1
|
Shaji V, Dagamajalu S, Sanjeev D, George M, Kanekar S, Prasad G, Keshava Prasad TS, Raju R, Devasahayam Arokia Balaya R. Deciphering the Receptor-Mediated Signaling Pathways of Interleukin-19 and Interleukin-20. J Interferon Cytokine Res 2024; 44:388-398. [PMID: 38451706 DOI: 10.1089/jir.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Affiliation(s)
- Vineetha Shaji
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Diya Sanjeev
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Mejo George
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Saptami Kanekar
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Ganesh Prasad
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
2
|
Liang Y, Yin S, Chen X, Li C, Chen Q. The causal relationship between autoimmune diseases and rhinosinusitis, and the mediating role of inflammatory proteins: a Mendelian randomization study. Exp Biol Med (Maywood) 2024; 249:10196. [PMID: 39104791 PMCID: PMC11299433 DOI: 10.3389/ebm.2024.10196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 08/07/2024] Open
Abstract
Observational studies have linked autoimmune diseases (ADs) with rhinosinusitis (RS) manifestations. To establish a causal relationship between ADs and RS, and to explore the potential mediating role of inflammatory mediators between ADs and RS, we utilized Mendelian randomization (MR) analysis. Using a two-sample MR methodology, we examined the causality between multiple sclerosis (MS), rheumatoid arthritis (RA), ankylosing spondylitis (AS), psoriasis (PsO), type 1 diabetes (T1D), Sjogren's syndrome (SS), celiac disease (CeD), Crohn's disease (CD), hypothyroidism (HT), Graves' disease (GD), and Hashimoto's thyroiditis and their association with chronic and acute rhinosinusitis (CRS and ARS, respectively).To achieve this, we employed three distinct MR techniques: inverse variance weighting (IVW), MR-Egger, and the weighted median method. Our analysis also included a variety of sensitivity assessments, such as Cochran's Q test, leave-one-out analysis, MR-Egger intercept, and MR-PRESSO, to ensure the robustness of our findings. Additionally, the study explored the role of inflammation proteins as a mediator in these relationships through a comprehensive two-step MR analysis. Among the ADs, MS, RA, T1D, CeD, and HT were determined as risk factors for CRS. Only CeD exhibited a causal relationship with ARS. Subsequent analyses identified interleukin-10 (IL-10) as a potential mediator for the association of MS, RA and HT with CRS, respectively., while C-X-C motif chemokine 10 levels (CXCL10) and T-cell surface glycoprotein CD6 isoform levels (CD6) were found to influence HT's effect on CRS. Our findings demonstrate a causative link between specific autoimmune diseases and rhinosinusitis, highlighting IL-10, CXCL10, and CD6 as potential mediators in this association.
Collapse
Affiliation(s)
- Yanjing Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shao Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangyan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengen Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Alsabbagh MM. Cytokines in psoriasis: From pathogenesis to targeted therapy. Hum Immunol 2024; 85:110814. [PMID: 38768527 DOI: 10.1016/j.humimm.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Psoriasis is a multifactorial disease that affects 0.84% of the global population and it can be associated with disabling comorbidities. As patients present with thick scaly lesions, psoriasis was long believed to be a disorder of keratinocytes. Psoriasis is now understood to be the outcome of the interaction between immunological and environmental factors in individuals with genetic predisposition. While it was initially thought to be solely mediated by cytokines of type-1 immunity, namely interferon-γ, interleukin-2, and interleukin-12 because it responds very well to cyclosporine, a reversible IL-2 inhibitor; the discovery of Th-17 cells advanced the understanding of the disease and helped the development of biological therapy. This article aims to provide a comprehensive review of the role of cytokines in psoriasis, highlighting areas of controversy and identifying the connection between cytokine imbalance and disease manifestations. It also presents the approved targeted treatments for psoriasis and those currently under investigation.
Collapse
Affiliation(s)
- Manahel Mahmood Alsabbagh
- Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders and Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
4
|
Mohammed HM, Qurtas DS, Meran AD. Serum Interleukin-19 Levels in Acne Vulgaris Patients of Varying Clinical Severity in Erbil City. Cureus 2023; 15:e48939. [PMID: 38106772 PMCID: PMC10725567 DOI: 10.7759/cureus.48939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Background Acne vulgaris (AV) is a common multifactorial disorder affecting the pilosebaceous units. Research has shown that inflammation plays a crucial role in the pathogenesis of AV, including both inflammatory and non-inflammatory acne. Several studies have linked proinflammatory cytokines to AV; however, only a few have explored the correlation between interleukin-19 (IL-19) and AV. Our aim is to estimate the level of IL-19 in patients with AV compared to matched controls and to investigate the role of IL-19 in the pathogenesis of acne. Materials and methods This prospective cross-sectional case and control study includes 80 patients and 40 matched controls. Patients were divided into mild (20), moderate (40), and severe (20) groups based on their global acne score severity index. Detailed history and complete general and dermatological examinations were taken from each patient. Furthermore, 5 ml of blood was taken from all participants to assess the level of IL-19. Results IL-19 levels were significantly higher in patients with AV compared to matched controls. Furthermore, IL-19 concentrations were found to be proportional to the severity of acne, with the highest levels detected in patients with severe AV (p-value <0.005). Conclusion IL-19 levels in AV were significantly higher than in matched control. The difference was proportional to its severity. This might indicate IL-19 as an inflammatory marker and could potentially be related to AV.
Collapse
Affiliation(s)
| | | | - Alan D Meran
- College of Medicine, Hawler Medical University, Erbil, IRQ
| |
Collapse
|
5
|
Barada O, Salomé-Desnoulez S, Madouri F, Deslée G, Coraux C, Gosset P, Pichavant M. IL-20 Cytokines Are Involved in the Repair of Airway Epithelial Barrier: Implication in Exposure to Cigarette Smoke and in COPD Pathology. Cells 2023; 12:2464. [PMID: 37887308 PMCID: PMC10604979 DOI: 10.3390/cells12202464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Dysregulated inflammation as seen in chronic obstructive pulmonary disease (COPD) is associated with impaired wound healing. IL-20 cytokines are known to be involved in wound healing processes. The purpose of this study was to use ex vivo and in vitro approaches mimicking COPD to evaluate the potential modulatory role of interleukin-20 (IL-20) on the inflammatory and healing responses to epithelial wounding. METHODS The expression of IL-20 cytokines and their receptors was investigated in lung-derived samples collected from non-COPD and COPD patients, from mice chronically exposed to cigarette smoke and from airway epithelial cells from humans and mice exposed in vitro to cigarette smoke. To investigate the role of IL-20 cytokines in wound healing, experiments were performed using a blocking anti-IL-20Rb antibody. RESULTS Of interest, IL-20 cytokines and their receptors were expressed in bronchial mucosa, especially on airway epithelial cells. Their expression correlated with the disease severity. Blocking these cytokines in a COPD context improved the repair processes after a lesion induced by scratching the epithelial layer. CONCLUSIONS Collectively, this study highlights the implication of IL-20 cytokines in the repair of the airway epithelium and in the pathology of COPD. IL-20 subfamily cytokines might provide therapeutic benefit for patients with COPD to improve epithelial healing.
Collapse
Affiliation(s)
- Olivia Barada
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| | - Sophie Salomé-Desnoulez
- Institut Pasteur de Lille, Université de Lille, CNRS UMR9017, Inserm U1019, CHU Lille, US 41—UAR 2014—PLBS, 59000 Lille, France;
| | - Fahima Madouri
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| | - Gaëtan Deslée
- Service de Pneumologie, Centre Hospitalier Universitaire de Reims, 51092 Reims, France;
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1250, Université de Reims Champagne-Ardenne (URCA), SFR Cap-Santé, 51100 Reims, France;
| | - Christelle Coraux
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1250, Université de Reims Champagne-Ardenne (URCA), SFR Cap-Santé, 51100 Reims, France;
| | - Philippe Gosset
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| | - Muriel Pichavant
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille; Université Lille Nord de France; Centre National de la Recherche Scientifique UMR 9017; Institut National de la Santé et de la Recherche Médicale U1019, 59019 Lille, France; (O.B.); (F.M.); (P.G.)
| |
Collapse
|
6
|
Cui Z, Zhu X, Zhao F, Li D, Deng Y, Tan A, Lai Y, Huang Z, Gong H. Molecular identification and functional exploration of interleukin-20 in snakehead (Channa argus) involved in bacterial invasion and the proliferation of head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 127:623-632. [PMID: 35810964 DOI: 10.1016/j.fsi.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
As an inflammatory cytokine of the interleukin-20 (IL-20) subfamily, IL-20 has various functions in immune defenses, inflammatory diseases, tissue regeneration, cancer, and metabolism. Although the characteristics and functions of mammalian IL-20 have been clarified, those of fish IL-20 remain unclear. In this study, the IL-20 gene from the snakehead Channa argus (shIL-20) was cloned and functionally characterized. Similar to the IL-20 homologues of other species, the shIL-20 has a five exon/four intron structure in the coding region. The open reading frame of shIL-20 consists of 528 base pairs and encodes 175 amino acids (aa), including a signal peptide (aa 1-24) and a mature peptide (aa 25-175). The mature shIL-20 protein has six conserved cysteine residues, which occur in the IL-20 proteins of all species analyzed, and an additional cysteine residue (Cys-82) found only in the IL-20 proteins of several teleosts. The modeled tertiary structure of shIL-20 is similar with that of Homo sapiens IL-20. The shIL-20 was expressed constitutively in all the tissues analyzed, and its transcription was induced in the spleen and head kidney by Aeromonas schubertii and Nocardia seriolae in vivo and in head kidney leukocytes (HKLs) by lipoteichoic acid, lipopolysaccharide, and polyinosinic-polycytidylic acid in vitro. The recombinant shIL-20 protein induced the transcription of tumor necrosis factor α1 (TNF-α1), TNF-α2, IL-1β, and endogenous shIL-20, and promoted the proliferation of HKLs. In conclusion, these findings demonstrate that shIL-20 participates in the immune response to bacterial invasion and promotes leukocyte proliferation, offering new insights into the functions of fish IL-20 during pathogen invasion.
Collapse
Affiliation(s)
- Zhengwei Cui
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueqing Zhu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Dongqi Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Hua Gong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
7
|
Lu Z, Xiao S, Chen W, Zhu R, Yang H, Steinhoff M, Li Y, Cheng W, Yan X, Li L, Xue S, Larkin C, Zhang W, Fan Q, Wang R, Wang J, Meng J. IL-20 promotes cutaneous inflammation and peripheral itch sensation in atopic dermatitis. FASEB J 2022; 36:e22334. [PMID: 35486004 PMCID: PMC9321592 DOI: 10.1096/fj.202101800r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/11/2022]
Abstract
Atopic dermatitis (AD) is a chronic skin disease, which is associated with intense itch, skin barrier dysfunction and eczematous lesions. Aberrant IL‐20 expression has been implicated in numerous inflammatory diseases, including psoriasis. However, the role of IL‐20 in AD remains unknown. Here, RNA‐seq, Q‐PCR, and immunocytochemistry were utilized to examine disease‐driven changes of IL‐20 and its cognate receptor subunits in skin from healthy human subjects, AD patients and murine AD‐models. Calcium imaging, knockdown and cytokine array were used to investigate IL‐20‐evoked responses in keratinocytes and sensory neurons. The murine cheek model and behavioral scoring were employed to evaluate IL‐20‐elicited sensations in vivo. We found that transcripts and protein of IL‐20 were upregulated in skin from human AD and murine AD‐like models. Topical MC903 treatment in mice ear enhanced IL‐20R1 expression in the trigeminal sensory ganglia, suggesting a lesion‐associated and epidermal‐driven mechanism for sensitization of sensory IL‐20 signaling. IL‐20 triggered calcium influx in both keratinocytes and sensory neurons, and promoted their AD‐related molecule release and transcription of itch‐related genes. In sensory neurons, IL‐20 application increased TLR2 transcripts, implicating a link between innate immune response and IL‐20. In a murine cheek model of acute itch, intradermal injection IL‐20 and IL‐13 elicited significant itch‐like behavior, though only when co‐injected. Our findings provide novel insights into IL‐20 function in peripheral (skin‐derived) itch and clinically relevant intercellular neuron‐epidermal communication, highlighting a role of IL‐20 signaling in the pathophysiology of AD, thus forming a new basis for the development of a novel antipruritic strategy via interrupting IL‐20 epidermal pathways.
