most common species were C. oxystoma, C. mahasarakhamense, C. peregrinus, and C. shortti; taken together, these species represented >80% of all specimens collected. Despite midges being less numerous (14% of the total collection), cattle pens located near the forest showed greater diversity (23) than those from villages and agricultural areas. More diverse immature habitats and host blood sources from wildlife in nearby forests possibly explain the greater diversity in the cattle pens near the forest edge. Host blood meal analysis revealed that most (65%) biting midges had fed on buffalo despite the fact that this animal was much less numerous than cows or chickens. Relatively larger size and black-colored skin could be factors that make buffalo more attractive to biting midges than other host species. In this study, we also provided 67 DNA barcoding sequences of 13 species, three of which (C. flaviscutatus, C. geminus, and C. suzukii) were first reported from Thai specimens. DNA barcode analysis indicated cryptic diversity within C. hegneri and C. flavescens in Thailand, and thus, further investigation is required to resolve their species status.
Collapse
Affiliation(s)
- Bhuvadol Gomontean
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Kotchaphon Vaisusuk
- Department of Veterinary Technology and Veterinary Nursing, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand
| | - Wasupon Chatan
- Department of Veterinary Clinic, Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Komgrit Wongpakam
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Papasara Sankul
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Laksika Lachanthuek
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Ronnalit Mintara
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Isara Thanee
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Pairot Pramual
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
4
|
Barceló C, Searle KR, Estrada R, Lucientes J, Miranda MÁ, Purse BV. The use of path analysis to determine effects of environmental factors on the adult seasonality of Culicoides (Diptera: Ceratopogonidae) vector species in Spain. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:402-411. [PMID: 36908249 DOI: 10.1017/s0007485323000068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are the main vectors of livestock diseases such as bluetongue (BT) which mainly affect sheep and cattle. In Spain, bluetongue virus (BTV) is transmitted by several Culicoides taxa, including Culicoides imicola, Obsoletus complex, Culicoides newsteadi and Culicoides pulicaris that vary in seasonality and distribution, affecting the distribution and dynamics of BT outbreaks. Path analysis is useful for separating direct and indirect, biotic and abiotic determinants of species' population performance and is ideal for understanding the sensitivity of adult Culicoides dynamics to multiple environmental drivers. Start, end of season and length of overwintering of adult Culicoides were analysed across 329 sites in Spain sampled from 2005 to 2010 during the National Entomosurveillance Program for BTV with path analysis, to determine the direct and indirect effects of land use, climate and host factor variables. Culicoides taxa had species-specific responses to environmental variables. While the seasonality of adult C. imicola was strongly affected by topography, temperature, cover of agro-forestry and sclerophyllous vegetation, rainfall, livestock density, photoperiod in autumn and the abundance of Culicoides females, Obsoletus complex species seasonality was affected by land-use variables such as cover of natural grassland and broad-leaved forest. Culicoides female abundance was the most explanatory variable for the seasonality of C. newsteadi, while C. pulicaris showed that temperature during winter and the photoperiod in November had a strong effect on the start of the season and the length of overwinter period of this species. These results indicate that the seasonal vector-free period (SVFP) in Spain will vary between competent vector taxa and geographic locations, dependent on the different responses of each taxa to environmental conditions.
Collapse
Affiliation(s)
- Carlos Barceló
- Applied Zoology and Animal Conservation Research Group, Department of Biology, University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Kate R Searle
- UK Centre for Ecology and Hydrology, Bush Estate, EH26 0QB Edinburgh, UK
| | - Rosa Estrada
- Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Javier Lucientes
- Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Miguel Á Miranda
- Applied Zoology and Animal Conservation Research Group, Department of Biology, University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Bethan V Purse
- UK Centre for Ecology and Hydrology, Oxfordshire OX10 8BB, UK
| |
Collapse
|
5
|
Fetene E, Teka G, Dejene H, Mandefro D, Teshome T, Temesgen D, Negussie H, Mulatu T, Jaleta MB, Leta S. Modeling the spatial distribution of Culicoides species (Diptera: Ceratopogonidae) as vectors of animal diseases in Ethiopia. Sci Rep 2022; 12:12904. [PMID: 35902616 PMCID: PMC9334590 DOI: 10.1038/s41598-022-16911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are the major vectors of bluetongue, Schmallenberg, and African horse sickness viruses. This study was conducted to survey Culicoides species in different parts of Ethiopia and to develop habitat suitability for the major Culicoides species in Ethiopia. Culicoides traps were set in different parts of the country from December 2018 to April 2021 using UV light Onderstepoort traps and the collected Culicoides were sorted to species level. To develop the species distribution model for the two predominant Culicoides species, namely Culicoides imicola and C. kingi, an ensemble modeling technique was used with the Biomod2 package of R software. KAPPA True skill statistics (TSS) and ROC curve were used to evaluate the accuracy of species distribution models. In the ensemble modeling, models which score TSS values greater than 0.8 were considered. Negative binomialregression models were used to evaluate the relationship between C. imicola and C. kingi catch and various environmental and climatic factors. During the study period, a total of 9148 Culicoides were collected from 66 trapping sites. Of the total 9148, 8576 of them belongs to seven species and the remaining 572 Culicoides were unidentified. The predominant species was C. imicola (52.8%), followed by C. kingi (23.6%). The abundance of these two species was highly influenced by the agro-ecological zone of the capture sites and the proximity of the capture sites to livestock farms. Climatic variables such as mean annual minimum and maximum temperature and mean annual rainfall were found to influence the catch of C. imicola at the different study sites. The ensemble model performed very well for both species with KAPPA (0.9), TSS (0.98), and ROC (0.999) for C. imicola and KAPPA (0.889), TSS (0.999), and ROC (0.999) for C. kingi. Culicoides imicola has a larger suitability range compared to C. kingi. The Great Rift Valley in Ethiopia, the southern and eastern parts of the country, and the areas along the Blue Nile and Lake Tana basins in northern Ethiopia were particularly suitable for C. imicola. High suitability for C. kingi was found in central Ethiopia and the Southern Nations, Nationalities and Peoples Region (SNNPR). The habitat suitability model developed here could help researchers better understand where the above vector-borne diseases are likely to occur and target surveillance to high-risk areas.
Collapse
Affiliation(s)
- Eyerusalem Fetene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Getachew Teka
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Hana Dejene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.,Faculty of Agriculture and Veterinary Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Deresegn Mandefro
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Tsedale Teshome
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Dawit Temesgen
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Haileleul Negussie
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Tesfaye Mulatu
- National Animal Health Diagnostic and Investigation Centre (NAHDIC), P. O. Box 4, Sebeta, Ethiopia
| | - Megarsa Bedasa Jaleta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.
| |
Collapse
|
6
|
Grimaud Y, Tran A, Benkimoun S, Boucher F, Esnault O, Cêtre-Sossah C, Cardinale E, Garros C, Guis H. Spatio-temporal modelling of Culicoides Latreille (Diptera: Ceratopogonidae) populations on Reunion Island (Indian Ocean). Parasit Vectors 2021; 14:288. [PMID: 34044880 PMCID: PMC8161615 DOI: 10.1186/s13071-021-04780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Reunion Island regularly faces outbreaks of bluetongue and epizootic hemorrhagic diseases, two insect-borne orbiviral diseases of ruminants. Hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) are the vectors of bluetongue (BTV) and epizootic hemorrhagic disease (EHDV) viruses. In a previous study, statistical models based on environmental and meteorological data were developed for the five Culicoides species present in the island to provide a better understanding of their ecology and predict their presence and abundance. The purpose of this study was to couple these statistical models with a Geographic Information System (GIS) to produce dynamic maps of the distribution of Culicoides throughout the island. METHODS Based on meteorological data from ground weather stations and satellite-derived environmental data, the abundance of each of the five Culicoides species was estimated for the 2214 husbandry locations on the island for the period ranging from February 2016 to June 2018. A large-scale Culicoides sampling campaign including 100 farms was carried out in March 2018 to validate the model. RESULTS According to the model predictions, no husbandry location was free of Culicoides throughout the study period. The five Culicoides species were present on average in 57.0% of the husbandry locations for C. bolitinos Meiswinkel, 40.7% for C. enderleini Cornet & Brunhes, 26.5% for C. grahamii Austen, 87.1% for C. imicola Kieffer and 91.8% for C. kibatiensis Goetghebuer. The models also showed high seasonal variations in their distribution. During the validation process, predictions were acceptable for C. bolitinos, C. enderleini and C. kibatiensis, with normalized root mean square errors (NRMSE) of 15.4%, 13.6% and 16.5%, respectively. The NRMSE was 27.4% for C. grahamii. For C. imicola, the NRMSE was acceptable (11.9%) considering all husbandry locations except in two specific areas, the Cirque de Salazie-an inner mountainous part of the island-and the sea edge, where the model overestimated its abundance. CONCLUSIONS Our model provides, for the first time to our knowledge, an operational tool to better understand and predict the distribution of Culicoides in Reunion Island. As it predicts a wide spatial distribution of the five Culicoides species throughout the year and taking into consideration their vector competence, our results suggest that BTV and EHDV can circulate continuously on the island. As further actions, our model could be coupled with an epidemiological model of BTV and EHDV transmission to improve risk assessment of Culicoides-borne diseases on the island.
Collapse
Affiliation(s)
- Yannick Grimaud
- GDS Réunion, 1 rue du Père Hauck, 97418 La Plaine des Cafres, La Réunion, France
- University of Reunion Island, 15 avenue René Cassin, Sainte-Clotilde, 97715 La Réunion, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, 97490 La Réunion, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | - Annelise Tran
- CIRAD, UMR ASTRE, Sainte-Clotilde, 97490 La Réunion, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR TETIS, Sainte-Clotilde, 97490 La Réunion, France
- TETIS, University of Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
| | - Samuel Benkimoun
- CIRAD, UMR ASTRE, Sainte-Clotilde, 97490 La Réunion, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR TETIS, Sainte-Clotilde, 97490 La Réunion, France
- TETIS, University of Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
| | - Floriane Boucher
- CIRAD, UMR ASTRE, Sainte-Clotilde, 97490 La Réunion, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | - Olivier Esnault
- GDS Réunion, 1 rue du Père Hauck, 97418 La Plaine des Cafres, La Réunion, France
| | - Catherine Cêtre-Sossah
- CIRAD, UMR ASTRE, Sainte-Clotilde, 97490 La Réunion, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | - Eric Cardinale
- CIRAD, UMR ASTRE, Sainte-Clotilde, 97490 La Réunion, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | - Claire Garros
- CIRAD, UMR ASTRE, Sainte-Clotilde, 97490 La Réunion, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | - Hélène Guis
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, 101 Antananarivo, Madagascar
- Institut Pasteur of Madagascar, Epidemiology and Clinical Research Unit, Antananarivo, Madagascar
- FOFIFA DRZVP, Antananarivo, Madagascar
| |
Collapse
|
7
|
Barceló C, Purse BV, Estrada R, Lucientes J, Miranda MÁ, Searle KR. Environmental Drivers of Adult Seasonality and Abundance of Biting Midges Culicoides (Diptera: Ceratopogonidae), Bluetongue Vector Species in Spain. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:350-364. [PMID: 32885822 DOI: 10.1093/jme/tjaa160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Bluetongue is a viral disease affecting wild and domestic ruminants transmitted by several species of biting midges Culicoides Latreille. The phenology of these insects were analyzed in relation to potential environmental drivers. Data from 329 sites in Spain were analyzed using Bayesian Generalized Linear Mixed Model (GLMM) approaches. The effects of environmental factors on adult female seasonality were contrasted. Obsoletus complex species (Diptera: Ceratopogonidae) were the most prevalent across sites, followed by Culicoides newsteadi Austen (Diptera: Ceratopogonidae). Activity of female Obsoletus complex species was longest in sites at low elevation, with warmer spring average temperatures and precipitation, as well as in sites with high abundance of cattle. The length of the Culicoides imicola Kieffer (Diptera: Ceratopogonidae) female adult season was also longest in sites at low elevation with higher coverage of broad-leaved vegetation. Long adult seasons of C. newsteadi were found in sites with warmer autumns and higher precipitation, high abundance of sheep. Culicoides pulicaris (Linnaeus) (Diptera: Ceratopogonidae) had longer adult periods in sites with a greater number of accumulated degree days over 10°C during winter. These results demonstrate the eco-climatic and seasonal differences among these four taxa in Spain, which may contribute to determining sites with suitable environmental circumstances for each particular species to inform assessments of the risk of Bluetongue virus outbreaks in this region.
