1
|
Bayrak CS, Forst C, Jones DR, Gresham D, Pushalkar S, Wu S, Vogel C, Mahal L, Ghedin E, Ross T, García-Sastre A, Zhang B. Patient Subtyping Analysis of Baseline Multi-omic Data Reveals Distinct Pre-immune States Predictive of Vaccination Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576213. [PMID: 38328256 PMCID: PMC10849502 DOI: 10.1101/2024.01.18.576213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Understanding the molecular mechanisms that underpin diverse vaccination responses is a critical step toward developing efficient vaccines. Molecular subtyping approaches can offer valuable insights into the heterogeneous nature of responses and aid in the design of more effective vaccines. In order to explore the molecular signatures associated with the vaccine response, we analyzed baseline transcriptomics data from paired samples of whole blood, proteomics and glycomics data from serum, and metabolomics data from urine, obtained from influenza vaccine recipients (2019-2020 season) prior to vaccination. After integrating the data using a network-based model, we performed a subtyping analysis. The integration of multiple data modalities from 62 samples resulted in five baseline molecular subtypes with distinct molecular signatures. These baseline subtypes differed in the expression of pre-existing adaptive or innate immunity signatures, which were linked to significant variation across subtypes in baseline immunoglobulin A (IgA) and hemagglutination inhibition (HAI) titer levels. It is worth noting that these significant differences persisted through day 28 post-vaccination, indicating the effect of initial immune state on vaccination response. These findings highlight the significance of interpersonal variation in baseline immune status as a crucial factor in determining vaccine response and efficacy. Ultimately, incorporating molecular profiling could enable personalized vaccine optimization.
Collapse
|
2
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
3
|
Radford-Smith DE, Yates AG, Rizvi L, Anthony DC, Probert F. HDL and LDL have distinct, opposing effects on LPS-induced brain inflammation. Lipids Health Dis 2023; 22:54. [PMID: 37095493 PMCID: PMC10124044 DOI: 10.1186/s12944-023-01817-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Endotoxemia and sepsis induce neuroinflammation and increase the risk of neurodegenerative disorders although the mechanism by which peripheral infection leads to brain inflammation is not well understood. While circulating serum lipoproteins are known immunometabolites with the potential to modulate the acute phase response and cross the blood brain barrier, their contribution to neuroinflammation during systemic infection is unknown. The objective of this study was to elucidate the mechanisms by which lipoprotein subclasses modulate lipopolysaccharide (LPS)-induced neuroinflammation. Adult C57BL/6 mice were divided into 6 treatment groups, including a sterile saline vehicle control group (n = 9), an LPS group (n = 11), a premixed LPS + HDL group (n = 6), a premixed LPS + LDL group (n = 5), a HDL only group (n = 6) and an LDL only group (n = 3). In all cases injections were administered intraperitoneally. LPS was administered at 0.5 mg/kg, and lipoproteins were administered at 20 mg/kg. Behavioural testing and tissue collection was performed 6 h post-injection. The magnitude of peripheral and central inflammation was determined by qPCR of pro-inflammatory genes in fresh liver and brain. Metabolite profiles of liver, plasma and brain were determined by 1H NMR. Endotoxin concentration in the brain was measured by the Limulus Amoebocyte Lysate (LAL) assay. Co-administration of LPS + HDL exacerbated both peripheral and central inflammation, whilst LPS + LDL attenuated this inflammation. Metabolomic analysis identified several metabolites significantly associated with LPS-induced inflammation, which were partially rescued by LDL, but not HDL. Endotoxin was detected at significantly greater concentrations in the brains of animals that received LPS + HDL compared to LPS + saline, but not those that received LPS + LDL. These results suggest that HDL may promote neuroinflammation through direct shuttling of endotoxin to the brain. In contrast, LDL was shown to have anti-neuroinflammatory properties in this study. Our results indicate that lipoproteins may be useful targets in neuroinflammation and neurodegeneration associated with endotoxemia and sepsis.
Collapse
Affiliation(s)
- Daniel E Radford-Smith
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Abi G Yates
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Laila Rizvi
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Daniel C Anthony
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Fay Probert
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Rozing MP, Westendorp RGJ. Altered cardiovascular risk pattern of LDL cholesterol in older adults. Curr Opin Lipidol 2023; 34:22-26. [PMID: 36413436 DOI: 10.1097/mol.0000000000000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE OF REVIEW Elevated serum low-density lipoprotein cholesterol (LDL-C) levels at middle-age constitute a strong risk factor for later cardiovascular events. In older populations, however, LDL-C levels are no longer predictive of cardiovascular mortality or may even seem protective. Whether the altered risk pattern of LDL-C in old age reflects a causal mechanism or is due to confounding and bias is subject to debate. In this review, we briefly discuss the possible explanations for the altered risk pattern of LDL-C observed in old age. RECENT FINDINGS Using examples from the recent literature we illustrate how LDL-C levels 'lose' their predictive value as a cardiovascular risk factor in old age. We review three potential explanations for the changed cardiovascular risk pattern of LDL-C in older populations: survivorship bias, reverse causation, and effect modification. SUMMARY The absent or protective effect of LDL-C on cardiovascular mortality in older populations found in observational studies might be explained by survivorship bias, reverse causation, and effect modification. However, this does not necessarily preclude the possibility that (specific) cholesterol-lowering treatment could decrease the risk of morbidity and mortality. Placebo-controlled trials may importantly add to our understanding of who may benefit from lipid-lowering therapy or statins at an older age.
Collapse
Affiliation(s)
| | - Rudi G J Westendorp
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Shi TT, Zhao RX, Xin Z, Hou ZJ, Wang H, Xie RR, Li DM, Yang JK. Tear-derived exosomal biomarkers of Graves' ophthalmopathy. Front Immunol 2022; 13:1088606. [PMID: 36561758 PMCID: PMC9763563 DOI: 10.3389/fimmu.2022.1088606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Graves' ophthalmopathy (GO), the most frequent extrathyroidal manifestation of Graves' disease (GD), can lead to a significant decline in the quality of life in patients. Exosomes, which contain proteins, lipids and DNA, play important roles in the pathological processes of various diseases. However, their roles in Graves' ophthalmopathy are still unclear. We aimed to isolate exosomes and analyze the different exosomal proteins. Tear fluids were collected from twenty-four GO patients, twenty-four GD patients and sixteen control subjects. The numbers of tear exosomes were assayed using nanoparticle tracking analysis. A Luminex 200 kit and ELISA kit were used to confirm the different cytokine concentrations in serum. Extraocular muscle from GO patients and controls was extracted, and western blotting was used to assay the levels of Caspase-3 and complement C4A. Our study demonstrated that the number of tear exosomes differ from GD patients and control. The expression levels of cytokines, including IL-1 and IL-18, were significantly increased in the tear exosomes and serum from GO patients compared with GD patients and controls. The levels of the exosomal proteins Caspase-3, complement C4A and APOA-IV were significantly increased in GO patients compared to GD patients and controls. Orbital fibroblasts from GO patients showed significantly higher levels of Caspase-3 and complement C4A than those from controls. The levels of serum APOA-IV in GO patients were significantly higher than those in GD patients and controls. Specific proteins showed elevated expression in tear exosomes from GO patients, indicating that they may play important roles in GO pathogenesis.
Collapse
Affiliation(s)
- Ting-Ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru-Xuan Zhao
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhong Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jia Hou
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hua Wang
- Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong-Mei Li
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China,*Correspondence: Dong-Mei Li, ; Jin-Kui Yang,
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China,*Correspondence: Dong-Mei Li, ; Jin-Kui Yang,
| |
Collapse
|
6
|
Riera-Ferrer E, Piazzon MC, Del Pozo R, Palenzuela O, Estensoro I, Sitjà-Bobadilla A. A bloody interaction: plasma proteomics reveals gilthead sea bream (Sparus aurata) impairment caused by Sparicotyle chrysophrii. PARASITES & VECTORS 2022; 15:322. [PMID: 36088326 PMCID: PMC9463799 DOI: 10.1186/s13071-022-05441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Background Sparicotylosis is an enzootic parasitic disease that is well established across the Mediterranean Sea. It is caused by the polyopisthocotylean monogenean Sparicotyle chrysophrii and affects the gills of gilthead sea bream (GSB; Sparus aurata). Current disease management, mitigation and treatment strategies are limited against sparicotylosis. To successfully develop more efficient therapeutic strategies against this disease, understanding which molecular mechanisms and metabolic pathways are altered in the host is critical. This study aims to elucidate how S. chrysophrii infection modulates the plasma proteome of GSB and to identify the main altered biological processes involved. Methods Experimental infections were conducted in a recirculating aquaculture system (RAS) in which naïve recipient GSB ([R]; 70 g; n = 50) were exposed to effluent water from S. chrysophrii-infected GSB (98 g; n = 50). An additional tank containing unexposed naïve fish (control [C]; 70 g; n = 50) was maintained in parallel, but with the open water flow disconnected from the RAS. Haematological and infection parameters from sampled C and R fish were recorded for 10 weeks. Plasma samples from R fish were categorised into three different groups according to their infection intensity, which was based on the number of worms fish−1: low (L: 1–50), medium (51–100) and high (H: > 100). Five plasma samples from each category and five C samples were selected and subjected to a SWATH-MS proteome analysis. Additional assays on haemoglobin, cholesterol and the lytic activity of the alternative complement pathway were performed to validate the proteome analysis findings. Results The discriminant analysis of plasma protein abundance revealed a clear separation into three groups (H, M/L and C). A pathway analysis was performed with the differentially quantified proteins, indicating that the parasitic infection mainly affected pathways related to haemostasis, the immune system and lipid metabolism and transport. Twenty-two proteins were significantly correlated with infection intensity, highlighting the importance of apolipoproteins, globins and complement component 3. Validation assays of blood and plasma (haemoglobin, cholesterol and lytic activity of alternative complement pathway) confirmed these correlations. Conclusions Sparicotylosis profoundly alters the haemostasis, the innate immune system and the lipid metabolism and transport in GSB. This study gives a crucial global overview of the pathogenesis of sparicotylosis and highlights new targets for further research. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05441-1.
