1
|
Hu R, Li G, Hu P, Niu H, Li W, Jiang S, Guan G, Xu Q, Liu M, Chen L. bmp10 maintains cardiac function by regulating iron homeostasis. J Genet Genomics 2024:S1673-8527(24)00263-7. [PMID: 39414074 DOI: 10.1016/j.jgg.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Heart disease remains the leading cause of death worldwide. Iron imbalance, whether deficiency or overload, contributes to heart failure. However, the molecular mechanisms governing iron homeostasis in the heart are poorly understood. Here, we demonstrate that mutation of bmp10, a heart-born morphogen crucial for embryonic heart development, results in severe anemia and cardiac hypertrophy in zebrafish. Initially, bmp10 deficiency causes cardiac iron deficiency, which later progresses to iron overload due to the dysregulated hepcidin/ferroportin axis in cardiac cells, leading to ferroptosis and heart failure. Early iron supplementation in bmp10-/- mutants rescues erythropoiesis, while iron chelation in juvenile fishes significantly alleviates cardiac hypertrophy. We further demonstrate that the interplay between HIF1α-driven hypoxic signaling and the IL6/p-STAT3 inflammatory pathways is critical for regulating cardiac iron metabolism. Our findings reveal BMP10 as a key regulator of iron homeostasis in the vertebrate heart and highlight the potential of targeting the BMP10-hepcidin-iron axis as a therapeutic strategy for iron-related cardiomyopathy.
Collapse
Affiliation(s)
- Ruiqin Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Genfang Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Hongbo Niu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Wenhao Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Shouwen Jiang
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Guijun Guan
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Qianghua Xu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mingli Liu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Chen H, Li YY, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024; 14:1013. [PMID: 39199400 PMCID: PMC11353080 DOI: 10.3390/biom14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors belonging to the transforming growth factor β(TGF-β) family. While initially recognized for their role in bone formation, BMPs have emerged as significant players in liver diseases. Among BMPs with various physiological activities, this comprehensive review aims to delve into the involvement of BMP9 specifically in liver diseases and provide insights into the complex BMP signaling pathway. Through an enhanced understanding of BMP9, we anticipate the discovery of new therapeutic options and potential strategies for managing liver diseases.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Chen K, Wei X, Zhang W, Wang R, Wang Y, Yang L. Bone morphogenetic protein 4 derived from the cerebrospinal fluid in patients with postherpetic neuralgia induces allodynia via the crosstalk between microglia and astrocyte. Brain Behav Immun 2024; 119:836-850. [PMID: 38735405 DOI: 10.1016/j.bbi.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION During postherpetic neuralgia (PHN), the cerebral spinal fluid (CSF) possesses the capability to trigger glial activation and inflammation, yet the specific changes in its composition remain unclear. Recent findings from our research indicate elevations of central bone morphogenetic protein 4 (BMP4) during neuropathic pain (NP), serving as an independent modulator of glial cells. Herein, the aim of the present study is to test the CSF-BMP4 expressions and its role in the glial modulation in the process of PHN. METHODS CSF samples were collected from both PHN patients and non-painful individuals (Control) to assess BMP4 and its antagonist Noggin levels. Besides, intrathecal administration of both CSF types was conducted in normal rats to evaluate the impact on pain behavior, glial activity, and inflammation.; Additionally, both Noggin and STAT3 antagonist-Stattic were employed to treat the PHN-CSF or exogenous BMP4 challenged cultured astrocytes to explore downstream signals. Finally, microglial depletion was performed prior to the PHN-CSF intervention so as to elucidate the microglia-astrocyte crosstalk. RESULTS BMP4 levels were significantly higher in PHN-CSF compared to Control-CSF (P < 0.001), with a positive correlation with pain duration (P < 0.05, r = 0.502). Comparing with the Control-CSF producing moderate paw withdrawal threshold (PWT) decline and microglial activation, PHN-CSF further exacerbated allodynia and triggered both microglial and astrocytic activation (P < 0.05). Moreover, PHN-CSF rather than Control-CSF evoked microglial proliferation and pro-inflammatory transformation, reinforced iron storage, and activated astrocytes possibly through both SMAD159 and STAT3 signaling, which were all mitigated by the Noggin application (P < 0.05). Next, both Noggin and Stattic effectively attenuated BMP4-induced GFAP and IL-6 upregulation, as well as SMAD159 and STAT3 phosphorylation in the cultured astrocytes (P < 0.05). Finally, microglial depletion diminished PHN-CSF induced astrogliosis, inflammation and endogenous BMP4 expression (P < 0.05). CONCLUSION Our study highlights the role of CSF-BMP4 elevation in glial activation and allodynia during PHN, suggesting a potential therapeutic avenue for future exploration.