Collapse
Affiliation(s)
- Carlos Barceló
- Applied Zoology and Animal Conservation Research Group, Department of Biology, University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, Palma de Mallorca, Spain
| | - Bethan V Purse
- Centre for Ecology and Hydrology, Oxfordshire, United Kingdom
| | - Rosa Estrada
- Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Javier Lucientes
- Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Miguel Á Miranda
- Applied Zoology and Animal Conservation Research Group, Department of Biology, University of the Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, Palma de Mallorca, Spain
| | - Kate R Searle
- Centre for Ecology and Hydrology, Bush Estate, Edinburgh, Scotland
| |
Collapse
|
8
|
Karthikeyan R, Rupner RN, Koti SR, Jaganathasamy N, Malik YS, Sinha DK, Singh BR, Vinodh Kumar OR. Spatio-temporal and time series analysis of bluetongue outbreaks with environmental factors extracted from Google Earth Engine (GEE) in Andhra Pradesh, India. Transbound Emerg Dis 2021; 68:3631-3642. [PMID: 33393214 DOI: 10.1111/tbed.13972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023]
Abstract
This study describes the spatial and temporal patterns of bluetongue (BT) outbreaks with environmental factors in undivided Andhra Pradesh, India. Descriptive analysis of the reported BT outbreaks (n = 2,697) in the study period (2000-2017) revealed a higher frequency of outbreaks during monsoon and post-monsoon months. Correlation analysis of Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), rainfall and relative humidity (RH) displayed a significant positive correlation with BT outbreaks (p < .05). Retrospective unadjusted space-time, adjusted temporal and spatial analysis detected two, five and two statistically significant (p < .05) clusters, respectively. Time series distribution lag analysis examined the temporal patterns of BT outbreaks with environmental, biophysical factors and estimated that a decrease in 1 unit of rainfall (mm) was associated with 0.2% increase in the outbreak at lag 12 months. Similarly, a 1°C increase in land surface temperature (LST) was associated with 6.54% increase in the outbreaks at lag 12 months. However, an increase in 1 unit of wind speed (m/s) was associated with a 16% decrease in the outbreak at lag 10 months. The predictive model indicated that the peak of BT outbreaks were from October to December, the post-monsoon season in Andhra Pradesh region. The findings suggest that environmental factors influence BT outbreaks, and due to changes in climatic conditions, we may notice higher numbers of BT outbreaks in the coming years. The knowledge of spatial and temporal clustering of BT outbreaks may assist in adopting proper measures to prevent and control the BT spread.
Collapse
Affiliation(s)
| | - Ramkumar N Rupner
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Shiva Reddy Koti
- Department of Geoinformatics, Indian Institute of Remote Sensing, Dehradun, India
| | | | - Yashpal S Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Dharmendra Kumar Sinha
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Bhoj R Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | |
Collapse
|
9
|
Tracking Community Timing: Pattern and Determinants of Seasonality in Culicoides (Diptera: Ceratopogonidae) in Northern Florida. Viruses 2020; 12:v12090931. [PMID: 32854272 PMCID: PMC7552033 DOI: 10.3390/v12090931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Community dynamics are embedded in hierarchical spatial–temporal scales that connect environmental drivers with species assembly processes. Culicoides species are hematophagous arthropod vectors of orbiviruses that impact wild and domestic ruminants. A better sense of Culicoides dynamics over time is important because sympatric species can lengthen the seasonality of virus transmission. We tested a putative departure from the four seasons calendar in the phenology of Culicoides and the vector subassemblage in the Florida panhandle. Two years of weekly abundance data, temporal scales, persistence and environmental thresholds were analyzed using a tripartite Culicoides β-diversity based modeling approach. Culicoides phenology followed a two-season regime and was explained by stream flow and temperature, but not rainfall. Species richness fit a nested pattern where the species recruitment was maximized during spring months. Midges were active year-round, and two suspected vectors species, Culicoides venustus and Culicoides stellifer, were able to sustain and connect the seasonal modules. Persistence suggests that Orbivirus maintenance does not rely on overwintering and that viruses are maintained year-round, with the seasonal dynamics resembling subtropical Culicoides communities with temporal-overlapping between multivoltine species. Viewing Culicoides-borne orbiviruses as a time-sensitive community-based issue, our results help to recommend when management operations should be delivered.
Collapse
|
10
|
Grimaud Y, Guis H, Chiroleu F, Boucher F, Tran A, Rakotoarivony I, Duhayon M, Cêtre-Sossah C, Esnault O, Cardinale E, Garros C. Modelling temporal dynamics of Culicoides Latreille (Diptera: Ceratopogonidae) populations on Reunion Island (Indian Ocean), vectors of viruses of veterinary importance. Parasit Vectors 2019; 12:562. [PMID: 31775850 PMCID: PMC6880491 DOI: 10.1186/s13071-019-3812-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Reunion Island regularly faces outbreaks of epizootic haemorrhagic disease (EHD) and bluetongue (BT), two viral diseases transmitted by haematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) to ruminants. To date, five species of Culicoides are recorded in Reunion Island in which the first two are proven vector species: Culicoides bolitinos, C. imicola, C. enderleini, C. grahamii and C. kibatiensis. Meteorological and environmental factors can severely constrain Culicoides populations and activities and thereby affect dispersion and intensity of transmission of Culicoides-borne viruses. The aim of this study was to describe and predict the temporal dynamics of all Culicoides species present in Reunion Island. METHODS Between 2016 and 2018, 55 biweekly Culicoides catches using Onderstepoort Veterinary Institute traps were set up in 11 sites. A hurdle model (i.e. a presence/absence model combined with an abundance model) was developed for each species in order to determine meteorological and environmental drivers of presence and abundance of Culicoides. RESULTS Abundance displayed very strong heterogeneity between sites. Average Culicoides catch per site per night ranged from 4 to 45,875 individuals. Culicoides imicola was dominant at low altitude and C. kibatiensis at high altitude. A marked seasonality was observed for the three other species with annual variations. Twelve groups of variables were tested. It was found that presence and/or abundance of all five Culicoides species were driven by common parameters: rain, temperature, vegetation index, forested environment and host density. Other parameters such as wind speed and farm building opening size governed abundance level of some species. In addition, Culicoides populations were also affected by meteorological parameters and/or vegetation index with different lags of time, suggesting an impact on immature stages. Taking into account all the parameters for the final hurdle model, the error rate by Normalized Root mean Square Error ranged from 4.4 to 8.5%. CONCLUSIONS To our knowledge, this is the first study to model Culicoides population dynamics in Reunion Island. In the absence of vaccination and vector control strategies, determining periods of high abundance of Culicoides is a crucial first step towards identifying periods at high risk of transmission for the two economically important viruses they transmit.
Collapse
Affiliation(s)
- Yannick Grimaud
- GDS Réunion, 1 rue du Père Hauck, 97418 La Plaine des Cafres, La Réunion France
- University of Reunion Island, 15 avenue René Cassin, 97715 Sainte-Clotilde, La Réunion France
- CIRAD, UMR ASTRE, 97490 Sainte-Clotilde, La Réunion France
| | - Hélène Guis
- CIRAD, UMR ASTRE, 101 Antananarivo, Madagascar
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France
- Epidemiology and clinical research unit, Institut Pasteur of Madagascar, Antananarivo, Madagascar
- FOFIFA DRZVP, Antananarivo, Madagascar
| | | | - Floriane Boucher
- CIRAD, UMR ASTRE, 97490 Sainte-Clotilde, La Réunion France
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France
| | - Annelise Tran
- CIRAD, UMR ASTRE, 97490 Sainte-Clotilde, La Réunion France
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France
- CIRAD, UMR TETIS, 97490 Sainte-Clotilde, La Réunion France
- TETIS, University of Montpellier, Montpellier, France
| | - Ignace Rakotoarivony
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France
- CIRAD, UMR ASTRE, 34398 Montpellier, France
| | - Maxime Duhayon
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France
- CIRAD, UMR ASTRE, 34398 Montpellier, France
| | - Catherine Cêtre-Sossah
- CIRAD, UMR ASTRE, 97490 Sainte-Clotilde, La Réunion France
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France
| | - Olivier Esnault
- GDS Réunion, 1 rue du Père Hauck, 97418 La Plaine des Cafres, La Réunion France
| | - Eric Cardinale
- CIRAD, UMR ASTRE, 97490 Sainte-Clotilde, La Réunion France
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France
| | - Claire Garros
- CIRAD, UMR ASTRE, 97490 Sainte-Clotilde, La Réunion France
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France
| |
Collapse
|
11
|
Leta S, Fetene E, Mulatu T, Amenu K, Jaleta MB, Beyene TJ, Negussie H, Revie CW. Modeling the global distribution of Culicoides imicola: an Ensemble approach. Sci Rep 2019; 9:14187. [PMID: 31578399 PMCID: PMC6775326 DOI: 10.1038/s41598-019-50765-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 11/09/2022] Open
Abstract
Culicoides imicola is a midge species serving as vector for a number of viral diseases of livestock, including Bluetongue, and African Horse Sickness. C. imicola is also known to transmit Schmallenberg virus experimentally. Environmental and demographic factors may impose rapid changes on the global distribution of C. imicola and aid introduction into new areas. The aim of this study is to predict the global distribution of C. imicola using an ensemble modeling approach by combining climatic, livestock distribution and land cover covariates, together with a comprehensive global dataset of geo-positioned occurrence points for C. imicola. Thirty individual models were generated by ‘biomod2’, with 21 models scoring a true skill statistic (TSS) >0.8. These 21 models incorporated weighted runs from eight of ten algorithms and were used to create a final ensemble model. The ensemble model performed very well (TSS = 0.898 and ROC = 0.991) and indicated high environmental suitability for C. imicola in the tropics and subtropics. The habitat suitability for C. imicola spans from South Africa to southern Europe and from southern USA to southern China. The distribution of C. imicola is mainly constrained by climatic factors. In the ensemble model, mean annual minimum temperature had the highest overall contribution (42.9%), followed by mean annual maximum temperature (21.1%), solar radiation (13.6%), annual precipitation (11%), livestock distribution (6.2%), vapor pressure (3.4%), wind speed (0.8%), and land cover (0.1%). The present study provides the most up-to-date predictive maps of the potential distributions of C. imicola and should be of great value for decision making at global and regional scales.