Collapse
|
7
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
8
|
Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants (Basel) 2022; 11:antiox11061199. [PMID: 35740096 PMCID: PMC9220155 DOI: 10.3390/antiox11061199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant “phase 2” enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson’s disease and Alzheimer’s disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.
Collapse
|
9
|
Louie AY, Tingling J, Dray E, Hussain J, McKim DB, Swanson KS, Steelman AJ. Dietary Cholesterol Causes Inflammatory Imbalance and Exacerbates Morbidity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2523-2539. [PMID: 35577367 DOI: 10.4049/jimmunol.2100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
Influenza is a common cause of pneumonia-induced hospitalization and death, but how host factors function to influence disease susceptibility or severity has not been fully elucidated. Cellular cholesterol levels may affect the pathogenesis of influenza infection, as cholesterol is crucial for viral entry and replication, as well as immune cell proliferation and function. However, there is still conflicting evidence on the extent to which dietary cholesterol influences cholesterol metabolism. In this study, we examined the effects of a high-cholesterol diet in modulating the immune response to influenza A virus (IAV) infection in mice. Mice were fed a standard or a high-cholesterol diet for 5 wk before inoculation with mouse-adapted human IAV (Puerto Rico/8/1934), and tissues were collected at days 0, 4, 8, and 16 postinfection. Cholesterol-fed mice exhibited dyslipidemia characterized by increased levels of total serum cholesterol prior to infection and decreased triglycerides postinfection. Cholesterol-fed mice also displayed increased morbidity compared with control-fed mice, which was neither a result of immunosuppression nor changes in viral load. Instead, transcriptomic analysis of the lungs revealed that dietary cholesterol caused upregulation of genes involved in viral-response pathways and leukocyte trafficking, which coincided with increased numbers of cytokine-producing CD4+ and CD8+ T cells and infiltrating dendritic cells. Morbidity as determined by percent weight loss was highly correlated with numbers of cytokine-producing CD4+ and CD8+ T cells as well as granulocytes. Taken together, dietary cholesterol promoted IAV morbidity via exaggerated cellular immune responses that were independent of viral load.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Joseph Tingling
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Evan Dray
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jamal Hussain
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; .,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
10
|
Cesaro A, Torres MDT, Gaglione R, Dell'Olmo E, Di Girolamo R, Bosso A, Pizzo E, Haagsman HP, Veldhuizen EJA, de la Fuente-Nunez C, Arciello A. Synthetic Antibiotic Derived from Sequences Encrypted in a Protein from Human Plasma. ACS NANO 2022; 16:1880-1895. [PMID: 35112568 DOI: 10.1021/acsnano.1c04496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Encrypted peptides have been recently found in the human proteome and represent a potential class of antibiotics. Here we report three peptides derived from the human apolipoprotein B (residues 887-922) that exhibited potent antimicrobial activity against drug-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococci both in vitro and in an animal model. The peptides had excellent cytotoxicity profiles, targeted bacteria by depolarizing and permeabilizing their cytoplasmic membrane, inhibited biofilms, and displayed anti-inflammatory properties. Importantly, the peptides, when used in combination, potentiated the activity of conventional antibiotics against bacteria and did not select for bacterial resistance. To ensure translatability of these molecules, a protease resistant retro-inverso variant of the lead encrypted peptide was synthesized and demonstrated anti-infective activity in a preclinical mouse model. Our results provide a link between human plasma and innate immunity and point to the blood as a source of much-needed antimicrobials.
Collapse
Affiliation(s)
- Angela Cesaro
- Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Section Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome 00136, Italy
| | - Eliana Dell'Olmo
- Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, Naples I-80126, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, Naples I-80126, Italy
| | - Henk P Haagsman
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Section Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Section Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome 00136, Italy
| |
Collapse
|
11
|
Lipoprotein(a), an Opsonin, Enhances the Phagocytosis of Nontypeable Haemophilus influenzae by Macrophages. J Immunol Res 2021; 2021:2185568. [PMID: 34765679 PMCID: PMC8577944 DOI: 10.1155/2021/2185568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
We recently showed that both nontypeable Haemophilus influenzae (NTHi) and its surface plasminogen- (Plg-) binding proteins interact with lipoprotein(a) (Lp(a)) in a lysine-dependent manner. Because Lp(a) can be taken up by macrophages, we postulated that it serves as an opsonin to enhance phagocytosis of NTHi by macrophages. Based on colony-forming unit (CFU) counts, Lp(a) was found to increase U937 macrophage-mediated phagocytosis of NTHi49247 and NTHi49766 by 34% and 43%, respectively, after 120 min. In contrast, Lp(a) did not enhance phagocytosis of Escherichia coli BL21 or E. coli JM109, which were unable to bind to Lp(a). As with U937 macrophages, Lp(a) was capable of increasing phagocytosis of NTHi49247 by peripheral blood mononuclear cell-derived macrophages. Opsonic phagocytosis by Lp(a) was inhibited by the addition of recombinant kringle IV type 10 (rKIV10), a lysine-binding competitor; moreover, Lp(a) did not increase phagocytosis of NTHi by U937 macrophages that were pretreated with a monoclonal antibody against the scavenger receptor CD36. Taken together, our observation suggests that Lp(a) might serve as a lysine-binding opsonin to assist macrophages in rapid recognition and phagocytosis of NTHi.
Collapse
|
12
|
Association between low density lipoprotein cholesterol and all-cause mortality: results from the NHANES 1999-2014. Sci Rep 2021; 11:22111. [PMID: 34764414 PMCID: PMC8586008 DOI: 10.1038/s41598-021-01738-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
The association between low density lipoprotein cholesterol (LDL-C) and all-cause mortality has been examined in many studies. However, inconsistent results and limitations still exist. We used the 1999–2014 National Health and Nutrition Examination Survey (NHANES) data with 19,034 people to assess the association between LDL-C level and all-cause mortality. All participants were followed up until 2015 except those younger than 18 years old, after excluding those who died within three years of follow-up, a total of 1619 deaths among 19,034 people were included in the analysis. In the age-adjusted model (model 1), it was found that the lowest LDL-C group had a higher risk of all-cause mortality (HR 1.708 [1.432–2.037]) than LDL-C 100–129 mg/dL as a reference group. The crude-adjusted model (model 2) suggests that people with the lowest level of LDL-C had 1.600 (95% CI [1.325–1.932]) times the odds compared with the reference group, after adjusting for age, sex, race, marital status, education level, smoking status, body mass index (BMI). In the fully-adjusted model (model 3), people with the lowest level of LDL-C had 1.373 (95% CI [1.130–1.668]) times the odds compared with the reference group, after additionally adjusting for hypertension, diabetes, cardiovascular disease, cancer based on model 2. The results from restricted cubic spine (RCS) curve showed that when the LDL-C concentration (130 mg/dL) was used as the reference, there is a U-shaped relationship between LDL-C level and all-cause mortality. In conclusion, we found that low level of LDL-C is associated with higher risk of all-cause mortality. The observed association persisted after adjusting for potential confounders. Further studies are warranted to determine the causal relationship between LDL-C level and all-cause mortality.
Collapse
|
13
|
Garcia AR, Finch C, Gatz M, Kraft T, Eid Rodriguez D, Cummings D, Charifson M, Buetow K, Beheim BA, Allayee H, Thomas GS, Stieglitz J, Gurven MD, Kaplan H, Trumble BC. APOE4 is associated with elevated blood lipids and lower levels of innate immune biomarkers in a tropical Amerindian subsistence population. eLife 2021; 10:68231. [PMID: 34586066 PMCID: PMC8480980 DOI: 10.7554/elife.68231] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
In post-industrial settings, apolipoprotein E4 (APOE4) is associated with increased cardiovascular and neurological disease risk. However, the majority of human evolutionary history occurred in environments with higher pathogenic diversity and low cardiovascular risk. We hypothesize that in high-pathogen and energy-limited contexts, the APOE4 allele confers benefits by reducing innate inflammation when uninfected, while maintaining higher lipid levels that buffer costs of immune activation during infection. Among Tsimane forager-farmers of Bolivia (N = 1266, 50% female), APOE4 is associated with 30% lower C-reactive protein, and higher total cholesterol and oxidized LDL. Blood lipids were either not associated, or negatively associated with inflammatory biomarkers, except for associations of oxidized LDL and inflammation which were limited to obese adults. Further, APOE4 carriers maintain higher levels of total and LDL cholesterol at low body mass indices (BMIs). These results suggest that the relationship between APOE4 and lipids may be beneficial for pathogen-driven immune responses and unlikely to increase cardiovascular risk in an active subsistence population.