Collapse
Affiliation(s)
- Zhiping Lu
- School of Life Sciences, Henan University, China
| | - Song Xiao
- School of Life Sciences, Henan University, China
| | - Weiwei Chen
- School of Life Sciences, Henan University, China
| | - Renkai Zhu
- School of Life Sciences, Henan University, China
| | - Hua Yang
- School of Life Sciences, Henan University, China
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar.,Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | - Yanqing Li
- School of Life Sciences, Henan University, China
| | - Wenke Cheng
- School of Life Sciences, Henan University, China
| | - Xinrong Yan
- School of Life Sciences, Henan University, China
| | - Lianlian Li
- School of Life Sciences, Henan University, China
| | - Shanghai Xue
- School of Life Sciences, Henan University, China
| | - Ciara Larkin
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Faculty of Science and Health, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Wenhao Zhang
- School of Life Sciences, Henan University, China
| | - Qianqian Fan
- School of Life Sciences, Henan University, China
| | - Ruizhen Wang
- School of Life Sciences, Henan University, China
| | - Jiafu Wang
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Jianghui Meng
- Faculty of Science and Health, School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Faculty of Science and Health, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
8
|
Xu X, Prens E, Florencia E, Leenen P, Boon L, Asmawidjaja P, Mus AM, Lubberts E. Interleukin-17A Drives IL-19 and IL-24 Expression in Skin Stromal Cells Regulating Keratinocyte Proliferation. Front Immunol 2021; 12:719562. [PMID: 34616394 PMCID: PMC8488340 DOI: 10.3389/fimmu.2021.719562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/25/2021] [Indexed: 01/05/2023] Open
Abstract
IL-17A has been shown to be up-regulated in psoriasis lesions and is central to psoriasis pathogenesis. IL-19, along with other IL-20 subfamily cytokines such as IL-20 and IL-24, is induced by IL-17A and contributes especially to epidermal hyperplasia in psoriasis. However, the regulation, cellular sources of IL-19 and whether targeting of IL-17A by biologics influence IL-19 expression is not completely understood. To investigate the regulation of IL-19 by IL-17A in psoriasis, the imiquimod-induced psoriasis mouse (IMQ) model was used. Enhanced expression of IL-17A in the IMQ model was achieved by anti-IL-10 antibody treatment. Assessments of skin inflammation macroscopically, by histology and flow cytometry, all confirmed increased psoriatic symptoms. Interestingly, depletion of IL-10 markedly upregulated IL-23/IL-17 pathway related cytokines followed by a significant increase in IL-19 and IL-24. The up-regulation of IL-19 and IL-24, but not IL-17A, coincided with increased keratinocyte proliferation. To investigate the cellular source and effects of biologics on IL-19, human skin fibroblasts from healthy controls and psoriasis patients were cultured alone or co-cultured with activated memory CD4+ T cells. Besides IL-1β, IL-17A induced direct expression of IL-19 and IL-24 in skin fibroblasts and keratinocytes. Importantly, intrinsic higher expression of IL-19 in psoriatic skin fibroblasts was observed in comparison to healthy skin fibroblasts. Neutralization of IL-17A in the human skin fibroblast-T cell co-culture system significantly suppressed IL-19 and IL-24 expression. Together, our data show that IL-17A-induced IL-19 and IL-24 expression in skin stromal cells contribute to keratinocyte proliferation.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Dermatology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Errol Prens
- Department of Dermatology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Edwin Florencia
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Dermatology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pieter Leenen
- Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Luis Boon
- Polypharma Biologics, Utrecht, Netherlands
| | - Patrick Asmawidjaja
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anne-Marie Mus
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
9
|
Bertelsen T, Iversen L, Johansen C. I-Kappa-B-Zeta Regulates Interleukin-17A/Tumor Necrosis Factor-Alpha Mediated Synergistic Induction of Interleukin-19 and Interleukin-20 in Humane Keratinocytes. Ann Dermatol 2021; 33:122-130. [PMID: 33935453 PMCID: PMC8081996 DOI: 10.5021/ad.2021.33.2.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/25/2023] Open
Abstract
Background Interleukin (IL)-19 and IL-20 are important members of the IL-10 cytokine family, which are known to play a role in inflammatory processes. Both anti-IL-19 and -IL-20 targeting drugs have been suggested in the treatment of inflammatory diseases such as psoriasis and rheumatoid arthritis. Recently, we presented I-kappa-B-zeta (IκBζ) as a key player in psoriasis by identifying IκBζ as a regulator of IL-17/tumor necrosis factor (TNF)α-inducible psoriasis-associated genes and proteins. Some of these genes were synergistically regulated by IL-17/TNFα. Objective The purpose of this study was to explore the role of IκBζ in the regulation of IL-17A/TNFα-mediated induction of IL-19 and IL-20 expression in human keratinocytes. Methods In vitro experiments with cultured primary humane keratinocytes were conducted and investigated by quantitative polymerase chain reaction (qPCR), Western blotting, ELISA and EMSA. For statistics, a one- or two- way repeated-measures analysis of variance (RM ANOVA) or the Friedman test (a nonparametric equivalent to the RM ANOVA) were conducted. Results We demonstrated that IL-19 and IL-20 mRNA and protein expressions were synergistically induced by IL-17A and TNFα, whereas IL-17A and TNFα alone had only a minor effect on the IL-19 and IL-20 expression. Moreover, we demonstrated IκBζ to be a regulator of this synergistic induction of IL-19 and IL-20. Finally, the IL-17A/TNFα-induced synergistic induction of IL-19 and IL-20 expression was found to be mediated by a p38 MAPK-, NF-κB- and JNK1/2-dependent mechanism. Conclusion This study demonstrates that IκBζ plays a role in the IL-17A/TNFα-mediated synergistic induction of IL-19 and IL-20 in humane keratinocytes.
Collapse
Affiliation(s)
- Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Interleukin-18, interleukin-20, and matrix metalloproteinases (MMP-1, MMP-3) as markers of psoriatic arthritis disease severity and their correlations with biomarkers of inflammation and turnover of joint cartilage. Postepy Dermatol Alergol 2020; 37:1001-1008. [PMID: 33603622 PMCID: PMC7874883 DOI: 10.5114/ada.2020.94903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Psoriatic arthritis (PsA) is a chronic, seronegative spondyloarthropathy characterised by joint inflammation and psoriatic skin changes. Recent data indicate that interleukin-18 (IL-18) and interleukin-20 (IL-20) may be involved in the aetiopathogenesis of PsA. Aim To evaluate the potential role of IL-18, IL-20, and matrix metalloproteinases (MMP-1, MMP-3) in the pathogenesis of PsA and their correlations with other markers of inflammation and destruction of joint cartilage, as well as clinical changes. Material and methods The study included 24 patients with PsA and 26 healthy volunteers as a control group. The concentration of IL-18 and IL-20, c-reactive protein (CRP), metalloproteinase-1 and -3 (MMP-1, MMP-3), cartilage oligomeric matrix protein (COMP), aggrecan (PG-AG), and human cartilage glycoprotein (YKL-40) in serum was determined. Clinical severity of the disease according to the BSA, PASI, and DLQI as well as tender and swollen joint count (TJC, SJC) were also evaluated. Results The concentration of IL-18 was statistically significantly higher in the serum of patients with PsA than in the control group (62.87 pg/ml vs. 16.73 pg/ml, p < 0.0049). Serum IL-20 levels in PsA patients were also higher than in the control group, but without statistical significance (p = 0.2939). The ROC curves showed: AUC = 0.81 for IL-18, AUC = 0.75 for IL-20, AUC = 0.96 for COMP, and AUC = 0.89 for MMP-3. Conclusions IL-18 and IL-20 as well as MMP-3 and COMP may be sensitive markers in the diagnosis of PsA.
Collapse
|
11
|
Chen C, Liu YH, Cheng SB, Wu SL, Zhai XJ. The hepatoprotective effects of XCHD and MgIG against methotrexate-induced liver injury and inflammation in rats through suppressing the activation of AIM2 inflammasomes. Pathol Res Pract 2020; 216:152875. [PMID: 32113793 DOI: 10.1016/j.prp.2020.152875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies have shown that drug-induced liver injury may be related to the immune response activated by drugs. A cytosolic dsDNA inflammasome called absent in melanoma 2 (AIM2) was found to be associated with aseptic inflammation. The present study aimed to explore the effects of on the liver injury and inflammation in methotrexate (Mtx)-induced rats. METHODS Sprague Dawley (SD) rats were selected and classified into 4 groups randomly, includes control group, Mtx group, Mtx-Xiaochaihu decoction (XCHD) group and Mtx-magnesium isoglycyrrhizinate (MgIG) group. Light microscopy was used to examine histological specimens after hematoxylin-eosin (HE) staining. The AST levels in liver tissue and blood serum ALT in the rats were assessed with enzyme linked immunosorbent assay (ELISA). Then AIM2 expression and inflammatory factors, including caspase-1, IL-18, and IL-1β, in the liver biopsy specimens of rats were detected by immunohistochemistry. Furthermore, the correlation between inflammatory and AIM2 expression factors was comprehensively analyzed. RESULTS Functional and structural hepatotoxicity can be caused by the exposure to Mtx, which was supported by the improved biochemical marker levels and the worse histopathological changes in liver tissue. Compared with the Mtx group, the levels of liver enzymes ALT and AST, histological deterioration in the liver tissues were effectively decreased by XCHD and MgIG treatment, respectively. In addition, the expression of AIM2, caspase-1 and IL-1β was observably higher in the Mtx group, which was apparently inhibited in the Mtx-XCHD and Mtx-MgIG groups. There was no obvious change in IL-18 expression among four groups. AIM2 expression were positively associated with the severity of liver inflammation and had a higher relevance with caspase-1 expression. CONCLUSIONS AIM2 inflammasome in hepatocytes has a significant effect on the development of Mtx-induced liver injury, which can be ameliorated by both XCHD and MgIG treatment. The latent mechanism and potential signal pathway require further study.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi-Hui Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shu-Biao Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - San-Lan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue-Jia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028548. [PMID: 29038121 DOI: 10.1101/cshperspect.a028548] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses during host defense but also in autoimmune disorders, inflammatory diseases, and cancer. Although IL-10 itself primarily acts on leukocytes and has potent immunosuppressive functions, other family members preferentially target nonimmune compartments, such as tissue epithelial cells, where they elicit innate defense mechanisms to control viral, bacterial, and fungal infections, protect tissue integrity, and promote tissue repair and regeneration. As cytokines are prime drug targets, IL-10 family cytokines provide great opportunities for the treatment of autoimmune diseases, tissue damage, and cancer. Yet no therapy in this space has been approved to date. Here, we summarize the diverse biology of the IL-10 family as it relates to human disease and review past and current strategies and challenges to target IL-10 family cytokines for clinical use.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Comparative Biology and Safety Sciences, Amgen, South San Francisco, California 94080
| | - Kit Wong
- Department of Biomarker Development, Genentech, South San Francisco, California 94080
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen, South San Francisco, California 94080
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, South San Francisco, California 94080
| |
Collapse
|
13
|
Clarysse K, Pfaff CM, Marquardt Y, Huth L, Kortekaas Krohn I, Kluwig D, Lüscher B, Gutermuth J, Baron J. JAK1/3 inhibition preserves epidermal morphology in full-thickness 3D skin models of atopic dermatitis and psoriasis. J Eur Acad Dermatol Venereol 2019; 33:367-375. [PMID: 30357932 DOI: 10.1111/jdv.15301] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Janus kinase (JAK) inhibition may be a promising new treatment modality for inflammatory (skin) diseases. However, little is known about direct effects of kinase inhibitors on keratinocyte differentiation and function as well as skin barrier formation. OBJECTIVE Our aim was to address the direct impact of kinase inhibition of the JAK1/3 pathways by tofacitinib on keratinocyte immune function and barrier formation in atopic dermatitis (AD) and psoriasis. METHODS 3D skin equivalents of both diseases were developed and concurrently pretreated with tofacitinib. To induce AD, 3D skin equivalents were stimulated with recombinant human IL-4 and IL-13. Psoriasis-like conditions were induced by incubation with IL-17A, IL-22 and tumour necrosis factor α (TNFα). The activation of signal transducer and activator of transcription (STAT)1, STAT3 and STAT6 was assessed by Western blot analysis. Microarray analysis and quantitative real-time PCR were used for gene expression analysis. RESULTS Tofacitinib pretreatment preserved epidermal morphology and reduced STAT3 and STAT6 phosphorylation of AD-like and STAT3 phosphorylation of psoriasis-like culture conditions in 3D skin models compared to sham-controls. Filaggrin expression was fully maintained in the AD-like models, but only partially in psoriasis-like conditions after pretreatment with tofacitinib. In addition, tofacitinib upregulated DSC1, FLG and KRT1. Using gene expression analysis, downregulation of POSTN and IL24 was observed in AD-like conditions, whereas downregulation of IL20 and IL1B was observed in psoriasis-like conditions. CONCLUSION JAK1/3 inhibition counteracted cytokine-induced AD- and psoriasis-like epidermal morphology and enhanced keratinocyte differentiation in 3D skin models. This effect was more pronounced in the AD-like models compared to the psoriasis-like 3D skin models.