Collapse
Affiliation(s)
- Samson Leta
- Addis Ababa University, College of Veterinary Medicine and Agriculture, P. O. Box 34, Bishoftu, Ethiopia.
| | - Eyerusalem Fetene
- Addis Ababa University, College of Veterinary Medicine and Agriculture, P. O. Box 34, Bishoftu, Ethiopia
| | - Tesfaye Mulatu
- National Animal Health Diagnostic and Investigation Centre (NAHDIC), P. O. Box 04, Sebeta, Ethiopia
| | - Kebede Amenu
- Addis Ababa University, College of Veterinary Medicine and Agriculture, P. O. Box 34, Bishoftu, Ethiopia
| | - Megarsa Bedasa Jaleta
- Addis Ababa University, College of Veterinary Medicine and Agriculture, P. O. Box 34, Bishoftu, Ethiopia
| | - Tariku Jibat Beyene
- Addis Ababa University, College of Veterinary Medicine and Agriculture, P. O. Box 34, Bishoftu, Ethiopia.,Center for Outcome Research and Epidemiology, Kansas State University, Manhattan, Kansas, USA
| | - Haileleul Negussie
- Addis Ababa University, College of Veterinary Medicine and Agriculture, P. O. Box 34, Bishoftu, Ethiopia
| | - Crawford W Revie
- Department of Computing and Information Sciences, University of Strathclyde, Livingstone Tower (14.01), 26 Richmond Street, Glasgow, G1 1XQ, Scotland, UK
| |
Collapse
|
12
|
Cuéllar AC, Jung Kjær L, Baum A, Stockmarr A, Skovgard H, Nielsen SA, Andersson MG, Lindström A, Chirico J, Lühken R, Steinke S, Kiel E, Gethmann J, Conraths FJ, Larska M, Smreczak M, Orłowska A, Hamnes I, Sviland S, Hopp P, Brugger K, Rubel F, Balenghien T, Garros C, Rakotoarivony I, Allène X, Lhoir J, Chavernac D, Delécolle JC, Mathieu B, Delécolle D, Setier-Rio ML, Venail R, Scheid B, Chueca MÁM, Barceló C, Lucientes J, Estrada R, Mathis A, Tack W, Bødker R. Monthly variation in the probability of presence of adult Culicoides populations in nine European countries and the implications for targeted surveillance. Parasit Vectors 2018; 11:608. [PMID: 30497537 PMCID: PMC6267925 DOI: 10.1186/s13071-018-3182-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/05/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are small hematophagous insects responsible for the transmission of bluetongue virus, Schmallenberg virus and African horse sickness virus to wild and domestic ruminants and equids. Outbreaks of these viruses have caused economic damage within the European Union. The spatio-temporal distribution of biting midges is a key factor in identifying areas with the potential for disease spread. The aim of this study was to identify and map areas of neglectable adult activity for each month in an average year. Average monthly risk maps can be used as a tool when allocating resources for surveillance and control programs within Europe. METHODS We modelled the occurrence of C. imicola and the Obsoletus and Pulicaris ensembles using existing entomological surveillance data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. The monthly probability of each vector species and ensembles being present in Europe based on climatic and environmental input variables was estimated with the machine learning technique Random Forest. Subsequently, the monthly probability was classified into three classes: Absence, Presence and Uncertain status. These three classes are useful for mapping areas of no risk, areas of high-risk targeted for animal movement restrictions, and areas with an uncertain status that need active entomological surveillance to determine whether or not vectors are present. RESULTS The distribution of Culicoides species ensembles were in agreement with their previously reported distribution in Europe. The Random Forest models were very accurate in predicting the probability of presence for C. imicola (mean AUC = 0.95), less accurate for the Obsoletus ensemble (mean AUC = 0.84), while the lowest accuracy was found for the Pulicaris ensemble (mean AUC = 0.71). The most important environmental variables in the models were related to temperature and precipitation for all three groups. CONCLUSIONS The duration periods with low or null adult activity can be derived from the associated monthly distribution maps, and it was also possible to identify and map areas with uncertain predictions. In the absence of ongoing vector surveillance, these maps can be used by veterinary authorities to classify areas as likely vector-free or as likely risk areas from southern Spain to northern Sweden with acceptable precision. The maps can also focus costly entomological surveillance to seasons and areas where the predictions and vector-free status remain uncertain.
Collapse
Affiliation(s)
- Ana Carolina Cuéllar
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Lene Jung Kjær
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Andreas Baum
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Anders Stockmarr
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Lyngby, Denmark
| | - Henrik Skovgard
- Department of Agroecology - Entomology and Plant Pathology, Aarhus University, Aarhus, Denmark
| | - Søren Achim Nielsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | | - Jan Chirico
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Diseases, Hamburg, Germany
| | - Sonja Steinke
- Department of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Ellen Kiel
- Department of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Jörn Gethmann
- Institute of Epidemiology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Franz J. Conraths
- Institute of Epidemiology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Anna Orłowska
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | | | | | - Petter Hopp
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Franz Rubel
- Institute for Veterinary Public Health, Vetmeduni, Vienna, Austria
| | | | | | | | | | | | | | - Jean-Claude Delécolle
- Institute of Parasitology and Tropical Pathology of Strasbourg, EA7292, Université de Strasbourg, Strasbourg, France
| | - Bruno Mathieu
- Institute of Parasitology and Tropical Pathology of Strasbourg, EA7292, Université de Strasbourg, Strasbourg, France
| | - Delphine Delécolle
- Institute of Parasitology and Tropical Pathology of Strasbourg, EA7292, Université de Strasbourg, Strasbourg, France
| | | | - Roger Venail
- EID Méditerranée, Montpellier, France
- Avia-GIS NV, Zoersel, Belgium
| | | | | | - Carlos Barceló
- Laboratory of Zoology, University of the Balearic Islands, Palma, Spain
| | - Javier Lucientes
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Rosa Estrada
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Alexander Mathis
- Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | | | - René Bødker
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Lyngby, Denmark
| |
Collapse
|
13
|
Braverman Y, Chizov-Ginzburg A, Eldor H, Mumcuoglu KY. Overview and features of larval developmental sites of biting midges species associated with livestock in Israel with implications to their control. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2018; 14:204-211. [PMID: 31014731 DOI: 10.1016/j.vprsr.2018.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The larval developmental sites of Culicoides species were assessed from 1155 samples collected during the years 1969-2003. Culicoides circumscriptus was most prolific in mud with medium organic matter with proportional representation of 55.8%. Culicoides imicola breeds mainly in damp mixture of rotten, decomposed animal dung with or without some mud, with proportional representation of 97.2%. Culicoides obsoletus was found mostly in rotten banana stumps, with proportional representation of almost 100%. Culicoides puncticollis was found in mud with a medium amount of organic matter with proportional representation of 35.6%. Culicoides distinctipennis showed 22.2% proportional representation for mud poor in organic matter. Culicoides schultzei gr. was most prolifically in mud rich in organic matter with proportional representation of 6.2%. Culicoides cataneii was most prolifically in mud with a medium amount of organic matter with proportional representation of 1.8%. Maximum duration time to emergence from the larval developmental sites ranged from seven weeks in C. obsoletus to fourteen weeks in C. circumscriptus and nine weeks in C. imicola. All the studied species breed throughout the year. Significant innate differences in the proportions of the sexes were found in the emergence of six species.
Collapse
Affiliation(s)
- Y Braverman
- Kimron Veterinary Institute, Bet Dagan, Israel.
| | | | - H Eldor
- Yoshpe Street 13, Hod Ha'Sharon, Israel
| | - K Y Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Hebrew University - Hadassah Medical School, The Kuvin Center for the Study of Infectious and Tropical Diseases, Jerusalem, Israel
| |
Collapse
|
14
|
Cappai S, Loi F, Coccollone A, Contu M, Capece P, Fiori M, Canu S, Foxi C, Rolesu S. Retrospective analysis of Bluetongue farm risk profile definition, based on biology, farm management practices and climatic data. Prev Vet Med 2018; 155:75-85. [PMID: 29786527 DOI: 10.1016/j.prevetmed.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/16/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Bluetongue (BT) is a vector-borne disease transmitted by species of Culicoides midges (Diptera: Ceratopogonidae). Many studies have contributed to clarifying various aspects of its aetiology, epidemiology and vector dynamic; however, BT remains a disease of epidemiological and economic importance that affects ruminants worldwide. Since 2000, the Sardinia region has been the most affected area of the Mediterranean basin. The region is characterised by wide pastoral areas for sheep and represents the most likely candidate region for the study of Bluetongue virus (BTV) distribution and prevalence in Italy. Furthermore, specific information on the farm level and epidemiological studies needs to be provided to increase the knowledge on the disease's spread and to provide valid mitigation strategies in Sardinia. This study conducted a punctual investigation into the spatial patterns of BTV transmission to define a risk profile for all Sardinian farmsby using a logistic multilevel mixed model that take into account agro-meteorological aspects, as well as farm characteristics and management. Data about animal density (i.e. sheep, goats and cattle), vaccination, previous outbreaks, altitude, land use, rainfall, evapotranspiration, water surface, and farm management practices (i.e. use of repellents, treatment against insect vectors, storage of animals in shelter overnight, cleaning, presence of mud and manure) were collected for 12,277 farms for the years 2011-2015. The logistic multilevel mixed model showed the fundamental role of climatic factors in disease development and the protective role of good management, vaccination, outbreak in the previous year and altitude. Regional BTV risk maps were developed, based on the predictor values of logistic model results, and updated every 10 days. These maps were used to identify, 20 days in advance, the areas at highest risk. The risk farm profile, as defined by the model, would provide specific information about the role of each factor for all Sardinian institutions involved in devising BT prevention and control strategies.
Collapse
Affiliation(s)
- Stefano Cappai
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi" - Centro di Sorveglianza Epidemiologica, Via XX Settembre n°9, 09125, Cagliari, CA, Italy
| | - Federica Loi
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi" - Centro di Sorveglianza Epidemiologica, Via XX Settembre n°9, 09125, Cagliari, CA, Italy.
| | - Annamaria Coccollone
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi" - Centro di Sorveglianza Epidemiologica, Via XX Settembre n°9, 09125, Cagliari, CA, Italy
| | - Marino Contu
- ARA-Sardegna, Associazione Regionale Allevatori della Sardegna, Via Cavalcanti 8, 09128, Cagliari, CA, Italy
| | - Paolo Capece
- ARPAS, Agenzia Regionale per la Protezione dell'Ambiente della Sardegna, Dipartimento Meteoclimatico, V.le Porto Torres 119, 07100, Sassari, SS, Italy
| | - Michele Fiori
- ARPAS, Agenzia Regionale per la Protezione dell'Ambiente della Sardegna, Dipartimento Meteoclimatico, V.le Porto Torres 119, 07100, Sassari, SS, Italy
| | - Simona Canu
- ARPAS, Agenzia Regionale per la Protezione dell'Ambiente della Sardegna, Dipartimento Meteoclimatico, V.le Porto Torres 119, 07100, Sassari, SS, Italy
| | - Cipriano Foxi
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi"- Laboratorio di Entomologia e controllo dei vettori, Via Vienna 2, 07100, Sassari, SS, Italy
| | - Sandro Rolesu
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi" - Centro di Sorveglianza Epidemiologica, Via XX Settembre n°9, 09125, Cagliari, CA, Italy
| |
Collapse
|
15
|
Community analysis of the abundance and diversity of biting midge species (Diptera: Ceratopogonidae) in three European countries at different latitudes. Parasit Vectors 2018; 11:217. [PMID: 29587832 PMCID: PMC5872509 DOI: 10.1186/s13071-018-2792-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The outbreaks of bluetongue and Schmallenberg disease in Europe have increased efforts to understand the ecology of Culicoides biting midges and their role in pathogen transmission. However, most studies have focused on a specific habitat, region, or country. To facilitate wider comparisons, and to obtain a better understanding of the spread of disease through Europe, the present study focused on monitoring biting midge species diversity in three different habitat types and three countries across Europe. METHODS Biting midges were trapped using Onderstepoort Veterinary Institute light traps at a total of 27 locations in Sweden, the Netherlands and Italy, comprising farm, peri-urban and wetland habitats. From July 2014 to June 2015 all locations were sampled monthly, except for during the winter months. Trapped midges were counted and identified morphologically. Indices on species richness, evenness and diversity were calculated. Community compositions were analysed using non-metric multidimensional scaling (NMDS) techniques. RESULTS A total of 50,085 female midges were trapped during 442 collection nights. More than 88% of these belonged to the Obsoletus group. The highest midge diversity was found in Sweden, while species richness was highest in the Netherlands, and most specimens were trapped in Italy. For habitats within countries, diversity of the trapped midges was lowest for farms in all countries. Differences in biting midge species communities were more distinct across the three countries than the three habitat types. CONCLUSIONS A core midge community could be identified, in which the Obsoletus group was the most abundant. Variations in vector communities across countries imply different patterns of disease spread throughout Europe. How specific species and their associated communities affect disease risk is still unclear. Our results emphasize the importance of midge diversity data at community level, how this differs across large geographic range within Europe, and its implications on assessing risks of midge-borne disease outbreaks.
