1
|
Vicente-Silva W, Silva-Freitas FR, Beserra-Filho JIA, Cardoso GN, Silva-Martins S, Sarno TA, Silva SP, Soares-Silva B, Dos Santos JR, da Silva RH, Prado CM, Ueno AK, Lago JHG, Ribeiro AM. Sakuranetin exerts anticonvulsant effect in bicuculline-induced seizures. Fundam Clin Pharmacol 2022; 36:663-673. [PMID: 35156229 DOI: 10.1111/fcp.12768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by an abnormal, spontaneous, and synchronized neuronal hyperactivity. Therapeutic approaches for controlling epileptic seizures are associated with pharmacoresistance and side effects burden. Previous studies reported that different natural products may have neuroprotector effects. Sakuranetin (SAK) is a flavanone with antiparasitic, anti-inflammatory, antimutagenic, antiallergic, and antioxidant activity. In the present work, the effect of SAK on seizures in a model of status epilepticus induced by bicuculline (BIC) in mice was evaluated. Male Swiss mice received an intracerebroventricular injection (i.c.v.) of SAK (1, 10, or 20 mg/kg-SAK1, SAK10, or SAK20). Firstly, animals were evaluated in the open field (OF; 20 min), afterwards in the elevated plus maze (EPM) test (5 min). Next, 30 min prior the administration of BIC (1 mg/kg), mice received an injection of SAK (1 or 10 mg/kg, i.c.v.) and were observed in the OF (20 min) for seizures assessment. After behavioral procedures, immunohistochemical analysis of c-Fos was performed. Our main results showed that the lowest doses of SAK (1 and 10 mg/kg) increased the total distance traveled in the OF, moreover protected against seizures and death on the BIC-induced seizures model. Furthermore, SAK treatment reduced neuronal activity on the dentate gyrus of the BIC-treated animals. Taken together, our results suggest an anticonvulsant effect of SAK, which could be used for the development of anticonvulsants based on natural products from herbal source.
Collapse
Affiliation(s)
- Wilson Vicente-Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | | | | | - Suellen Silva-Martins
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Tamires Alves Sarno
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Sara Pereira Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Beatriz Soares-Silva
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | - Regina Helena da Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Anderson Keity Ueno
- Department of Biosciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | | | |
Collapse
|
2
|
Hamelin S, Stupar V, Mazière L, Guo J, Labriji W, Liu C, Bretagnolle L, Parrot S, Barbier EL, Depaulis A, Fauvelle F. In vivo γ-aminobutyric acid increase as a biomarker of the epileptogenic zone: An unbiased metabolomics approach. Epilepsia 2020; 62:163-175. [PMID: 33258489 DOI: 10.1111/epi.16768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Following surgery, focal seizures relapse in 20% to 50% of cases due to the difficulty of delimiting the epileptogenic zone (EZ) by current imaging or electrophysiological techniques. Here, we evaluate an unbiased metabolomics approach based on ex vivo and in vivo nuclear magnetic resonance spectroscopy (MRS) methods to discriminate the EZ in a mouse model of mesiotemporal lobe epilepsy (MTLE). METHODS Four weeks after unilateral injection of kainic acid (KA) into the dorsal hippocampus of mice (KA-MTLE model), we analyzed hippocampal and cortical samples with high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS). Using advanced multivariate statistics, we identified the metabolites that best discriminate the injected dorsal hippocampus (EZ) and developed an in vivo MEGAPRESS MRS method to focus on the detection of these metabolites in the same mouse model. RESULTS Multivariate analysis of HRMAS data provided evidence that γ-aminobutyric acid (GABA) is largely increased in the EZ of KA-MTLE mice and is the metabolite that best discriminates the EZ when compared to sham and, more importantly, when compared to adjacent brain regions. These results were confirmed by capillary electrophoresis analysis and were not reversed by a chronic exposition to an antiepileptic drug (carbamazepine). Then, using in vivo noninvasive GABA-edited MRS, we confirmed that a high GABA increase is specific to the injected hippocampus of KA-MTLE mice. SIGNIFICANCE Our strategy using ex vivo MRS-based untargeted metabolomics to select the most discriminant metabolite(s), followed by in vivo MRS-based targeted metabolomics, is an unbiased approach to accurately define the EZ in a mouse model of focal epilepsy. Results suggest that GABA is a specific biomarker of the EZ in MTLE.
Collapse
Affiliation(s)
- Sophie Hamelin
- Grenoble Institut Neurosciences (GIN), Grenoble Alpes University, Inserm, U1216, Grenoble, France
| | - Vasile Stupar
- Grenoble Institut Neurosciences (GIN), Grenoble Alpes University, Inserm, U1216, Grenoble, France.,Grenoble Alpes University Hospital Center, Grenoble Alpes University, Inserm, US17, CNRS, UMS 3552, IRMaGe, Grenoble, France
| | - Lucile Mazière
- Grenoble Institut Neurosciences (GIN), Grenoble Alpes University, Inserm, U1216, Grenoble, France
| | - Jia Guo
- Lyon Neuroscience Research Center, NeuroDialyTics, Inserm U1028, CNRS, UMR5292, Lyon 1 University, Bron, France
| | - Wafae Labriji
- Grenoble Institut Neurosciences (GIN), Grenoble Alpes University, Inserm, U1216, Grenoble, France
| | - Chen Liu
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Ludiwine Bretagnolle
- Grenoble Institut Neurosciences (GIN), Grenoble Alpes University, Inserm, U1216, Grenoble, France
| | - Sandrine Parrot
- Lyon Neuroscience Research Center, NeuroDialyTics, Inserm U1028, CNRS UMR5292, Bron, France
| | - Emmanuel L Barbier
- Grenoble Institut Neurosciences (GIN), Grenoble Alpes University, Inserm, U1216, Grenoble, France.,Grenoble Alpes University Hospital Center, Grenoble Alpes University, Inserm, US17, CNRS, UMS 3552, IRMaGe, Grenoble, France
| | - Antoine Depaulis
- Grenoble Institut Neurosciences (GIN), Grenoble Alpes University, Inserm, U1216, Grenoble, France
| | - Florence Fauvelle
- Grenoble Institut Neurosciences (GIN), Grenoble Alpes University, Inserm, U1216, Grenoble, France.,Grenoble Alpes University Hospital Center, Grenoble Alpes University, Inserm, US17, CNRS, UMS 3552, IRMaGe, Grenoble, France
| |
Collapse
|
3
|
Sharma R, Nakamura M, Neupane C, Jeon BH, Shin H, Melnick SM, Glenn KJ, Jang IS, Park JB. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur J Pharmacol 2020; 879:173117. [DOI: 10.1016/j.ejphar.2020.173117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
|
4
|
Godoy LD, Liberato JL, Celani MVB, Gobbo-Neto L, Lopes NP, Dos Santos WF. Disease Modifying Effects of the Spider Toxin Parawixin2 in the Experimental Epilepsy Model. Toxins (Basel) 2017; 9:toxins9090262. [PMID: 28841161 PMCID: PMC5618195 DOI: 10.3390/toxins9090262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults. It is also the one with the highest percentage of drug-resistance to the current available anti-epileptic drugs (AED). Additionaly, most antiepileptic drugs are only able to control seizures in epileptogenesis, but do not decrease the hippocampal neurodegenerative process. TLE patients have a reduced population of interneuronal cells, which express Parvalbumin (PV) proteins. This reduction is directly linked to seizure frequency and severity in the chronic period of epilepsy. There is therefore a need to seek new therapies with a disease-modifying profile, and with efficient antiepileptic and neuroprotective properties. Parawixin2, a compound isolated from the venom of the spider Parawixia bistriata, has been shown to inhibit GABA transporters (GAT) and to have acute anticonvulsant effects in rats. (2) Methods: In this work, we studied the effects of Parawixin2 and Tiagabine (an FDA- approved GAT inhibitor), and compared these effects in a TLE model. Rats were subjected to lithium-pilocarpine TLE model and the main features were evaluated over a chronic period including: (a) spontaneous recurrent seizures (SRS), (b) neuronal loss, and (c) PV cell density in different regions of the hippocampus (CA1, CA3, DG and Hilus). (3) Results: Parawixin2 treatment reduced SRS frequency whereas Tiagabine did not. We also found a significant reduction in neuronal loss in CA3 and in the hilus regions of the hippocampus, in animals treated with Parawixin2. Noteworthy, Parawixin2 significantly reversed PV cell loss observed particularly in DG layers. (4) Conclusions: Parawixin2 exerts a promising neuroprotective and anti-epileptic effect and has potential as a novel agent in drug design.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Laboratório de Neurobiologia e Peçonhas (LNP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, São Paulo, Brazil.
- Instituto de Neurociências e Comportamento (INEC), Av. do Café, 2450, CEP 14050-220 Ribeirão Preto, São Paulo, Brazil.
| | - José Luiz Liberato
- Laboratório de Neurobiologia e Peçonhas (LNP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, São Paulo, Brazil.