Collapse
Affiliation(s)
- Angela R Garcia
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,Department of Anthropology, Emory University, Atlanta, United States
| | - Caleb Finch
- Leonard Davis School of Gerontology, Dornsife College, University of Southern California, Los Angeles, Los Angeles, United States
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, Los Angeles, United States
| | - Thomas Kraft
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Daniel Cummings
- Institute for Economics and Society, Chapman University, Orange, United States
| | - Mia Charifson
- Vilcek Institute of Graduate Biomedical Sciences, New York University, New York, United States
| | - Kenneth Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, United States.,School of Life Sciences, Arizona State University, Tempe, United States
| | - Bret A Beheim
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hooman Allayee
- Department of Preventive Medicine and Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Irvine, Irvine, United States.,Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Irvine, Irvine, United States
| | - Gregory S Thomas
- Long Beach Memorial, Long Beach and University of California Irvine, Irvine, United States
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Universite Toulouse, Toulouse, France
| | - Michael D Gurven
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, United States
| | - Hillard Kaplan
- Institute for Economics and Society, Chapman University, Orange, United States
| | - Benjamin C Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, United States
| |
Collapse
|
14
|
Kawamoto R, Kikuchi A, Akase T, Ninomiya D, Kumagi T. Low density lipoprotein cholesterol and all-cause mortality rate: findings from a study on Japanese community-dwelling persons. Lipids Health Dis 2021; 20:105. [PMID: 34511127 PMCID: PMC8436563 DOI: 10.1186/s12944-021-01533-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Low-density lipoprotein cholesterol (LDL-C) independently impacts aging-related health outcomes and plays a critical role in cardiovascular diseases (CVDs). However, there are limited predictive data on all-cause mortality, especially for the Japanese community population. In this study, it was examined whether LDL-C is related to survival prognosis based on 7 or 10 years of follow-up. Methods Participants included 1610 men (63 ± 14 years old) and 2074 women (65 ± 12 years old) who participated in the Nomura cohort study conducted in 2002 (first cohort) and 2014 (second cohort) and who continued throughout the follow-up periods (follow-up rates: 94.8 and 98.0%). Adjusted relative risk estimates were obtained for all-cause mortality using a basic resident register. The data were analyzed by a Cox regression with the time variable defined as the length between the age at the time of recruitment and that at the end of the study (the age of death or censoring), and risk factors including gender, age, body mass index (BMI), presence of diabetes, lipid levels, renal function, serum uric acid levels, blood pressure, and history of smoking, drinking, and CVD. Results Of the 3684 participants, 326 (8.8%) were confirmed to be deceased. Of these, 180 were men (11.2% of all men) and 146 were women (7.0% of all women). Lower LDL-C levels, gender (male), older age, BMI under 18.5 kg/m2, and the presence of diabetes were significant predictors for all-cause mortality. Compared with individuals with LDL-C levels of 144 mg/dL or higher, the multivariable-adjusted Hazard ratio (and 95% confidence interval) for all-cause mortality was 2.54 (1.58–4.07) for those with LDL-C levels below 70 mg/dL, 1.71 (1.15–2.54) for those with LDL-C levels between 70 mg/dL and 92 mg/dL, and 1.21 (0.87–1.68) for those with LDL-C levels between 93 mg/dL and 143 mg/dL. This association was particularly significant among participants who were male (P for interaction = 0.039) and had CKD (P for interaction = 0.015). Conclusions There is an inverse relationship between LDL-C levels and the risk of all-cause mortality, and this association is statistically significant.
Collapse
Affiliation(s)
- Ryuichi Kawamoto
- Department of Community Medicine, Ehime University Graduate School of Medicine, Toon-city, Ehime, 791-0295, Japan. .,Department of Internal Medicine, Seiyo Municipal Nomura Hospital, 9-53 Nomura, Nomura-cho, Seiyo-city, Ehime, 797-1212, Japan.
| | - Asuka Kikuchi
- Department of Community Medicine, Ehime University Graduate School of Medicine, Toon-city, Ehime, 791-0295, Japan.,Department of Internal Medicine, Seiyo Municipal Nomura Hospital, 9-53 Nomura, Nomura-cho, Seiyo-city, Ehime, 797-1212, Japan
| | - Taichi Akase
- Department of Internal Medicine, Seiyo Municipal Nomura Hospital, 9-53 Nomura, Nomura-cho, Seiyo-city, Ehime, 797-1212, Japan
| | - Daisuke Ninomiya
- Department of Community Medicine, Ehime University Graduate School of Medicine, Toon-city, Ehime, 791-0295, Japan.,Department of Internal Medicine, Seiyo Municipal Nomura Hospital, 9-53 Nomura, Nomura-cho, Seiyo-city, Ehime, 797-1212, Japan
| | - Teru Kumagi
- Department of Community Medicine, Ehime University Graduate School of Medicine, Toon-city, Ehime, 791-0295, Japan
| |
Collapse
|
15
|
Lu JM, Wu MY, Yang ZM, Zhu Y, Li D, Yu ZB, Shen P, Tang ML, Jin MJ, Lin HB, Shui LM, Chen K, Wang JB. Low LDL-C levels are associated with risk of mortality in a Chinese cohort study. Endocrine 2021; 73:563-572. [PMID: 33990892 DOI: 10.1007/s12020-021-02746-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/30/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Although low-density lipoprotein cholesterol (LDL-C) has been considered as a risk factor of atherosclerotic cardiovascular disease, limited studies can be available to evaluate the association of LDL-C with risk of mortality in the general population. This study aimed to examine the association of LDL-C level with risk of mortality using a propensity-score weighting method in a Chinese population, based on the health examination data. METHODS We performed a retrospective cohort study with 65,517 participants aged 40 years or older in Ningbo city, Zhejiang. LDL-C levels were categorized as five groups according to the Chinese dyslipidemia guidelines in adults. To minimize potential biases resulting from a complex array of covariates, we implemented a generalized boosted model to generate propensity-score weights on covariates. Then, we used Cox proportional hazard regression models with all-cause and cause-specific mortality as the dependent variables to estimate hazard ratios (HRs) and 95% confidence intervals (95% CIs). RESULTS During the 439,186.5 person years of follow-up, 2403 deaths occurred. Compared with the median LDL-C group (100-130 mg/dL), subjects with extremely low LDL-C levels (group 1) had a higher risk of deaths from all-cause (HR = 2.53, 95% CI:1.80-3.53), CVD (HR = 1.84, 95% CI: 1.28-2.61), ischemic stroke (HR = 2.29, 95% CI:1.32-3.94), hemorrhagic stroke (HR = 3.49, 95% CI: 1.57-7.85), and cancer (HR = 2.12, 95% CI: 1.04-4.31) while the corresponding HRs in LDL-C group 2 were relatively lower than that in group 1. CONCLUSIONS Low LDL-C levels were associated with an increased risk of all-cause, CVD, ischemic stroke, hemorrhagic stroke, and cancer mortality in the Chinese population.
Collapse
Affiliation(s)
- Jie-Ming Lu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China
| | - Meng-Yin Wu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China
| | - Zong-Ming Yang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China
| | - Yao Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China
| | - Die Li
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China
| | - Zhe-Bin Yu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Meng-Ling Tang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China
| | - Ming-Juan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China
- Department of Epidemiology and Biostatistics, Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Hong-Bo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Li-Ming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo, Zhejiang, China
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China.
- Department of Epidemiology and Biostatistics, Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Jian-Bing Wang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Zhejiang, 310058, Hangzhou, China.
- Department of Epidemiology and Biostatistics, the Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
16
|
Petruk G, Elvén M, Hartman E, Davoudi M, Schmidtchen A, Puthia M, Petrlova J. The role of full-length apoE in clearance of Gram-negative bacteria and their endotoxins. J Lipid Res 2021; 62:100086. [PMID: 34019903 PMCID: PMC8225977 DOI: 10.1016/j.jlr.2021.100086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 05/08/2021] [Indexed: 11/24/2022] Open
Abstract
ApoE is a well-known lipid-binding protein that plays a main role in the metabolism and transport of lipids. More recently, apoE-derived peptides have been shown to exert antimicrobial effects. Here, we investigated the antibacterial activity of apoE using in vitro assays, advanced imaging techniques, and in vivo mouse models. The formation of macromolecular complexes of apoE and endotoxins from Gram-negative bacteria was explored using gel shift assays, transmission electron microscopy, and CD spectroscopy followed by calculation of the α-helical content. The binding affinity of apoE to endotoxins was also confirmed by fluorescent spectroscopy detecting the quenching and shifting of tryptophan intrinsic fluorescence. We showed that apoE exhibits antibacterial activity particularly against Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli. ApoE protein folding was affected by binding of bacterial endotoxin components such as lipopolysaccharide (LPS) and lipid A, yielding similar increases in the apoE α-helical content. Moreover, high-molecular-weight complexes of apoE were formed in the presence of LPS, but not to the same extent as with lipid A. Together, our results demonstrate the ability of apoE to kill Gram-negative bacteria, interact with their endotoxins, which leads to the structural changes in apoE and the formation of aggregate-like complexes.