Collapse
|
16
|
Ramilo DW, Nunes T, Madeira S, Boinas F, da Fonseca IP. Geographical distribution of Culicoides (DIPTERA: CERATOPOGONIDAE) in mainland Portugal: Presence/absence modelling of vector and potential vector species. PLoS One 2017; 12:e0180606. [PMID: 28683145 PMCID: PMC5500329 DOI: 10.1371/journal.pone.0180606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
Vector-borne diseases are not only accounted responsible for their burden on human health-care systems, but also known to cause economic constraints to livestock and animal production. Animals are affected directly by the transmitted pathogens and indirectly when animal movement is restricted. Distribution of such diseases depends on climatic and social factors, namely, environmental changes, globalization, trade and unplanned urbanization. Culicoides biting midges are responsible for the transmission of several pathogenic agents with relevant economic impact. Due to a fragmentary knowledge of their ecology, occurrence is difficult to predict consequently, limiting the control of these arthropod vectors. In order to understand the distribution of Culicoides species, in mainland Portugal, data collected during the National Entomologic Surveillance Program for Bluetongue disease (2005-2013), were used for statistical evaluation. Logistic regression analysis was preformed and prediction maps (per season) were obtained for vector and potentially vector species. The variables used at the present study were selected from WorldClim (two climatic variables) and CORINE databases (twenty-two land cover variables). This work points to an opposite distribution of C. imicola and species from the Obsoletus group within mainland Portugal. Such findings are evidenced in autumn, with the former appearing in Central and Southern regions. Although appearing northwards, on summer and autumn, C. newsteadi reveals a similar distribution to C. imicola. The species C. punctatus appears in all Portuguese territory throughout the year. Contrary, C. pulicaris is poorly caught in all areas of mainland Portugal, being paradoxical present near coastal areas and higher altitude regions.
Collapse
Affiliation(s)
- David W. Ramilo
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Telmo Nunes
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Sara Madeira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Fernando Boinas
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
17
|
Rijks J, Cito F, Cunningham A, Rantsios A, Giovannini A. Disease Risk Assessments Involving Companion Animals: an Overview for 15 Selected Pathogens Taking a European Perspective. J Comp Pathol 2016; 155:S75-97. [DOI: 10.1016/j.jcpa.2015.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/24/2015] [Accepted: 08/13/2015] [Indexed: 12/27/2022]
|
18
|
Talavera S, Muñoz-Muñoz F, Durán M, Verdún M, Soler-Membrives A, Oleaga Á, Arenas A, Ruiz-Fons F, Estrada R, Pagès N. Culicoides Species Communities Associated with Wild Ruminant Ecosystems in Spain: Tracking the Way to Determine Potential Bridge Vectors for Arboviruses. PLoS One 2015; 10:e0141667. [PMID: 26510136 PMCID: PMC4624870 DOI: 10.1371/journal.pone.0141667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 10/11/2015] [Indexed: 01/04/2023] Open
Abstract
The genus Culicoides Latreille 1809 is a well-known vector for protozoa, filarial worms and, above all, numerous viruses. The Bluetongue virus (BTV) and the recently emerged Schmallenberg virus (SBV) are responsible for important infectious, non-contagious, insect-borne viral diseases found in domestic ruminants and transmitted by Culicoides spp. Both of these diseases have been detected in wild ruminants, but their role as reservoirs during the vector-free season still remains relatively unknown. In fact, we tend to ignore the possibility of wild ruminants acting as a source of disease (BTV, SBV) and permitting its reintroduction to domestic ruminants during the following vector season. In this context, a knowledge of the composition of the Culicoides species communities that inhabit areas where there are wild ruminants is of major importance as the presence of a vector species is a prerequisite for disease transmission. In this study, samplings were conducted in areas inhabited by different wild ruminant species; samples were taken in both 2009 and 2010, on a monthly basis, during the peak season for midge activity (in summer and autumn). A total of 102,693 specimens of 40 different species of the genus Culicoides were trapped; these included major BTV and SBV vector species. The most abundant vector species were C. imicola and species of the Obsoletus group, which represented 15% and 11% of total numbers of specimens, respectively. At the local scale, the presence of major BTV and SBV vector species in areas with wild ruminants coincided with that of the nearest sentinel farms included in the Spanish Bluetongue Entomological Surveillance Programme, although their relative abundance varied. The data suggest that such species do not exhibit strong host specificity towards either domestic or wild ruminants and that they could consequently play a prominent role as bridge vectors for different pathogens between both types of ruminants. This finding would support the hypothesis that wild ruminants could act as reservoirs for such pathogens, and subsequently be involved in the reintroduction of disease to livestock on neighbouring farms.
Collapse
Affiliation(s)
- Sandra Talavera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- * E-mail:
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Mauricio Durán
- Health and Biotechnology (SaBio) group, Instituto de Investigación en Recursos Cinegéticos (IREC), Ciudad Real, Castilla la Mancha, Spain
| | - Marta Verdún
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Anna Soler-Membrives
- Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Álvaro Oleaga
- Health and Biotechnology (SaBio) group, Instituto de Investigación en Recursos Cinegéticos (IREC), Ciudad Real, Castilla la Mancha, Spain
- SERPA, Sociedad de Servicios del Principado de Asturias S.A., Gijón, Asturias, Spain
| | - Antonio Arenas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba (UCO), Córdoba, Andalucía, Spain
| | - Francisco Ruiz-Fons
- Health and Biotechnology (SaBio) group, Instituto de Investigación en Recursos Cinegéticos (IREC), Ciudad Real, Castilla la Mancha, Spain
| | - Rosa Estrada
- Department of Animal Pathology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Nitu Pagès
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
19
|
Zuliani A, Massolo A, Lysyk T, Johnson G, Marshall S, Berger K, Cork SC. Modelling the Northward Expansion of Culicoides sonorensis (Diptera: Ceratopogonidae) under Future Climate Scenarios. PLoS One 2015; 10:e0130294. [PMID: 26301509 PMCID: PMC4547716 DOI: 10.1371/journal.pone.0130294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/19/2015] [Indexed: 12/03/2022] Open
Abstract
Climate change is affecting the distribution of pathogens and their arthropod vectors worldwide, particularly at northern latitudes. The distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) plays a key role in affecting the emergence and spread of significant vector borne diseases such as Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) at the border between USA and Canada. We used 50 presence points for C. sonorensis collected in Montana (USA) and south-central Alberta (Canada) between 2002 and 2012, together with monthly climatic and environmental predictors to develop a series of alternative maximum entropy distribution models. The best distribution model under current climatic conditions was selected through the Akaike Information Criterion, and included four predictors: Vapour Pressure Deficit of July, standard deviation of Elevation, Land Cover and mean Precipitation of May. This model was then projected into three climate change scenarios adopted by the IPCC in its 5th assessment report and defined as Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5. Climate change data for each predictor and each RCP were calculated for two time points pooling decadal data around each one of them: 2030 (2021–2040) and 2050 (2041–2060). Our projections showed that the areas predicted to be at moderate-high probability of C. sonorensis occurrence would increase from the baseline scenario to 2030 and from 2030 to 2050 for each RCP. The projection also indicated that the current northern limit of C. sonorensis distribution is expected to move northwards to above 53°N. This may indicate an increased risk of Culicoides-borne diseases occurrence over the next decades, particularly at the USA-Canada border, as a result of changes which favor C. sonorensis presence when associated to other factors (i.e. host and pathogen factors). Recent observations of EHD outbreaks in northern Montana and southern Alberta supported our projections and considerations. The results of this study can inform the development of cost effective surveillance programs, targeting areas within the predicted limits of C. sonorensis geographical occurrence under current and future climatic conditions.
Collapse
Affiliation(s)
- Anna Zuliani
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alessandro Massolo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Timothy Lysyk
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Gregory Johnson
- Department of Animal & Range Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Shawn Marshall
- Department of Geography, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn Berger
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Susan Catherine Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Ribeiro R, Wilson AJ, Nunes T, Ramilo DW, Amador R, Madeira S, Baptista FM, Harrup LE, Lucientes J, Boinas F. Spatial and temporal distribution of Culicoides species in mainland Portugal (2005-2010). Results of the Portuguese Entomological Surveillance Programme. PLoS One 2015; 10:e0124019. [PMID: 25906151 PMCID: PMC4407895 DOI: 10.1371/journal.pone.0124019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/09/2015] [Indexed: 11/18/2022] Open
Abstract
Bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes an infectious, non-contagious disease of ruminants. It has been rapidly emerging in southern Europe since 1998. In mainland Portugal, strains of BTV belonging to three serotypes have been detected: BTV-10 (1956-1960), BTV-4 (2004-2006 and 2013) and BTV-1 (2007-2012). This paper describes the design, implementation and results of the Entomological Surveillance Programme covering mainland Portugal, between 2005 and 2010, including 5,650 caches. Culicoides imicola Kieffer was mostly found in central and southern regions of Portugal, although it was sporadically detected in northern latitudes. Its peak activity occurred in the autumn and it was active during the winter months in limited areas of the country. Obsoletus group was present at the highest densities in the north although they were found throughout the country in substantial numbers. Culicoides activity occurred all year round but peaked in the spring. A generalized linear mixed model was developed for the analysis of the environmental factors associated with activity of the species of Culicoides suspected vectors of BTV in the country. For C. imicola Kieffer, the most important variables were month, diurnal temperature range (DTR), the number of frost days (FRS) and median monthly temperature (TMP). For the Obsoletus group, the most important factors were month, diurnal temperature range (DTR), and linear and quadratic terms for median monthly temperature (TMP). The results reported can improve our understanding of climatic factors in Culicoides activity influencing their distribution and seasonal pattern.
Collapse
Affiliation(s)
- Rita Ribeiro
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Anthony J. Wilson
- Integrative Entomology Group, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Telmo Nunes
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - David W. Ramilo
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Rita Amador
- Direção-Geral de Alimentação e Veterinária, Food and Veterinary Central Services, Campo Grande, Lisbon, Portugal
| | - Sara Madeira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Filipa M. Baptista
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Lara E. Harrup
- Entomology Group, Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Javier Lucientes
- Parasitology and Parasitic Diseases, Department of Animal Pathology (Animal Health), Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Fernando Boinas
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
21
|
Stevens KB, Pfeiffer DU. Sources of spatial animal and human health data: Casting the net wide to deal more effectively with increasingly complex disease problems. Spat Spatiotemporal Epidemiol 2015; 13:15-29. [PMID: 26046634 PMCID: PMC7102771 DOI: 10.1016/j.sste.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/28/2015] [Indexed: 12/29/2022]
Abstract
During the last 30years it has become commonplace for epidemiological studies to collect locational attributes of disease data. Although this advancement was driven largely by the introduction of handheld global positioning systems (GPS), and more recently, smartphones and tablets with built-in GPS, the collection of georeferenced disease data has moved beyond the use of handheld GPS devices and there now exist numerous sources of crowdsourced georeferenced disease data such as that available from georeferencing of Google search queries or Twitter messages. In addition, cartography has moved beyond the realm of professionals to crowdsourced mapping projects that play a crucial role in disease control and surveillance of outbreaks such as the 2014 West Africa Ebola epidemic. This paper provides a comprehensive review of a range of innovative sources of spatial animal and human health data including data warehouses, mHealth, Google Earth, volunteered geographic information and mining of internet-based big data sources such as Google and Twitter. We discuss the advantages, limitations and applications of each, and highlight studies where they have been used effectively.