Collapse
Affiliation(s)
- Kai Chen
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China; Department of Pain Management, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan Province, China; Clinical Research Center for Pain Medicine in Hunan Province, Changsha, Hunan Province, China
| | - Xiaojin Wei
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China; Department of Pain Management, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan Province, China; Clinical Research Center for Pain Medicine in Hunan Province, Changsha, Hunan Province, China
| | - Wenjuan Zhang
- Department of the Laboratory, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruixuan Wang
- Bourns Engineering, The University of California, Riverside, CA 92521, USA
| | - Yaping Wang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China; Department of Pain Management, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan Province, China; Clinical Research Center for Pain Medicine in Hunan Province, Changsha, Hunan Province, China.
| | - Lin Yang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, China; Department of Pain Management, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, Hunan Province, China; Clinical Research Center for Pain Medicine in Hunan Province, Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Sadakane H, Matsumura M, Murakami M, Itoyama E, Shimokawa F, Sakota S, Yoshioka H, Kawabata H, Matsui T, Funaba M. Weak response of bovine hepcidin induction to iron through decreased expression of Smad4. FASEB J 2023; 37:e23243. [PMID: 37800888 DOI: 10.1096/fj.202301186rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Hepcidin negatively regulates systemic iron levels by inhibiting iron entry into the circulation. Hepcidin production is increased in response to an increase in systemic iron via the activation of the bone morphogenetic protein (BMP) pathway. Regulation of hepcidin expression by iron status has been proposed on the basis of evidence mainly from rodents and humans. We evaluated the effect of iron administration on plasma hepcidin concentrations in calves and the expression of bovine hepcidin by the BMP pathway in a cell culture study. Hematocrit as well as levels of blood hemoglobin and plasma iron were lower than the reference level in calves aged 1-4 weeks. Although intramuscular administration of iron increased iron-related parameters, plasma hepcidin concentrations were unaffected. Treatment with BMP6 increased hepcidin expression in human liver-derived cells but not in bovine liver-derived cells. A luciferase-based reporter assay revealed that Smad4 was required for hepcidin reporter transcription induced by Smad1. The reporter activity of hepcidin was lower in the cells transfected with bovine Smad4 than in those transfected with murine Smad4. The lower expression levels of bovine Smad4 were responsible for the lower activity of the hepcidin reporter, which might be due to the instability of bovine Smad4 mRNA. In fact, the endogenous Smad4 protein levels were lower in bovine cells than in human and murine cells. Smad4 also confers TGF-β/activin-mediated signaling. Induction of TGF-β-responsive genes was also lower after treatment with TGF-β1 in bovine hepatocytes than in human hepatoma cells. We revealed the unique regulation of bovine hepcidin expression and the characteristic TGF-β family signaling mediated by bovine Smad4. The present study suggests that knowledge of the regulatory expression of hepcidin as well as TGF-β family signaling obtained in murine and human cells is not always applicable to bovine cells.
Collapse
Affiliation(s)
- Hiroyuki Sadakane
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Manami Matsumura
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | | | - Fumie Shimokawa
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Shotaro Sakota
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | | | - Hiroshi Kawabata
- National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Liu X, Du M, Wang Y, Liu S, Liu X. BMP9 overexpressing adipose-derived mesenchymal stem cells promote cartilage repair in osteoarthritis-affected knee joint via the Notch1/Jagged1 signaling pathway. Exp Ther Med 2018; 16:4623-4631. [PMID: 30542413 PMCID: PMC6257276 DOI: 10.3892/etm.2018.6754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OS) is a common disease in orthopedics. Although OS is known as an inflammation mediated by inflammatory cytokines; however, the mechanism is poorly understood. In the present study, the role of bone morphogenetic protein-9 (BMP9) was investigated in chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADMSCs). ADMSCs were transfected with BMP9. BMP9 mRNA expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Type II collagen and aggrecan expression was detected by western blotting and RT-qPCR. Mouse models of knee OS were established. Hematoxylin-eosin staining and toluidine blue staining were performed to observe changes in the OS-affected knee joint. After intra-articular injection of ADMSCs transfected with BMP9, intra-articular expression of type II collagen and aggrecan was detected by western blot analysis and RT-qPCR. After the Notch signaling pathway was inhibited in ADMSCs, ADMSCs were injected into the articular cavity. The expression of Notch signaling pathway-related proteins Notch1 and Jagged1 was detected by western blot analysis and RT-qPCR. BMP9 promoted chondrogenic differentiation of ADMSCs. After injection of BMP9 overexpressing ADMSCs into the articular space, type II collagen and aggrecan expression was increased. When the Notch signaling pathway of ADMSCs was inhibited, the ability of BMP9 overexpressing ADMSCs to repair the cartilage in the OS-affected knee joint was attenuated. These results demonstrate that upregulating BMP9 protein expression may promote the chondrogenic differentiation of ADMSCs. Intra-articular injection of ADMSCs contributes to cartilage repair in OS-affected knee joints through the Notch1/Jagged1 signaling pathway.