Collapse
Affiliation(s)
- Ganna Petruk
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Malin Elvén
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Erik Hartman
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Mina Davoudi
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden; Division of Cancer and Infection Medicine, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden; Department of Biomedical Sciences, Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Division of Dermatology, Skane University Hospital, Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
17
|
Ponticelli C, Campise MR. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int 2021; 100:536-545. [PMID: 33932457 DOI: 10.1016/j.kint.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Several factors, such as donor brain death, ischemia-reperfusion injury, rejection, infection, and chronic allograft dysfunction, may induce an inflammatory state in kidney transplantation. Furthermore, inflammatory cells, cytokines, growth factors, complement and coagulation cascade create an unbalanced interaction with innate and adaptive immunity, which are both heavily involved in atherogenesis. The crosstalk between inflammation and thrombosis may lead to a prothrombotic state and impaired fibrinolysis in kidney transplant recipients increasing the risk of cardiovascular disease. Inflammation is also associated with elevated levels of fibroblast growth factor 23 and low levels of Klotho, which contribute to major adverse cardiovascular events. Hyperuricemia, glucose intolerance, arterial hypertension, dyslipidemia, and physical inactivity may create a condition called metaflammation that concurs in atherogenesis. Another major consequence of the inflammatory state is the development of chronic hypoxia that through the mediation of interleukins 1 and 6, angiotensin II, and transforming growth factor beta can result in excessive accumulation of extracellular matrix, which can disrupt and replace functional parenchyma, leading to interstitial fibrosis and chronic allograft dysfunction. Lifestyle and regular physical activity may reduce inflammation. Several drugs have been proposed to control the graft inflammatory state, including low-dose aspirin, statins, renin-angiotensin inhibitors, xanthine-oxidase inhibitors, vitamin D supplements, and interleukin-6 blockade. However, no prospective controlled trial with these measures has been conducted in kidney transplantation.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Ospedale Maggiore Policlinico, Milano, Italy (retired).
| | - Maria Rosaria Campise
- Division of Nephrology and Dialysis, Ca' Granda Foundation, Scientific Institute Ospedale Maggiore Policlinico di Milano, Milano, Italy
| |
Collapse
|
18
|
Ferrari F, Santos RD. Statins and COVID-19: To Suspend or Not to Suspend? That is the Question! Arq Bras Cardiol 2021; 116:147-152. [PMID: 33566980 PMCID: PMC8159509 DOI: 10.36660/abc.20200949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/10/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Filipe Ferrari
- Programa de Pós-Graduação em Cardiologia e Ciências Cardiovasculares, Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS - Brasil
| | - Raul D Santos
- Unidade Clínica de Lípides, Instituto do Coração (InCor), Hospital da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil.,Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| |
Collapse
|
19
|
Bae SS, Chang LC, Merkin SS, Elashoff D, Ishigami J, Matsushita K, Charles-Schoeman C. Major Lipids and Future Risk of Pneumonia: 20-Year Observation of the Atherosclerosis Risk in Communities (ARIC) Study Cohort. Am J Med 2021; 134:243-251.e2. [PMID: 32814017 PMCID: PMC7870521 DOI: 10.1016/j.amjmed.2020.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Circulating lipids have been implicated as important modulators of immune response, and altered lipid levels correlate with the severity of infection. However, long-term prognostic implications of lipid levels regarding future infection risk remain unclear. The current project aims to explore whether baseline lipid levels are associated with risk of future serious infection, measured by hospitalization for pneumonia. METHODS A retrospective analysis was performed in 13,478 participants selected from the Atherosclerosis Risk in Communities (ARIC) study, a large community-based longitudinal cohort in the United States with a median follow-up time of >20 years. First incident of hospitalization for pneumonia was identified through hospital discharge records. Cox proportional hazard models were used to assess the association of baseline major lipid levels (total cholesterol, low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], triglycerides) with time to first pneumonia hospitalization. RESULTS A total of 1969 (14.61%) participants had a pneumonia hospitalization during a median follow-up time of 21.5 years. The hazard ratio (HR) for pneumonia hospitalization was 0.90 (95% confidence interval, 0.87-0.92) for every 10-mg/dL increase in baseline HDL-C, and 1.02 (95% confidence interval, 1.02-1.03) for every 10-mg/dL increase in baseline triglycerides. HDL-C and triglycerides both remained significant predictors of pneumonia hospitalization after multivariable adjustment. Such associations were not seen with baseline LDL-C or total cholesterol levels. CONCLUSION Lower baseline HDL-C and higher triglyceride levels were strongly associated with increased risk of long-term pneumonia hospitalization in a large longitudinal US cohort.
Collapse
Affiliation(s)
| | | | | | - David Elashoff
- Division of General Internal Medicine and Health Services Research, University of California Los Angeles
| | - Junichi Ishigami
- Johns Hopkins Bloomberg School of Public Health and Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Md
| | - Kunihiro Matsushita
- Johns Hopkins Bloomberg School of Public Health and Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Md
| | | |
Collapse
|
20
|
Gaglione R, Pizzo E, Notomista E, de la Fuente-Nunez C, Arciello A. Host Defence Cryptides from Human Apolipoproteins: Applications in Medicinal Chemistry. Curr Top Med Chem 2021; 20:1324-1337. [PMID: 32338222 DOI: 10.2174/1568026620666200427091454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Several eukaryotic proteins with defined physiological roles may act as precursors of cryptic bioactive peptides released upon protein cleavage by the host and/or bacterial proteases. Based on this, the term "cryptome" has been used to define the unique portion of the proteome encompassing proteins with the ability to generate bioactive peptides (cryptides) and proteins (crypteins) upon proteolytic cleavage. Hence, the cryptome represents a source of peptides with potential pharmacological interest. Among eukaryotic precursor proteins, human apolipoproteins play an important role, since promising bioactive peptides have been identified and characterized from apolipoproteins E, B, and A-I sequences. Human apolipoproteins derived peptides have been shown to exhibit antibacterial, anti-biofilm, antiviral, anti-inflammatory, anti-atherogenic, antioxidant, or anticancer activities in in vitro assays and, in some cases, also in in vivo experiments on animal models. The most interesting Host Defence Peptides (HDPs) identified thus far in human apolipoproteins are described here with a focus on their biological activities applicable to biomedicine. Altogether, reported evidence clearly indicates that cryptic peptides represent promising templates for the generation of new drugs and therapeutics against infectious diseases.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| |
Collapse
|
21
|
Minetti G. Mevalonate pathway, selenoproteins, redox balance, immune system, Covid-19: Reasoning about connections. Med Hypotheses 2020; 144:110128. [PMID: 32758903 PMCID: PMC7373006 DOI: 10.1016/j.mehy.2020.110128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 07/19/2020] [Indexed: 11/29/2022]
Abstract
It has been proposed that a degraded immune system is (one of) the condition(s) that predispose certain subjects to fatal consequences from infection by SARS-CoV-2. It is unknown whether therapeutic regimens to which these patients may have been subjected to in the months/years preceding the infection could be immunocompromising. Statins are among the most widely prescribed cholesterol-lowering drugs. As competitive inhibitors of HMG-CoA-reductase, the key enzyme of the "mevalonate pathway" through which essential compounds, not only cholesterol, are synthesized, statins decrease the levels of cholesterol, and thus LDLs, as an innate defense mechanism, with controversial results in decreasing mortality from cardiovascular disease. Moreover, statins have pleiotropic, mostly deleterious effects on many cell types, including immune cells. In the attempt to decipher the enigma of SARS-CoV-2 infectivology, the hypothesis should be tested whether the population of subjects who succumbed to Covid-19 may have developed a compromised immunity at sub-clinical levels and have become more susceptible to fatal consequences from SARS-Cov-2 infection due to statin therapy.
Collapse
Affiliation(s)
- Giampaolo Minetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
22
|
Morgan AE, Mc Auley MT. Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms. BIOLOGY 2020; 9:E314. [PMID: 33007859 PMCID: PMC7599957 DOI: 10.3390/biology9100314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
The dysregulation of intracellular cholesterol homeostasis is associated with several age-related diseases, most notably cardiovascular disease (CVD). Research in this area has benefitted from using computational modelling to study the inherent complexity associated with the regulation of this system. In addition to facilitating hypothesis exploration, the utility of modelling lies in its ability to represent an array of rate limiting enzymatic reactions, together with multiple feedback loops, which collectively define the dynamics of cholesterol homeostasis. However, to date no model has specifically investigated the effects aging has on this system. This work addresses this shortcoming by explicitly focusing on the impact of aging on hepatic intracellular cholesterol homeostasis. The model was used to investigate the experimental findings that reactive oxygen species induce the total activation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR). Moreover, the model explored the impact of an age-related decrease in hepatic acetyl-CoA acetyltransferase 2 (ACAT2). The model suggested that an increase in the activity of HMGCR does not have as significant an impact on cholesterol homeostasis as a decrease in hepatic ACAT2 activity. According to the model, a decrease in the activity of hepatic ACAT2 raises free cholesterol (FC) and decreases low-density lipoprotein cholesterol (LDL-C) levels. Increased acetyl CoA synthesis resulted in a reduction in the number of hepatic low-density lipoprotein receptors, and increased LDL-C, FC, and cholesterol esters. The rise in LDL-C was restricted by elevated hepatic FC accumulation. Taken together these findings have important implications for healthspan. This is because emerging clinical data suggest hepatic FC accumulation is relevant to the pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is associated with an increased risk of CVD. These pathophysiological changes could, in part, help to explain the phenomenon of increased mortality associated with low levels of LDL-C which have been observed in certain studies involving the oldest old (≥85 years).