Collapse
Affiliation(s)
- Kim B Stevens
- Veterinary Epidemiology, Economics and Public Health Group, Dept. of Production & Population Health, Royal Veterinary College, London, United Kingdom.
| | - Dirk U Pfeiffer
- Veterinary Epidemiology, Economics and Public Health Group, Dept. of Production & Population Health, Royal Veterinary College, London, United Kingdom.
| |
Collapse
|
22
|
Desvars A, Grimaud Y, Guis H, Esnault O, Allène X, Gardès L, Balenghien T, Baldet T, Delécolle J, Garros C. First overview of the Culicoides Latreille (Diptera: Ceratopogonidae) livestock associated species of Reunion Island, Indian Ocean. Acta Trop 2015; 142:5-19. [PMID: 25447828 DOI: 10.1016/j.actatropica.2014.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/20/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
Abstract
This study establishes the first faunistic inventory of livestock associated Culicoides (Diptera: Ceratopogonidae) species of Reunion Island (Indian Ocean), where bluetongue and epizootic hemorrhagic disease are regularly recorded. Single night-catches were performed at 41 sites using light suction traps at altitudes ranging from 0 to 1525 m, from March to April 2005. Five species were recorded: Culicoides imicola, Culicoides bolitinos, Culicoides enderleini, Culicoides grahamii, and Culicoides kibatiensis, among which at least the first three species are known to be involved in virus transmission to ruminants and equids. This is the first record of C. bolitinos, C. kibatiensis, and C. enderleini on the island. C. imicola was the most abundant species along the sea coast. C. bolitinos was more abundant inland and on two sites on the east coast. C. kibatiensis and C. grahamii were less abundant than the other three species and limited to two foci. Spatial distribution analysis of the different species showed that C. bolitinos, C. enderleini and C. imicola were collected at low altitudes, while the other two species were found at higher altitude. A morphological identification key for adult females and males is given, as well as cytochrome oxydase subunit I sequences. Phylogenetic reconstructions showed a clear divergence between C. bolitinos from Reunion Island and mainland Africa. This monograph will help to identify the Culicoides species in the poorly known entomological fauna of the south-western Indian Ocean region.
Collapse
|
23
|
Urbanek A, Piotrowicz M, Szadziewski R, Gi Łka W. Sensilla coeloconica ringed by microtrichia in host-seeking biting midges. MEDICAL AND VETERINARY ENTOMOLOGY 2014; 28:355-363. [PMID: 24720521 DOI: 10.1111/mve.12057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/17/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
The distribution and morphology of antennal sensilla coeloconica in parasitic and predaceous biting midges were studied in females of Forcipomyia (feeding on the blood of frogs), Atrichopogon (feeding on haemolymph), Austroconops, Culicoides (feeding on the blood of birds and mammals) and Brachypogon (feeding on haemolymph and dissolved tissues of insects) (all: Diptera: Ceratopogonidae). A Lower Cretaceous female of Archiculicoides (Diptera: Ceratopogonidae) from Lebanese amber, which fed on the blood of unknown vertebrates, was also examined. In sensilla coeloconica ringed by microtrichia, the peg is grooved longitudinally and protrudes distinctly from the pit. We suggest that the microtrichia encircling the protruding peg form a structure resembling a picket fence in order to maintain a higher level of humidity, which facilitates the capture and transport of odour molecules through the channels in the peg wall. Sensilla coeloconica ringed by microtrichia function as very effective chemoreceptors in host- and prey-seeking activity. During the evolution of Ceratopogonidae, sensilla coeloconica with a fence of microtrichia have evolved twice in groups feeding on the blood of vertebrates (i.e. in the basal lineage: Lower Cretaceous or earlier) and in the subgenus Lasiohelea of Forcipomyia (Palaeogene). Sensilla coeloconica ringed by microtrichia are described for the first time in the relict genus Austroconops.
Collapse
Affiliation(s)
- A Urbanek
- Department of Invertebrate Zoology and Parasitology, University of Gdansk, Gdansk, Poland
| | | | | | | |
Collapse
|
24
|
Environmental drivers of Culicoides phenology: how important is species-specific variation when determining disease policy? PLoS One 2014; 9:e111876. [PMID: 25386940 PMCID: PMC4227682 DOI: 10.1371/journal.pone.0111876] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
Since 2006, arboviruses transmitted by Culicoides biting midges (Diptera: Ceratopogonidae) have caused significant disruption to ruminant production in northern Europe. The most serious incursions involved strains of bluetongue virus (BTV), which cause bluetongue (BT) disease. To control spread of BTV, movement of susceptible livestock is restricted with economic and animal welfare impacts. The timing of BTV transmission in temperate regions is partly determined by the seasonal presence of adult Culicoides females. Legislative measures therefore allow for the relaxation of ruminant movement restrictions during winter, when nightly light-suction trap catches of Culicoides fall below a threshold (the ‘seasonally vector free period’: SVFP). We analysed five years of time-series surveillance data from light-suction trapping in the UK to investigate whether significant inter-specific and yearly variation in adult phenology exists, and whether the SVFP is predictable from environmental factors. Because female vector Culicoides are not easily morphologically separated, inter-specific comparisons in phenology were drawn from male populations. We demonstrate significant inter-specific differences in Culicoides adult phenology with the season of Culicoides scoticus approximately eight weeks shorter than Culicoides obsoletus. Species-specific differences in the length of the SVFP were related to host density and local variation in landscape habitat. When the Avaritia Culicoides females were modelled as a group (as utilised in the SFVP), we were unable to detect links between environmental drivers and phenological metrics. We conclude that the current treatment of Avaritia Culicoides as a single group inhibits understanding of environmentally-driven spatial variation in species phenology and hinders the development of models for predicting the SVFP from environmental factors. Culicoides surveillance methods should be adapted to focus on concentrated assessments of species-specific abundance during the start and end of seasonal activity in temperate regions to facilitate refinement of ruminant movement restrictions thereby reducing the impact of Culicoides-borne arboviruses.
Collapse
|
25
|
Landscape features and reservoir occurrence affecting the risk for equine infection with Borna disease virus. J Wildl Dis 2014; 49:860-8. [PMID: 24502713 DOI: 10.7589/2012-10-262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Borna disease (BD) is a severe endemic and fatal disorder caused by the neurotropic Borna disease virus (BDV) which mainly occurs in horses and sheep. Borna disease virus belongs to the order Mononegavirales, which includes many reservoir-bound viruses with high zoonotic and pathogenic properties including the filoviruses and lyssaviruses. Clinically manifest BD occurs in endemic areas of Germany, Switzerland, Liechtenstein, and Austria. A seasonal accumulation of cases in spring and summer, incidences that vary from year to year, and the recent detection of BDV in bicolored shrews (Crocidura leucodon) in Swiss endemic areas argue for a natural reservoir. We established a geographic information system analysis of the distribution of 485 equine BD cases in Bavarian (Germany) endemic areas and of the occurrence of 285 records of C. leucodon captured in Bavaria. Boosted regression trees were used to identify driving factors of habitat choice and virus prevalence. The distribution model of C. leucodon and the prevalence model for BDV had very good accuracy. Mean annual precipitation <900 mm, mean annual temperatures of 8 C, elevation <350 m, low forest cover, and a high percentage of urban fabric and arable land describe the optimal habitat for C. leucodon. Occurrence probability of C. leucodon was significantly higher in Bavarian BDV-endemic areas than in random areas in Bavaria. The prevalence of BD was higher in urban areas with annual mean precipitation of 800-900 mm, annual mean temperature of 8 C, and elevation >500 m. Our results indicate that the distribution model can accurately predict BD occurrence. Based on these results, practical safety precautions could be derived. The BDV model represents a suitable system for reservoir-bound, neurotropic Mononegavirales because it allows analyzing ecologic and biologic aspects that determine virus abundance, maintenance in reservoir species, and transmission to end host species.
Collapse
|
26
|
Modelling the Spatial Distribution of Culicoides imicola: Climatic versus Remote Sensing Data. REMOTE SENSING 2014. [DOI: 10.3390/rs6076604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Predicting spatio-temporal Culicoides imicola distributions in Spain based on environmental habitat characteristics and species dispersal. ECOL INFORM 2014. [DOI: 10.1016/j.ecoinf.2014.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Scolamacchia F, VAN DEN Broek J, Meiswinkel R, Heesterbeek JAP, Elbers ARW. Principal climatic and edaphic determinants of Culicoides biting midge abundance during the 2007-2008 bluetongue epidemic in the Netherlands, based on OVI light trap data. MEDICAL AND VETERINARY ENTOMOLOGY 2014; 28:143-156. [PMID: 24148154 DOI: 10.1111/mve.12028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Palaearctic Culicoides midges (Diptera: Ceratopogonidae) represent a vital link in the northward advance of certain arboviral pathogens of livestock such as that caused by bluetongue virus. The effects of relevant ecological factors on weekly Culicoides vector abundances during the bluetongue virus serotype 8 epidemics in the Netherlands in 2007 and 2008 were quantified within a hurdle modelling framework. The relative role of meteorological parameters showed a broadly consistent association across species, with larger catches linked to temperature-related variables and lower wind speed. Moreover, vector abundance was found to be influenced by edaphic factors, likely related to species-specific breeding habitat preferences that differed markedly amongst some species. This is the first study on Culicoides vector species in the Netherlands identified during an entomological surveillance programme, in which an attempt is made to pinpoint the factors that influence midge abundance levels. In addition to providing key inputs into risk-mitigating tools for midge-borne pathogens and disease transmission models, the adoption of methods that explicitly address certain features of abundance datasets (frequent zero-count observations and over-dispersion) helped enhance the robustness of the ecological analysis.
Collapse
Affiliation(s)
- F Scolamacchia
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Epidemiology, Crisis Organization and Diagnostics, Central Veterinary Institute of Wageningen University, Lelystad, the Netherlands
| | | | | | | | | |
Collapse
|
29
|
Lysyk TJ, Dergousoff SJ. Distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) in Alberta, Canada. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:560-571. [PMID: 24897848 DOI: 10.1603/me13239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The distribution of Culicoides sonorensis Wirth and Jones was examined in Alberta, Canada. Sampling was conducted weekly using blacklight traps at eight locations in 2009, and 10 locations during 2010-2012. Nine supplemental sites were sampled twice annually during both 2011 and 2012. Abundance of C. sonorensis was consistently greatest at a site near the U.S. border, and declined in a northerly direction. Mean annual abundance at this site ranged from 6.4- to > 1,000-fold greater across positive sites. Data from a less extensive survey conducted during 2002-2006 were included in the remaining analyses. C. sonorensis was distributed below a diagonal spanning 49 degrees 30' N, 113 degrees 0' W to 51 degrees 21' N, 110 degrees 40' W. The relationship between the proportion of weekly samples positive and mean annual abundance at a site was determined and indicated that the proportion of positive samples could be used as a surrogate measure of abundance to overcome issues associated with the extreme variation in abundance. A series of logistic regression models were developed and evaluated to determine the effects of spatial (latitude and longitude), climatic (historic temperature and precipitation during the warmest quarter), and weather (temperature during the sample interval and spring precipitation) on abundance as measured by the proportion of positive samples. Spatial and climatic variables set the overall level of abundance, while weather variables added seasonal fluctuations within years, and also fluctuations between years. These data will be useful for long-term monitoring of C. sonorensis and as a baseline for detecting shifts in abundance that might occur because of climate change.