Collapse
Affiliation(s)
- Xinwei Liu
- Department of Orthopedics and Rescue Center of Severe Wound and Trauma of Chinese PLA, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| | - Mingchang Du
- Department of Orthopedics, Orthopedic Hospital of Shenyang, Shenyang, Liaoning 110000, P.R. China
| | - Yu Wang
- Department of Orthopedics and Rescue Center of Severe Wound and Trauma of Chinese PLA, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| | - Songbo Liu
- Department of Orthopedics and Rescue Center of Severe Wound and Trauma of Chinese PLA, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| | - Xianmin Liu
- Department of Orthopedics and Rescue Center of Severe Wound and Trauma of Chinese PLA, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
6
|
Khurana M, Fung EB, Vichinsky EP, Theil EC. Dietary nonheme iron is equally bioavailable from ferritin or ferrous sulfate in thalassemia intermedia. Pediatr Hematol Oncol 2017; 34:455-467. [PMID: 29232169 DOI: 10.1080/08880018.2017.1395935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UNLABELLED Transfusion-independent patients with thalassemia intermedia (TI) develop fatal iron overload from excessive iron absorption triggered by ineffective erythropoiesis. More information about iron pharmacokinetics and nonheme, dietary iron absorption in such patients is needed to optimize management. To obtain more information, different forms of supplemental nonheme iron sources (ferritin and ferrous sulfate) were compared in 4 TI (hemoglobin <9 g/dL) and 6 control (hemoglobin 12-16 g/dL) patients. Serial serum iron concentrations were measured during the 24 hours following consumption of 1 mg/kg of elemental iron as ferritin or ferrous sulfate. Serum iron concentrations were also measured for one TI patient and one control patient 2 hours after the ingestion of 2 mg/kg of dietary iron in ferritin or ferrous sulfate. Maximum serum iron concentrations were observed 4 hours after the consumption of either dietary iron source. However, the serum iron values were unchanged for either dietary iron source, even at the higher doses of consumed iron. Thus, the bioavailability of dietary iron, either as ferritin or ferrous sulfate, was equivalent in both groups of patients. The pilot data support ferritin as an alternative dietary iron supplement to ferrous sulfate. ABBREVIATIONS CRP C-reactive protein; Hb hemoglobin; IDA iron-deficient anemia; ICP inductively coupled plasma; IE ineffective erythropoiesis; SCD sickle cell disease; sTf transferrin saturation; TI thalassemia intermedia; TIBC total iron binding capacity; TM thalassemia major; Tf transferrin.
Collapse
Affiliation(s)
- Monica Khurana
- a Department of Hematology/Oncology , UCSF Benioff Children's Hospital Oakland , Oakland , USA.,b Department of Hematology/Oncology , Children's Hospital Oakland Research Institute , Oakland , USA.,c Department of Hematology/Oncology , Riley Hospital for Children at Indiana University Health , Indianapolis , USA
| | - Ellen B Fung
- a Department of Hematology/Oncology , UCSF Benioff Children's Hospital Oakland , Oakland , USA.,b Department of Hematology/Oncology , Children's Hospital Oakland Research Institute , Oakland , USA
| | - Elliott P Vichinsky
- a Department of Hematology/Oncology , UCSF Benioff Children's Hospital Oakland , Oakland , USA.,b Department of Hematology/Oncology , Children's Hospital Oakland Research Institute , Oakland , USA
| | - Elizabeth C Theil
- b Department of Hematology/Oncology , Children's Hospital Oakland Research Institute , Oakland , USA
| |
Collapse
|
7
|
Ferro E, Di Pietro A, Visalli G, Piraino B, Salpietro C, La Rosa MA. Soluble hemojuvelin in transfused and untransfused thalassaemic subjects. Eur J Haematol 2016; 98:67-74. [PMID: 27440164 DOI: 10.1111/ejh.12786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The hemojuvelin-bone morphogenetic protein axis is the principal iron-dependent mechanism of hepcidin regulation. The determination of soluble hemojuvelin (sHJV) levels could allow for a better understanding of the pathophysiological mechanisms of hepcidin regulation in thalassaemia. METHOD We have assessed sHJV in 45 transfused and 15 untransfused thalassaemic patients in comparison with 15 healthy subjects, evaluating its relationships with some parameters of iron overload, anaemia and erythropoiesis. RESULTS Untransfused thalassaemic patients had more severe anaemia and erythropoietic activity, while in transfused patients, the transfused RBCs reduced % reticulocytes and sTfR, increased serum indices of iron overload and iron stores in the liver (low MRI T2* values). sHJV levels were higher in patients than in controls and in untransfused in comparison with transfused patients. In the transfused group, we also found that sHJV values are significantly related to serum ferritin, cardiac MRI T2* and growth differentiation factor 15 and are sensitive to hepatitis C virus infection. CONCLUSION These results suggest that sHJV synthesis seems to be affected by an erythropoietic/hypoxic signal in untransfused patients that have severe anaemia, while in regularly transfused subjects, it is influenced by iron stores.