Collapse
Affiliation(s)
| | - Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK;
| |
Collapse
|
23
|
Zhou L, Wu Y, Yu S, Shen Y, Ke C. Low-density lipoprotein cholesterol and all-cause mortality: findings from the China health and retirement longitudinal study. BMJ Open 2020; 10:e036976. [PMID: 32801200 PMCID: PMC7430481 DOI: 10.1136/bmjopen-2020-036976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To investigate the relationship between low-density lipoprotein cholesterol (LDL-C) and all-cause mortality among middle-aged and elderly Chinese population. DESIGN Prospective cohort study. SETTING This study used data from the China Health and Retirement Longitudinal Study. PARTICIPANTS Middle-aged and elderly participants with complete data were enrolled for a 4-year follow-up of total mortality and plasma levels of LDL-C, including 4981 male respondents and 5529 female respondents. RESULTS During a 4-year follow-up, there were 305 and 219 deaths in men and women, respectively. Compared with the first quintile (Q1) of LDL-C, the adjusted HRs (95% CIs) were 0.818 (0.531 to 1.260) for Q2, 0.782 (0.507 to 1.208) for Q3, 0.605 (0.381 to 0.962) for Q4 and 0.803 (0.506 to 1.274) for Q5 in men. The results from restricted cubic spine (RCS) showed that when the 20th percentile of LDL-C levels (84 mg/dL) was used as the reference, a lower LDL-C concentration (<84 mg/dL) was associated with a higher 4-year all-cause mortality risk. By contrast, both quintile analysis and RCS analysis did not show a statistically significant association in women. CONCLUSIONS Compared with moderately elevated LDL-C (eg, 117-137 mg/dL), a lower plasma level of LDL-C (eg, ≤84 mg/dL) was associated with an increased risk of 4-year all-cause mortality in middle-aged and elderly Chinese men. The results suggest the potential harmful effect of a quite low level of LDL-C on total mortality.
Collapse
Affiliation(s)
- Liang Zhou
- Liyang Center for Disease Control and Prevention, Liyang, Jiangsu, China
| | - Ying Wu
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaobo Yu
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yueping Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
24
|
Mbikay M, Mayne J, Chrétien M. The enigma of soluble LDLR: could inflammation be the key? Lipids Health Dis 2020; 19:17. [PMID: 32014013 PMCID: PMC6998292 DOI: 10.1186/s12944-020-1199-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Soluble low-density lipoprotein receptor (sLDLR) is the circulating ectodomain of transmembrane LDLR. Its blood level strongly correlates with that of triglycerides (TG). This correlation has eluded satisfactory explanation. Hypertriglyceridemia and shedding of the ectodomain of many transmembrane receptors often accompany inflammatory states. The shedding mostly occurs through cleavage by a disintegrin-and-metalloproteinase-17 (ADAM-17), an enzyme activated by inflammation. It reduces the cellular uptake of TG-loaded lipoproteins, causing their accumulation in circulation; hence the correlation between plasma sLDLR and TG. Soluble LDLR could become a new surrogate marker of inflammation.
Collapse
Affiliation(s)
- Majambu Mbikay
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, 110 avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada. .,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Michel Chrétien
- Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, 110 avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
25
|
Xenoulis PG, Cammarata PJ, Walzem RL, Suchodolski JS, Steiner JM. Serum triglyceride and cholesterol concentrations and lipoprotein profiles in dogs with naturally occurring pancreatitis and healthy control dogs. J Vet Intern Med 2020; 34:644-652. [PMID: 32012351 PMCID: PMC7097643 DOI: 10.1111/jvim.15715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/20/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Previous studies have reported an association between hyperlipidemia and pancreatitis in dogs, but details of this association remain poorly defined. HYPOTHESIS/OBJECTIVES To compare serum triglyceride and cholesterol concentrations and lipoprotein profiles between dogs with naturally occurring pancreatitis and healthy dogs. ANIMALS Seventeen dogs with a clinical diagnosis of pancreatitis (Group 1) and 53 healthy control dogs (Group 2). METHODS Prospective case-control study. RESULTS In Group 1, 3/17 dogs (18%) had hypertriglyceridemia whereas in Group 2, 4/53 dogs (7.5%) had hypertriglyceridemia (odds ratio [OR], 2.63; 95% confidence interval [CI], 0.52-13.14; P = .35). A significant difference was found in serum triglyceride concentrations between Group 1 (median, 67 mg/dL) and Group 2 (median, 54 mg/dL; P = .002). In Group 1, 4/17 dogs (24%) had hypercholesterolemia, whereas 1/53 (1.9%) dogs in Group 2 had hypercholesterolemia (OR, 16; 95% CI, 1.64-155.5; P = .01). No significant difference was found in serum cholesterol concentrations between Group 1 (median, 209 mg/dL) and Group 2 (median, 227 mg/dL; P = .56). Lipoprotein profiles were significantly different between Group 1 and Group 2 dogs (Eigenvalues, 0.6719; R2 = 1.0; P = .001). CONCLUSIONS AND CLINICAL IMPORTANCE Most dogs with pancreatitis (>70%) had serum triglyceride and cholesterol concentrations within reference intervals. In the small percentage of dogs that had hypertriglyceridemia, hypercholesterolemia, or both, increases were mild. Important differences were identified in lipoprotein profiles between dogs with pancreatitis and healthy control dogs. Dogs with pancreatitis had higher low-density lipoprotein fractions and lower triglyceride-rich lipoprotein and high-density lipoprotein fractions than healthy dogs.
Collapse
Affiliation(s)
- Panagiotis G Xenoulis
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.,Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, Karditsa, Greece
| | - Paul J Cammarata
- Laboratory for Cardiovascular Chemistry, Department of Chemistry, Texas A&M University, College Station, Texas
| | - Rosemary L Walzem
- Department of Poultry Science and Graduate Faculty of Nutrition, Texas A&M University, College Station, Texas
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
26
|
Li Y, Liu Z, Yang J, Liu L, Han R. Low-density lipoprotein as an opsonin promoting the phagocytosis of Pseudomonas aeruginosa by U937 cells. J Microbiol 2019; 57:711-716. [PMID: 31089970 DOI: 10.1007/s12275-019-8413-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/19/2018] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
Abstract
Low-density lipoprotein (LDL) was recently reported to be an opsonin, enhancing the phagocytosis of group A Streptococcus (GAS) by human monocytic leukemia U937 cells due to the binding of LDL to some GAS strains. We postulated that LDL might also promote the opsonophagocytosis of Pseudomonas aeruginosa by U937 cells since this bacterium interacts with LDL. In this study, P. aeruginosa (CMCC10104), U937 cells, and human LDL were used in phagocytosis assays to test our hypothesis. Escherichia coli strain BL21, which does not interact with LDL, was used as a negative control. Colony counting and fluorescence microscopy were used to determine the bacterial quantity in the opsonophagocytosis assays. After incubation of U937 cells and P. aeruginosa with LDL (100 µg/ml) for 15 and 30 min, phagocytosis was observed to be increased by 22.71% and 32.90%, respectively, compared to that seen in the LDL-free group. However, LDL did not increase the phagocytosis of E. coli by U937 cells. In addition, we identified CD36 as a major opsonin receptor on U937 cells, since an anti-CD36 monoclonal antibody, but not an anti-CD4 monoclonal antibody, almost completely abolished the opsonophagocytosis of P. aeruginosa by U937 cells.