Collapse
Affiliation(s)
- K Clarysse
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium
| | - C M Pfaff
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany.,Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Y Marquardt
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany
| | - L Huth
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany
| | - I Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium
| | - D Kluwig
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany
| | - B Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - J Gutermuth
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Department of Dermatology, Brussels, Belgium
| | - J Baron
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Kragstrup TW, Andersen T, Heftdal LD, Hvid M, Gerwien J, Sivakumar P, Taylor PC, Senolt L, Deleuran B. The IL-20 Cytokine Family in Rheumatoid Arthritis and Spondyloarthritis. Front Immunol 2018; 9:2226. [PMID: 30319661 PMCID: PMC6167463 DOI: 10.3389/fimmu.2018.02226] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
This review describes the IL-20 family of cytokines in rheumatoid arthritis (RA) and spondyloartrhitits (SpA) including psoriatic arthritis. The IL-20 receptor (R) cytokines IL-19, IL-20, and IL-24 are produced in both the peripheral blood and the synovial joint and are induced by Toll-like receptor ligands and autoantibody-associated immune complexes in monocytes. IL-19 seems to have anti-inflammatory functions in arthritis. In contrast, IL-20 and IL-24 increase the production of proinflammatory molecules such as monocyte chemoattractant protein 1 and are associated with bone degradation and radiographic progression. IL-22 is also associated with progression of bone erosions. This suggests that the IL-22RA1 subunit shared by IL-20, IL-22, and IL-24 is important for bone homeostasis. In line with this, the IL-22RA1 has been found on preosteoclasts in early RA. IL-26 is produced in high amounts by myofibroblasts and IL-26 stimulation of monocytes is an important inducer of Th17 cells in RA. This indicates a role for IL-26 as an important factor in the interactions between resident synovial cells and infiltrating leukocytes. Clinical trials that investigate inhibitors of IL-20 (fletikumab) and IL-22 (fezakinumab) in psoriasis and RA have been terminated. Instead, it seems that the strategy for modulating the IL-20 cytokine family should take the overlap in cellular sources and effector mechanisms into account. The redundancy encourages inhibition of more than one cytokine or one of the shared receptors. All IL-20 family members utilize the Janus kinase signaling pathway and are therefore potentially inhibited by drugs targeting these enzymes. Effects and adverse effects in ongoing clinical trials with inhibitors of IL-22 and the IL-22RA1 subunit and recombinant IL-22 fusion proteins will possibly provide important information about the IL-20 subfamily of cytokines in the future.
Collapse
Affiliation(s)
- Tue W Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Line D Heftdal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Pallavur Sivakumar
- Immuno Oncology Translational Development, Celgene Corportation, Seattle, WA, United States
| | - Peter C Taylor
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Ladislav Senolt
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Fujimoto Y, Fujita T, Kuramoto N, Kuwamura M, Izawa T, Nishiyama K, Yoshida N, Nakajima H, Takeuchi T, Azuma YT. The Role of Interleukin-19 in Contact Hypersensitivity. Biol Pharm Bull 2018; 41:182-189. [PMID: 29386478 DOI: 10.1248/bpb.b17-00594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-19 is a member of the IL-10 family of interleukins and is an immuno-modulatory cytokine produced by the main macrophages. The gastrointestinal tissues of IL-19 knockout mice show exacerbated experimental colitis mediated by the innate immune system and T cells. There is an increasing focus on the interaction and relationship of IL-19 with the function of T cells. Contact hypersensitivity (CHS) is T cell-mediated cutaneous inflammation. Therefore, we asked whether IL-19 causes CHS. We investigated the immunological role of IL-19 in CHS induced by 1-fluoro-2,4-dinitrofluorobenzene as a hapten. IL-19 was highly expressed in skin exposed to the hapten, and ear swelling was increased in IL-19 knockout mice. The exacerbation of the CHS response in IL-19 knockout mice correlated with increased levels of IL-17 and IL-6, but no alterations were noted in the production of interferon (IFN)γ and IL-4 in the T cells of the lymph nodes. In addition to the effect on T cell response, IL-19 knockout mice increased production of inflammatory cytokines. These results show that IL-19 suppressed hapten-dependent skin inflammation in the elicitation phase of CHS.
Collapse
Affiliation(s)
- Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Takashi Fujita
- Laboratory of Molecular Toxicology, Department of Pharmaceutical Sciences, Ritsumeikan University
| | - Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Natsuho Yoshida
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science
| |
Collapse
|
16
|
Szlavicz E, Olah P, Szabo K, Pagani F, Bata-Csorgo Z, Kemeny L, Szell M. Analysis of psoriasis-relevant gene expression and exon usage alterations after silencing of SR-rich splicing regulators. Exp Dermatol 2018. [DOI: 10.1111/exd.13530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eszter Szlavicz
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- Faculty of Medicine; Department of Dermatology, Venereology and Oncodermatology; University of Pécs; Pécs Hungary
| | - Peter Olah
- Faculty of Medicine; Department of Dermatology, Venereology and Oncodermatology; University of Pécs; Pécs Hungary
- Department of Dermatology; University Hospital Düsseldorf; Düsseldorf Germany
| | - Kornélia Szabo
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Franco Pagani
- International Centre for Genetic Engineering and Biotechnology; Trieste Italy
| | - Zsuzsanna Bata-Csorgo
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Lajos Kemeny
- Faculty of Medicine; Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
| | - Márta Szell
- MTA-SZTE Dermatological Research Group; University of Szeged; Szeged Hungary
- Faculty of Medicine; Department of Medical Genetics; University of Szeged; Szeged Hungary
| |
Collapse
|
17
|
Niess JH, Hruz P, Kaymak T. The Interleukin-20 Cytokines in Intestinal Diseases. Front Immunol 2018; 9:1373. [PMID: 29967613 PMCID: PMC6015891 DOI: 10.3389/fimmu.2018.01373] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Autoimmune/inflammatory intestinal diseases, such as Crohn’s disease and ulcerative colitis, infectious gastrointestinal diseases, and gastrointestinal cancers, such as colorectal cancer, are worldwide a significant health problem. Intercellular communication and direct contact with the environment as the microbiota colonizes the gastrointestinal surface facilitates these diseases. Cytokines mediate the intercellular communication to maintain the equilibrium between host and environment and to regulate immune responses. One cytokine family that exchange information between immune cells and epithelial cells is the IL-20 cytokine family which includes the cytokines IL-19, IL-20, IL-22, IL-24, and IL-26. These cytokines share common receptor subunits and signaling pathways. IL-22 is the most intensively studied cytokine within this family in contexts of gastrointestinal disease, but the importance of other family members is more and more appreciated. In this review, the potential function of IL-20 cytokines concerning gastrointestinal conditions is discussed.
Collapse
Affiliation(s)
- Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Gastroenterology and Hepatology, University Hospital of Basel, Basel, Switzerland
| | - Petr Hruz
- Department of Gastroenterology and Hepatology, University Hospital of Basel, Basel, Switzerland
| | - Tanay Kaymak
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
The Difference in Interleukin-19 Serum on Degrees of Acne Vulgaris Severity. Int J Inflam 2018; 2018:4141579. [PMID: 29805787 PMCID: PMC5899841 DOI: 10.1155/2018/4141579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/14/2018] [Indexed: 01/27/2023] Open
Abstract
Introduction Acne vulgaris is a multifactorial disease. Recent study showed that inflammation does have a central role in the formation of both inflammatory and noninflammatory lesions in acne vulgaris. There are various findings of proinflammatory cytokines related to acne vulgaris, but no previous study correlate interleukin- (IL-) 19 to acne vulgaris. This pilot study aims to look at difference in IL-19 serum concentration on degrees of severity of acne vulgaris. Methods This is an analytical observational cross-sectional study. Sample subjects were patients with acne vulgaris who met the inclusion criteria. Enzyme-linked immunosorbent assay (ELISA) study was applied to measure IL-19 serum. Result Analysis test found statistically significant difference between IL-19 serum concentration of group of patients with mild acne vulgaris and that of group of patients with severe acne vulgaris. Moreover, analysis revealed significant difference between IL-19 serum concentration of group of patients with moderate acne vulgaris and that of group of patients with severe acne vulgaris. Conclusions There are differences in serum levels of IL-19 on the severity of acne vulgaris. The significant difference might show that inflammation has a core role in severity of acne vulgaris, and IL-19 might potentially be related to acne vulgaris.