Collapse
Affiliation(s)
- Elisa Ferro
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Basilia Piraino
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| | - Carmelo Salpietro
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| | - Maria Angela La Rosa
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| |
Collapse
|
8
|
Kanamori Y, Murakami M, Matsui T, Funaba M. Hepcidin expression in liver cells: evaluation of mRNA levels and transcriptional regulation. Gene 2014; 546:50-5. [DOI: 10.1016/j.gene.2014.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022]
|
9
|
Mei S, Wang H, Fu R, Qu W, Xing L, Wang G, Song J, Liu H, Li L, Wang X, Wu Y, Guan J, Ruan E, Shao Z. Hepcidin and GDF15 in anemia of multiple myeloma. Int J Hematol 2014; 100:266-73. [PMID: 25052873 DOI: 10.1007/s12185-014-1626-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is a malignant disease of plasma cells and is often accompanied by anemia which may influence its progression and survival. The mechanism of anemia of chronic disease (ACD) in which iron homeostasis is impaired underlies that of MM-related anemia. In this study, we analyzed the role of hepcidin which is the main mediator of ACD and ACD-related cytokines in peripheral blood of MM patients. We showed that HAMP mRNA and growth differentiation factors 15 (GDF15) mRNA expressions in peripheral blood mononuclear cells (PBMCs) and plasma hepcidin, GDF15, interleukin-6 and erythropoietin in MM patients all increased significantly as compared to those in controls. In MM patients, the expression of HAMP mRNA showed a positive correlation with serum ferritin level, and a negative correlation with hemoglobin level. The levels of plasma hepcidin and GDF15 were significantly decreased in MM patients who achieved complete remission after six cycles VD (bortezomib + dexamethasone) regimen chemotherapy. These data indicated that overexpression of HAMP mRNA in PBMCs significantly correlated with increased plasma hepcidin level and may be involved in the pathogenesis of MM-related anemia. Furthermore, the levels of plasma hepcidin and GDF15 may be valuable in assessing the progress of MM.
Collapse
Affiliation(s)
- Shuchong Mei
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshandao, Heping District, Tianjin, 300052, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen Q, Wang L, Ma Y, Wu X, Jin L, Yu F. Increased hepcidin expression in non-small cell lung cancer tissue and serum is associated with clinical stage. Thorac Cancer 2014; 5:14-24. [PMID: 26766967 DOI: 10.1111/1759-7714.12046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 04/04/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Hepcidin is a small secreted peptide that plays a key role in iron metabolism. A high level of hepcidin expression may be implicated in colorectal cancer; however, the relationship between hepcidin and lung cancer has not yet been studied. METHODS Serum hepcidin-25, bone morphogenetic protein (BMP)-2, and interleukin (IL)-6 concentration in 53 patients and 16 non-cancerous individuals was measured by enzyme-linked immune sorbent assay. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was utilized to study the expression of hepcidin mRNA in paired tumor and non-tumor lung tissues in surgical specimens from 65 patients with non small cell lung cancer (NSCLC), as well as in six types of lung cancer cell lines and human bronchial epithelial (HBE) cells. Hepcidin protein expression and cellular localization in NSCLC was determined by immunohistochemistry. RESULTS The serum hepcidin-25 concentration was higher in patients with NSCLC than in non-cancerous individuals, and was positively correlated with serum BMP2 concentration, but negatively with serum IL-6 levels. Serum hepcidin was also correlated with lymph node metastasis and clinical stage. Hepcidin mRNA expression was higher in cancerous tissues of NSCLC than in normal pulmonary tissues (P = 0.001). Hepcidin mRNA levels in four lung carcinoma cell lines were higher than in HBE cells. Immunohistochemistry showed that hepcidin protein was increased in cancerous tissues of NSCLC. CONCLUSIONS The level of hepcidin expression increased in NSCLC tissue and serum. Serum hepcidin-25 level was associated with lymph node metastasis and tumor clinical stage in patients with NSCLC.