- Instituto de Neurociências e Comportamento (INEC), Av. do Café, 2450, CEP 14050-220 Ribeirão Preto, São Paulo, Brazil.
| | - Marcus Vinícius Batista Celani
- Laboratório de Neurobiologia e Peçonhas (LNP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, São Paulo, Brazil.
| | - Leonardo Gobbo-Neto
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Cafe s/n, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil.
| | - Norberto Peporine Lopes
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Cafe s/n, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil.
| | - Wagner Ferreira Dos Santos
- Laboratório de Neurobiologia e Peçonhas (LNP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, São Paulo, Brazil.
- Instituto de Neurociências e Comportamento (INEC), Av. do Café, 2450, CEP 14050-220 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Erfanparast A, Tamaddonfard E, Henareh-Chareh F. Intra-hippocampal microinjection of oxytocin produced antiepileptic effect on the pentylenetetrazol-induced epilepsy in rats. Pharmacol Rep 2017; 69:757-763. [DOI: 10.1016/j.pharep.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/11/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022]
|
6
|
P38 MAPK pathway mediates cognitive damage in pentylenetetrazole-induced epilepsy via apoptosis cascade. Epilepsy Res 2017; 133:89-92. [PMID: 28472735 DOI: 10.1016/j.eplepsyres.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/26/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Our group has previously reported the role of P38 mitogen-activated protein kinase (MAPK) pathway in the memory impairment of pentylenetetrazole (PTZ)-kindled rats. However, any contribution of p38 MAPK pathways to the cognitive dysfunction of PTZ-kindled rats remains unclear. The objective of this study is to verify the relationship between p38 MAPK pathway and cognitive function of epileptic rats, and discuss probable mechanisms. METHODS Thirty male SD rats were divided into three groups, namely, PTZ, inhibitor, and sham groups. All rats except those from the sham group were treated with PTZ to establish temporal lobe epilepsy (TLE) models, whereas the P38 MAPK inhibitor SB 203580 was given to the inhibitor group. Morris water maze test was performed to assay their learning and memory abilities. The levels of phosphorylated p38 (p-p38) and caspase 3 were confirmed using Western blot. RESULTS In the probe test of water maze, the PTZ group had the longest escape latency and least time to pass through the platform. Compared with the PTZ group, the inhibitor group had better performance in escape latency and spatial probe tests. Performance in the water maze test corresponded with the level of p-p38 and caspase 3 in hippocampus. We also found that the down-regulation of p-p38 in the inhibitor group led to down-regulated levels of caspase 3. CONCLUSIONS P38 MAPK pathway contributed to cognitive damage in PTZ-induced epilepsy via apoptosis cascade.
Collapse
|
7
|
Li DH, Yang XF. Remote modulation of network excitability during deep brain stimulation for epilepsy. Seizure 2017; 47:42-50. [DOI: 10.1016/j.seizure.2017.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
|
8
|
Gardner R, Rangaswamy R, Peng YY. Correlations of Clusters of Non-Convulsive Seizure and Magnetic Resonance Imaging in a Case With GAD65-Positive Autoimmune Limbic Encephalitis. J Clin Med Res 2016; 8:616-22. [PMID: 27429684 PMCID: PMC4931809 DOI: 10.14740/jocmr2624w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 01/12/2023] Open
Abstract
With the increased availability of laboratory tests, glutamic acid decarboxylase (GAD) antibody-positive limbic encephalitis has become an emerging diagnosis. The myriad symptoms of limbic encephalitis make the diagnosis challenging. Symptoms range from seizures, memory loss, dementia, confusion, to psychosis. We present a case of a 21-year-old female with GAD65 antibody-positive limbic encephalitis. The case is unique because the clinical course suggests that non-convulsive seizures are the major cause of this patient’s clinical manifestations. The following is the thesis: systemic autoimmune disease, associated with the GAD65 antibody, gives rise to seizures, in particular, non-convulsive seizures. Temporal lobes happen to be the most susceptible sites to develop seizures. The greater part of these seizures can be non-convulsive and hard to recognize without electroencephalogram (EEG) monitoring. The variable symptoms mirror the severity and locations of these seizures. The magnetic resonance imaging (MRI) signal abnormities in the bilateral hippocampus, fornix, and mammillary body correlate with the density of these seizures in the similar manner, which suggests it is secondary to post-ictal edema.
Collapse
Affiliation(s)
- Rachael Gardner
- Renown Institute for Neurosciences, Renown Health; Department of Neurology, University of Nevada, Reno, NV, USA
| | - Rajesh Rangaswamy
- Radiology Department, Renown Institute for Neurosciences, Renown Health, Reno, NV, USA
| | - Yen-Yi Peng
- Renown Institute for Neurosciences, Renown Health; Department of Neurology, University of Nevada, Reno, NV, USA
| |
Collapse
|
9
|
Brown JW, Moeller A, Schmidt M, Turner SC, Nimmrich V, Ma J, Rueter LE, van der Kam E, Zhang M. Anticonvulsant effects of structurally diverse GABA(B) positive allosteric modulators in the DBA/2J audiogenic seizure test: Comparison to baclofen and utility as a pharmacodynamic screening model. Neuropharmacology 2015; 101:358-69. [PMID: 26471422 DOI: 10.1016/j.neuropharm.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 10/04/2015] [Indexed: 02/02/2023]
Abstract
The GABA(B) receptor has been indicated as a promising target for multiple CNS-related disorders. Baclofen, a prototypical orthosteric agonist, is used clinically for the treatment of spastic movement disorders, but is associated with unwanted side-effects, such as sedation and motor impairment. Positive allosteric modulators (PAM), which bind to a topographically-distinct site apart from the orthosteric binding pocket, may provide an improved side-effect profile while maintaining baclofen-like efficacy. GABA, the major inhibitory neurotransmitter in the CNS, plays an important role in the etiology and treatment of seizure disorders. Baclofen is known to produce anticonvulsant effects in the DBA/2J mouse audiogenic seizure test (AGS), suggesting it may be a suitable assay for assessing pharmacodynamic effects. Little is known about the effects of GABA(B) PAMs, however. The studies presented here sought to investigate the AGS test as a pharmacodynamic (PD) screening model for GABA(B) PAMs by comparing the profile of structurally diverse PAMs to baclofen. GS39783, rac-BHFF, CMPPE, A-1295120 (N-(3-(4-(4-chloro-3-fluorobenzyl)-6-methoxy-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide), and A-1474713 (N-(3-(4-(4-chlorobenzyl)-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3H)-yl)phenyl)acetamide) all produced robust, dose-dependent anticonvulsant effects; a similar profile was observed with baclofen. Pre-treatment with the GABA(B) antagonist SCH50911 completely blocked the anticonvulsant effects of baclofen and CMPPE in the AGS test, indicating such effects are likely mediated by the GABA(B) receptor. In addition to the standard anticonvulsant endpoint of the AGS test, video tracking software was employed to assess potential drug-induced motor side-effects during the acclimation period of the test. This analysis was sensitive to detecting drug-induced changes in total distance traveled, which was used to establish a therapeutic index (TI = hypoactivity/anticonvulsant effects). Calculated TIs for A-1295120, CMPPE, rac-BHFF, GS39783, and A-1474713 were 5.31x, 5.00x, 4.74x, 3.41x, and 1.83x, respectively, whereas baclofen was <1. The results presented here suggest the DBA/2J mouse AGS test is a potentially useful screening model for detecting PD effects of GABA(B) PAMs and can provide an initial read-out on target-related motor side-effects. Furthermore, an improved TI was observed for PAMs compared to baclofen, indicating the PAM approach may be a viable therapeutic alternative to baclofen.