Collapse
|
30
|
Pioz M, Guis H, Pleydell D, Gay E, Calavas D, Durand B, Ducrot C, Lancelot R. Did vaccination slow the spread of bluetongue in France? PLoS One 2014; 9:e85444. [PMID: 24465562 PMCID: PMC3897431 DOI: 10.1371/journal.pone.0085444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
Vaccination is one of the most efficient ways to control the spread of infectious diseases. Simulations are now widely used to assess how vaccination can limit disease spread as well as mitigate morbidity or mortality in susceptible populations. However, field studies investigating how much vaccines decrease the velocity of epizootic wave-fronts during outbreaks are rare. This study aimed at investigating the effect of vaccination on the propagation of bluetongue, a vector-borne disease of ruminants. We used data from the 2008 bluetongue virus serotype 1 (BTV-1) epizootic of southwest France. As the virus was newly introduced in this area, natural immunity of livestock was absent. This allowed determination of the role of vaccination in changing the velocity of bluetongue spread while accounting for environmental factors that possibly influenced it. The average estimated velocity across the country despite restriction on animal movements was 5.4 km/day, which is very similar to the velocity of spread of the bluetongue virus serotype 8 epizootic in France also estimated in a context of restrictions on animal movements. Vaccination significantly reduced the propagation velocity of BTV-1. In comparison to municipalities with no vaccine coverage, the velocity of BTV-1 spread decreased by 1.7 km/day in municipalities with immunized animals. For the first time, the effect of vaccination has been quantified using data from a real epizootic whilst accounting for environmental factors known to modify the velocity of bluetongue spread. Our findings emphasize the importance of vaccination in limiting disease spread across natural landscape. Finally, environmental factors, specifically those related to vector abundance and activity, were found to be good predictors of the velocity of BTV-1 spread, indicating that these variables need to be adequately accounted for when evaluating the role of vaccination on bluetongue spread.
Collapse
Affiliation(s)
- Maryline Pioz
- Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
- Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Institut National de la Recherche Agronomique (INRA), Montpellier, France
- * E-mail:
| | - Hélène Guis
- Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
- Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Institut National de la Recherche Agronomique (INRA), Montpellier, France
| | - David Pleydell
- Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Institut National de la Recherche Agronomique (INRA), Petit-Bourg, Guadeloupe, France
- Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, Guadeloupe, France
| | - Emilie Gay
- Unité Epidémiologie, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Lyon, France
| | - Didier Calavas
- Unité Epidémiologie, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Lyon, France
| | - Benoît Durand
- Laboratoire Santé Animale, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Maisons-Alfort, France
| | - Christian Ducrot
- Unité de Recherche 346 d'Epidémiologie Animale, Institut National de la Recherche Agronomique (INRA), Saint Genès Champanelle, France
| | - Renaud Lancelot
- Unité Mixte de Recherche Contrôle des Maladies Animales Exotiques et Emergentes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
- Unité Mixte de Recherche 1309 Contrôle des Maladies Animales Exotiques et Emergentes, Institut National de la Recherche Agronomique (INRA), Montpellier, France
| |
Collapse
|
31
|
Searle KR, Blackwell A, Falconer D, Sullivan M, Butler A, Purse BV. Identifying environmental drivers of insect phenology across space and time: Culicoides in Scotland as a case study. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:155-170. [PMID: 22846228 DOI: 10.1017/s0007485312000466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Interpreting spatial patterns in the abundance of species over time is a fundamental cornerstone of ecological research. For many species, this type of analysis is hampered by datasets that contain a large proportion of zeros, and data that are overdispersed and spatially autocorrelated. This is particularly true for insects, for which abundance data can fluctuate from zero to many thousands in the space of weeks. Increasingly, an understanding of the ways in which environmental variation drives spatial and temporal patterns in the distribution, abundance and phenology of insects is required for management of pests and vector-borne diseases. In this study, we combine the use of smoothing techniques and generalised linear mixed models to relate environmental drivers to key phenological patterns of two species of biting midges, Culicoides pulicaris and C. impunctatus, of which C. pulicaris has been implicated in transmission of bluetongue in Europe. In so doing, we demonstrate analytical tools for linking the phenology of species with key environmental drivers, despite using a relatively small dataset containing overdispersed and zero-inflated data. We demonstrate the importance of landcover and climatic variables in determining the seasonal abundance of these two vector species, and highlight the need for more empirical data on the effects of temperature and precipitation on the life history traits of palearctic Culicoides spp. in Europe.
Collapse
Affiliation(s)
- K R Searle
- Centre for Ecology and Hydrology, Bush Estate, Edinburgh.
| | | | | | | | | | | |
Collapse
|
32
|
Kirkeby C, Græsbøll K, Stockmarr A, Christiansen LE, Bødker R. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae). Parasit Vectors 2013; 6:67. [PMID: 23497628 PMCID: PMC3617071 DOI: 10.1186/1756-3305-6-67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. METHODS Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. RESULTS Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. CONCLUSIONS The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.
Collapse
Affiliation(s)
- Carsten Kirkeby
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, Frederiksberg C, DK-1870, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Rigot T, Drubbel MV, Delécolle JC, Gilbert M. Farms, pastures and woodlands: the fine-scale distribution of Palearctic Culicoides spp. biting midges along an agro-ecological gradient. MEDICAL AND VETERINARY ENTOMOLOGY 2013; 27:29-38. [PMID: 22897885 DOI: 10.1111/j.1365-2915.2012.01032.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The spatial epidemiology of Bluetongue virus (BTV) at the landscape level relates to the fine-scale distribution and dispersal capacities of its vectors, midges belonging to the genus Culicoides Latreille (Diptera: Ceratopogonidae). Although many previous researches have carried out Culicoides sampling on farms, little is known of the fine-scale distribution of Culicoides in the landscape immediately surrounding farms. The aim of this study was to gain a better understanding of Culicoides populations at increasing distances from typical dairy farms in north-west Europe, through the use of eight Onderstepoort-type black-light traps positioned along linear transects departing from farms, going through pastures and entering woodlands. A total of 16 902 Culicoides were collected in autumn 2008 and spring 2009. The majority were females, of which more than 97% were recognized as potential vectors. In pastures, we found decreasing numbers of female Culicoides as a function of the distance to the farm. This pattern was modelled by leptokurtic models, with parameters depending on season and species. By contrast, the low number of male Culicoides caught were homogeneously distributed along the transects. When transects entered woodlands, we found a higher abundance of Culicoides than expected considering the distance of the sampling sites to the farm, although this varied according to species.
Collapse
Affiliation(s)
- T Rigot
- Lutte Biologique et Ecologie Spatiale (LUBIES), Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | |
Collapse
|
34
|
Kirkeby C, Bødker R, Stockmarr A, Lind P. Spatial abundance and clustering of Culicoides (Diptera: Ceratopogonidae) on a local scale. Parasit Vectors 2013; 6:43. [PMID: 23433251 PMCID: PMC3608001 DOI: 10.1186/1756-3305-6-43] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/24/2013] [Indexed: 11/21/2022] Open
Abstract
Background Biting midges, Culicoides, of the Obsoletus group and the Pulicaris group have been involved in recent outbreaks of bluetongue virus and the former was also involved in the Schmallenberg virus outbreak in northern Europe. Methods For the first time, here we investigate the local abundance pattern of these two species groups in the field by intensive sampling with a grid of light traps on 16 catch nights. Neighboring trap catches can be spatially dependent on each other, hence we developed a conditional autoregressive (CAR) model framework to test a number of spatial and non-spatial covariates expected to affect Culicoides abundance. Results The distance to sheep penned in the corner of the study field significantly increased the abundance level up to 200 meters away from the sheep. Spatial clustering was found to be significant but could not be explained by any known factors, and cluster locations shifted between catch nights. No significant temporal autocorrelation was detected. CAR models for both species groups identified a significant positive impact of humidity and significant negative impacts of precipitation and wind turbulence. Temperature was also found to be significant with a peak at just below 16 degrees Celcius. Surprisingly, there was a significant positive impact of wind speed. The CAR model for the Pulicaris group also identified a significant attraction to the smaller groups of sheep placed in the field. Furthermore, a large number of spatial covariates which were incorrectly found to be significant in ordinary regression models were not significant in the CAR models. The 95% C.I. on the prediction estimates ranged from 20.4% to 304.8%, underlining the difficulties of predicting the abundance of Culicoides. Conclusions We found that significant spatial clusters of Culicoides moved around in a dynamic pattern varying between catch nights. This conforms with the modeling but was not explained by any of the tested covariates. The mean abundance within these clusters was up to 11 times higher for the Obsoletus group and 4 times higher for the Pulicaris group compared to the rest of the field.
Collapse
Affiliation(s)
- Carsten Kirkeby
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, Frederiksberg C, DK-1870, Denmark.
| | | | | | | |
Collapse
|
35
|
Klingseisen B, Stevenson M, Corner R. Prediction of Bluetongue virus seropositivity on pastoral properties in northern Australia using remotely sensed bioclimatic variables. Prev Vet Med 2012; 110:159-68. [PMID: 23276403 DOI: 10.1016/j.prevetmed.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 11/28/2012] [Accepted: 12/02/2012] [Indexed: 11/16/2022]
Abstract
To monitor Bluetongue virus (BTV) activity in northern and eastern Australia the National Arbovirus Monitoring Program (NAMP) collects data from a network of sentinel herds. Groups of young cattle, previously unexposed to infection, are regularly tested to detect evidence of seroconversion. While this approach has been successful in fulfilling international surveillance requirements, it is labour and cost intensive and operationally challenging in the remote area of the northern Australian rangelands. The aim of this study was to assess the suitability of remotely sensed data as a means for predicting the distribution of BTV seroprevalence. For the period 2000-2009, bioclimatic variables were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) data products for the entire Northern Territory. A generalised linear model, based on the seasonal Normalised Difference Vegetation Index (NDVI) and minimum land surface temperature, was developed to predict BTV seropositivity. The odds of seropositivity in locations with NDVI estimates >0.45 was 3.90 (95% CI 1.11 to 13.7) times that of locations where NDVI estimates were between 0 and 0.45. Unit increases in minimum night land surface temperature in the previous winter increased the odds of seropositivity by a factor of 1.40 (95% CI 1.02 to 1.91). The area under a Receiver Operator Characteristic curve generated on the basis of the model predictions was 0.8. Uncertainty in the model's predictions was attributed to the spatio-temporal inconsistency in the precision of the available serosurveillance data. The discriminatory ability of models of this type could be improved by ensuring that exact location details and date of NAMP BTV test events are consistently recorded.
Collapse
Affiliation(s)
- Bernhard Klingseisen
- Department of Spatial Sciences, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia.