Collapse
Affiliation(s)
- Qian Chen
- Department of Cardio-Thoracic Surgery, Second Xiangya Hospital of Central South University Changsha, China
| | - Li Wang
- Department of Cardio-Thoracic Surgery, Second Xiangya Hospital of Central South University Changsha, China
| | - Yuchao Ma
- Department of Cardio-Thoracic Surgery, Second Xiangya Hospital of Central South University Changsha, China
| | - Xianning Wu
- Department of Cardio-Thoracic Surgery, Second Xiangya Hospital of Central South University Changsha, China
| | - Longyu Jin
- Department of Cardio-Thoracic Surgery, Third Xiangya Hospital of Central South University Changsha, China
| | - Fenglei Yu
- Department of Cardio-Thoracic Surgery, Second Xiangya Hospital of Central South University Changsha, China
| |
Collapse
|
11
|
Li Q, Gu X, Weng H, Ghafoory S, Liu Y, Feng T, Dzieran J, Li L, Ilkavets I, Kruithof-de Julio M, Munker S, Marx A, Piiper A, Augusto Alonso E, Gretz N, Gao C, Wölfl S, Dooley S, Breitkopf-Heinlein K. Bone morphogenetic protein-9 induces epithelial to mesenchymal transition in hepatocellular carcinoma cells. Cancer Sci 2013; 104:398-408. [PMID: 23281849 DOI: 10.1111/cas.12093] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 02/02/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism to initiate cancer invasion and metastasis. Bone morphogenetic protein (BMP)-9 is a member of the transforming growth factor (TGF)-β superfamily. It has been suggested to play a role in cancer development in some non-hepatic tumors. In the present study, two hepatocellular carcinoma (HCC) lines, HLE and HepG2, were treated with BMP-9 in vitro, and phenotypic changes and cell motility were analyzed. In situ hybridization (ISH) and immunohistochemical analyses were performed with human HCC tissue samples in order to assess expression levels of BMP-9. In vivo, BMP-9 protein and mRNA were expressed in all the tested patients to diverse degrees. At the protein level, mildly positive (1 + ) BMP-9 staining could be observed in 25/41 (61%), and moderately to strongly positive (2 + ) in 16/41 (39%) of the patients. In 27/41 (65%) patients, the BMP-9 protein expression level was consistent with the mRNA expression level as measured by ISH. In those patients with 2 + protein level, nuclear pSmad1 expression in cancer cells was also significantly increased. Expression of BMP-9 was positively related to nuclear Snail expression and reversely correlated to cell surface E-cadherin expression, although this did not reach statistical significance. Expression levels of BMP-9 were significantly associated with the T stages of the investigated tumors and high levels of BMP-9 were detected by immunofluorescence especially at the tumor borders in samples from an HCC mouse model. In vitro, BMP-9 treatment caused a reduction of E-cadherin and ZO-1 and an induction of Vimentin and Snail expression. Furthermore, cell migration was enhanced by BMP-9 in both HCC cell lines. These results imply that EMT induced by BMP-9 is related to invasiveness of HCC.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicine II, Section Molecular Hepatology - Alcohol Associated Diseases, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Iron metabolism and its relationship to anemia and immune system in Trypanosoma evansi infected rats. Exp Parasitol 2012; 133:357-64. [PMID: 23270806 DOI: 10.1016/j.exppara.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate biochemical parameters of iron metabolism in rats experimentally infected with Trypanosoma evansi. To this end, 20 rats (Wistar) were intraperitoneally inoculated with blood containing trypomastigotes 10(6) (Group T) and 12 animals were used as negative control (Group C) and received saline (0.2 mL) through same route. Blood samples were collected by cardiac puncture on day 5 (C5, T5) and 30 (C30, T30) post-inoculation (pi) to perform complete blood count and determination of serum iron, transferrin, ferritin, total and latent iron fixation capacity, transferrin saturation and prohepcidin concentration. Also, bone marrow samples were collected, to perform Pearls staining reaction. Levels of iron, total and latent iron binding capacity and prohepcidin concentration were lower (P<0.05) in infected rats (T5 and T30 groups) compared to controls. On the other hand, levels of transferrin and ferritin were higher when compared to controls (P<0.05). The transferrin saturation increased on day 5 pi, but decreased on day 30 pi. The Pearls reaction showed a higher accumulation of iron in the bone marrow of infected animals in day 5 pi (P<0.01). Infection with T. evansi in rats caused anemia and changes in iron metabolism associated to the peaks of parasitemia. These results suggest that changes in iron metabolism may be related to the host immune response to infection and anemic status of infected animals.