Collapse
Affiliation(s)
- Jordan W Brown
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States.
| | - Achim Moeller
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Martin Schmidt
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Sean C Turner
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Volker Nimmrich
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Junli Ma
- Drug Metabolism and Pharmacokinetics, AbbVie, Inc., North Chicago, IL 60064, United States
| | - Lynne E Rueter
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States
| | - Elizabeth van der Kam
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Min Zhang
- Neuroscience Discovery, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States
| |
Collapse
|
10
|
Pinto A, Tamborini L, Pennacchietti E, Coluccia A, Silvestri R, Cullia G, De Micheli C, Conti P, De Biase D. Bicyclic γ-amino acids as inhibitors of γ-aminobutyrate aminotransferase. J Enzyme Inhib Med Chem 2015; 31:295-301. [DOI: 10.3109/14756366.2015.1021251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrea Pinto
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Eugenia Pennacchietti
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, Latina, Italy, and
| | - Antonio Coluccia
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Romano Silvestri
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy
| | - Gregorio Cullia
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Paola Conti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy,
| | - Daniela De Biase
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, Latina, Italy, and
| |
Collapse
|
11
|
Hadera MG, Eloqayli H, Jaradat S, Nehlig A, Sonnewald U. Astrocyte-neuronal interactions in epileptogenesis. J Neurosci Res 2015; 93:1157-64. [DOI: 10.1002/jnr.23584] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Mussie Ghezu Hadera
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | - Haytham Eloqayli
- Department of Neuroscience; Faculty of Medicine; Jordan University of Science and Technology; Irbid Jordan
| | - Saied Jaradat
- Princess Haya Biotechnology Center; Jordan University of Science and Technology; Irbid Jordan
| | - Astrid Nehlig
- INSERM U1129 "Infantile Epilepsies and Brain Plasticity"; Paris, France; Paris Descartes University-Sorbonne Paris Cité; Paris France
- CEA, Gif sur Yvette; France
| | - Ursula Sonnewald
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| |
Collapse
|
12
|
Schousboe A, Madsen KK, Barker-Haliski ML, White HS. The GABA Synapse as a Target for Antiepileptic Drugs: A Historical Overview Focused on GABA Transporters. Neurochem Res 2014; 39:1980-7. [DOI: 10.1007/s11064-014-1263-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
|
13
|
Hui Yin Y, Ahmad N, Makmor-Bakry M. Pathogenesis of epilepsy: challenges in animal models. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:1119-32. [PMID: 24494063 PMCID: PMC3909622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/02/2013] [Indexed: 11/13/2022]
Abstract
Epilepsy is one of the most common chronic disorders affecting individuals of all ages. A greater understanding of pathogenesis in epilepsy will likely provide the basis fundamental for development of new antiepileptic therapies that aim to prevent the epileptogenesis process or modify the progression of epilepsy in addition to treatment of epilepsy symptomatically. Therefore, several investigations have embarked on advancing knowledge of the mechanism underlying epileptogenesis, understanding in mechanism of pharmacoresistance and discovering antiepileptogenic or disease-modifying therapy. Animal models play a crucial and significant role in providing additional insight into mechanism of epileptogenesis. With the help of these models, epileptogenesis process has been demonstrated to be involved in various molecular and biological pathways or processes. Hence, this article will discuss the known and postulated mechanisms of epileptogenesis and challenges in using the animal models.
Collapse
Affiliation(s)
- Yow Hui Yin
- Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurulumi Ahmad
- Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Makmor-Bakry
- Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,Corresponding author: Mohd Makmor-Bakry. Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia. Tel: +60392897244; Fax: +60326983271;
| |
Collapse
|
14
|
Van Liefferinge J, Massie A, Portelli J, Di Giovanni G, Smolders I. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 2013; 7:139. [PMID: 24009559 PMCID: PMC3757300 DOI: 10.3389/fncel.2013.00139] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/11/2013] [Indexed: 12/18/2022] Open
Abstract
The vesicular neurotransmitter transporters (VNTs) are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3), the vesicular excitatory amino acid transporter (VEAT), the vesicular nucleotide transporter (VNUT), vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT) and the vesicular γ-aminobutyric acid (GABA) transporter (VGAT) in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE) and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies.
Collapse
|
15
|
Wu Y, Janetopoulos C. Systematic analysis of γ-aminobutyric acid (GABA) metabolism and function in the social amoeba Dictyostelium discoideum. J Biol Chem 2013; 288:15280-90. [PMID: 23548898 DOI: 10.1074/jbc.m112.427047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several "early" developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development.
Collapse
Affiliation(s)
- Yuantai Wu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
16
|
Darrah SD, Miller MA, Ren D, Hoh NZ, Scanlon JM, Conley YP, Wagner AK. Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Res 2012; 103:180-94. [PMID: 22840783 DOI: 10.1016/j.eplepsyres.2012.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022]
Abstract
Post traumatic seizures (PTS) occur frequently after traumatic brain injury (TBI). Since gamma-amino butyric acid (GABA) neurotransmission is central to excitotoxicity and seizure development across multiple models, we investigated how genetic variability for glutamic acid decarboxylase (GAD) influences risk for PTS. Using both a tagging and functional single nucleotide polymorphism (SNP) approach, we genotyped the GAD1 and GAD2 genes and linked them with PTS data, regarding time to first seizure, obtained for 257 adult subjects with severe TBI. No significant associations were found for GAD2. In the GAD1 gene, the tagging SNP (tSNP) rs3828275 was associated with an increased risk for PTS occurring <1 wk. The tSNP rs769391 and the functional SNP rs3791878 in the GAD1 gene were associated with increased PTS risk occurring 1 wk-6 mo post-injury. Both risk variants conferred an increased susceptibility to PTS compared to subjects with 0-1 risk variant. Also, those with haplotypes having both risk variants had a higher PTS risk 1 wk-6 mo post-injury than those without these haplotypes. Similarly, diplotype analysis showed those with 2 copies of the haplotype containing both risk alleles were at the highest PTS risk. These results implicate genetic variability within the GABA system in modulating the development of PTS.
Collapse
Affiliation(s)
- Shaun D Darrah
- University of Pittsburgh, Department of Physical Medicine & Rehabilitation, 3471 Fifth Avenue, Suite 202, Pittsburgh, PA 15213, United States.
| | | | | | | | | | | | | |
Collapse
|
17
|
Pan JW, Duckrow RB, Spencer DD, Avdievich NI, Hetherington HP. Selective homonuclear polarization transfer for spectroscopic imaging of GABA at 7T. Magn Reson Med 2012; 69:310-6. [PMID: 22505305 DOI: 10.1002/mrm.24283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/13/2012] [Indexed: 12/29/2022]
Abstract
We develop and implement a selective homonuclear polarization transfer method for the detection of 3.0 ppm C-4 GABA resonance by spectroscopic imaging in the human brain at 7T. This single shot method is demonstrated with simulations and phantoms, which achieves comparable efficiency of detection to that of J-difference editing. The macromolecule resonance that commonly co-edits with GABA is suppressed at 7T through use of a narrow band preacquisition suppression pulse. This technique is implemented in humans with an eight channel transceiver array and high degree B(0) shimming to measure supplementary motor area and thalamic GABA in controls (n = 8) and epilepsy patients (n = 8 total). We find that the GABA/N-acetyl aspartate ratio in the thalamus of control volunteers, well controlled and poorly controlled epilepsy patients are 0.053 ± 0.012 (n = 8), 0.090 ± 0.012 (n = 2), and 0.038 ± 0.009 (n = 6), respectively.
Collapse
Affiliation(s)
- J W Pan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | |
Collapse
|
18
|
Streeter CC, Gerbarg PL, Saper RB, Ciraulo DA, Brown RP. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. Med Hypotheses 2012; 78:571-9. [PMID: 22365651 DOI: 10.1016/j.mehy.2012.01.021] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/10/2012] [Indexed: 01/23/2023]
Abstract
A theory is proposed to explain the benefits of yoga practices in diverse, frequently comorbid medical conditions based on the concept that yoga practices reduce allostatic load in stress response systems such that optimal homeostasis is restored. It is hypothesized that stress induces (1) imbalance of the autonomic nervous system (ANS) with decreased parasympathetic nervous system (PNS) and increased sympathetic nervous system (SNS) activity, (2) underactivity of the gamma amino-butyric acid (GABA) system, the primary inhibitory neurotransmitter system, and (3) increased allostatic load. It is further hypothesized that yoga-based practices (4) correct underactivity of the PNS and GABA systems in part through stimulation of the vagus nerves, the main peripheral pathway of the PNS, and (5) reduce allostatic load. Depression, epilepsy, post traumatic stress disorder (PTSD), and chronic pain exemplify medical conditions that are exacerbated by stress, have low heart rate variability (HRV) and low GABAergic activity, respond to pharmacologic agents that increase activity of the GABA system, and show symptom improvement in response to yoga-based interventions. The observation that treatment resistant cases of epilepsy and depression respond to vagal nerve stimulation corroborates the need to correct PNS underactivity as part of a successful treatment plan in some cases. According to the proposed theory, the decreased PNS and GABAergic activity that underlies stress-related disorders can be corrected by yoga practices resulting in amelioration of disease symptoms. This has far-reaching implications for the integration of yoga-based practices in the treatment of a broad array of disorders exacerbated by stress.