Collapse
|
19
|
Takahashi T, Koga Y, Kainoh M. Anti-IL-12/IL-23p40 antibody ameliorates dermatitis and skin barrier dysfunction in mice with imiquimod-induced psoriasis-like dermatitis. Eur J Pharmacol 2018; 828:26-30. [PMID: 29544684 DOI: 10.1016/j.ejphar.2018.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by erythema, skin hyperplasia, scales, and keratinocyte hyperproliferation. While the cause of psoriasis is not clearly understood, a dysregulated immune system, especially activation of IL-23/IL-17 axis, has been strongly implicated in the pathogenesis of psoriasis. For example, anti-IL-23 therapy is effective in psoriasis patients, and thus IL-23 is considered as a potential therapeutic target for the treatment of psoriasis. The skin barrier provides protection of the human body against infection from external pathogens. Dysfunction of the skin barrier is also one of the characteristics in psoriasis and is correlated with disease severity. However, there have been no reports regarding the effectiveness of antipsoriatic agents on the skin barrier dysfunction of psoriasis. In this study, we examined the effect of anti-IL-12/IL-23p40 monoclonal antibody (p40 mAb) on dermatitis symptoms and skin barrier dysfunction in mice with imiquimod-induced psoriasis-like dermatitis. We found that p40 mAb suppressed epidermal thickness and increased transepidermal water loss (TEWL) as indicator for skin barrier function with accompanying suppression of IL-23p19, IL-17A, IL-22, and keratin 16 gene expression. These results suggest that p40 mAb is not only effective against dermatitis symptoms but also skin barrier dysfunction in mice with imiquimod-induced psoriasis-like dermatitis. This is the first report on the effect of p40 mAb on skin barrier dysfunction related to psoriasis. Taken together, our results indicate the possibility of new insights as well as the therapeutic potential of anti-IL-23 for the treatment of psoriasis.
Collapse
Affiliation(s)
- Takehiro Takahashi
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura 248-8555, Kanagawa, Japan.
| | - Yoko Koga
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura 248-8555, Kanagawa, Japan
| | - Mie Kainoh
- Toray Industries, Inc., Pharmaceutical Research Laboratories, 10-1, Tebiro 6-chome, Kamakura 248-8555, Kanagawa, Japan
| |
Collapse
|
20
|
TWEAK mediates inflammation in experimental atopic dermatitis and psoriasis. Nat Commun 2017; 8:15395. [PMID: 28530223 PMCID: PMC5493595 DOI: 10.1038/ncomms15395] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) and psoriasis are driven by alternate type 2 and type 17 immune responses, but some proteins might be critical to both diseases. Here we show that a deficiency of the TNF superfamily molecule TWEAK (TNFSF12) in mice results in defective maintenance of AD-specific T helper type 2 (Th2) and psoriasis-specific Th17 cells in the skin, and impaired expression of disease-characteristic chemokines and cytokines, such as CCL17 and TSLP in AD, and CCL20 and IL-19 in psoriasis. The TWEAK receptor, Fn14, is upregulated in keratinocytes and dermal fibroblasts, and TWEAK induces these cytokines and chemokines alone and in synergy with the signature T helper cytokines of either disease, IL-13 and IL-17. Furthermore, subcutaneous injection of recombinant TWEAK into naive mice induces cutaneous inflammation with histological and molecular signs of both diseases. TWEAK is therefore a critical contributor to skin inflammation and a possible therapeutic target in AD and psoriasis.
Collapse
|
21
|
Galimova E, Rätsep R, Traks T, Kingo K, Escott-Price V, Kõks S. Interleukin-10 family cytokines pathway: genetic variants and psoriasis. Br J Dermatol 2017; 176:1577-1587. [DOI: 10.1111/bjd.15363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 01/29/2023]
Affiliation(s)
- E. Galimova
- Department of Physiology; University of Tartu; Tartu Estonia
- Institute of Biochemistry and Genetics; Ufa Scientific Center of Russian Academy of Sciences; Ufa Russia
| | - R. Rätsep
- Department of Physiology; University of Tartu; Tartu Estonia
| | - T. Traks
- Department of Dermatology; University of Tartu; Tartu Estonia
| | - K. Kingo
- Department of Dermatology; University of Tartu; Tartu Estonia
| | - V. Escott-Price
- MRC Centre for Neuropsychiatric Genetics & Genomics; Cardiff University; Cardiff U.K
| | - S. Kõks
- Department of Physiology; University of Tartu; Tartu Estonia
- Department of Pathophysiology; University of Tartu; Tartu Estonia
| |
Collapse
|
22
|
Gough P, Ganesan S, Datta SK. IL-20 Signaling in Activated Human Neutrophils Inhibits Neutrophil Migration and Function. THE JOURNAL OF IMMUNOLOGY 2017; 198:4373-4382. [PMID: 28424238 DOI: 10.4049/jimmunol.1700253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/23/2017] [Indexed: 12/23/2022]
Abstract
Neutrophils possess multiple antimicrobial mechanisms that are critical for protection of the host against infection with extracellular microbes, such as the bacterial pathogen Staphylococcus aureus Recruitment and activation of neutrophils at sites of infection are driven by cytokine and chemokine signals that directly target neutrophils via specific cell surface receptors. The IL-20 subfamily of cytokines has been reported to act at epithelial sites and contribute to psoriasis, wound healing, and anti-inflammatory effects during S. aureus infection. However, the ability of these cytokines to directly affect neutrophil function remains incompletely understood. In this article, we show that human neutrophils altered their expression of IL-20R chains upon migration and activation in vivo and in vitro. Such activation of neutrophils under conditions mimicking infection with S. aureus conferred responsiveness to IL-20 that manifested as modification of actin polymerization and inhibition of a broad range of actin-dependent functions, including phagocytosis, granule exocytosis, and migration. Consistent with the previously described homeostatic and anti-inflammatory properties of IL-20 on epithelial cells, the current study provides evidence that IL-20 directly targets and inhibits key inflammatory functions of neutrophils during infection with S. aureus.
Collapse
Affiliation(s)
- Portia Gough
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Sundar Ganesan
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sandip K Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
23
|
Langkilde A, Olsen LC, Sætrom P, Drabløs F, Besenbacher S, Raaby L, Johansen C, Iversen L. Pathway Analysis of Skin from Psoriasis Patients after Adalimumab Treatment Reveals New Early Events in the Anti-Inflammatory Mechanism of Anti-TNF-α. PLoS One 2016; 11:e0167437. [PMID: 28005985 PMCID: PMC5179238 DOI: 10.1371/journal.pone.0167437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/14/2016] [Indexed: 01/09/2023] Open
Abstract
Psoriasis is a chronic cutaneous inflammatory disease. The immunopathogenesis is a complex interplay between T cells, dendritic cells and the epidermis in which T cells and dendritic cells maintain skin inflammation. Anti-tumour necrosis factor (anti-TNF)-α agents have been approved for therapeutic use across a range of inflammatory disorders including psoriasis, but the anti-inflammatory mechanisms of anti-TNF-α in lesional psoriatic skin are not fully understood. We investigated early events in skin from psoriasis patients after treatment with anti-TNF-α antibodies by use of bioinformatics tools. We used the Human Gene 1.0 ST Array to analyse gene expression in punch biopsies taken from psoriatic patients before and also 4 and 14 days after initiation of treatment with the anti-TNF-α agent adalimumab. The gene expression was analysed by gene set enrichment analysis using the Functional Annotation Tool from DAVID Bioinformatics Resources. The most enriched pathway was visualised by the Pathview Package on Kyoto Encyclopedia of Genes and Genomes (KEGG) graphs. The analysis revealed new very early events in psoriasis after adalimumab treatment. Some of these events have been described after longer periods of anti-TNF-α treatment when clinical and histological changes appear, suggesting that effects of anti-TNF-α treatment on gene expression appear very early before clinical and histological changes. Combining microarray data on biopsies from psoriasis patients with pathway analysis allowed us to integrate in vitro findings into the identification of mechanisms that may be important in vivo. Furthermore, these results may reflect primary effect of anti-TNF-α treatment in contrast to studies of gene expression changes following clinical and histological changes, which may reflect secondary changes correlated to the healing of the skin.
Collapse
Affiliation(s)
- Ane Langkilde
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| | - Lene C. Olsen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
- Department of Computer and Information Science, Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
| | | | - Line Raaby
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
24
|
Zhang W, Magadi S, Li Z, Smith CW, Burns AR. IL-20 promotes epithelial healing of the injured mouse cornea. Exp Eye Res 2016; 154:22-29. [PMID: 27818315 DOI: 10.1016/j.exer.2016.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
Abstract
After corneal epithelial injury, the ensuing inflammatory response is necessary for efficient wound healing. While beneficial healing effects are attributed to recruited neutrophils and platelets, dysregulated inflammation (too little or too much) is associated with impaired wound healing. The purpose of this study was to use an established C57BL/6J mouse model of corneal injury to evaluate the potential modulatory role of interleukin-20 (IL-20) on the inflammatory and healing responses to epithelial wounding. In the uninjured cornea, immunofluorescence staining for IL-20 and its receptor, IL-20RA, was observed on basal epithelial cells at the limbus. After a 2 mm central epithelial abrasion, IL-20 staining was also observed in stromal keratocytes and ELISA studies showed a significant increase (nearly 3-fold) in IL-20 expression. Injured corneas healed more slowly when treated with a topical application of a neutralizing anti-IL-20 antibody. While corneal epithelial cell division and epithelial nerve recovery measured at 24 h post-injury were reduced compared to controls, neutrophil influx into the cornea was increased. In contrast, topical application of recombinant IL-20 (rIL-20) decreased corneal inflammation as evidenced by reductions in limbal vessel dilatation, platelet extravasation, neutrophil recruitment and CXCL1 expression. In wild type mice, topical rIL-20 had a limited effect on corneal wound healing and resulted in only a slight increase in epithelial cell division and epithelial nerve recovery; the rate of wound closure was unaffected. To clarify the effect of IL-20 on corneal wound healing, rIL-20 was topically applied to neutropenic wild type (WT) mice and mutant mice (ɣδ T cell deficient mice and CD11a deficient mice), all of which have well characterized reductions in neutrophil recruitment and delayed wound healing after corneal injury. In each case, rIL-20 restored corneal wound healing to baseline levels while neutrophil recruitment remained low. Thus, it appears that IL-20 plays a beneficial and direct role in corneal wound healing while negatively regulating neutrophil and platelet infiltration.
Collapse
Affiliation(s)
- Wanyu Zhang
- College of Optometry, University of Houston, United States
| | - Sri Magadi
- College of Optometry, University of Houston, United States
| | - Zhijie Li
- Department of Pediatrics, Baylor College of Medicine, United States; International Collaborative Innovation Research Center of Ocular Surface Diseases and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China
| | - C Wayne Smith
- Department of Pediatrics, Baylor College of Medicine, United States
| | - Alan R Burns
- College of Optometry, University of Houston, United States; Department of Pediatrics, Baylor College of Medicine, United States.
| |
Collapse
|
25
|
Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome Biol 2016; 17:212. [PMID: 27799070 PMCID: PMC5088679 DOI: 10.1186/s13059-016-1078-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/05/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The identification of causal genes from genome-wide association studies (GWAS) is the next important step for the translation of genetic findings into biologically meaningful mechanisms of disease and potential therapeutic targets. Using novel chromatin interaction detection techniques and allele specific assays in T and B cell lines, we provide compelling evidence that redefines causal genes at the 6q23 locus, one of the most important loci that confers autoimmunity risk. RESULTS Although the function of disease-associated non-coding single nucleotide polymorphisms (SNPs) at 6q23 is unknown, the association is generally assigned to TNFAIP3, the closest gene. However, the DNA fragment containing the associated SNPs interacts through chromatin looping not only with TNFAIP3, but also with IL20RA, located 680 kb upstream. The risk allele of the most likely causal SNP, rs6927172, is correlated with both a higher frequency of interactions and increased expression of IL20RA, along with a stronger binding of both the NFκB transcription factor and chromatin marks characteristic of active enhancers in T-cells. CONCLUSIONS Our results highlight the importance of gene assignment for translating GWAS findings into biologically meaningful mechanisms of disease and potential therapeutic targets; indeed, monoclonal antibody therapy targeting IL-20 is effective in the treatment of rheumatoid arthritis and psoriasis, both with strong GWAS associations to this region.