Collapse
|
13
|
Costa E, Coimbra J, Catarino C, Ribeiro S, Reis F, Nascimento H, Fernandes J, Miranda V, Faria MDS, Belo L, Santos-Silva A. Major determinants of BMP-2 serum levels in hemodialysis patients. Ren Fail 2012; 34:1355-8. [PMID: 23016911 DOI: 10.3109/0886022x.2012.725289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
14
|
Salama MF, Bayele HK, Srai SSK. Tumour necrosis factor alpha downregulates human hemojuvelin expression via a novel response element within its promoter. J Biomed Sci 2012; 19:83. [PMID: 22998440 PMCID: PMC3500654 DOI: 10.1186/1423-0127-19-83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/30/2012] [Indexed: 02/06/2023] Open
Abstract
Background Iron homeostasis is chiefly regulated by hepcidin whose expression is tightly controlled by inflammation, iron stores, and hypoxia. Hemojuvelin (HJV) is a bone morphogenetic protein co-receptor that has been identified as a main upstream regulator of hepcidin expression; HJV mutations are associated with a severe form of iron overload (Juvenile haemochromatosis). Currently however, there is no information on how HJV is regulated by inflammation. Methods To study the regulation of Hjv expression by inflammation and whether Hfe has a role in that regulation, control and LPS-injected wild type and Hfe KO mice were used. Moreover, human hepatoma cells (HuH7) were used to study the effect of IL-6 and TNF-α on HJV mRNA expression. Results Here we show that LPS repressed hepatic Hjv and BMPs, while it induced hepcidin 1 expression in wild-type and Hfe KO mice with no effect on hepatic pSMAD 1, 5, 8 protein levels. In addition, exogenous TNF-α (20 ng/mL) decreased HJV mRNA and protein expression to 40% of control with no effect on hepcidin mRNA expression in 24 hours. On the other hand, IL-6 induced hepcidin mRNA and protein expression with no effect on HJV mRNA expression levels. Moreover, using the HJV promoter-luciferase reporter fusion construct (HJVP1.2-luc), we showed that the basal luciferase activity of HJVP1.2-luc was inhibited by 33% following TNF-α treatment of HuH7 transfected cells suggesting that the TNF-α down-regulation is exerted at the transcriptional level. Additionally, mutation of a canonical TNF- alpha responsive element (TNFRE) within HJVP1.2-luc abolished TNF-α response suggesting that this TNFRE is functional. Conclusions From these results, we conclude that TNF-α suppresses HJV transcription possibly via a novel TNFRE within the HJV promoter. In addition, the results suggest that the proposed link between inflammation and BMP-SMAD signalling is independent of HJV and BMP ligands.
Collapse
Affiliation(s)
- Mohamed Fouda Salama
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
15
|
McKean DM, Niswander L. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly. Biol Open 2012; 1:874-83. [PMID: 23213481 PMCID: PMC3507239 DOI: 10.1242/bio.20121982] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/06/2012] [Indexed: 11/20/2022] Open
Abstract
Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI) biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse) and TDGF1 (human ortholog) have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.