Collapse
Affiliation(s)
- C C Streeter
- Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
19
|
Abstract
A significant proportion of the childhood epilepsies have a genetic component. Therefore, animal models that can be bred for seizure expression may provide important information regarding the mechanisms by which molecular defects result in the neuronal hyperexcitability states collectively termed "epilepsy." Because of the rate and ease of breeding, rodent models are the most commonly used. The genetically epilepsy-prone rat has motor seizures in response to auditory stimuli. It is likely that the seizures are generated in the inferior colliculus because of an abnormality in the noradrenergic system. The seizure predisposition is inherited as an autosomal dominant trait. The genetic absence epilepsy rat has age-related spontaneous seizures characterized by motor arrest and head drops that are correlated with generalized spike-wave on the electroencephalogram (EEG). The seizure generating mechanism appears to be located in the lateral thalamic nuclei. The epileptic mongolian gerbil demonstrates behavioral arrest followed by myoclonic, tonic, and tonic-clonic seizures in response to unfamiliar environments. The underlying neuroanatomy involves hippocampal-cortical interactions indicative of a partial epilepsy. The tottering mouse has absence and myoclonic seizures, a 6- to 7-Hz ictal spike-wave EEG, and noradrenergic hyperinnervation that are linked to a mutation on chromosome 8. Hippocampal network hyperexcitability has been found with normal neuronal intrinsic properties. Stargazer is a mouse mutant with almost identical clinical and electrographic features as found in tottering. However, the genetic defect is located on chromosome 15 and no abnormalities of norepinephrine have been discovered. The El mouse demonstrates ictal automatisms in response to vestibular stimulation. Metabolic and structural abnormalities have been found in the hippocampus. Linkage to chromosomes 9 and 2 have been reported recently. The dilute brown agouiti mouse demonstrates motor seizures in response to auditory stimuli. Chromosomes 4 and 17 are linked to seizure expression. Thus, a variety of models exist to study the genetic, biochemical, structural and electrophysiological mechanisms that underlie the predisposition and expression of the inherited epilepsies.
Collapse
Affiliation(s)
- J R Buchhalter
- Department of Neurology, Oregon Health Sciences University, Portland
| |
Collapse
|
20
|
|
21
|
Doelken MT, Hammen T, Bogner W, Mennecke A, Stadlbauer A, Boettcher U, Doerfler A, Stefan H. Alterations of intracerebral γ-aminobutyric acid (GABA) levels by titration with levetiracetam in patients with focal epilepsies. Epilepsia 2010; 51:1477-82. [DOI: 10.1111/j.1528-1167.2010.02544.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Tolman JA, Faulkner MA. Vigabatrin: a comprehensive review of drug properties including clinical updates following recent FDA approval. Expert Opin Pharmacother 2009; 10:3077-89. [DOI: 10.1517/14656560903451690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Recruitment of motor cortex inhibition differentiates between generalized and focal epilepsy. Epilepsy Res 2009; 84:210-6. [DOI: 10.1016/j.eplepsyres.2009.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/23/2009] [Accepted: 02/01/2009] [Indexed: 11/23/2022]
|
24
|
Mattson RH, Petroff OA, Rothman D, Behar K. Vigabatrin: effect on brain GABA levels measured by nuclear magnetic resonance spectroscopy. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 2009; 162:27-30. [PMID: 7495186 DOI: 10.1111/j.1600-0404.1995.tb00496.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vigabatrin is undoubtedly one of the most exciting anti-epilepsy drugs in use today. Many open and controlled clinical trials have confirmed that it is particularly effective in controlling partial epileptic seizures with or without secondary generalization. Vigabatrin acts to increase GABA levels in the presynaptic nerve terminal by inhibiting the activity of GABA-transaminase. There is no direct correlation between the blood or brain concentration of vigabatrin and its clinical effect, so monitoring vigabatrin levels is not predictive of patient response. However, it is possible to relate the activity of vigabatrin to levels of GABA in the brain, measured by nuclear magnetic resonance spectroscopy (NMRS). NMRS studies show that following administration of vigabatrin, brain concentrations of GABA rise to about 2-3 times their baseline values. This 'extra' GABA is held within the nerve terminal, and is only released during synaptic transmission. Although there appears to be a clear dose-response relationship up to 3 g/day, it is not well documented if higher doses result in proportionately higher brain GABA levels. This finding seems to support the results of clinical studies suggesting that the optimal dose of vigabatrin may be 3 g/day. There is also some evidence for a correlation between the concentration of GABA in the brain and the clinical outcome. Continuing investigations using NMRS aim to confirm these preliminary findings, and to determine the time course and extent of changes in brain GABA levels after vigabatrin administration.
Collapse
Affiliation(s)
- R H Mattson
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
25
|
Audo I, Robson AG, Holder GE, Moore AT. The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv Ophthalmol 2008; 53:16-40. [PMID: 18191655 DOI: 10.1016/j.survophthal.2007.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inner retinal dysfunction is encountered in a number of retinal disorders, either inherited or acquired, as a primary or predominant defect. Fundus examination is rarely diagnostic in these disorders, although some show characteristic features, and careful electrophysiological assessment of retinal function is needed for accurate diagnosis. The ERG in inner retinal dysfunction typically shows a negative waveform with a preserved a-wave and a selectively reduced b-wave. Advances in retinal physiology and molecular genetics have led to a greater understanding of the pathogenesis of these disorders. This review summarizes current knowledge on normal retinal physiology, the investigative techniques used and the range of clinical disorders in which there is predominantly inner retinal dysfunction.
Collapse
|
26
|
Streeter CC, Jensen JE, Perlmutter RM, Cabral HJ, Tian H, Terhune DB, Ciraulo DA, Renshaw PF. Yoga Asana sessions increase brain GABA levels: a pilot study. J Altern Complement Med 2007; 13:419-26. [PMID: 17532734 DOI: 10.1089/acm.2007.6338] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The aim of this study was to compare changes in brain gamma-aminobutyric (GABA) levels associated with an acute yoga session versus a reading session. It was hypothesized that an individual yoga session would be associated with an increase in brain GABA levels. DESIGN This is a parallel-groups design. SETTINGS/LOCATION Screenings, scan acquisitions, and interventions took place at medical school-affiliated centers. SUBJECTS The sample comprised 8 yoga practitioners and 11 comparison subjects. INTERVENTIONS Yoga practitioners completed a 60-minute yoga session and comparison subjects completed a 60-minute reading session. OUTCOME MEASURES GABA-to-creatine ratios were measured in a 2-cm axial slab using magnetic resonance spectroscopic imaging immediately prior to and immediately after interventions. RESULTS There was a 27% increase in GABA levels in the yoga practitioner group after the yoga session (0.20 mmol/kg) but no change in the comparison subject group after the reading session ( -0.001 mmol/kg) (t = -2.99, df = 7.87, p = 0.018). CONCLUSIONS These findings demonstrate that in experienced yoga practitioners, brain GABA levels increase after a session of yoga. This suggests that the practice of yoga should be explored as a treatment for disorders with low GABA levels such as depression and anxiety disorders. Future studies should compare yoga to other forms of exercise to help determine whether yoga or exercise alone can alter GABA levels.
Collapse
Affiliation(s)
- Chris C Streeter
- Division of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Katayama S, Irifune M, Kikuchi N, Takarada T, Shimizu Y, Endo C, Takata T, Dohi T, Sato T, Kawahara M. Increased γ-Aminobutyric Acid Levels in Mouse Brain Induce Loss of Righting Reflex, but Not Immobility, in Response to Noxious Stimulation. Anesth Analg 2007; 104:1422-9, table of contents. [PMID: 17513635 DOI: 10.1213/01.ane.0000261519.04083.3e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The general anesthetic state comprises behavioral and perceptual components, including amnesia, unconsciousness, and immobility. gamma-Aminobutyric acidergic (GABAergic) inhibitory neurotransmission is an important target for anesthetic action at the in vitro cellular level. In vivo, however, the functional relevance of enhancing GABAergic neurotransmission in mediating essential components of the general anesthetic state is unknown. Gabaculine is a GABA-transaminase inhibitor that inhibits degradation of released GABA, and consequently increases endogenous GABA in the central nervous system. Here, we examined, behaviorally, the ability of increased GABA levels to produce components of the general anesthetic state. METHODS All drugs were administered systemically in adult male ddY mice. To assess the general anesthetic components, two end-points were used. One was loss of righting reflex (LORR; as a measure of unconsciousness); the other was loss of movement in response to tail-clamp stimulation (as a measure of immobility). RESULTS Gabaculine induced LORR in a dose-dependent fashion with a 50% effective dose of 100 (75-134; 95% confidence limits) mg/kg. The behavioral and microdialysis studies revealed that the endogenous GABA-induced LORR occurred in a brain concentration-dependent manner. However, even larger doses of gabaculine (285-400 mg/kg) produced no loss of tail-clamp response. In contrast, all the tested volatile anesthetics concentration-dependently abolished both righting and tail-clamp response, supporting the evidence that volatile anesthetics act on a variety of molecular targets. CONCLUSIONS These findings indicate that LORR is associated with enhanced GABAergic neurotransmission, but that immobility in response to noxious stimulation is not, suggesting that LORR and immobility are mediated through different neuronal pathways and/or regions in the central nervous system.