Collapse
Affiliation(s)
- Yuxin Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Zhi Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Jinli Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Ling Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Runlin Han
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China.
| |
Collapse
|
27
|
Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation-Nature's Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing "the Epidemic" of Chronic Diseases. Front Med (Lausanne) 2018; 5:316. [PMID: 30538987 PMCID: PMC6277637 DOI: 10.3389/fmed.2018.00316] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
Siloed or singular system approach to disease management is common practice, developing out of traditional medical school education. Textbooks of medicine describe a huge number of discrete diseases, usually in a systematic fashion following headings like etiology, pathology, investigations, differential diagnoses, and management. This approach suggests that the body has a multitude of ways to respond to harmful incidences. However, physiology and systems biology provide evidence that there is a simple mechanism behind this phenotypical variability. Regardless if an injury or change was caused by trauma, infection, non-communicable disease, autoimmune disorders, or stress, the typical physiological response is: an increase in blood supply to the area, an increase in white cells into the affected tissue, an increase in phagocytic activity to remove the offending agent, followed by a down-regulation of these mechanisms resulting in healing. The cascade of inflammation is the body's unique mechanism to maintain its integrity in response to macroscopic as well as microscopic injuries. We hypothesize that chronic disease development and progression are linked to uncontrolled or dysfunctional inflammation to injuries regardless of their nature, physical, environmental, or psychological. Thus, we aim to reframe the prevailing approach of management of individual diseases into a more integrated systemic approach of treating the "person as a whole," enhancing the patient experience, ability to a make necessary changes, and maximize overall health and well-being. The first part of the paper reviews the local immune cascades of pro- and anti-inflammatory regulation and the interconnected feedback loops with neural and psychological pathways. The second part emphasizes one of nature's principles at work-system design and efficiency. Continually overwhelming this finely tuned system will result in systemic inflammation allowing chronic diseases to emerge; the pathways of several common conditions are described in detail. The final part of the paper considers the implications of these understandings for clinical care and explore how this lens could shape the physician-patient encounter and health system redesign. We conclude that healthcare professionals must advocate for an anti-inflammatory lifestyle at the patient level as well as at the local and national levels to enhance population health and well-being.
Collapse
Affiliation(s)
- Jeanette M. Bennett
- Department of Psychological Science, StressWAVES Biobehavioral Research Lab, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Glenn Reeves
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - George E. Billman
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Joachim P. Sturmberg
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Foundation President, International Society for Systems and Complexity Sciences for Health, Delaware, United States
| |
Collapse
|
28
|
Abstract
This review intends to summarize recent development on the potential nutrition implications of acute inflammation encountered during critical illness. Different aspects of the inflammatory response and their impact on nutrition management during critical illness will be discussed: the timing of the postinjury metabolic response, the integration of regulatory mechanisms involved in the metabolic response to stress, the oxidative stress, the metabolic and clinical consequences in terms of energy expenditure, use of energy, changes in body composition, and behavior.
Collapse
Affiliation(s)
- Olivier Lheureux
- Department of Intensive Care, CUB-Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-Charles Preiser
- Department of Intensive Care, CUB-Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
29
|
Kaysen GA, Ye X, Raimann JG, Wang Y, Topping A, Usvyat LA, Stuard S, Canaud B, van der Sande FM, Kooman JP, Kotanko P. Lipid levels are inversely associated with infectious and all-cause mortality: international MONDO study results. J Lipid Res 2018; 59:1519-1528. [PMID: 29895699 PMCID: PMC6071781 DOI: 10.1194/jlr.p084277] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular (CV) events are increased 36-fold in patients with end-stage renal disease. However, randomized controlled trials to lower LDL cholesterol (LDL-C) and serum total cholesterol (TC) have not shown significant mortality improvements. An inverse association of TC and LDL-C with all-cause and CV mortality has been observed in patients on chronic dialysis. Lipoproteins also may protect against infectious diseases. We used data from 37,250 patients in the international Monitoring Dialysis Outcomes (MONDO) database to evaluate the association between lipids and infection-related or CV mortality. The study began on the first day of lipid measurement and continued for up to 4 years. We applied Cox proportional models with time-varying covariates to study associations of LDL-C, HDL cholesterol (HDL-C), and triglycerides (TGs) with all-cause, CV, infectious, and other causes of death. Overall, 6,147 patients died (19.2% from CV, 13.2% from infection, and 67.6% from other causes). After multivariable adjustment, higher LDL-C, HDL-C, and TGs were independently associated with lower all-cause death risk. Neither LDL-C nor TGs were associated with CV death, and HDL-C was associated with lower CV risk. Higher LDL-C and HDL-C were associated with a lower risk of death from infection or other non-CV causes. LDL-C was associated with reduced all-cause and infectious, but not CV mortality, which resulted in the inverse association with all-cause mortality.
Collapse
Affiliation(s)
- George A Kaysen
- Department of Medicine, Division of Nephrology, and Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA .,Research Division, Renal Research Institute, New York, NY
| | - Xiaoling Ye
- Research Division, Renal Research Institute, New York, NY
| | | | - Yuedong Wang
- Department of Statistics and Applied Probability, University of California-Santa Barbara, Santa Barbara, CA
| | - Alice Topping
- Research Division, Renal Research Institute, New York, NY
| | - Len A Usvyat
- Research Division, Renal Research Institute, New York, NY.,Fresenius Medical Care North America, Waltham, MA
| | | | | | - Frank M van der Sande
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jeroen P Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter Kotanko
- Research Division, Renal Research Institute, New York, NY.,Icahn School of Medicine at Mount Sinai Health System, New York, NY
| | | |
Collapse
|
30
|
Kaysen GA, Grimes B, Dalrymple LS, Chertow GM, Ishida JH, Delgado C, Segal M, Chiang J, Dwyer T, Johansen KL. Associations of lipoproteins with cardiovascular and infection-related outcomes in patients receiving hemodialysis. J Clin Lipidol 2017; 12:481-487.e14. [PMID: 29361496 DOI: 10.1016/j.jacl.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND In hemodialysis (HD) patients, higher lipid levels are associated with lower mortality. Lipid-lowering therapy does not reduce all-cause mortality or cardiovascular (CV) mortality. Lipoproteins play a role in the innate immune system. Our objective was to determine whether protection from infection might counterbalance adverse CV outcomes associated with lipoproteins. METHODS We examined associations between serum apolipoprotein (Apo) A1, B, C2, C3, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol and triglyceride levels and infectious mortality or hospitalization, CV mortality or hospitalization, and all-cause mortality in 433 prevalent HD patients. Cox models with time-varying apolipoprotein concentrations collected every 6 months for up to 2 years were used for analyses. RESULTS Median follow-up time for all-cause mortality was 2.7 years (25th-75th percentile range: 2.2-3.4 years). One hundred seventy-nine (41%) patients had an infection-related event. In multivariable models, higher Apo B and LDL were associated with lower risks of infection-related outcomes (hazard ratio Apo B 0.92 [95% confidence interval 0.86-0.99 per 10 mg/dL, P = .03]; hazard ratio LDL 0.93 [95% confidence interval 0.87-1.00 per 10 mg/dL, P = .05]). Sixty-three (15%) participants had a CV-related event. No significant associations were observed between lipoproteins and CV outcomes. Eighty-seven (20%) participants died. Higher Apo A1, Apo B, and Apo C3 were associated with lower risks of all-cause mortality. There was no interaction between the use of lipid-lowering medication and any of the outcomes. CONCLUSION Associations of lipoproteins with lower risk of serious infection accompanied by no significant association with CV events may help to explain the paradoxical association between lipids and survival and lack of benefit of lipid-lowering therapies in HD.
Collapse
Affiliation(s)
- George A Kaysen
- Division of Nephrology, Department of Medicine, University of California Davis School of Medicine, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, USA.
| | - Barbara Grimes
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Glenn M Chertow
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie H Ishida
- Division of Nephrology, Department of Medicine, University of California, San Francisco, CA, USA; Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Cynthia Delgado
- Division of Nephrology, Department of Medicine, University of California, San Francisco, CA, USA; Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Mark Segal
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Janet Chiang
- Endocrinology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Division of Endocrinology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Tjien Dwyer
- Division of Nephrology, Department of Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Kirsten L Johansen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA; Division of Nephrology, Department of Medicine, University of California, San Francisco, CA, USA; Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
31
|
Wen D, Luo H, Li T, Wu C, Zhang J, Wang X, Zhang R. Cloning and characterization of an insect apolipoprotein (apolipophorin-II/I) involved in the host immune response of Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:221-228. [PMID: 28830681 DOI: 10.1016/j.dci.2017.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Apolipoproteins are protein components of lipoprotein particles, and are increasingly recognized to be functioning in the innate immune systems of both insects and mammals. Mammalian apolipoprotein B (apoB) is associated with a diverse range of innate immune defenses including suppression of bacterial pathogenesis, virus toxicity neutralization, and inhibition of cytokine releases from immune cells. However, little is known about apoB homologous insect apolipophorin-II/I (apoLp-II/I) in controlling of specific pathogen-host encounters such as microbial infections. In the present study, we describe cDNA cloning and characterization of an apoLp-II/I from Chinese oak silk worm, Antheraea pernyi. The apoLp-II/I cDNA is 10237bp in length, which possesses an open reading frame encoding 3305 amino acids. A consensus cleavage site RGRR presenting from Arg710 to Arg713 implies posttranslational cleavage of this protein. Ap-apoLp-II/I shares high sequence identities with apoLp-II/I in lepidoptera and other insects. In addition, considerable similarities also exist between Ap-apoLp-II/I and human apoB, which basically positioned in first 1000 residues of the amino termini. Tissue distribution and time-course expression results demonstrate that Ap-apoLp-II/I transcripts were detected predominantly in the fat body, less in epidermis and rarely in midgut, while the synthetic apoLp-II/I protein was abundant in hemocytes and plasma instead of the fatbody. Expression of Ap-apoLp-II/I was stimulated in response to bacterial challenge. In addition, our preliminary studies established a novel role for Ap-apoLp-II/I in regulating prophenoloxidase activation system. Taken together, apoLp-II/I may play an essential role in innate responses of Antheraea pernyi.