| | | | | |
Collapse
|
36
|
Kluiters G, Sugden D, Guis H, McIntyre KM, Labuschagne K, Vilar MJ, Baylis M. Modelling the spatial distribution ofCulicoidesbiting midges at the local scale. J Appl Ecol 2012. [DOI: 10.1111/1365-2664.12030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Georgette Kluiters
- Liverpool University Climate and Infectious Diseases of Animals (Lucinda) Group, Institute of Infection and Global Health; University of Liverpool; Leahurst Campus; Neston, Cheshire; UK
| | - David Sugden
- Liverpool University Climate and Infectious Diseases of Animals (Lucinda) Group, Institute of Infection and Global Health; University of Liverpool; Leahurst Campus; Neston, Cheshire; UK
| | - Helene Guis
- CIRAD UMR CMAEE; F- 34398; Montpellier; France
| | - K. Marie McIntyre
- Liverpool University Climate and Infectious Diseases of Animals (Lucinda) Group, Institute of Infection and Global Health; University of Liverpool; Leahurst Campus; Neston, Cheshire; UK
| | - Karien Labuschagne
- ARC - Onderstepoort Veterinary Institute, PVVD; Private Bag X5; Onderstepoort; 0110; South Africa
| | - Maria J. Vilar
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA; Campus de la Universitat Autonoma de Barcelona; 08193 Bellaterra; Barcelona; Spain
| | - Matthew Baylis
- Liverpool University Climate and Infectious Diseases of Animals (Lucinda) Group, Institute of Infection and Global Health; University of Liverpool; Leahurst Campus; Neston, Cheshire; UK
| |
Collapse
|
37
|
Rigot T, Conte A, Goffredo M, Ducheyne E, Hendrickx G, Gilbert M. Predicting the spatio-temporal distribution of Culicoides imicola in Sardinia using a discrete-time population model. Parasit Vectors 2012; 5:270. [PMID: 23174043 PMCID: PMC3561275 DOI: 10.1186/1756-3305-5-270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/09/2012] [Indexed: 11/13/2022] Open
Abstract
Background Culicoides imicola KIEFFER, 1913 (Diptera: Ceratopogonidae) is the principal vector of Bluetongue disease in the Mediterranean basin, Africa and Asia. Previous studies have identified a range of eco-climatic variables associated with the distribution of C. imicola, and these relationships have been used to predict the large-scale distribution of the vector. However, these studies are not temporally-explicit and can not be used to predict the seasonality in C. imicola abundances. Between 2001 and 2006, longitudinal entomological surveillance was carried out throughout Italy, and provided a comprehensive spatio-temporal dataset of C. imicola catches in Onderstepoort-type black-light traps, in particular in Sardinia where the species is considered endemic. Methods We built a dynamic model that allows describing the effect of eco-climatic indicators on the monthly abundances of C. imicola in Sardinia. Model precision and accuracy were evaluated according to the influence of process and observation errors. Results A first-order autoregressive cofactor, a digital elevation model and MODIS Land Surface Temperature (LST)/or temperatures acquired from weather stations explained ~77% of the variability encountered in the samplings carried out in 9 sites during 6 years. Incorporating Normalized Difference Vegetation Index (NDVI) or rainfall did not increase the model's predictive capacity. On average, dynamics simulations showed good accuracy (predicted vs. observed r corr = 0.9). Although the model did not always reproduce the absolute levels of monthly abundances peaks, it succeeded in reproducing the seasonality in population level and allowed identifying the periods of low abundances and with no apparent activity. On that basis, we mapped C. imicola monthly distribution over the entire Sardinian region. Conclusions This study demonstrated prospects for modelling data arising from Culicoides longitudinal entomological surveillance. The framework explicitly incorporates the influence of eco-climatic factors on population growth rates and accounts for observation and process errors. Upon validation, such a model could be used to predict monthly population abundances on the basis of environmental conditions, and hence can potentially reduce the amount of entomological surveillance.
Collapse
Affiliation(s)
- Thibaud Rigot
- Biological control and spatial ecology LUBIES, Université Libre de Bruxelles, Av F,D, Roosevelt 50, Brussels, B-1050, Belgium.
| | | | | | | | | | | |
Collapse
|
38
|
Purse BV, Falconer D, Sullivan MJ, Carpenter S, Mellor PS, Piertney SB, Mordue Luntz AJ, Albon S, Gunn GJ, Blackwell A. Impacts of climate, host and landscape factors on Culicoides species in Scotland. MEDICAL AND VETERINARY ENTOMOLOGY 2012; 26:168-177. [PMID: 22103842 DOI: 10.1111/j.1365-2915.2011.00991.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) vector a wide variety of internationally important arboviral pathogens of livestock and represent a widespread biting nuisance. This study investigated the influence of landscape, host and remotely-sensed climate factors on local abundance of livestock-associated species in Scotland, within a hierarchical generalized linear model framework. The Culicoides obsoletus group and the Culicoides pulicaris group accounted for 56% and 41%, respectively, of adult females trapped. Culicoides impunctatus Goetghebuer and C. pulicaris s.s. Linnaeus were the most abundant and widespread species in the C. pulicaris group (accounting for 29% and 10%, respectively, of females trapped). Abundance models performed well for C. impunctatus, Culicoides deltus Edwards and Culicoides punctatus Meigen (adjusted R(2) : 0.59-0.70), but not for C. pulicaris s.s. (adjusted R(2) : 0.36) and the C. obsoletus group (adjusted R(2) : 0.08). Local-scale abundance patterns were best explained by models combining host, landscape and climate factors. The abundance of C. impunctatus was negatively associated with cattle density, but positively associated with pasture cover, consistent with this species' preference in the larval stage for lightly grazed, wet rush pasture. Predicted abundances of this species varied widely among farms even over short distances (less than a few km). Modelling approaches that may facilitate the more accurate prediction of local abundance patterns for a wider range of Culicoides species are discussed.
Collapse
Affiliation(s)
- B V Purse
- NERC Centre for Ecology and Hydrology, Penicuik, U.K.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matozzo V, Chinellato A, Munari M, Finos L, Bressan M, Marin MG. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS One 2012; 7:e33820. [PMID: 22479452 PMCID: PMC3313930 DOI: 10.1371/journal.pone.0033820] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/17/2012] [Indexed: 12/20/2022] Open
Abstract
Water acidification, temperature increases and changes in seawater salinity are predicted to occur in the near future. In such a global climate change (GCC) scenario, there is growing concern for the health status of both wild and farmed organisms. Bivalve molluscs, an important component of coastal marine ecosystems, are at risk. At the immunological level, the ability of an organism to maintain its immunosurveillance unaltered under adverse environmental conditions may enhance its survival capability. To our knowledge, only a few studies have investigated the effects of changing environmental parameters (as predicted in a GCC scenario) on the immune responses of bivalves. In the present study, the effects of both decreased pH values and increased temperature on the important immune parameters of two bivalve species were evaluated for the first time. The clam Chamelea gallina and the mussel Mytilus galloprovincialis, widespread along the coast of the Northwestern Adriatic Sea, were chosen as model organisms. Bivalves were exposed for 7 days to three pH values (8.1, 7.7 and 7.4) at two temperatures (22 and 28°C). Three independent experiments were carried out at salinities of 28, 34 and 40 PSU. The total haemocyte count, Neutral Red uptake, haemolymph lysozyme activity and total protein levels were measured. The results obtained demonstrated that tested experimental conditions affected significantly most of the immune parameters measured in bivalves, even if the variation pattern of haemocyte responses was not always linear. Between the two species, C. gallina appeared more vulnerable to changing pH and temperature than M. galloprovincialis. Overall, this study demonstrated that climate changes can strongly affect haemocyte functionality in bivalves. However, further studies are needed to clarify better the mechanisms of action of changing environmental parameters, both individually and in combination, on bivalve haemocytes.
Collapse
Affiliation(s)
| | | | - Marco Munari
- Department of Biology, University of Padova, Padova, Italy
| | - Livio Finos
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Monica Bressan
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
40
|
Fox NJ, Marion G, Davidson RS, White PCL, Hutchings MR. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions. Animals (Basel) 2012; 2:93-107. [PMID: 26486780 PMCID: PMC4494270 DOI: 10.3390/ani2010093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 11/17/2022] Open
Abstract
Climate change is a driving force for livestock parasite risk. This is especially true for helminths including the nematodes Haemonchus contortus, Teladorsagia circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and development of free-living stages is chiefly affected by temperature and moisture. The paucity of long term predictions of helminth risk under climate change has driven us to explore optimal modelling approaches and identify current bottlenecks to generating meaningful predictions. We classify approaches as correlative or mechanistic, exploring their strengths and limitations. Climate is one aspect of a complex system and, at the farm level, husbandry has a dominant influence on helminth transmission. Continuing environmental change will necessitate the adoption of mitigation and adaptation strategies in husbandry. Long term predictive models need to have the architecture to incorporate these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic processes and physiological thresholds with correlative bioclimatic modelling, incorporating changes in livestock husbandry and disease control. Irrespective of approach, the principal limitation to parasite predictions is the availability of active surveillance data and empirical data on physiological responses to climate variables. By combining improved empirical data and refined models with a broad view of the livestock system, robust projections of helminth risk can be developed.
Collapse
Affiliation(s)
- Naomi J Fox
- SAC, West Mains Road, Edinburgh, EH9 3JG, UK.
- Environment Department, University of York, Heslington, York, YO10 5DD, UK.
- Biomathematics and Statistics Scotland, Kings Buildings, Edinburgh, EH9 3JZ, UK.
| | - Glenn Marion
- Biomathematics and Statistics Scotland, Kings Buildings, Edinburgh, EH9 3JZ, UK.
| | | | - Piran C L White
- Environment Department, University of York, Heslington, York, YO10 5DD, UK.
| | | |
Collapse
|
41
|
Factors driving the abundance of ixodes ricinus ticks and the prevalence of zoonotic I. ricinus-borne pathogens in natural foci. Appl Environ Microbiol 2012; 78:2669-76. [PMID: 22286986 DOI: 10.1128/aem.06564-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental factors may drive tick ecology and therefore tick-borne pathogen (TBP) epidemiology, which determines the risk to animals and humans of becoming infected by TBPs. For this reason, the aim of this study was to analyze the influence of environmental factors on the abundance of immature-stage Ixodes ricinus ticks and on the prevalence of two zoonotic I. ricinus-borne pathogens in natural foci of endemicity. I. ricinus abundance was measured at nine sites in the northern Iberian Peninsula by dragging the vegetation with a cotton flannelette, and ungulate abundance was measured by means of dung counts. In addition to ungulate abundance, data on variables related to spatial location, climate, and soil were gathered from the study sites. I. ricinus adults, nymphs, and larvae were collected from the vegetation, and a representative subsample of I. ricinus nymphs from each study site was analyzed by PCR for the detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum DNA. Mean prevalences of these pathogens were 4.0% ± 1.8% and 20.5% ± 3.7%, respectively. Statistical analyses confirmed the influence of spatial factors, climate, and ungulate abundance on I. ricinus larva abundance, while nymph abundance was related only to climate. Interestingly, cattle abundance rather than deer abundance was the main driver of B. burgdorferi sensu lato and A. phagocytophilum prevalence in I. ricinus nymphs in the study sites, where both domestic and wild ungulates coexist. The increasing abundance of cattle seems to increase the risk of other hosts becoming infected by A. phagocytophilum, while reducing the risk of being infected by B. burgdorferi sensu lato. Controlling ticks in cattle in areas where they coexist with wild ungulates would be more effective for TBP control than reducing ungulate abundance.
Collapse
|
42
|
Neteler M, Roiz D, Rocchini D, Castellani C, Rizzoli A. Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy. Int J Health Geogr 2011; 10:49. [PMID: 21812983 PMCID: PMC3170180 DOI: 10.1186/1476-072x-10-49] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/03/2011] [Indexed: 12/02/2022] Open
Abstract
Background The continuing spread of the Asian tiger mosquito Aedes albopictus in Europe is of increasing public health concern due to the potential risk of new outbreaks of exotic vector-borne diseases that this species can transmit as competent vector. We predicted the most favorable areas for a short term invasion of Ae. albopictus in north-eastern Italy using reconstructed daily satellite data time series (MODIS Land Surface Temperature maps, LST). We reconstructed more than 11,000 daily MODIS LST maps for the period 2001-09 (i.e. performed spatial and temporal gap-filling) in an Open Source GIS framework. We aggregated these LST maps over time and identified the potential distribution areas of Ae. albopictus by adapting published temperature threshold values using three variables as predictors (0°C for mean January temperatures, 11°C for annual mean temperatures and 1350 growing degree days filtered for areas with autumnal mean temperatures > 11°C). The resulting maps were integrated into the final potential distribution map and this was compared with the known current distribution of Ae. albopictus in north-eastern Italy. Results LST maps show the microclimatic characteristics peculiar to complex terrains, which would not be visible in maps commonly derived from interpolated meteorological station data. The patterns of the three indicator variables partially differ from each other, while winter temperature is the determining limiting factor for the distribution of Ae. albopictus. All three variables show a similar spatial pattern with some local differences, in particular in the northern part of the study area (upper Adige valley). Conclusions Reconstructed daily land surface temperature data from satellites can be used to predict areas of short term invasion of the tiger mosquito with sufficient accuracy (200 m pixel resolution size). Furthermore, they may be applied to other species of arthropod of medical interest for which temperature is a relevant limiting factor. The results indicate that, during the next few years, the tiger mosquito will probably spread toward northern latitudes and higher altitudes in north-eastern Italy, which will considerably expand the range of the current distribution of this species.