Collapse
|
26
|
Bech R, Jalilian B, Agger R, Iversen L, Erlandsen M, Otkjaer K, Johansen C, Paludan SR, Rosenberg CA, Kragballe K, Vorup-Jensen T. Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules. MOLECULAR AND CELLULAR THERAPIES 2016; 4:1. [PMID: 26819710 PMCID: PMC4728801 DOI: 10.1186/s40591-016-0046-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/18/2016] [Indexed: 01/04/2023]
Abstract
Background Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. Methods Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed IL-20 effects on DC maturation, receptor expression and signaling. By use of extra cellular matrix components mimicking the skin environment, we also studied the functional effects of IL-20 on the chemotactic migration of DCs. Based on the recent finding that CD18 integrin are shed during migration of myeloid leukocytes, the concentration of these adhesion molecules was measured in MDDCs culture supernatants post migration. Results Following stimulation with IL-20, immature human MDDCs enhanced the expression of the co-stimulatory molecule CD86, further enabling activation of the p38 MAPK, but not the STAT3, pathway. IL-20 increased the migration of MDDCs in a biphasic response narrowly controlled by the interleukin concentration. A concomitant change in the shedding of CD18 integrins suggested that these adhesion molecules play a role in the migration of the MDDCs through the extracellular matrix layer. Conclusion Taken together, our findings points to a possible, yet subtle, role of IL-20 in DCs migration. The biphasic response suggests that the aberrant IL-20 expression in psoriasis impedes DC migration, which could be a part of the processes that precipitates the dysregulated inflammatory response associated with this disease. Electronic supplementary material The online version of this article (doi:10.1186/s40591-016-0046-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rikke Bech
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Babak Jalilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ralf Agger
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Mogens Erlandsen
- Department of Public Health - Biostatistics, Aarhus University, Aarhus, Denmark
| | - Kristian Otkjaer
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Knud Kragballe
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Interdisiplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.,Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, The Bartholin Building (1240), Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Bech R, Jalilian B, Agger R, Iversen L, Erlandsen M, Otkjaer K, Johansen C, Paludan SR, Rosenberg CA, Kragballe K, Vorup-Jensen T. Interleukin 20 regulates dendritic cell migration and expression of co-stimulatory molecules. MOLECULAR AND CELLULAR THERAPIES 2016; 4:1. [PMID: 26819710 PMCID: PMC4728801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/18/2016] [Indexed: 11/21/2023]
Abstract
BACKGROUND Psoriasis is an inflammatory disease characterized by leukocyte skin infiltration. Interestingly, recent works suggest that the migration of dendritic cells (DCs) is abnormal in psoriatic skin. DCs have significant role in regulating the function of T lymphocytes, at least in part influenced by the local environment of cytokines. In psoriatic skin lesions the expression of IL-20 is highly up-regulated. It is unclear if this cytokine has any influence on DCs. METHODS Here, we investigated the influence of IL-20 in monocyte-derived dendritic cell (MDDCs) in vitro. This work addressed IL-20 effects on DC maturation, receptor expression and signaling. By use of extra cellular matrix components mimicking the skin environment, we also studied the functional effects of IL-20 on the chemotactic migration of DCs. Based on the recent finding that CD18 integrin are shed during migration of myeloid leukocytes, the concentration of these adhesion molecules was measured in MDDCs culture supernatants post migration. RESULTS Following stimulation with IL-20, immature human MDDCs enhanced the expression of the co-stimulatory molecule CD86, further enabling activation of the p38 MAPK, but not the STAT3, pathway. IL-20 increased the migration of MDDCs in a biphasic response narrowly controlled by the interleukin concentration. A concomitant change in the shedding of CD18 integrins suggested that these adhesion molecules play a role in the migration of the MDDCs through the extracellular matrix layer. CONCLUSION Taken together, our findings points to a possible, yet subtle, role of IL-20 in DCs migration. The biphasic response suggests that the aberrant IL-20 expression in psoriasis impedes DC migration, which could be a part of the processes that precipitates the dysregulated inflammatory response associated with this disease.
Collapse
Affiliation(s)
- Rikke Bech
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Babak Jalilian
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ralf Agger
- />Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Iversen
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Mogens Erlandsen
- />Department of Public Health - Biostatistics, Aarhus University, Aarhus, Denmark
| | - Kristian Otkjaer
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Knud Kragballe
- />Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
- />Interdisiplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, The Bartholin Building (1240), Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| |
Collapse
|
28
|
Matsuo Y, Azuma YT, Kuwamura M, Kuramoto N, Nishiyama K, Yoshida N, Ikeda Y, Fujimoto Y, Nakajima H, Takeuchi T. Interleukin 19 reduces inflammation in chemically induced experimental colitis. Int Immunopharmacol 2015; 29:468-475. [PMID: 26476684 DOI: 10.1016/j.intimp.2015.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease results from chronic dysregulation of the mucosal immune system and aberrant activation of both the innate and adaptive immune responses. Interleukin (IL)-19, a member of the IL-10 family, functions as an anti-inflammatory cytokine. Here, we investigated the contribution of IL-19 to intestinal inflammation in a model of T cell-mediated colitis in mice. Inflammatory responses in IL-19-deficient mice were assessed using the 2,4,6-trinitrobenzene sulfonic acid (TNBS) model of acute colitis. IL-19 deficiency aggravated TNBS-induced colitis and compromised intestinal recovery in mice. Additionally, the exacerbation of TNBS-induced colonic inflammation following genetic ablation of IL-19 was accompanied by increased production of interferon-gamma, IL-12 (p40), IL-17, IL-22, and IL-33, and decreased production of IL-4. Moreover, the exacerbation of colitis following IL-19 knockout was also accompanied by increased production of CXCL1, G-CSF and CCL5. Using this model of induced colitis, our results revealed the immunopathological relevance of IL-19 as an anti-inflammatory cytokine in intestinal inflammation in mice.
Collapse
Affiliation(s)
- Yukiko Matsuo
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan.
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan
| | - Nobuyuki Kuramoto
- Laboratory of Toxicology, Setsunan University Faculty of Pharmaceutical Sciences, Hirakata, Osaka 573-0101, Japan
| | - Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan
| | - Natsuho Yoshida
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan
| | - Yoshihito Ikeda
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
29
|
Valentina M, Jan F, Peder NL, Bo Z, Hongjie D, Pernille K. Cytokine detection and simultaneous assessment of rheumatoid factor interference in human serum and synovial fluid using high-sensitivity protein arrays on plasmonic gold chips. BMC Biotechnol 2015; 15:73. [PMID: 26268325 PMCID: PMC4535377 DOI: 10.1186/s12896-015-0186-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/24/2015] [Indexed: 01/01/2023] Open
Abstract
Background Fluorescence-enhancing microarray on plasmonic gold film is an attractive alternative to traditional enzyme-linked immunosorbent assay (ELISA) for cytokine detection because of the increased sensitivity. The assay chemistry is similar to an ELISA sandwich assay, but owing to the gold substrate, cytokine measurements are 10 to 100 times more sensitive and can be multiplexed. Plasmonic protein microarrays are, as other immunoassays, affected by the presence of heterophilic antibodies and rheumatoid factor may lead to analytical errors with serious implications for patient care. Here, we present a plasmonic gold substrate protein microarray for high-sensitivity detection of cytokines with simultaneous assessment of rheumatoid factor interference on a single chip. Results Paired serum and synovial fluid samples from patients with rheumatoid arthritis (n = 18), osteoarthritis (n = 9) or healthy controls (n = 10) were arrayed on near-infrared fluorescence enhancing plasmonic gold chips spotted with cytokine-specific capture antibody and isotype control antibody. Possible rheumatoid factor interference was visualised by a non-specific signal from the isotype control antibody, and pre-treatment of samples with heat-aggregated animal IgG eliminated this background contamination. The platform was optimised using the cytokine IL-20. The protein microarray platform allowed for the detection of human IL-20 at levels <1 pg/ml with reliable IL-20 quantification over a 5-log dynamic range. Samples for which rheumatoid factor caused artefacts were identified and a method for eliminating rheumatoid factor interference was developed and validated. IL-20 protein levels were significantly higher in synovial fluid samples from patients with rheumatoid arthritis compared to osteoarthritis (p < 0.001), while serum levels of IL-20 did not differ between patients with rheumatoid arthritis, osteoarthritis or healthy controls. Conclusion Using novel plasmonic gold chips, we developed a highly sensitive and accurate assay platform to detect lowly expressed cytokines in biological fluids, allowing for the elimination of rheumatoid factor interference in as little as 5 μl sample volume. The detection limit was below 1 pg/ml for IL-20 and linearity was achieved over a 5-log dynamic range. This technology is highly advantageous for cytokines where sensitivity or sample volume is critical or where assessment of rheumatoid factor interference needs addressed and eliminated.
Collapse
Affiliation(s)
- Manfè Valentina
- Department of PharmacoGenetics, Biopharmaceutical Research Unit, Novo Nordisk A/S, Novo Nordisk Park 1, Maaloev, 2760, Denmark. .,Department of Chemistry, Stanford University, San Francisco, CA, USA.