Collapse
Affiliation(s)
- Daihua Wen
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China; School of Medical Devices, Shenyang Pharmaceutical University, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Tienan Li
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Chunfu Wu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, China.
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China.
| |
Collapse
|
32
|
Lipid testing in infectious diseases: possible role in diagnosis and prognosis. Infection 2017; 45:575-588. [PMID: 28484991 DOI: 10.1007/s15010-017-1022-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Acute infections lead to significant alterations in metabolic regulation including lipids and lipoproteins, which play a central role in the host immune response. In this regard, several studies have investigated the role of lipid levels as a marker of infection severity and prognosis. SCOPE OF REVIEW We review here the role of lipids in immune response and the potential mechanisms underneath. Moreover, we summarize studies on lipid and lipoprotein alterations in acute bacterial, viral and parasitic infections as well as their diagnostic and prognostic significance. Chronic infections (HIV, HBV, HCV) are also considered. RESULTS All lipid parameters have been found to be significantly dearranged during acute infection. Common lipid alterations in this setting include a decrease of total cholesterol levels and an increase in the concentration of triglyceride-rich lipoproteins, mainly very low-density lipoproteins. Also, low-density lipoprotein cholesterol, apolipoprotein A1, low-density lipoprotein cholesterol and apolipoprotein-B levels decrease. These lipid alterations may have prognostic and diagnostic role in certain infections. CONCLUSION Lipid testing may be of help to assess response to treatment in septic patients and those with various acute infections (such as pneumonia, leptospirosis and others). Diagnostically, new onset of altered lipid levels should prompt the clinician to test for underlying infection (such as leishmaniasis).
Collapse
|
33
|
Ried K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review. J Nutr 2016; 146:389S-396S. [PMID: 26764326 DOI: 10.3945/jn.114.202192] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Garlic has been shown to have cardiovascular protective and immunomodulatory properties. OBJECTIVES We updated a previous meta-analysis on the effect of garlic on blood pressure and reviewed the effect of garlic on cholesterol and immunity. METHODS We searched the Medline database for randomized controlled trials (RCTs) published between 1955 and December 2013 on the effect of garlic preparations on blood pressure. In addition, we reviewed the effect of garlic on cholesterol and immunity. RESULTS Our updated meta-analysis on the effect of garlic on blood pressure, which included 20 trials with 970 participants, showed a mean ± SE decrease in systolic blood pressure (SBP) of 5.1 ± 2.2 mm Hg (P < 0.001) and a mean ± SE decrease in diastolic blood pressure (DBP) of 2.5 ± 1.6 mm Hg (P < 0.002) compared with placebo. Subgroup analysis of trials in hypertensive subjects (SBP/DBP ≥140/90 mm Hg) at baseline revealed a larger significant reduction in SBP of 8.7 ± 2.2 mm Hg (P < 0.001; n = 10) and in DBP of 6.1 ± 1.3 mm Hg (P < 0.001; n = 6). A previously published meta-analysis on the effect of garlic on blood lipids, which included 39 primary RCTs and 2300 adults treated for a minimum of 2 wk, suggested garlic to be effective in reducing total and LDL cholesterol by 10% if taken for >2 mo by individuals with slightly elevated concentrations [e.g., total cholesterol >200 mg/dL (>5.5 mmol/L)]. Garlic has immunomodulating effects by increasing macrophage activity, natural killer cells, and the production of T and B cells. Clinical trials have shown garlic to significantly reduce the number, duration, and severity of upper respiratory infections. CONCLUSIONS Our review suggests that garlic supplements have the potential to lower blood pressure in hypertensive individuals, to regulate slightly elevated cholesterol concentrations, and to stimulate the immune system. Garlic supplements are highly tolerated and may be considered as a complementary treatment option for hypertension, slightly elevated cholesterol, and stimulation of immunity. Future long-term trials are needed to elucidate the effect of garlic on cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Karin Ried
- National Institute of Integrative Medicine, Melbourne, Australia
| |
Collapse
|
34
|
Manifold-Wheeler BC, Elmore BO, Triplett KD, Castleman MJ, Otto M, Hall PR. Serum Lipoproteins Are Critical for Pulmonary Innate Defense against Staphylococcus aureus Quorum Sensing. THE JOURNAL OF IMMUNOLOGY 2015; 196:328-35. [PMID: 26608923 DOI: 10.4049/jimmunol.1501835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/30/2015] [Indexed: 01/12/2023]
Abstract
Hyperlipidemia has been extensively studied in the context of atherosclerosis, whereas the potential health consequences of the opposite extreme, hypolipidemia, remain largely uninvestigated. Circulating lipoproteins are essential carriers of insoluble lipid molecules and are increasingly recognized as innate immune effectors. Importantly, severe hypolipidemia, which may occur with trauma or critical illness, is clinically associated with bacterial pneumonia. To test the hypothesis that circulating lipoproteins are essential for optimal host innate defense in the lung, we used lipoprotein-deficient mice and a mouse model of Staphylococcus aureus pneumonia in which invasive infection requires virulence factor expression controlled by the accessory gene regulator (agr) operon. Activation of agr and subsequent virulence factor expression is inhibited by apolipoprotein B, the structural protein of low-density lipoprotein, which binds and sequesters the secreted agr-signaling peptide (AIP). In this article, we report that lipoprotein deficiency impairs early pulmonary innate defense against S. aureus quorum-sensing-dependent pathogenesis. Specifically, apolipoprotein B levels in the lung early postinfection are significantly reduced with lipoprotein deficiency, coinciding with impaired host control of S. aureus agr-signaling and increased agr-dependent morbidity (weight loss) and inflammation. Given that lipoproteins also inhibit LTA- and LPS-mediated inflammation, these results suggest that hypolipidemia may broadly impact posttrauma pneumonia susceptibility to both Gram-positive and -negative pathogens. Together with previous reports demonstrating that hyperlipidemia also impairs lung innate defense, these results suggest that maintenance of normal serum lipoprotein levels is necessary for optimal host innate defense in the lung.
Collapse
Affiliation(s)
- Brett C Manifold-Wheeler
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131; and
| | - Bradley O Elmore
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131; and
| | - Kathleen D Triplett
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131; and
| | - Moriah J Castleman
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131; and
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131; and
| |
Collapse
|
35
|
LDL acts as an opsonin enhancing the phagocytosis of group A Streptococcus by monocyte and whole human blood. Med Microbiol Immunol 2015; 205:155-62. [PMID: 26392394 PMCID: PMC4792331 DOI: 10.1007/s00430-015-0436-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/06/2015] [Indexed: 12/19/2022]
Abstract
Low-density lipoprotein (LDL) binds to group A Streptococcus (GAS) through Sc11 protein, and scavenger receptor CD36 of monocyte mediates the endocytosis of native or modified LDL. Therefore, we hypothesized that LDL might be an opsonin enhancing the phagocytosis of LDL-bound GAS by monocyte. The results showed that LDL could significantly promote U937 cell to phagocytose M28 (ATCC BAA1064) and M41 (ATCC 12373, AM41)-type GAS, and the phagocytosis rates were significantly increased, compared with LDL-free group. LDL, however, did not enhance the phagocytosis of M41 (CMCC 32198, CM41) or M6 (ATCC BAA946)-type GAS since these two strains did not bind to LDL. CD36 was the major scavenger receptor mediating the uptake of LDL-bound GAS by monocyte U937 cells since anti-CD36 antibody abolished the phagocytosis of LDL-opsonized GAS but anti-CD4 antibody did not. Most of AM41-type GAS cells were killed in human blood, whereas only a few CM41-type cells were phagocytosed. Moreover, recombinant Scl1 (rScl1) derived from M41-type GAS could significantly decrease the opsonophagocytosis of AM41 but not CM41-type GAS because the rScl1 competitively blocked the binding of AM41-type GAS to LDL. Therefore, our findings suggest that LDL may be an opsonin to enhance CD36-dependent opsonic phagocytosis of GAS by monocyte.