Collapse
Affiliation(s)
- Markus Neteler
- Biodiversity and Molecular Ecology Department, IASMA Research and Innovation Centre, Fondazione Edmund Mach, S, Michele all'Adige (TN), Italy.
| | | | | | | | | |
Collapse
|
43
|
Peters J, De Baets B, Van Doninck J, Calvete C, Lucientes J, De Clercq EM, Ducheyne E, Verhoest NEC. Absence reduction in entomological surveillance data to improve niche-based distribution models for Culicoides imicola. Prev Vet Med 2011; 100:15-28. [PMID: 21496932 DOI: 10.1016/j.prevetmed.2011.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 11/15/2022]
Abstract
Data-driven models for the prediction of bluetongue vector distributions are valuable tools for the identification of areas at risk for bluetongue outbreaks. Various models have been developed during the last decade, and the majority of them use linear discriminant analysis or logistic regression to infer vector-environment relationships. This study presents a performance assessment of two established models compared to a distribution model based on a promising ensemble learning technique called Random Forests. Additionally, the impact of false absences, i.e. data records of suitable vector habitat that are, for various reasons, incorrectly labelled as absent, on the model outcome was assessed using alternative calibration-validation schemes. Three reduction methods were applied to reduce the number of false absences in the calibration data, without loss of information on the environmental gradient of suitable vector habitat: random reduction and stratified reduction based on the distance between absence and presence records in geographical (Euclidean distance) or environmental space (Mahalanobis distance). The results indicated that the predicted vector distribution by the Random Forest model was significantly more accurate than the vector distributions predicted by the two established models (McNemar test, p<0.01) when the calibration data were not reduced with respect to false absences. The performance of the established models, however, increased considerably by application of stratified false absence reductions. Model validation revealed no significant difference between the performance of the three distinct Culicoides imicola distribution models for the majority of alternative stratified reduction schemes. The main conclusion of this study is that the application of Random Forests, or linear discriminant analysis and logistic regression on the condition that calibration data were first reduced on geographical or environmental information, potentially lead toward better vector distribution models.
Collapse
Affiliation(s)
- J Peters
- KERMIT, Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure Links, Gent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Acevedo P, Ruiz-Fons F, Estrada R, Márquez AL, Miranda MA, Gortázar C, Lucientes J. A broad assessment of factors determining Culicoides imicola abundance: modelling the present and forecasting its future in climate change scenarios. PLoS One 2010; 5:e14236. [PMID: 21151914 PMCID: PMC2997795 DOI: 10.1371/journal.pone.0014236] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/17/2010] [Indexed: 12/01/2022] Open
Abstract
Bluetongue (BT) is still present in Europe and the introduction of new serotypes from endemic areas in the African continent is a possible threat. Culicoides imicola remains one of the most relevant BT vectors in Spain and research on the environmental determinants driving its life cycle is key to preventing and controlling BT. Our aim was to improve our understanding of the biotic and abiotic determinants of C. imicola by modelling its present abundance, studying the spatial pattern of predicted abundance in relation to BT outbreaks, and investigating how the predicted current distribution and abundance patterns might change under future (2011-2040) scenarios of climate change according to the Intergovernmental Panel on Climate Change. C. imicola abundance data from the bluetongue national surveillance programme were modelled with spatial, topoclimatic, host and soil factors. The influence of these factors was further assessed by variation partitioning procedures. The predicted abundance of C. imicola was also projected to a future period. Variation partitioning demonstrated that the pure effect of host and topoclimate factors explained a high percentage (>80%) of the variation. The pure effect of soil followed in importance in explaining the abundance of C. imicola. A close link was confirmed between C. imicola abundance and BT outbreaks. To the best of our knowledge, this study is the first to consider wild and domestic hosts in predictive modelling for an arthropod vector. The main findings regarding the near future show that there is no evidence to suggest that there will be an important increase in the distribution range of C. imicola; this contrasts with an expected increase in abundance in the areas where it is already present in mainland Spain. What may be expected regarding the future scenario for orbiviruses in mainland Spain, is that higher predicted C. imicola abundance may significantly change the rate of transmission of orbiviruses.
Collapse
Affiliation(s)
- Pelayo Acevedo
- Biogeography, Diversity and Conservation Research Team, Department of Animal Biology, Faculty of Sciences, University of Malaga, Málaga, Spain.
| | | | | | | | | | | | | |
Collapse
|
45
|
Kedmi M, Galon N, Herziger Y, Yadin H, Bombarov V, Batten C, Shpigel NY, Klement E. Comparison of the epidemiology of epizootic haemorrhagic disease and bluetongue viruses in dairy cattle in Israel. Vet J 2010; 190:77-83. [PMID: 21093328 DOI: 10.1016/j.tvjl.2010.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 10/09/2010] [Accepted: 10/17/2010] [Indexed: 11/28/2022]
Abstract
An outbreak of epizootic haemorrhagic disease virus (EHDV) in cattle in Israel in 2006 enabled a comparison of the spatial distribution of epidemic exposure to EHDV with that of exposure to bluetongue virus (BTV), which is endemic in the country. The seroprevalence of both viruses was examined in 1650 serum samples collected from 139 farms representative of the spatial distribution of dairy cattle in Israel. A significant association between exposure to EHDV and BTV was demonstrated in both univariate and multivariate analyses. Recent exposure to BTV and EHDV (demonstrated by seroprevalence in calves) was clustered in different geographical locations, indicating that the two viruses had different patterns of spread, that of EHDV being influenced by winds and terrain barriers and that of BTV by herd immunity.
Collapse
Affiliation(s)
- Maor Kedmi
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Szmaragd C, Wilson AJ, Carpenter S, Wood JLN, Mellor PS, Gubbins S. A modeling framework to describe the transmission of bluetongue virus within and between farms in Great Britain. PLoS One 2009; 4:e7741. [PMID: 19890400 PMCID: PMC2767512 DOI: 10.1371/journal.pone.0007741] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 10/15/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Recently much attention has been given to developing national-scale micro-simulation models for livestock diseases that can be used to predict spread and assess the impact of control measures. The focus of these models has been on directly transmitted infections with little attention given to vector-borne diseases such as bluetongue, a viral disease of ruminants transmitted by Culicoides biting midges. Yet BT has emerged over the past decade as one of the most important diseases of livestock. METHODOLOGY/PRINCIPAL FINDINGS We developed a stochastic, spatially-explicit, farm-level model to describe the spread of bluetongue virus (BTV) within and between farms. Transmission between farms was modeled by a generic kernel, which includes both animal and vector movements. Once a farm acquired infection, the within-farm dynamics were simulated based on the number of cattle and sheep kept on the farm and on local temperatures. Parameter estimates were derived from the published literature and using data from the outbreak of bluetongue in northern Europe in 2006. The model was validated using data on the spread of BTV in Great Britain during 2007. The sensitivity of model predictions to the shape of the transmission kernel was assessed. CONCLUSIONS/SIGNIFICANCE The model is able to replicate the dynamics of BTV in Great Britain. Although uncertainty remains over the precise shape of the transmission kernel and certain aspects of the vector, the modeling approach we develop constitutes an ideal framework in which to incorporate these aspects as more and better data become available. Moreover, the model provides a tool with which to examine scenarios for the spread and control of BTV in Great Britain.
Collapse
Affiliation(s)
- Camille Szmaragd
- Institute for Animal Health, Pirbright Laboratory, Pirbright, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
47
|
Low diversity and high intra-island variation in prevalence of avianHaemoproteusparasites on Barbados, Lesser Antilles. Parasitology 2009; 136:1121-31. [DOI: 10.1017/s0031182009990497] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYCommon bird species were screened during May and June 2007 on Barbados for haemosporidian parasites (Haemosporida) of the generaHaemoproteusandPlasmodiumto determine whether the low parasite diversity reported in previous studies might have reflected limited sampling. PCR screening and DNA sequencing revealed a single predominant lineage ofHaemoproteusidentified asH. coatneyi. Sixty-two out of 257 birds were infected withHaemoproteusspp. on Barbados in 2007. Fifty-nine of the infections were identified asH. coatneyi(lineage HC), the only lineage recovered in the previous study in 1993. Two of the infections recovered from the bananaquit (Coereba flaveola) were identified asHaemoproteusspp. (lineage HD), which is the prevalent haemosporidian parasite inC. flaveolaon Grenada. We discuss the possibility of infrequent colonization events and absence of vectors as explanations for Barbados's low avian haemosporidian diversity. In our study, the parasites were absent from the southeast of the island, whereas they were abundant in several host species in the northwest. Accordingly, environmental and host population genetic differences were also investigated between the areas with and without parasites. No host genetic differences were found between the parasite-free and the parasite-afflicted regions. However, the parasite-free region is slightly warmer and drier, and it supports less vegetation than the parasite-afflicted region. The influence that this harsher environment may have on vector survival is discussed.
Collapse
|
48
|
Morgan ER, Wall R. Climate change and parasitic disease: farmer mitigation? Trends Parasitol 2009; 25:308-13. [PMID: 19540163 DOI: 10.1016/j.pt.2009.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/15/2009] [Accepted: 03/16/2009] [Indexed: 11/19/2022]
Abstract
Global climate change predictions suggest that far-ranging effects might occur in the population dynamics and distributions of livestock parasites, provoking fears of widespread increases in disease incidence and production loss. However, several biological mechanisms (including increased parasite mortality and more rapid acquisition of immunity), in tandem with changes in husbandry practices (including reproduction, housing, nutrition, breed selection, grazing patterns and other management interventions), might act to mitigate increased parasite development rates, preventing dramatic rises in overall levels of disease. Such changes might, therefore, counteract predicted climate-driven increases in parasite challenge. Optimum mitigation strategies will be highly system specific and depend on detailed understanding of interactions between climate, parasite abundance, host availability and the cues for and economics of farmer intervention.
Collapse
Affiliation(s)
- Eric R Morgan
- Veterinary Parasitology & Ecology Group, School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK.
| | | |
Collapse
|
49
|
Hartemink NA, Purse BV, Meiswinkel R, Brown HE, de Koeijer A, Elbers ARW, Boender GJ, Rogers DJ, Heesterbeek JAP. Mapping the basic reproduction number (R₀) for vector-borne diseases: a case study on bluetongue virus. Epidemics 2009; 1:153-61. [PMID: 21352762 DOI: 10.1016/j.epidem.2009.05.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 05/22/2009] [Accepted: 05/25/2009] [Indexed: 11/28/2022] Open
Abstract
Geographical maps indicating the value of the basic reproduction number, R₀, can be used to identify areas of higher risk for an outbreak after an introduction. We develop a methodology to create R₀ maps for vector-borne diseases, using bluetongue virus as a case study. This method provides a tool for gauging the extent of environmental effects on disease emergence. The method involves integrating vector-abundance data with statistical approaches to predict abundance from satellite imagery and with the biologically mechanistic modelling that underlies R₀. We illustrate the method with three applications for bluetongue virus in the Netherlands: 1) a simple R₀ map for the situation in September 2006, 2) species-specific R₀ maps based on satellite-data derived predictions, and 3) monthly R₀ maps throughout the year. These applications ought to be considered as a proof-of-principle and illustrations of the methods described, rather than as ready-to-use risk maps. Altogether, this is a first step towards an integrative method to predict risk of establishment of diseases based on mathematical modelling combined with a geographic information system that may comprise climatic variables, landscape features, land use, and other relevant factors determining the risk of establishment for bluetongue as well as of other emerging vector-borne diseases.
Collapse
Affiliation(s)
- N A Hartemink
- Theoretical Epidemiology, Veterinary Medicine, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wilson A, Mellor P. Bluetongue in Europe: vectors, epidemiology and climate change. Parasitol Res 2008; 103 Suppl 1:S69-77. [DOI: 10.1007/s00436-008-1053-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/26/2008] [Indexed: 11/29/2022]
|