| | - Fleckner Jan
- Department of PharmacoGenetics, Biopharmaceutical Research Unit, Novo Nordisk A/S, Novo Nordisk Park 1, Maaloev, 2760, Denmark
| | - Nørby Lisby Peder
- Department of PharmacoGenetics, Biopharmaceutical Research Unit, Novo Nordisk A/S, Novo Nordisk Park 1, Maaloev, 2760, Denmark
| | - Zhang Bo
- Department of Chemistry, Stanford University, San Francisco, CA, USA
| | - Dai Hongjie
- Department of Chemistry, Stanford University, San Francisco, CA, USA
| | - Keller Pernille
- Department of PharmacoGenetics, Biopharmaceutical Research Unit, Novo Nordisk A/S, Novo Nordisk Park 1, Maaloev, 2760, Denmark
| |
Collapse
|
30
|
Gottlieb AB, Krueger JG, Sandberg Lundblad M, Göthberg M, Skolnick BE. First-In-Human, Phase 1, Randomized, Dose-Escalation Trial with Recombinant Anti-IL-20 Monoclonal Antibody in Patients with Psoriasis. PLoS One 2015; 10:e0134703. [PMID: 26252485 PMCID: PMC4529098 DOI: 10.1371/journal.pone.0134703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/11/2015] [Indexed: 01/12/2023] Open
Abstract
Background The current trial was a first-in-human clinical trial evaluating the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy of the recombinant monoclonal anti−interleukin-20 (IL-20) antibody, NNC0109-0012, which targets the inflammatory cytokine IL-20. Methods In total, 48 patients aged 18 to 75 years with moderate to severe stable chronic plaque psoriasis with affected body surface area ≥15% and physician global assessment score ≥3 were enrolled in this randomized, double-blind, multicenter, placebo-controlled, phase 1 dose-escalation trial. Patients were randomized within each single dose cohort (0.01, 0.05, 0.2, 0.6, 1.5, or 3.0 mg/kg) or multiple dose cohort (0.05, 0.2, 0.5, 1.0, or 2.0 mg/kg; 1 dose every other week for 7 weeks) of NNC0109-0012 or placebo in a 3:1 ratio. In the expansion phase, 7 patients were randomized to weekly doses of 2.0 mg/kg NNC0109-0012 or placebo for 7 weeks. The primary objective, safety and tolerability, was assessed by evaluating adverse events (AEs). Additional endpoints included pharmacokinetics, pharmacodynamics, and clinical response (assessed using the Psoriasis Area and Severity Index [PASI] score). Results AEs were reported in 85% of patients (n = 40) in the initial study phases (NNC0109-0012, 83%; placebo, 92%) and in 4 of 7 patients in the multiple-dose expansion phase. One serious AE was reported but was judged not to be causally related to NNC0109-0012. No dose-limiting toxicities were reported. NNC0109-0012 pharmacokinetics was similar to other monoclonal antibodies, with an average half-life of approximately 3 weeks. There was a dose-proportional increase in area under the curve and maximum concentration after single dosing. No substantial changes in pharmacodynamic parameters were observed. The expansion phase was terminated early due to apparent lack of PASI improvement. Conclusion Single and multiple doses of NNC0109-0012, ranging from 0.05 to 3.0 mg/kg, were well tolerated in patients with psoriasis and exhibited pharmacokinetics similar to that of other monoclonal antibodies. Trial Registration ClinicalTrials.gov NCT01261767
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neutralizing/adverse effects
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/therapeutic use
- Broadly Neutralizing Antibodies
- Dose-Response Relationship, Drug
- Female
- Humans
- Interleukins/immunology
- Male
- Middle Aged
- Psoriasis/drug therapy
- Psoriasis/pathology
- Recombinant Proteins/adverse effects
- Recombinant Proteins/pharmacokinetics
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Alice B. Gottlieb
- Department of Dermatology, Tufts Medical Center, Boston, MA, United States of America
- Department of Dermatology, Tufts University School of Medicine, Boston, MA, United States of America
- * E-mail:
| | - James G. Krueger
- The Rockefeller University, New York, NY, United States of America
| | | | - Marie Göthberg
- Clinical Pharmacology, Novo Nordisk A/S, Søborg, Denmark
| | - Brett E. Skolnick
- Medical-Science, Inflammation, Novo Nordisk Inc., Princeton, NJ, United States of America
| |
Collapse
|
31
|
Kragstrup TW, Andersen T, Holm C, Schiøttz-Christensen B, Jurik AG, Hvid M, Deleuran B. Toll-like receptor 2 and 4 induced interleukin-19 dampens immune reactions and associates inversely with spondyloarthritis disease activity. Clin Exp Immunol 2015; 180:233-42. [PMID: 25639337 DOI: 10.1111/cei.12577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2014] [Indexed: 12/27/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of immune mediated inflammatory diseases affecting joints, gut, skin and entheses. The inflammatory process involves activation of Toll-like receptor (TLR)-2 and TLR-4 and production of cytokines and chemokines such as monocyte chemoattractant protein 1 (CCL2/MCP-1). This proinflammatory chemokine recruits monocytes to sites of inflammation and is central in the development of several immune-mediated inflammatory diseases. Interleukin (IL)-19 is a member of the IL-10 family of cytokines. IL-19-deficient mice are more susceptible to innate-mediated colitis and develop more severe inflammation in response to injury. In this work, we studied inducers of IL-19 production and effect of IL-19 on the production of CCL2/MCP-1 and proinflammatory cytokines in peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and in PBMCs and synovial fluid mononuclear cells (SFMCs) from SpA patients. Further, we measured IL-19 in plasma from HCs and in plasma and synovial fluid from SpA patients. Constitutive IL-19 expression was present in both PBMCs and SFMCs and the secretion of IL-19 was increased by TLR-2 and TLR-4 ligands. Neutralizing IL-19 in HC PBMCs and SpA SFMCs resulted in increased production of CCL-2/MCP-1. IL-19 concentrations were decreased in synovial fluid compared with plasma and associated inversely with disease activity in SpA. SpA SFMCs produced less IL-19 in response to LPS compared with HC PBMCs. These findings indicate that IL-19 production is diminished in SpA. Taken together, impaired IL-19 control of the innate immune system might be involved in the pathogenesis of SpA.
Collapse
Affiliation(s)
- T W Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
32
|
Bao L, Alexander JB, Shi VY, Mohan GC, Chan LS. Interleukin-4 up-regulation of epidermal interleukin-19 expression in keratinocytes involves the binding of signal transducer and activator of transcription 6 (Stat6) to the imperfect Stat6 sites. Immunology 2015; 143:601-8. [PMID: 24943510 DOI: 10.1111/imm.12339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 01/21/2023] Open
Abstract
Interleukin-19 (IL-19) plays an important role in asthma by stimulating T helper type 2 (Th2) cytokine production. Interestingly, IL-4, a key Th2 cytokine, in turn up-regulates IL-19 expression in bronchial epithelial cells, so forming a positive feedback loop. In atopic dermatitis (AD), another Th2 disease closely related to asthma, IL-19 is up-regulated in the skin. We propose to use IL-4 transgenic (Tg) mice and human keratinocyte culture to delineate the molecular mechanisms involved in the up-regulation of IL-19 in AD. IL-19 is similarly up-regulated in the skin of IL-4 Tg mice as in human AD. Next we show that IL-4 up-regulates IL-19 expression in keratinocytes. Interestingly, the up-regulation was suppressed by a pan-Janus kinase (Jak) inhibitor, suggesting that the Jak-signal transducer and activator of transcription (Jak-STAT) pathway may be involved. Dominant negative studies further indicate that STAT6, but not other STATs, mediates the up-regulation. Serial 5' deletion of the IL-19 promoter and mutagenesis studies demonstrate that IL-4 up-regulation of IL-19 in keratinocytes involves two imperfect STAT6 response elements. Finally, chromatin immunoprecipitation assay studies indicate that IL-4 increases the binding of STAT6 to its response elements in the IL-19 promoter. Taken together, we delineate the detailed molecular pathway for IL-4 up-regulation of IL-19 in keratinocytes, which may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
33
|
Vinter H, Iversen L, Steiniche T, Kragballe K, Johansen C. Aldara®-induced skin inflammation: studies of patients with psoriasis. Br J Dermatol 2014; 172:345-53. [PMID: 24980460 DOI: 10.1111/bjd.13236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND The application of Aldara(®) cream containing 5% imiquimod stimulates Toll-like receptor 7/8 on plasmacytoid dendritic cells, thereby producing a potent immunomodulatory effect. This has been reported to trigger psoriasis. OBJECTIVES To establish a human model of Aldara-induced psoriasis-like skin inflammation in patients with psoriasis. METHODS Nonlesional psoriatic skin of 13 patients was treated with Aldara for 2 or 7 days. The skin was evaluated clinically and histologically on days 2, 4 and 7. Cytokine expression in Aldara-treated, lesional and nonlesional psoriatic skin was compared using reverse-transcription quantitative polymerase chain reaction. RESULTS Nine of the 10 patients receiving application of Aldara under occlusion for 2 days developed redness, induration and scaling. Histological analysis revealed focal parakeratosis, acanthosis and perivascular mononuclear infiltration. On days 4 and 7 both clinical and histological signs of inflammation subsided. Two of the three patients treated with Aldara for 7 days developed erosions leading to psoriasis on day 21. Cytokine markers of activation of the innate immune system [interferon-α, interferon regulatory factor-7 and interleukin (IL)-1β] were equally expressed in lesional and Aldara-treated skin (n = 6). IL-6 and tumour necrosis factor-α were preferentially expressed in Aldara-treated skin. Adaptive immune system activation occurred only partially: IL-23p19 and IL-22 were similarly overexpressed in Aldara-treated and lesional psoriatic skin, but IL-17A and IL-12p40 were significantly underexpressed in Aldara-treated skin compared with lesional psoriatic skin. IL-10 was significantly overexpressed in Aldara-treated skin. CONCLUSIONS We were able to induce psoriasis-like skin inflammation although typical psoriasis did not develop, possibly due to incomplete adaptive immune system recruitment and the powerful stimulation of IL-10 counter-regulation.
Collapse
Affiliation(s)
- H Vinter
- Department of Dermatology, Aarhus University Hospital, DK-8000, Aarhus C, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
34
|
Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol 2014; 14:783-95. [PMID: 25421700 DOI: 10.1038/nri3766] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interleukin-20 (IL-20) subfamily of cytokines comprises IL-19, IL-20, IL-22, IL-24 and IL-26. These cytokines are all members of the larger IL-10 family, but have been grouped together to form the IL-20 subfamily based on their usage of common receptor subunits and similarities in their target-cell profiles and biological functions. Members of the IL-20 subfamily facilitate the communication between leukocytes and epithelial cells, thereby enhancing innate defence mechanisms and tissue repair processes at epithelial surfaces. In this Review, we describe the cellular sources and targets of the IL-20 subfamily cytokines, and we detail how their expression is regulated. Much of our understanding of the unique biology of this group of cytokines is still based on IL-22, which is the most studied member of the IL-20 subfamily. Nevertheless, we attempt a broader discussion of the emerging functions of IL-20 subfamily cytokines in host defence, inflammatory diseases, cancer and metabolism.
Collapse
Affiliation(s)
- Sascha Rutz
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Xiaoting Wang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
35
|
Azuma YT, Takeuchi T. [Emerging role of interleukin-19 as an inflammatory mediator in inflammatory bowel disease]. Nihon Yakurigaku Zasshi 2014; 143:275-278. [PMID: 24919552 DOI: 10.1254/fpj.143.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
36
|
Anuradha R, George PJ, Hanna LE, Kumaran P, Chandrasekaran V, Nutman TB, Babu S. Expansion of parasite-specific CD4+ and CD8+ T cells expressing IL-10 superfamily cytokine members and their regulation in human lymphatic filariasis. PLoS Negl Trop Dis 2014; 8:e2762. [PMID: 24699268 PMCID: PMC3974669 DOI: 10.1371/journal.pntd.0002762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/16/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lymphatic filariasis (LF) is known to be associated with an increased production of IL-10. The role of the other IL-10 family members in the pathogenesis of infection and/or disease is not known. METHODOLOGY/PRINCIPAL FINDINGS We examined the expression patterns of IL-10 family members--IL-19, IL-24 and IL-26 in LF. We demonstrate that both CD4+ and CD8+ T cells express IL-19, IL-24 and IL-26 and that the frequency of CD4+ T cells expressing IL-19 and IL-24 (as well as IL-10) is significantly increased at baseline and following filarial antigen stimulation in patients with LF in comparison to individuals with filarial lymphedema and uninfected individuals. This CD4+ T cell expression pattern was associated with increased production of IL-19 and IL-24 by filarial-antigen stimulated PBMC. Moreover, the frequency of CD4+ and CD8+ T cells expressing IL-26 was significantly increased following filarial antigen stimulation in filarial lymphedema individuals. Interestingly, IL-10 blockade resulted in diminished frequencies of IL-19+ and IL-24+ T cells, whereas the addition of recombinant IL-10 resulted in significantly increased frequency of IL-19+ and IL-24+ T cells as well as significantly up regulated IL-19 and IL-24 gene expression, suggesting that IL-10 regulates IL-19 and IL-24 expression in T cells. In addition, IL-1β and IL-23 blockade also induced a diminution in the frequency of IL-19+ and IL-24+ T cells, indicating a novel role for these cytokines in the induction of IL-19 and IL-24 expressing T cells. Finally, elimination of infection resulted in significantly decreased frequencies of antigen - specific CD4+ T cells expressing IL-10, IL-19 and IL-24. CONCLUSIONS Our findings, therefore, suggest that IL-19 and IL-24 are associated with the regulation of immune responses in active filarial infection and potentially with protection against development of pathology, while IL-26 is predominantly associated with pathology in LF.