Collapse
|
36
|
Liu L, Zhou L, Li Y, Bai W, Liu N, Li W, Gao Y, Liu Z, Han R. High-density lipoprotein acts as an opsonin to enhance phagocytosis of group A streptococcus by U937 cells. Microbiol Immunol 2015; 59:419-25. [DOI: 10.1111/1348-0421.12270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Ling Liu
- Research Center of Plasma Lipoprotein Immunology
| | - Lulei Zhou
- Research Center of Plasma Lipoprotein Immunology
| | - Yuxin Li
- Research Center of Plasma Lipoprotein Immunology
| | - Wencheng Bai
- Research Center of Plasma Lipoprotein Immunology
- Key Laboratory of Animal Clinic Diagnosis and Treatment (Ministry of Agriculture of China); Inner Mongolia Agricultural University; Huhhot China
| | - Na Liu
- Research Center of Plasma Lipoprotein Immunology
| | - Wenlong Li
- Research Center of Plasma Lipoprotein Immunology
| | - Yumin Gao
- Research Center of Plasma Lipoprotein Immunology
| | - Zhi Liu
- Research Center of Plasma Lipoprotein Immunology
| | - Runlin Han
- Research Center of Plasma Lipoprotein Immunology
- Key Laboratory of Animal Clinic Diagnosis and Treatment (Ministry of Agriculture of China); Inner Mongolia Agricultural University; Huhhot China
| |
Collapse
|
37
|
Elmore BO, Triplett KD, Hall PR. Apolipoprotein B48, the Structural Component of Chylomicrons, Is Sufficient to Antagonize Staphylococcus aureus Quorum-Sensing. PLoS One 2015; 10:e0125027. [PMID: 25942561 PMCID: PMC4420250 DOI: 10.1371/journal.pone.0125027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/19/2015] [Indexed: 01/09/2023] Open
Abstract
Serum lipoproteins (LP) are increasingly being recognized as dual purpose molecules that contribute to both cholesterol homeostasis and host innate defense. In fact, very low LP levels are associated with increased risk of bacterial infection in critically ill patients. In this respect, we reported that apolipoprotein B100 (apoB100), the 4536 amino acid structural protein of very low density lipoprotein (VLDL) produced by the liver, limits Staphylococcus aureus pathogenesis. S. aureus uses quorum-sensing (QS) via the accessory gene regulator (agr) operon and an autoinducing peptide (AIP) to coordinate expression of over 200 virulence genes. ApoB100 prevents agr activation by binding and sequestering secreted AIP. Importantly, human serum LP are produced not only by the liver, but are also produced by enterocytes, in the form of chylomicrons, during uptake of dietary lipids. In contrast to apoB100 in VLDL, human enterocytes use apoB48, the N-terminal 2152 amino acids (48%) of apoB100, as the structural component of chylomicrons. Interestingly, enteral feeding of critically ill patients has been associated with decreased risk of infectious complications, suggesting chylomicrons could contribute to host innate defense in critically ill patients when serum LP production by the liver is limited during the acute phase response. Therefore, we hypothesized that apoB48 would be sufficient to antagonize S. aureus QS. As expected, isolated apoB48-LP bound immobilized AIP and antagonized agr-signaling. ApoB48- and apoB100-LP inhibited agr activation with IC50s of 3.5 and 2.3 nM, respectively, demonstrating a conserved AIP binding site. Importantly, apoB48-LP antagonized QS, limited morbidity and promoted bacterial clearance in a mouse model of S. aureus infection. This work demonstrates that both naturally occurring forms of apolipoprotein B can antagonize S. aureus QS, and may suggest a previously unrecognized role for chylomicrons and enterocytes in host innate defense against S. aureus QS-mediated pathogenesis.
Collapse
Affiliation(s)
- Bradley O. Elmore
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Kathleen D. Triplett
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Pamela R. Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
38
|
Gonyeau MJ. The spectrum of statin therapy in cancer patients: is there a need for further investigation? Curr Atheroscler Rep 2014; 16:383. [PMID: 24306898 DOI: 10.1007/s11883-013-0383-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although our understanding of the relationship between cancer and statin use continues to improve, it remains a complex association requiring further research focusing on both biologic and clinical end points in a wide range of patient populations. To date, most of the published results are from observational studies detailing the risk of incident cancers or from randomized controlled trials with cardiovascular primary end points and cancer only as a secondary end point. Although there is certainly great value in the information obtained from observational studies, they cannot prove a causal link between statins and cancer, and it would then seem appropriate to design and implement clinical trials. Such studies should consider three main end products of the mevalonate pathway (cholesterol, geranyl pyrophosphate, and farnesyl pyrophosphate) from a mechanistic perspective, as well as the potential for cancer cell mediation with statin use, in addition to pertinent clinical end points including cancer incidence and mortality.
Collapse
Affiliation(s)
- Michael J Gonyeau
- Clinical Professor and Director of Undergraduate Programs, Northeastern University School of Pharmacy, Clinical Pharmacist, Brigham and Women's Hospital, 360 Huntington Ave, Boston, MA, 02115, USA,
| |
Collapse
|
39
|
Wynant N, Duressa TF, Santos D, Van Duppen J, Proost P, Huybrechts R, Vanden Broeck J. Lipophorins can adhere to dsRNA, bacteria and fungi present in the hemolymph of the desert locust: a role as general scavenger for pathogens in the open body cavity. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:7-13. [PMID: 24607637 DOI: 10.1016/j.jinsphys.2014.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 05/27/2023]
Abstract
Desert locusts are characterized by a highly sensitive and effective RNA interference (RNAi) response. Moreover, delivery of dsRNA into the open body cavity will elicit potent silencing effects throughout the body. On the other hand, many other insect species, such as Bombyx mori and Drosophila melanogaster, lack the ability to efficiently spread the RNAi-signal. In this study, we demonstrated that, in the serum of the desert locust, lipophorins adhere to dsRNA-fragments. Lipophorins can be subdivided into high density and low density lipophorins (HDLp and LDLp), according to their buoyant density, and we showed that both types of lipophorins can interact with dsRNA fragments. Furthermore, in the presence of (gram-positive) bacteria or fungi, LDLp induce the formation of pathogen aggregates, while no clear aggregation effects were detected in the presence of HDLp.
Collapse
Affiliation(s)
- Niels Wynant
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Tewodros F Duressa
- Insect Physiology and Molecular Ethology, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Joost Van Duppen
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Paul Proost
- Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, P.O. Box 1030, B-3000 Leuven, Belgium
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| |
Collapse
|
40
|
|
41
|
Enard W. Functional primate genomics—leveraging the medical potential. J Mol Med (Berl) 2012; 90:471-80. [DOI: 10.1007/s00109-012-0901-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
42
|
|
43
|
Song SC, Choi SH, Choi DW, Heo JS, Kim WS, Kim MJ. Potential risk factors for nonalcoholic steatohepatitis related to pancreatic secretions following pancreaticoduodenectomy. World J Gastroenterol 2011; 17:3716-23. [PMID: 21990953 PMCID: PMC3181457 DOI: 10.3748/wjg.v17.i32.3716] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/16/2011] [Accepted: 04/23/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify risk factors for nonalcoholic steatohepatitis following pancreaticoduodenectomy, with a focus on factors related to pancreatic secretions.
METHODS: The medical records of 228 patients who had a pancreaticoduodenectomy over a 16-mo period were reviewed retrospectively. The 193 patients who did not have fatty liver disease preoperatively were included in the final analysis. Hepatic steatosis was diagnosed using the differences between splenic and hepatic attenuation and liver-to-spleen attenuation as measured by non-enhanced computed tomography.
RESULTS: Fifteen patients (7.8%) who showed postoperative hepatic fatty changes were assigned to Group A, and the remaining patients were assigned to Group B. Patient demographics, preoperative laboratory findings (including levels of C-peptide, glucagon, insulin and glucose tolerance test results), operation types, and final pathological findings did not differ significantly between the two groups; however, the frequency of pancreatic fistula (P = 0.020) and the method of pancreatic duct stenting (P = 0.005) showed significant differences between the groups. A multivariate analysis identified pancreatic fistula (HR = 3.332, P = 0.037) and external pancreatic duct stenting (HR = 4.530, P = 0.017) as independent risk factors for the development of postoperative steatohepatitis.
CONCLUSION: Pancreatic fistula and external pancreatic duct stenting were identified as independent risk factors for the development of steatohepatitis following pancreaticoduodenectomy.
Collapse
|
44
|
Chimienti G, Mezzapesa A, Liuzzi GM, Latronico T, Pepe G. Apolipoprotein(a) inhibits lipopolysaccharide-induced IL-6 secretion in human astrocytoma cell line by interfering with lipopolysaccharide signaling. Inflamm Res 2010; 60:329-35. [PMID: 21042834 DOI: 10.1007/s00011-010-0272-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/06/2010] [Accepted: 10/09/2010] [Indexed: 09/29/2022] Open
Abstract
OBJECTIVE To examine the role of lipoprotein(a) [Lp(a)] on the inflammatory response of cells in the nervous system by investigating its effect on lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) secretion. MATERIALS AND METHODS Human astrocytoma U373 cells were treated with recombinant apolipoprotein(a) [r-apo(a)] A10K (175-11 nM), alone or in combination with LPS (100 and 10 ng/ml). IL-6 levels were evaluated by immunoblotting. Statistical analysis was performed by one-way ANOVA. RESULTS r-apo(a) caused dose-dependent inhibition of LPS-induced IL-6 secretion (100 ng/ml LPS, p = 0.0205; 10 ng/ml LPS, p = 0.0005). Pre-treatment of cells with 88 nM r-apo(a), rinsing, and activation with 10 ng/ml LPS did not reverse the inhibition (p = 0.0048), which could be reversed by supplementation with excess serum (5-20%) (p = 0.0454) or recombinant CD14 (2.0-0.05 μg/ml) (p = 0.0230). CONCLUSIONS Our data indicate that apo(a) plays a natural anti-endotoxin role which relies on its interference with cell-associated and serum components of LPS signaling.
Collapse
Affiliation(s)
- Guglielmina Chimienti
- Department of Biochemistry and Molecular Biology, "Ernesto Quagliariello", University of Bari, Via Orabona 4, 70126, Bari, Italy
| | | | | | | | | |
Collapse
|