Collapse
Affiliation(s)
- Sohtaro Katayama
- Department of Dental Anesthesiology, Division of Clinical Medical Science, Programs for Applied Biomedicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
This article reviews several retrospective case series and reported adverse events regarding common ocular adverse effects related to systemic therapy. It is not intended as a comprehensive summary of these well described adverse drug reactions, nor is it intended to cover the complete spectrum of all ocular adverse effects of systemic therapy. Many systemic drugs may produce ocular toxicity, including bisphosphonates, topiramate, vigabatrin, isotretinoin and other retinoids, amiodarone, ethambutol, chloroquine and hydroxychloroquine, tamoxifen, quetiapine, cyclo-oxygenase (COX)-2 inhibitors, erectile dysfunction agents and some herbal medications. For this review, the certainty of the adverse effect profile of each medication was evaluated according to the WHO Causality Assessment Guide.A certain relationship has been established for pamidronate and alendronate as causes of scleritis, uveitis, conjunctivitis and blurred vision. Topiramate has been established as adversely causing symptoms consistent with acute angle-closure glaucoma, typically bilateral. Vigabatrin has been shown to cause bilateral irreversible visual field defects attributed to underlying medication-induced retinal pathology. Isotretinoin should be considered in the differential diagnosis of any patient with pseudotumour cerebri. Patients taking amiodarone and hydroxychloroquine should be monitored and screened regularly for development of optic neuropathy and maculopathy, respectively. Sildenafil has been reported to cause several changes in visual perception and is a possible, not yet certain, cause of anterior ischaemic optic neuropathy. Patients taking tamoxifen should also be monitored for development of dose-dependent maculopathy and decreased colour vision. COX-2 inhibitors should be included in the differential diagnosis of reversible conjunctivitis. Several herbal medications including canthaxanthine, chamomile, datura, Echinacea purpurea, Ginkgo biloba and liquorice have also been associated with several ocular adverse effects. It is the role of all healthcare professionals to detect, treat and educate the public about adverse reactions to medications as they are an important health problem.
Collapse
Affiliation(s)
- Ricardo M Santaella
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | | |
Collapse
|
29
|
Van Dort ME, Gildersleeve DL, Wieland DM. Synthesis of [2-{(4-chlorophenyl) (4-[125I]iodophenyl)} methoxyethyl]-1-piperidine-3-carboxylic acid, [125I]CIPCA: A potential radiotracer for GABA uptake sites. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580361008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Tekgul H, Serdaroğlu G, Karapinar B, Polat M, Yurtsever S, Tosun A, Coker M, Gokben S. Vigabatrin caused rapidly progressive deterioration in two cases with early myoclonic encephalopathy associated with nonketotic hyperglycinemia. J Child Neurol 2006; 21:82-4. [PMID: 16551461 DOI: 10.1177/08830738060210011801] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vigabatrin, a structural analogue of gamma-aminobutyric acid (GABA), is used for the treatment of generalized and partial seizures in infants. The drug inhibits the GABA transaminase and elevates the GABA concentration in the brain. Here we present the vigabatrin experience in two patients with early myoclonic encephalopathy owing to nonketotic hyperglycinemia (glycine encephalopathy). Both patients had early infantile seizures characterized by fragmentary myoclonic jerks associated with burst-suppression pattern on electroencephalography. Nonketotic hyperglycinemia was diagnosed with elevated cerebrospinal fluid and plasma glycine levels. The seizures were initially thought to be infantile spasms, and vigabatrin (50 mg /kg/day) was started for the treatment of seizures. Rapidly progressive deterioration was noticed after a few days. Acute encephalopathy associated with sleepiness and respiratory failure developed. Vigabatrin produced acute encephalopathy, which regressed in a few days after vigabatrin was stopped in the first patient. However, in the second case, despite the discontinuation of vigabatrin, there was no recovery of general conditions. Our observations in two cases indicate the risk of using vigabatrin in patients with nonketotic hyperglycinemia. The elevated GABA concentration in the brain can enhance the encephalopathy, together with the elevated levels of glycine. (J Child Neurol 2006;21:82-84).
Collapse
Affiliation(s)
- Hasan Tekgul
- Department of Pediatrics, Division of Child Neurology, University Medical School, Izmir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Becker A, Schmitz M, Grecksch G. Kindling modifies morphine, cocaine and ethanol place preference. Exp Brain Res 2005; 168:33-40. [PMID: 16096784 DOI: 10.1007/s00221-005-0081-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/08/2005] [Indexed: 11/24/2022]
Abstract
Brailowsky and Garcia (1999) proposed the existence of a relationship between epilepsy and addiction. To prove this hypothesis, pentylenetetrazol kindled rats were tested in the conditioned place preference (CPP) paradigm for their reaction to various addictive drugs with different modes of action (morphine, cocaine and ethanol). In separate experiments, locomotor activity and body temperature after application of the same drugs were tested in kindled and non-kindled rats. In the CPP experiment there were significant differences between both groups of rats. Non-kindled animals showed place preference to morphine (5.0 mg/kg) or cocaine (20.0 mg/kg). This reaction was abolished in the kindled rats. Moreover, control rats demonstrated aversion to 2.0 g/kg ethanol. However, ethanol aversion was not detectable in kindled rats. Moreover, there was no difference between non-kindled and kindled rats in locomotor activity and body temperature after morphine (1.0 and 5.0 mg/kg), cocaine (10.0 and 20.0 mg/kg), or ethanol (0.5 and 2.0 g/kg) application. This suggests alterations in reward systems as a consequence of kindling. It is hypothesised that GABAergic neurones in the ventral tegmental area might play a major role in the alterations found.
Collapse
Affiliation(s)
- Axel Becker
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Faculty of Medicine, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | | | | |
Collapse
|
32
|
Melone M, Barbaresi P, Fattorini G, Conti F. Neuronal localization of the GABA transporter GAT-3 in human cerebral cortex: A procedural artifact? J Chem Neuroanat 2005; 30:45-54. [PMID: 15923108 DOI: 10.1016/j.jchemneu.2005.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/08/2005] [Accepted: 04/08/2005] [Indexed: 12/26/2022]
Abstract
Gamma-amino butyric acid (GABA) plasma membrane transporters (GATs) contribute to the modulation of GABA's actions and are implicated in neuropsychiatric diseases. In this study, the localization of GAT-3, the major glial GAT, was investigated in human cortex using immunocytochemical techniques. In prefrontal and temporal cortices, GAT-3 immunoreactivity (ir) was present throughout the depth of the cortex, both in puncta and in neurons. GAT-3-positive puncta were dispersed in the neuropil or closely related to cell bodies; neuronal staining was in perikarya, especially of pyramidal cells, and proximal dendrites. Electron microscopic studies showed that GAT-3 ir was in astrocytic processes as well as in neuronal elements. All GAT-3-positive neurons co-expressed heat shock protein 70. To test the possibility that the collection procedure of human samples induced the expression of GAT-3 in neurons which normally do not express it, we analyzed rat cortical tissue resected using the same procedure and found that numerous neurons are GAT-3-positive and that they co-express heat shock protein 70. Results show that in human cortex GAT-3 is expressed in astrocytic processes and in neurons and suggest that neuronal expression is related to the procedure used for collecting human samples.
Collapse
Affiliation(s)
- Marcello Melone
- Department of Neurosciences, Section of Physiology, Università Politecnica delle Marche, Via Tronto 10/A, Torrette di Ancona, I-60020 Ancona, Italy
| | | | | | | |
Collapse
|
33
|
Blake MG, Boccia MM, Acosta GB, Baratti CM. Posttraining administration of pentylenetetrazol dissociates gabapentin effects on memory consolidation from that on memory retrieval process in mice. Neurosci Lett 2004; 368:211-5. [PMID: 15351451 DOI: 10.1016/j.neulet.2004.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/05/2004] [Accepted: 07/09/2004] [Indexed: 11/26/2022]
Abstract
Gabapentin (GBP), an anticonvulsant drug, 10 mg/kg, i.p., but not 100 mg/kg, i.p., enhanced retention of an inhibitory avoidance task when given 20 min after training, as indicated by retention performance 48 h later. The immediate post-training administration of pentylenetetrazol (PTZ, 45 mg/kg, i.p.) impaired retention performance. The amnesic effects of the convulsant drug PTZ were not influenced by GBP at any level of doses. However, GBP 100 mg/kg, but not 10 mg/kg, delayed the latency to first clonic body seizures and decreased the duration of convulsion induced by PTZ. The enhancing effect of GBP on retention was not prevented by the opiate receptor antagonist, naltrexone (0.01 mg/kg, i.p.), which completely prevented the impairment of retention caused by PTZ. Further, naltrexone did not modify the convulsions induced by PTZ. In mice pretreated with naltrexone and that received PTZ, the administration of GBP again, enhanced retention performance during the retention test. Since previous results indicate that the amnesic action of PTZ are due to an effect on memory retrieval, the present results provide additional pharmacological evidence suggesting that GBP influenced memory consolidation and not memory retrieval of an inhibitory avoidance task in mice.