Collapse
Affiliation(s)
- Rajamanickam Anuradha
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
| | - Parakkal Jovvian George
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
| | - Luke E. Hanna
- National Institute for Research in Tuberculosis, Chennai, India
| | - Paul Kumaran
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Subash Babu
- National Institutes of Health—International Center for Excellence in Research, Chennai, India
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Okazaki S, Watanabe Y, Hishimoto A, Sasada T, Mouri K, Shiroiwa K, Eguchi N, Ratta-Apha W, Otsuka I, Nunokawa A, Kaneko N, Shibuya M, Someya T, Shirakawa O, Sora I. Association analysis of putative cis-acting polymorphisms of interleukin-19 gene with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:151-6. [PMID: 24361379 DOI: 10.1016/j.pnpbp.2013.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) and gene expression analyses have revealed that single nucleotide polymorphisms (SNPs) associated with multifactorial diseases, such as schizophrenia, are significantly more likely to be associated with expression quantitative trait loci (eQTL). It was recently suggested that an immune system imbalance plays an important role in the pathogenesis of schizophrenia. Interleukin-19 is a novel cytokine that may play multiple roles in immune regulation and various diseases. METHOD We selected eight tag SNPs in the eQTL of the IL-19 gene. Seven of the SNPs are putative cis-acting SNPs. Then, we conducted a case-control study using two independent samples. The first sample comprised 567 schizophrenia patients and 710 controls, and the second sample comprised 677 schizophrenia patients and 667 controls. RESULT We identified the TGAA haplotype as being significantly associated with schizophrenia (p=0.0036 and corrected p=0.0264), although a combined analysis of the TGAA haplotype with the replication samples exhibited a nominally significant difference (p=0.022 and corrected p=0.235). CONCLUSIONS These results suggest that the IL-19 gene might slightly contribute to the genetic risk of schizophrenia. Thus, further research on the association of eQTL SNPs with schizophrenia is warranted.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Toru Sasada
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyoichi Shiroiwa
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriomi Eguchi
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Woraphat Ratta-Apha
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayako Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoshi Kaneko
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, Kinki University School of Medicine, Osaka, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
38
|
Nwe SM, Champlain AH, Gordon KB. Rationale and early clinical data on IL-17 blockade in psoriasis. Expert Rev Clin Immunol 2014; 9:677-82. [PMID: 23899238 DOI: 10.1586/1744666x.2013.811034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psoriasis vulgaris is a chronic, immune-mediated, inflammatory disease that affects between 2 and 3% of the US population. Often severely physically and emotionally debilitating, psoriasis has driven investigators to strive to better characterize its complex immune pathogenesis. Some of the most promising and exciting advances have occurred in the last decade with recognition of the IL-23/Th17 pathway in disease initiation, progression and maintenance. Biologic therapies targeting various points in the pathway have met with success, prompting the study of the safety and efficacy of IL-17 blockade for moderate-to-severe plaque psoriasis. This article will review the rationale and early clinical data on IL-17 blockade in psoriasis.
Collapse
Affiliation(s)
- Steven M Nwe
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, 676 N. St. Clair St., Suite 1600, Chicago, IL 60611, USA
| | | | | |
Collapse
|
39
|
Eidenschenk C, Rutz S, Liesenfeld O, Ouyang W. Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 2014; 380:213-36. [PMID: 25004820 DOI: 10.1007/978-3-662-43492-5_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines, which, besides IL-10, contains seven additional cytokines. Although the founding member IL-10 is an important immunoregulatory cytokine that represses both innate and adaptive immunity, the other family members preferentially target epithelial cells and enhance innate host defense mechanisms against various pathogens such as bacteria, yeast, and viruses. Based on their functions, the IL-10 family can be further divided into three subgroups, IL-10 itself, the IL-20 subfamily, and the IFNλ subfamily. IL-22 is the best-studied member of the IL-20 subfamily, and exemplifies the diverse biological effects of this subfamily. IL-22 elicits various innate immune responses from epithelial cells and is essential for host defense against several invading pathogens, including Citrobacter rodentium and Klebsiella pneumonia. IL-22 also protects tissue integrity and maintains the mucosal homeostasis. On the other hand, IL-22 is a proinflammatory cytokine with the capacity to amplify inflammatory responses, which might result in tissue damage, e.g., the IL-22-dependent necrosis of the small intestine during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA,
| | | | | | | |
Collapse
|
40
|
Morgan MS, Arlian LG, Markey MP. Sarcoptes scabiei mites modulate gene expression in human skin equivalents. PLoS One 2013; 8:e71143. [PMID: 23940705 PMCID: PMC3733868 DOI: 10.1371/journal.pone.0071143] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/01/2013] [Indexed: 01/12/2023] Open
Abstract
The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin's protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host's protective response allowing these mites to survive in the skin.
Collapse
Affiliation(s)
- Marjorie S. Morgan
- Department of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| | - Larry G. Arlian
- Department of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| | - Michael P. Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, United States of America
| |
Collapse
|
41
|
Datta Mitra A, Raychaudhuri SP, Abria CJ, Mitra A, Wright R, Ray R, Kundu-Raychaudhuri S. 1α,25-Dihydroxyvitamin-D3-3-bromoacetate regulates AKT/mTOR signaling cascades: a therapeutic agent for psoriasis. J Invest Dermatol 2013; 133:1556-64. [PMID: 23314787 DOI: 10.1038/jid.2013.3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The efficacy of 1α,25-dihydroxyvitamin D3 (Vit-D) limits its topical use despite its profound effects on cellular differentiation, proliferation, and immunomodulation. Therefore, in search for a more effective analog of Vit-D, in this study we have evaluated the antiproliferative and proapoptotic effects of 1α,25-dihydroxyvitamin D3-3-bromoacetate (BE). Proliferation and apoptosis studies in normal human epidermal keratinocytes (NHEKs) were conducted by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), CFSE (carboxy fluorescein succinimidyl ester) dilution, and Annexin V assays. Western blot analysis and real-time PCR were performed to determine its effect on signal transduction. A reconstructed human epidermis (RHE) model was used to further validate the therapeutic role of BE in psoriasis. BE was significantly more potent than an equivalent concentration of Vit-D in inhibiting growth and survival of human keratinocytes. The antimitotic effect was found to be due to the inhibition of phosphorylation of serine/threonine protein kinase (AKT) and its downstream target, mammalian target of rapamycin (mTOR). In the RHE model, BE reversed IL-22-induced psoriasiform changes more effectively than Vit-D. Interestingly, BE inhibited the IL-22-induced gene expression of AKT1, MTOR, chemokines [IL-8 and RANTES (regulated upon activation, normal T-cell expressed and secreted)], and psoriasin (S100A7) more significantly than Vit-D. These results suggest the potential of BE as a prospective therapeutic agent for psoriasis.
Collapse
Affiliation(s)
- Ananya Datta Mitra
- IM/Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Sacramento, California, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Baerveldt E, Onderdijk A, Kurek D, Kant M, Florencia E, Ijpma A, van der Spek P, Bastiaans J, Jansen P, van Kilsdonk J, Laman J, Prens E. Ustekinumab improves psoriasis-related gene expression in noninvolved psoriatic skin without inhibition of the antimicrobial response. Br J Dermatol 2013; 168:990-8. [DOI: 10.1111/bjd.12175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Cytokines and the skin barrier. Int J Mol Sci 2013; 14:6720-45. [PMID: 23531535 PMCID: PMC3645662 DOI: 10.3390/ijms14046720] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022] Open
Abstract
The skin is the largest organ of the human body and builds a barrier to protect us from the harmful environment and also from unregulated loss of water. Keratinocytes form the skin barrier by undergoing a highly complex differentiation process that involves changing their morphology and structural integrity, a process referred to as cornification. Alterations in the epidermal cornification process affect the formation of the skin barrier. Typically, this results in a disturbed barrier, which allows the entry of substances into the skin that are immunologically reactive. This contributes to and promotes inflammatory processes in the skin but also affects other organs. In many common skin diseases, including atopic dermatitis and psoriasis, a defect in the formation of the skin barrier is observed. In these diseases the cytokine composition within the skin is different compared to normal human skin. This is the result of resident skin cells that produce cytokines, but also because additional immune cells are recruited. Many of the cytokines found in defective skin are able to influence various processes of differentiation and cornification. Here we summarize the current knowledge on cytokines and their functions in healthy skin and their contributions to inflammatory skin diseases.
Collapse
|
44
|
Wang F, Smith N, Maier L, Xia W, Hammerberg C, Chubb H, Chen C, Riblett M, Johnston A, Gudjonsson JE, Helfrich Y, Kang S, Fisher GJ, Voorhees JJ. Etanercept suppresses regenerative hyperplasia in psoriasis by acutely downregulating epidermal expression of interleukin (IL)-19, IL-20 and IL-24. Br J Dermatol 2012; 167:92-102. [PMID: 22458549 DOI: 10.1111/j.1365-2133.2012.10961.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Psoriasis is a Th17/Th1-mediated skin disease that often responds to antitumour necrosis factor (TNF)-α therapies, such as etanercept. OBJECTIVES To better define mechanisms by which etanercept improves psoriasis and to gain insight into disease pathogenesis. METHODS We investigated the early biochemical and cellular effects of etanercept on skin lesions in responder patients prior to substantial clinical improvement (≤ 4 weeks). RESULTS By 1 week, etanercept acutely suppressed gene expression of the interleukin (IL)-20 subfamily of cytokines (IL-19, IL-20, IL-24), which were found to be predominantly epidermis-derived and which are implicated in stimulating epidermal hyperplasia. Additionally, by 1 week of therapy, suppression of other keratinocyte-derived products (chemokines, antimicrobial proteins) occurred, while suppression of epidermal regenerative hyperplasia occurred within 1-3 weeks. Th17 elements (IL-23p19, IL-12p40, IL-17A, IL-22) were suppressed by 3-4 weeks. In vitro, TNF-α and IL-17A coordinately stimulated the expression of the IL-20 subfamily in normal keratinocytes. CONCLUSIONS Based on the rapid suppression of regenerative hyperplasia, chemokines and other keratinocyte-derived products, including the IL-20 subfamily, we propose that epidermal activation is a very early target of etanercept. As many of these keratinocyte markers are stimulated by TNF-α, their rapid downregulation is likely to reflect etanercept's antagonism of TNF-α. Additionally, decreased epidermal hyperplasia might result specifically from acute suppression of the IL-20 subfamily, which is also a likely consequence of etanercept's antagonism of TNF-α. Thus, the IL-20 subfamily has potential importance in the pathogenesis of psoriasis and therapeutic response to etanercept.