Collapse
Affiliation(s)
- David M McKean
- HHMI, Department of Pediatrics, Cell Biology, Stem Cells and Development Graduate Program, and Children's Hospital Colorado, University of Colorado Anschutz Medical Campus Aurora , CO 80045 , USA
| | | |
Collapse
|
16
|
Andrews M, Arredondo M. Hepatic and adipocyte cells respond differentially to iron overload, hypoxic and inflammatory challenge. Biometals 2012; 25:749-59. [PMID: 22476617 DOI: 10.1007/s10534-012-9543-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/19/2012] [Indexed: 12/19/2022]
Abstract
Adipose tissue secretes numerous pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α that can lead to insulin resistance (IR). In the liver, both IL-6 and TNF-α induce IR by inhibiting phosphorylation or ubiquitination of IRS1. In IR development, Fe is a risk factor in type-2 diabetes development. We studied the expression of genes related to inflammation, hypoxia, and mitochondrial function in hepatic (HepG2) and adipose (3T3-L1) cells. HepG2 and 3T3-L1 cells were incubated with 20 μM Fe, 40 μM Fe, or 40 μM Fe/20 mM glucose for 7 days and then challenged with 20 ng/ml IL-6 and/or 100 μM CoCl(2) for 20 h. We measured intracellular Fe levels and the relative expression of hepcidin, NF-κB, IL-6, TNF-α, hypoxia inducible factor 1α (HIF-1α), and mitofusin 2 (Mfn-2) mRNA using qRT-PCR. The intracellular Fe concentration in HepG2 cells did not change with 20 or 40 μM Fe. However, levels were decreased with Fe/glucose and IL-6 and/or CoCl(2). 3T3-L1 cells showed an increase in intracellular Fe with high Fe plus either IL-6 or CoCl(2). HepG2 cells incubated with 40 μM Fe alone or Fe/glucose and challenged with IL-6 and/or CoCl(2) showed increased IL-6, NF-κB, and TNF-α mRNA expression and decreased mRNA expression of Mfn-2 in all experimental conditions. 3T3-L1 cells incubated with 40 μM Fe alone or Fe/glucose and challenged with IL-6 showed increased NF-κB mRNA expression and decreased Mfn-2 expression in all experimental conditions. Thus, high Fe, inflammation, and hypoxia trigger the expression of genes related to inflammation and Fe metabolism in HepG2 cells, in 3T3-L1 cells the same stimuli increased NF-kB and hepcidin expression.
Collapse
Affiliation(s)
- M Andrews
- Micronutrient Laboratory, Nutrition Institute and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | | |
Collapse
|
17
|
Sun CC, Vaja V, Babitt JL, Lin HY. Targeting the hepcidin-ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am J Hematol 2012; 87:392-400. [PMID: 22290531 DOI: 10.1002/ajh.23110] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/21/2022]
Abstract
Anemia of chronic disease (ACD) or anemia of inflammation is prevalent in patients with chronic infection, autoimmune disease, cancer, and chronic kidney disease. ACD is associated with poor prognosis and lower quality of life. Management of ACD using intravenous iron and erythropoiesis stimulating agents are ineffective for some patients and are not without adverse effects, driving the need for new alternative therapies. Recent advances in our understanding of the molecular mechanisms of iron regulation reveal that increased hepcidin, the iron regulatory hormone, is a key factor in the development of ACD. In this review, we will summarize the role of hepcidin in iron homeostasis, its contribution to the pathophysiology of ACD, and novel strategies that modulate hepcidin and its target ferroportin for the treatment of ACD.
Collapse
Affiliation(s)
- Chia Chi Sun
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
18
|
Johns JL, Christopher MM. Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet Pathol 2012; 49:508-23. [PMID: 22262354 DOI: 10.1177/0300985811432344] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Extramedullary hematopoiesis (EMH) is the formation and development of blood cells outside the medullary spaces of the bone marrow. Although widely considered an epiphenomenon, secondary to underlying primary disease and lacking serious clinical or diagnostic implications, the presence of EMH is far from incidental on a molecular basis; rather, it reflects a well-choreographed suite of changes involving stem cells and their microenvironment (the stem cell niche). The goals of this review are to reconsider the molecular basis of EMH based on current knowledge of stem cell niches and to examine its role in the pathophysiologic mechanisms of EMH in animals. The ability of blood cells to home, proliferate, and mature in extramedullary tissues of adult animals reflects embryonic patterns of hematopoiesis and establishment or reactivation of a stem cell niche. This involves pathophysiologic alterations in hematopoietic stem cells, extracellular matrix, stromal cells, and local and systemic chemokines. Four major theories involving changes in stem cells and/or their microenvironment can explain the development of most occurrences of EMH: (1) severe bone marrow failure; (2) myelostimulation; (3) tissue inflammation, injury, and repair; and (4) abnormal chemokine production. EMH has also been reported within many types of neoplasms. Understanding the concepts and factors involved in stem cell niches enhances our understanding of the occurrence of EMH in animals and its relationship to underlying disease. In turn, a better understanding of the prevalence and distribution of EMH in animals and its molecular basis could further inform our understanding of the hematopoietic stem cell niche.