Collapse
Affiliation(s)
- Mariano G Blake
- Laboratorio de Neurofarmacología de Procesos de la Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
34
|
Mares P, Slamberová R. Biphasic action of vigabatrin on cortical epileptic after-discharges in rats. Naunyn Schmiedebergs Arch Pharmacol 2004; 369:305-11. [PMID: 14767635 DOI: 10.1007/s00210-004-0865-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 12/20/2003] [Indexed: 10/26/2022]
Abstract
The time course of the anticonvulsant effect of vigabatrin against cortically induced epileptic after-discharges (ADs) was studied in freely moving rats with implanted electrodes. Adult rats (n=30) were exposed to five stimulation sessions each consisting of six stimulation series at 20-min intervals. The first session was a control one, then two groups of animals (n=10 each) were given vigabatrin (600 or 1,200 mg/kg i.p.), the control animals received physiological saline. Stimulation sessions were repeated 1, 24, 48, and 96 hours after the injection. Control animals exhibited an increased transition from the spike-and-wave type of AD to the second, "limbic" type and an increased intensity of movements accompanying stimulation. ADs in the second and subsequent sessions were, however, shorter than in the first session. Vigabatrin facilitated the transition to the second type of AD 1 h after administration but suppressed this transition as well as decreased the number of stimulations eliciting ADs 48 h later. AD duration and the severity of clonic seizures accompanying spike-and-wave ADs were influenced similarly. The effects of the lower dose of vigabatrin were more marked than those of the higher dose. The biphasic action of vigabatrin in our model might be due either to uneven changes of GABA concentration in different brain structures or to an additional mechanism of action. Our results in a cortical model of seizure demonstrate that the sequence of pro- and anticonvulsant actions of vigabatrin is not restricted to seizures of limbic origin and might represent a general phenomenon.
Collapse
Affiliation(s)
- Pavel Mares
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
35
|
Duboc A, Hanoteau N, Simonutti M, Rudolf G, Nehlig A, Sahel JA, Picaud S. Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Ann Neurol 2004; 55:695-705. [PMID: 15122710 DOI: 10.1002/ana.20081] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epileptic patients experienced an irreversible loss of their peripheral visual field upon treatment with vigabatrin (gamma-vinyl GABA), an inhibitor of the GABA degrading enzyme, GABA transaminase. Subsequently, central visual function was reported to also be irreversibly altered. This visual loss is associated with a decrease in the electroretinogram measurement localizing the deficit to the retina. To investigate its cellular origin, we treated rats daily with vigabatrin for 45 days. Two days after arresting this treatment, rats exhibited an irreversible decrease in the photopic electroretinogram, the flicker response, and the oscillatory potentials. These functional alterations were associated with a peripheral disorganization of the outer retina. However, photoreceptor damage was not limited to these disorganized areas, but cone inner and outer segments were severely injured in more central areas and their numbers were irreversibly decreased by 17 to 20%. Ultrastructural examination of the retina confirmed the presence of major photoreceptor damages, which were further supported by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) and caspase-3 activation both indicative of photoreceptor apoptosis. This study suggests that the visual field loss in vigabatrin-treated epileptic patients may result from a sequence of events starting from cone cell injury to a more severe disorganization of the photoreceptor layer.
Collapse
Affiliation(s)
- Agnès Duboc
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM U-592, UPMC, Bâtiment Kourislky, Paris Cedex 12, Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Eloqayli H, Dahl CB, Götestam KG, Unsgård G, Hadidi H, Sonnewald U. Pentylenetetrazole decreases metabolic glutamate turnover in rat brain. J Neurochem 2003; 85:1200-7. [PMID: 12753079 DOI: 10.1046/j.1471-4159.2003.01781.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seizures were induced in rats by intraperitoneal injection of pentylenetetrazole (PTZ, 70 mg/kg), followed, 30 min later, by injection of [1-13C]glucose and [1,2-13C]acetate. Analyses of extracts from cortex, subcortex and cerebellum were performed using 13C magnetic resonance spectroscopy and HPLC. It could be shown that PTZ affected different brain regions differently. The total amounts of glutamate, glutamine, GABA, aspartate and taurine were decreased in the cerebellum and unchanged in the other brain regions. GABAergic neurones in the cortex and subcortex were not affected, whereas those in the cerebellum showed a pronounced decrease of GABA synthesis. However, glutamatergic neurones in all brain regions showed a decrease in glutamate labelling and in addition a decreased turnover in cerebellum. It could be shown that this decrease was in the metabolic pool of glutamate whereas release of glutamate was unaffected since glutamine labelling from glutamate was unchanged. Aspartate turnover was also decreased in all brain regions. Changes in astrocyte metabolism were not detected, indicating that PTZ had no effect on astrocyte metabolism in the early postictal stage.
Collapse
Affiliation(s)
- Haytham Eloqayli
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
37
|
Mueller SG, Weber OM, Duc CO, Meier D, Russ W, Boesiger P, Wieser HG. Effects of vigabatrin on brain GABA+/Cr signals in focus-distant and focus-near brain regions monitored by 1H-NMR spectroscopy. Eur J Neurol 2003; 10:45-52. [PMID: 12534992 DOI: 10.1046/j.1468-1331.2003.00506.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The new antiepileptic drug vigabatrin (VGB) increases gamma-aminobutyric acid (GABA) in the brain. We compared GABA+/Cr signals measured focus-near and focus-distant and correlated it with the degree of response to VGB. Brain GABA+/Cr signals were measured in 17 epileptic patients in structurally normal appearing tissue by nuclear proton magnetic resonance (1H-NMR) spectroscopy using a special editing sequence for GABA. In 11 patients the measurements were done in brain areas distant to focus and in six near to focus. Full-responders (seizure reduction of >or=50% at the end of the treatment phase) and partial-responders (seizure reduction of >or=50% at the end of the first month of treatment but <or=50% at end of treatment) had lower GABA+/Cr signals in the hemisphere with the epileptogenic focus and increases of the GABA+/Cr signals with VGB. Non-responders (seizure reduction of <or=50%) had no side difference in the GABA+/Cr signals before treatment and no increase during treatment. These observations were made in structurally normal appearing tissue near to the focus and distant to the focus. A side difference in brain GABA+/Cr signal between the epileptogenic and non-epileptogenic hemisphere before VGB treatment correlates with an improved seizure control under VGB treatment regardless whether the measurement is done focus-near or focus-distant.
Collapse
Affiliation(s)
- S G Mueller
- Department of Neurology, University Hospital, Frauenklinikstr 26, CH-8091 Zurich
| | | | | | | | | | | | | |
Collapse
|
38
|
de Graaf RA, Rothman DL. Detection of gamma-aminobutyric acid (GABA) by longitudinal scalar order difference editing. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 152:124-131. [PMID: 11531371 DOI: 10.1006/jmre.2001.2371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two novel spectral editing techniques for the in vivo detection of gamma-aminobutyric acid (GABA) are presented. The techniques rely on the generation of longitudinal scalar order (LSO) coherences, which in combination with J-difference editing results in the selective detection of GABA. The utilization of LSO coherences makes the editing sequences insensitive to phase and frequency instabilities. Furthermore, the spectral editing selectivity can be increased independent of the echo time, thereby opening the echo time for state-of-the-art water suppression and/or spatial localization techniques. The performance of the LSO editing techniques is theoretically demonstrated with product operator calculations and density matrix simulations and experimentally evaluated on phantoms in vitro and on human brain in vivo.
Collapse
Affiliation(s)
- R A de Graaf
- Magnetic Resonance Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8043, USA.
| | | |
Collapse
|
39
|
Brum LF, Elisabetsky E, Souza D. Effects of linalool on [(3)H]MK801 and [(3)H] muscimol binding in mouse cortical membranes. Phytother Res 2001; 15:422-5. [PMID: 11507735 DOI: 10.1002/ptr.973] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Linalool is a monoterpene compound reported to be a major component of essential oils of several aromatic species. Several linalool-producing species are used in traditional medical systems for sedative purposes, including the interruption and prevention of seizures. Previous studies in mice revealed that linalool modulates glutamatergic (competitive antagonism of L-[(3)H]glutamate binding, delayed intraperitoneal NMDA-induced convulsions and blockade of intracerebroventricular Quin-induced convulsions) and GABAergic transmission (protection against pentylenetetrazol and picrotoxin-induced convulsions). To further clarify the anticonvulsive mechanisms of linalool, we studied the effects of linalool on binding of [(3)H]MK801 (NMDA antagonist) and [(3)H]muscimol (GABA(A) agonist) to mouse cortical membranes. Linalool showed a dose dependent non-competitive inhibition of [(3)H]MK801 binding (IC(50) = 2.97 mM) but no effect on [(3)H]muscimol binding. The data suggest that the anticonvulsant mode of action of linalool includes a direct interaction with the NMDA receptor complex. The data do not, however, support a direct interaction of linalool with GABA(A) receptors, although changes in GABA-mediated neuronal inhibition or effects on GABA release and uptake cannot be ruled out.