Collapse
Affiliation(s)
- F Wang
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Galimova E, Akhmetova V, Latipov B, Kingo K, Rätsep R, Traks T, Kõks S, Khusnutdinova E. Analysis of genetic variants of class II cytokine and their receptor genes in psoriasis patients of two ethnic groups from the Volga-Ural region of Russia. J Dermatol Sci 2012; 68:9-18. [PMID: 22840887 DOI: 10.1016/j.jdermsci.2012.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 06/20/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The molecular basis of pathogenesis of psoriasis remains unclear, but one unifying hypothesis of disease aetiology is the cytokine network model. The class II cytokines (CF2) and their receptors (CRF2) are all involved in the inflammatory processes and single nucleotide polymorphisms (SNPs) in respective genes have been associated with psoriasis in a previous study of the Estonian population. OBJECTIVE We performed a replication study of 47 SNPs in CF2 and CRF2 genes in independent cohorts of psoriasis patients of two ethnic groups (Russians and Bashkirs) from the Volga-Ural region of Russia. METHODS DNA was obtained from 395 psoriasis patients of two ethnic groups from the Volga-Ural region of Russia and 476 ethnically matched controls. 47 SNPs in the loci of the genes encoding Class II cytokines and their receptors were selected by SNPbrowser version 3.5. Genotyping was performed using the SNPlex™ (Applied Biosystems) platform. RESULTS The genetic variant rs30461 previously associated in original case-control study in Estonians, was also associated in Russians (corrected P-value (Pc=0.008, OR=0.44), but did not reach statistical significance in the Bashkir population. Additionally, the haplotype analysis provided that CC haplotype formed by the SNPs rs30461 and rs955155 had a protective effect in Russians (Pc=0.0024, OR=0.44), supporting the involvement of this locus in the protection against psoriasis. Combined meta-analysis of three populations, including 943 psoriasis patients and 812 healthy controls, showed that the IL29 rs30461 C-allele was not associated with decreased risk of psoriasis (P=0.165, OR=0.68). Moreover, stratification of studies by ethnicity revealed a significant association in the European cohort (P=9.506E-006, OR=0.53). CONCLUSION Therefore, there is no overall evidence of association between psoriasis and SNP rs30461 of the IL29 gene, but there is some evidence to suggest that an association exists in Europeans. However, this current concept should be considered as preliminary and the results need to be confirmed in future independent studies.
Collapse
Affiliation(s)
- Elvira Galimova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lebre MC, Jonckheere CL, Kraan MC, van Kuijk AWR, Bos JD, de Rie M, Gerlag DM, Tak PP. Expression of IL-20 in synovium and lesional skin of patients with psoriatic arthritis: differential response to alefacept treatment. Arthritis Res Ther 2012; 14:R200. [PMID: 23006144 PMCID: PMC3580512 DOI: 10.1186/ar4038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/24/2012] [Indexed: 12/04/2022] Open
Abstract
Introduction Psoriatic arthritis (PsA) is an inflammatory joint disease associated with psoriasis. Alefacept (a lymphocyte function-associated antigen (LFA)-3 Ig fusion protein that binds to CD2 and functions as an antagonist to T-cell activation) has been shown to result in improvement in psoriasis but has limited effectiveness in PsA. Interleukin-20 (IL-20) is a key proinflammatory cytokine involved in the pathogenesis of psoriasis. The effects of alefacept treatment on IL-20 expression in the synovium of patients with psoriasis and PsA are currently unknown. Methods Eleven patients with active PsA and chronic plaque psoriasis were treated with alefacept (7.5 mg per week for 12 weeks) in an open-label study. Skin biopsies were taken before and after 1 and 6 weeks, whereas synovial biopsies were obtained before and 4 and 12 weeks after treatment. Synovial biopsies from patients with rheumatoid arthritis (RA) (n = 10) were used as disease controls. Immunohistochemical analysis was performed to detect IL-20 expression, and stained synovial tissue sections were evaluated with digital image analysis. Double staining was performed with IL-20 and CD68 (macrophages), and conversely with CD55 (fibroblast-like synoviocytes, FLSs) to determine the phenotype of IL-20-positive cells in PsA synovium. IL-20 expression in skin sections (n = 6) was analyzed semiquantitatively. Results IL-20 was abundantly expressed in both PsA and RA synovial tissues. In inflamed PsA synovium, CD68+ macrophages and CD55+ FLSs coexpressed IL-20, and its expression correlated with the numbers of FLSs. IL-20 expression in lesional skin of PsA patients decreased significantly (P = 0.04) 6 weeks after treatment and correlated positively with the Psoriasis Area and Severity Index (PASI). IL-20 expression in PsA synovium was not affected by alefacept. Conclusions Conceivably, the relatively limited effectiveness of alefacept in PsA patients (compared with anti-tumor necrosis factor (TNF) therapy) might be explained in part by persistent FLS-derived IL-20 expression.
Collapse
|
47
|
Anti-inflammatory effects of interleukin-19 in vascular disease. Int J Inflam 2012; 2012:253583. [PMID: 22844641 PMCID: PMC3403192 DOI: 10.1155/2012/253583] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/10/2012] [Indexed: 12/24/2022] Open
Abstract
Despite aggressive dietary modification, lipid-lowering medications, and other interventional medical therapy, vascular disease continues to be a leading cause of mortality in the western world. It is a significant medical and socioeconomic problem contributing to mortality of multiple diseases including myocardial infarction, stroke, renal failure, and peripheral vascular disease. Morbidity and mortality of vascular disease are expected to worsen with the increasing number of patients with comorbid conditions such as obesity, metabolic syndrome, and diabetes mellitus type 2. Vascular diseases such as atherosclerosis, restenosis, and allograft vasculopathy are recognized to be driven by inflammation, and as such, cytokines which mediate inflammation not only represent important targets of rational therapy, but also can be considered as possible therapeutic modalities themselves. In this paper, we will examine the role of inflammatory cytokines and lymphocyte T(h)1/T(h)2 polarity in vascular inflammation, with a focus on atherosclerotic vascular disease. We will then introduce a recently described T(h)2 interleukin, interleukin-19 (IL-19), as a previously unrecognized mediator of vascular inflammatory disorders. We will review our current understanding of this interleukin in health and disease and present the possibility that IL-19 could represent a potential therapeutic to combat vascular inflammatory disease.
Collapse
|
48
|
Hoffman C, Park SH, Daley E, Emson C, Louten J, Sisco M, de Waal Malefyt R, Grunig G. Interleukin-19: a constituent of the regulome that controls antigen presenting cells in the lungs and airway responses to microbial products. PLoS One 2011; 6:e27629. [PMID: 22110701 PMCID: PMC3217014 DOI: 10.1371/journal.pone.0027629] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/20/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Interleukin (IL)-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+) alveolar macrophages and lung dendritic cells. METHODOLOGY/PRINCIPAL FINDINGS IL-19-deficient (IL-19-/-) mice were studied at baseline (naïve) and following intranasal challenge with microbial products, or recombinant cytokines. Naïve IL-19-/- mixed background mice had a decreased percentage of CD11c+ cells in the bronchoalveolar-lavage (BAL) due to the deficiency in IL-19 and a trait inherited from the 129-mouse strain. BAL CD11c+ cells from fully backcrossed IL-19-/- BALB/c or C57BL/6 mice expressed significantly less Major Histocompatibility Complex class II (MHCII) in response to intranasal administration of lipopolysaccharide, Aspergillus antigen, or IL-13, a pro-allergic cytokine. Neurogenic-locus-notch-homolog-protein-2 (Notch2) expression by lung monocytes, the precursors of BAL CD11c+ cells, was dysregulated: extracellular Notch2 was significantly decreased, transmembrane/intracellular Notch2 was significantly increased in IL-19-/- mice relative to wild type. Instillation of recombinant IL-19 increased extracellular Notch2 expression and dendritic cells cultured from bone marrow cells in the presence of IL-19 showed upregulated extracellular Notch2. The CD205 positive subset among the CD11c+ cells was 3-5-fold decreased in the airways and lungs of naïve IL-19-/- mice relative to wild type. Airway inflammation and histological changes in the lungs were ameliorated in IL-19-/- mice challenged with Aspergillus antigen that induces T lymphocyte-dependent allergic inflammation but not in IL-19-/- mice challenged with lipopolysaccharide or IL-13. CONCLUSIONS/SIGNIFICANCE Because MHCII is the molecular platform that displays peptides to T lymphocytes and Notch2 determines cell fate decisions, our studies suggest that endogenous IL-19 is a constituent of the regulome that controls both processes in vivo.
Collapse
Affiliation(s)
- Carol Hoffman
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Eleen Daley
- Department of Pathology, St. Luke's Roosevelt Hospital, New York, New York, United States of America
| | - Claire Emson
- Merck Research Laboratories (formerly Schering Plough Biopharma), Palo Alto, California, United States of America
| | - Jennifer Louten
- Merck Research Laboratories (formerly Schering Plough Biopharma), Palo Alto, California, United States of America
| | - Maureen Sisco
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Rene de Waal Malefyt
- Merck Research Laboratories (formerly Schering Plough Biopharma), Palo Alto, California, United States of America
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
- Division of Pulmonary Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
49
|
Rasmy H, Mikhael N, Ismail S. Interleukin-18 expression and the response to treatment in patients with psoriasis. Arch Med Sci 2011; 7:713-9. [PMID: 22291810 PMCID: PMC3258774 DOI: 10.5114/aoms.2011.24144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/15/2009] [Accepted: 02/22/2010] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION The aim of the study was to demonstrate interleukin-18 (IL-18) expression in keratinocytes from psoriatic lesions in comparison to keratinocytes from uninvolved skin and to study the change of expression after therapeutic interventions. MATERIAL AND METHODS This study included 16 patients of different clinical subtypes of psoriasis. Interleukin-18 gene expression analysis was performed using real time quantitative PCR. Three biopsies were obtained from each patient. Two were taken from the lesional psoriatic skin and from uninvolved skin before starting treatment. A third lesional skin biopsy was taken at the end of 2 months of treatment. The treatment was in the form of topical steroids or oral systemic methotrexate. RESULTS Of all 16 studied patients, significantly increased IL-18 expression was noted in keratinocytes from psoriatic lesions before and after treatment when compared to keratinocytes from uninvolved skin (p = 0.001 and p = 0.002 respectively). The IL-18 expression in the skin lesions after treatment was significantly lower than lesional skin before treatment (p = 0.023). In psoriatic skin lesions of all studied patients IL-18 expression was significantly correlated with disease duration (r = 0.40 and p = 0.01) and clinical severity of psoriasis (r = 0.72 and p = 0.001). CONCLUSIONS Increased IL-18 expression in keratinocytes from psoriatic lesions of our patients and its correlation with disease duration and severity supported the concept of psoriasis as a T cell mediated autoimmune disease. This could establish therapeutic and preventive approaches for psoriasis that ultimately lead to improved outcomes for patients.
Collapse
|
50
|
Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 2011; 29:71-109. [PMID: 21166540 DOI: 10.1146/annurev-immunol-031210-101312] [Citation(s) in RCA: 1323] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The IL-10 family of cytokines consists of nine members: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, and the more distantly related IL-28A, IL-28B, and IL-29. Evolutionarily, IL-10 family cytokines emerged before the adaptive immune response. These cytokines elicit diverse host defense mechanisms, especially from epithelial cells, during various infections. IL-10 family cytokines are essential for maintaining the integrity and homeostasis of tissue epithelial layers. Members of this family can promote innate immune responses from tissue epithelia to limit the damage caused by viral and bacterial infections. These cytokines can also facilitate the tissue-healing process in injuries caused by infection or inflammation. Finally, IL-10 itself can repress proinflammatory responses and limit unnecessary tissue disruptions caused by inflammation. Thus, IL-10 family cytokines have indispensable functions in many infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Immunology, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | |
Collapse
|