Collapse
Affiliation(s)
- L F Brum
- Laboratório de Etnofarmacologia, Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, 90041-970, Porto Alegre, Brazil
| | | | | |
Collapse
|
40
|
|
41
|
Mueller SG, Weber OM, Duc CO, Weber B, Meier D, Russ W, Boesiger P, Wieser HG. Effects of vigabatrin on brain GABA+/CR signals in patients with epilepsy monitored by 1H-NMR-spectroscopy: responder characteristics. Epilepsia 2001; 42:29-40. [PMID: 11207782 DOI: 10.1046/j.1528-1157.2001.077889.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Vigabatrin (VGB) is a new antiepileptic drug that increases the human brain gamma-aminobutyric acid (GABA) level by irreversibly inhibiting GABA transaminase. Although some patients respond to VGB with a significant seizure reduction, others do not. The aim of this study was to identify possible responders before or in an early phase of VGB treatment by measuring the GABA and homocarnosine contaminated with macromolecules/creatine and phosphocreatine ratio (GABA+/Cr) signal by means of proton-nuclear magnetic resonance (1H NMR) spectroscopy. METHODS Measurements were performed immediately before and after a titration period of 1 month (2 g/day during the past 2 weeks). A third measurement followed a maintenance period of 3 months (2 or 3 g/day). In 14 patients with drug-resistant temporal lobe epilepsy and 3 patients with occipital lobe epilepsy, GABA+/Cr was measured in the ipsilateral (i.e., epileptogenic) hemisphere and contralateral (i.e., nonepileptogenic) hemisphere in a volume of 8 cm3. RESULTS Depending on the therapeutic efficacy of VGB, we defined three groups: (a) full responders (n = 7), (b) nonresponders (n = 7), and (c) partial responders (n = 3). The nonresponders had no significant change in the GABA+/Cr signal during the treatment compared with baseline. The full responders had a significant increase of the GABA+/Cr signal during the whole treatment phase and a lower ipsilateral level at baseline. The partial responders had also a lowered ipsilateral GABA+/Cr signal at baseline and an increase during treatment but a decrease when the seizures started again. CONCLUSIONS Responders to VGB could be identified by a lower ipsilateral baseline GABA+/Cr signal and a steeper increase during VGB treatment. However, it was not possible to predict the duration of the response (full versus partial responder) with these criteria.
Collapse
Affiliation(s)
- S G Mueller
- Department of Neurology, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Medina-Ceja L, Morales-Villagrán A, Tapia R. Action of 4-aminopyridine on extracellular amino acids in hippocampus and entorhinal cortex: a dual microdialysis and electroencehalographic study in awake rats. Brain Res Bull 2000; 53:255-62. [PMID: 11113578 DOI: 10.1016/s0361-9230(00)00336-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to study the role of amino acids in the hippocampus and the entorhinal cortex during the convulsive process induced by 4-aminopyridine (4-AP), we have used a device allowing the simultaneous microdialysis and the recording of their electrical activity of both regions in freely moving rats. We found that infusion of 4-AP into the entorhinal cortex resulted in a large increase in extracellular glutamate and glutamine and small increases in glycine and taurine levels. Likewise, infusion of 4-AP into the hippocampus resulted in a major increase in glutamate, as well as slight increases in taurine and glycine. In both infused regions the peak concentration of extracellular glutamate was observed 15 min after 4-AP administration. No significant changes were found in the non-infused hippocampus or entorhinal cortex of the same rats. Simultaneous electroencephalographic recordings showed intense epileptiform activity starting during 4-AP infusion and lasting for the rest of the experiment (1 h) in both the entorhinal cortex and the hippocampus. The discharges were characterized by poly-spikes and spike-wave complexes that propagated almost immediately to the other region studied. These findings suggest that increased glutamatergic synaptic function in the circuit that connects both regions is involved in the epileptic seizures induced by 4-AP.
Collapse
Affiliation(s)
- L Medina-Ceja
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jal, Mexico
| | | | | |
Collapse
|
43
|
Szelies B, Weber-Luxenburger G, Mielke R, Pawlik G, Kessler J, Pietrzyk U, Bauer B, Heiss WD. Interictal hippocampal benzodiazepine receptors in temporal lobe epilepsy: comparison with coregistered hippocampal metabolism and volumetry. Eur J Neurol 2000; 7:393-400. [PMID: 10971598 DOI: 10.1046/j.1468-1331.2000.00077.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The significance of benzodiazepine receptor (BZR) concentration in comparison with hippocampal metabolism and volumetry was assessed in 14 patients diagnosed with temporal lobe epilepsy (TLE) without hippocampal signal change on T2-weighted magnetic resonance imaging (MRI) scans. Focus lateralization was achieved by clinical, electroencephalographic and neuropsychological examinations. Three-dimensional positron emission tomography (PET) and MRI scans were coregistered for determination of hippocampal 11C-flumazenil (FMZ) binding, normalized to average cortical values for glucose metabolism (rCMRglc) and volume. The hippocampi were individually outlined on T1-weighted MRI. Volumes of interest (VOI) were used for calculation of asymmetries between clinically affected and unaffected sides. Eleven out of 14 TLE patients presented a significant reduction in hippocampal volume. In nine of these 11 patients hippocampal FMZ binding and in seven cases hippocampal CMRglc was also reduced. In two patients without hippocampal volume asymmetry FMZ binding was markedly reduced in the mesial temporal lobe appropriately to the clinically diagnosed side. In our study volumetry is therefore the most sensitive tool for the detection of hippocampal abnormality in TLE. However, in cases without hippocampal atrophy the reduction of FMZ may indicate functional impairment of BZR before neuronal loss becomes evident. Our results emphasize the complementary nature of these tests in TLE patients.
Collapse
Affiliation(s)
- B Szelies
- Neurologische Universitätsklinik and Max-Planck-Institut für neurologische Forschung, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Haughey HM, Brown JM, Wilkins DG, Hanson GR, Fleckenstein AE. Differential effects of methamphetamine on Na(+)/Cl(-)-dependent transporters. Brain Res 2000; 863:59-65. [PMID: 10773193 DOI: 10.1016/s0006-8993(00)02094-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been demonstrated that methamphetamine (METH) administration affects Na(+)/Cl(-)-dependent transporters; for example, METH treatment rapidly and reversibly decreases dopamine (DA) and serotonin (5HT) transporter function in rat striatum in vivo, as assessed in synaptosomes prepared from METH-treated rats. Because acute effects of METH on other transporters within this family have been less studied, the responses of norepinephrine (NE) and gamma-aminobutyric acid (GABA) transporters to METH administration(s) were determined. Both single and multiple METH administrations inhibited hippocampal NE uptake 1 h after METH treatment(s). In contrast, striatal GABA uptake was not affected by either treatment paradigm. The effects observed after both single and multiple METH administrations on NE transporters were attributable to increases in K(m,) with no changes in V(max); effects that were eliminated by repeated washing of the synaptosomes. These 'washout' data suggest that residual METH introduced by the in vivo subcutaneous injection(s) directly reduced NE transporter activity in the in vitro assay and that, unlike DA and 5HT transporters, METH did not indirectly alter NE transporter function. Taken together, these data demonstrate differences in the responses of NE, GABA, DA, and 5HT transporters to METH treatment.
Collapse
Affiliation(s)
- H M Haughey
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
45
|
Conejero-Goldberg C, Tornatore C, Abi-Saab W, Monaco MC, Dillon-Carter O, Vawter M, Elsworth J, Freed W. Transduction of human GAD67 cDNA into immortalized striatal cell lines using an Epstein-Barr virus-based plasmid vector increases GABA content. Exp Neurol 2000; 161:453-61. [PMID: 10686067 DOI: 10.1006/exnr.1999.7258] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The M213-20 and M213-1L cell lines were immortalized from rat striatum using the tsA58 allele of the SV40 large T antigen, contain the GAD enzyme, and produce GABA (Giordano et al., 1994, Exp. Neurol. 124:395-400). Cell lines that produce large amounts of GABA may be useful for transplantation into the brain in conditions such as Huntington's disease or epilepsy, where localized application of GABA may be of therapeutic value. We have explored the potential use of the pREP10 plasmid vector, which replicates episomally, to increase GAD expression and GABA production in M213-20 and M213-1L cells. Human GAD(67) cDNA was transfected into M213-20 and M213-1L, and subclones were isolated with hygromycin selection. Immunochemical studies showed increased GAD(67) expression compared to the parent M213-20 and M213-1L cell lines. Staining for the EBNA antigen and Southern blots demonstrated that the pREP10 plasmid was stably maintained in the cells for at least 12-15 months in culture. Several clones were isolated in which GABA concentrations were increased by as much as 4-fold (M213-1L) or 44-fold (M213-20) compared to the parent cell lines or 12-fold (M213-1L) and 94-fold (M213-20) greater than rat striatal tissue (1.678 +/- 0.4 micromol/g prot). The ability of these cells to continue to produce large amounts of GABA while being maintained in culture for extended periods suggests that similar methods might be used with human cell lines to produce cells that can be transplanted into the brain to deliver GABA for therapeutic purposes.
Collapse
Affiliation(s)
- C Conejero-Goldberg
- Development & Plasticity Section, National Institute on Drug Abuse, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore, Maryland, 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gidal BE, Privitera MD, Sheth RD, Gilman JT. Vigabatrin: a novel therapy for seizure disorders. Ann Pharmacother 1999; 33:1277-86. [PMID: 10630829 DOI: 10.1345/aph.18376] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To review the pharmacology, pharmacokinetics, efficacy, and adverse effects of vigabatrin and its role in the management of seizure disorders. METHODS A MEDLINE search of English-language literature from January 1993 through January 1999 was conducted using vigabatrin as a search term to identify pertinent studies and review articles. Additional studies were identified from the bibliographies of reviewed literature. The manufacturer provided postmarketing surveillance data. Priority was given to randomized, double-blind, placebo-controlled studies. FINDINGS Vigabatrin is a selective and irreversible inhibitor of gamma-aminobutyric acid transaminase. In controlled clinical trials of vigabatrin add-on therapy in patients with uncontrolled partial seizures, 24-67% of patients achieved a < or =50% reduction in seizure frequency. Data from two comparative trials with carbamazepine monotherapy indicate that vigabatrin monotherapy reduces the frequency of partial seizures in patients with newly diagnosed epilepsy. Vigabatrin also controls infantile spasms, particularly those associated with tuberous sclerosis. Vigabatrin is more effective in patients with partial seizures than in those with generalized seizures. The drug is generally well tolerated. Headache and drowsiness were the most common adverse effects observed in controlled clinical trials; visual field defects, psychiatric reactions, and hyperactivity also have been reported. There are no known clinically significant drug interactions. CONCLUSIONS Vigabatrin improves seizure control as add-on therapy for refractory partial seizures and may produce therapeutic benefits in the treatment of infantile spasms. Vigabatrin is generally well tolerated, with a convenient administration schedule, a lack of known significant drug interactions, and no need for routine monitoring of plasma concentrations.
Collapse
Affiliation(s)
- B E Gidal
- School of Pharmacy and Department of Neurology, University of Wisconsin, Madison 53706, USA.
| | | | | | | |
Collapse
|
47
|
Coulter DA. Chronic epileptogenic cellular alterations in the limbic system after status epilepticus. Epilepsia 1999; 40 Suppl 1:S23-33; discussion S40-1. [PMID: 10421558 DOI: 10.1111/j.1528-1157.1999.tb00875.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Status epilepticus (SE) is associated with both acute and permanent pathological sequellae. One common long term consequence of SE is the subsequent development of a chronic epileptic condition, with seizures frequently originating from and involving the limbic system. Following SE, many studies have demonstrated selective loss of neurons within the hilar region of the dentate gyrus, CA1 and CA3 pyramidal neurons. Selective loss of distinct subpopulations of interneurons throughout the hippocampus is also frequently evident, although interneurons as a whole are selectively spared relative to principal cells. Accompanying this loss of neurons are circuit rearrangements, the most widely studied being the sprouting of dentate granule cell (DGC) axons back onto the inner molecular layer of the dentate gyrus, termed mossy fiber sprouting. Less studied are the receptor properties of the surviving neurons within the epileptic hippocampus following SE. DGCs in epileptic animals exhibit marked alterations in the functional and pharmacological properties of gamma-aminobutyric acid (GABA) receptors. DGCs have a significantly elevated density of GABA(A) receptors in chronically epileptic animals. In addition, the pharmacological properties of GABA(A) receptors in post-SE epileptic animals are quite different compared to controls. In particular, GABA(A) receptors in DGCs from epileptic animals show an enhanced sensitivity to blockade by zinc, and a markedly altered sensitivity to modulation by benzodiazepines. These pharmacological differences may be due to a decreased expression of alpha1 subunits of the GABA(A) receptor relative to other alpha subunits in DGCs of post-SE epileptic animals. These GABA(A) receptor alterations precede the onset of spontaneous seizures in post-SE DGCs, and so are temporally positioned to contribute to the process of epileptogenesis in the limbic system. The presence of zinc sensitive GABA receptors combined with the presence of zinc-containing "sprouted" mossy fiber terminals innervating the proximal dendrites of DGCs in the post-SE epileptic hippocampus prompted the development of the hypothesis that repetitive activation of the DG in the epileptic brain could result in the release of zine. This zinc in turn may diffuse to and block "epileptic" zinc-sensitive GABA(A) receptors in DGCs, leading to a catastrophic failure of inhibition and concomitant enhanced seizure propensity in the post-SE epileptic limbic system.
Collapse
Affiliation(s)
- D A Coulter
- Department of Pediatrics, University of Pennsylvania, Children's Hospital of Philadelphia, USA
| |
Collapse
|
48
|
Mi J, Chatterjee S, Wong KK, Forbes C, Lawless G, Tobin AJ. Recombinant adeno-associated virus (AAV) drives constitutive production of glutamate decarboxylase in neural cell lines. J Neurosci Res 1999; 57:137-48. [PMID: 10397644 DOI: 10.1002/(sici)1097-4547(19990701)57:1<137::aid-jnr15>3.0.co;2-d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many neurological disorders result directly or indirectly from the loss of inhibitory function. Engineering the production of GABA, an inhibitory neurotransmitter, may therefore be able at least partly to restore the lost inhibition seen in epilepsy, Parkinson's disease, or Huntington's disease. In this article, we describe a set of recombinant adeno-associated viruses (AAVs) that can deliver cDNAs encoding the GABA-producing enzyme, glutamate decarboxylase (GAD), directly into neural cells. We have characterized these recombinant AAVs in several cell lines derived from the CNS. These recombinant AAVs effectively transduced all neural cell lines, although with different efficiencies. Transduction occurred in both proliferating and nonproliferating cells, but actively proliferating cell lines had approximately six times greater transduction efficiency than nonproliferating cells. Furthermore, these AAVs maintained long-term expression of GAD in an astrocytic cell line for at least seven passages. These recombinant AAVs are promising vehicles for investigating the potential therapeutic effects of GABA in animal models of epilepsy and neurodegenerative diseases.
Collapse
Affiliation(s)
- J Mi
- Department of Physiological Sciences, University of California, Los Angeles, USA
| | | | | | | | | | | |
Collapse
|
49
|
D'Hooge R, De Deyn PP, Van de Vijver G, Antoons G, Raes A, Van Bogaert PP. Uraemic guanidino compounds inhibit gamma-aminobutyric acid-evoked whole cell currents in mouse spinal cord neurones. Neurosci Lett 1999; 265:83-6. [PMID: 10327174 DOI: 10.1016/s0304-3940(99)00190-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Guanidine, creatinine (CTN), methylguanidine (MG) and guanidinosuccinic acid (GSA) are four endogenous guanidino compounds with proven neuroexcitatory actions, and putative pathophysiological significance as uraemic toxins. The effects of these uraemic guanidino compounds, were studied on whole-cell current evoked by gamma-amino butyric acid (GABA) on mouse spinal cord neurones in vitro. CTN, MG and GSA concentration dependently blocked GABA-evoked current with calculated IC50 values (+/-SE) of 9.6 +/- 0.9, 9.7 +/- 1.5 and 5.1 +/- 0.4 mM, respectively. CTN, MG and GSA were shown to block inward and outward currents to the same extent, demonstrating voltage independent block of GABA-evoked current by these compounds. Guanidine, however, evoked inward whole-cell currents, which were almost completely blocked by strychnine, indicating that the guanidine-evoked current might have been due to glycine receptor activation.
Collapse
Affiliation(s)
- R D'Hooge
- Laboratory of Neurochemistry and Behaviour, Born-Bunge Foundation, University of Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE Changes in gamma-aminobutyric acid (GABA) physiology are important in determining seizure susceptibility in the developing nervous system. Noninvasive measurements of brain GABA in adults with epilepsy have demonstrated important relations among seizure control, brain GABA levels, and changes in brain GABA with drugs designed to alter GABA metabolism. The purpose of this study was to demonstrate the changes in GABA in the occipital lobes of children with epilepsy after treatment with vigabatrin (VGB). METHODS Ten proton nuclear magnetic resonance spectroscopic (NMRS) studies were obtained on four subjects with epilepsy. The subjects were between ages 1 and 5 years. Occipital lobe GABA levels were measured before and after treatment with VGB. RESULTS Brain GABA levels increased significantly in these subjects after VGB treatment (p < 0.05, paired Student's t test). In one subject, brain GABA was decreased in the region of the epileptic focus compared with the homologous region of the opposite hemisphere. A nearly fivefold increase in GABA occurred in the epileptic region after VGB treatment in this subject. CONCLUSIONS VGB increases brain GABA levels in children with epilepsy. NMRS can be used to monitor the response of brain GABA levels to drugs known to alter GABA physiology and serve as an important tool to understand the role of GABA-mediated inhibition in pediatric epilepsies.
Collapse
Affiliation(s)
- E J Novotny
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|