Collapse
Affiliation(s)
- J L Johns
- Department of Comparative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
19
|
Maegdefrau U, Arndt S, Kivorski G, Hellerbrand C, Bosserhoff AK. Downregulation of hemojuvelin prevents inhibitory effects of bone morphogenetic proteins on iron metabolism in hepatocellular carcinoma. J Transl Med 2011; 91:1615-23. [PMID: 21863061 DOI: 10.1038/labinvest.2011.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, we revealed that bone morphogenetic protein (BMP) 4 is increased in hepatocellular carcinoma (HCC). Furthermore, latest reports described BMPs, in particular BMP6, as important regulators of hepcidin expression in iron homeostasis. Therefore, we aimed to unravel why enhanced BMP expression in HCC patients does not lead to severe changes in iron metabolism. Initial analysis of the BMP4 and BMP6 expression patterns revealed enhanced expression on mRNA and protein level in HCC cell lines and tissue samples compared with primary human hepatocytes (PHHs) and normal liver tissues. However and interestingly, hepcidin expression was reduced in HCC cell lines and tissues. Analysis of BMP6 receptor expression revealed loss of BMP6-specific receptor subunit in HCC. To identify a possible regulatory mechanism causing lack of reaction to BMP4 we analyzed the expression of hemojuvelin (HJV), which is involved in iron metabolism as BMP co-receptor. HJV expression was markedly decreased in HCC cell lines and tissues. HJV promoter analysis revealed potential HNF-1α and snail-binding sites, but functional analysis ruled out that these transcriptional regulators or promoter methylation are the cause of HJV downregulation in HCC. However, we identified AU-rich elements in the HJV 3'-untranslated region and revealed significantly faster decay of HJV mRNA in HCC cells as compared with PHH indicating decreased mRNA-stability as the reason for the loss of HJV expression in HCC.
Collapse
|
20
|
Abstract
Cancer-related anemia adversely affects quality of life and is associated with reduced overall survival. The correction of anemia in cancer patients has the potential to improve treatment efficacy and increase survival. A large number of studies demonstrate that treatment of anemia in cancer patients using erythropoiesis-stimulating agents (ESAs) significantly increases hemoglobin levels, decreases transfusion requirements and improves quality of life, predominantly by reducing fatigue. Some data on the use of ESAs in cancer patients indicate an increased risk of thromboembolic events and a possibly increased risk of mortality. However, there is ample evidence that when ESAs are used within current guidelines, they are valuable and safe drugs for the treatment of anemia in patients receiving radiotherapy and/or chemotherapy. There are increasing data from prospective, randomized trials demonstrating better responses to ESAs with the concurrent use of iron. Blood transfusions are also helpful in the management of anemia in cancer patients, especially when there is a need for immediate increases in hemoglobin levels. In this article, we discuss recent aspects relating to treatment modalities for anemia in cancer patients.
Collapse
Affiliation(s)
- Aknar Calabrich
- Clinica AMO, Rua Altino Serbeto de Barros, 119, 12° andar, Itaigara, Salvador, Bahia 41825-010, Brazil
- Oncology Center, Hospital Sírio-Libanês, R Adma Jafet, 91, São Paulo 01308-050, Brazil
| | - Artur Katz
- Oncology Center, Hospital Sírio-Libanês, R Adma Jafet, 91, São Paulo 01308-050, Brazil
| |
Collapse
|
21
|
Maruna P, Vokurka M, Lindner J. Plasma hepcidin correlates positively with interleukin-6 in patients undergoing pulmonary endarterectomy. Physiol Res 2011; 60:493-502. [PMID: 21401300 DOI: 10.33549/physiolres.931996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepcidin, a recently discovered antimicrobial peptide synthesized in the liver, was identified to be the key mediator of iron metabolism and distribution. Despite our knowledge of hepcidin increased in recent years, there are only limited data on hepcidin regulation during systemic inflammatory response in human subjects. In a prospective study, the time course of plasma hepcidin was analyzed in relations to six inflammatory parameters - plasma cytokines and acute-phase proteins in patients undergoing uncomplicated pulmonary endarterectomy. Twenty-four patients (males, aged 52.6+/-10.2 years, treated with pulmonary endarterectomy in a deep hypothermic circulatory arrest) were enrolled into study. Hepcidin, interleukin (IL)-6, IL-8, tumor necrosis factor-alpha, C-reactive protein, alpha(1)-antitrypsin and ceruloplasmin arterial concentrations were measured before surgery and repeatedly within 120 h post-operatively. Hemodynamic parameters, hematocrit and markers of iron metabolism were followed up. In a postoperative period, hepcidin increased from preoperative level 8.9 ng/ml (6.2-10.7) (median and interquartile range) to maximum 16.4 ng/ml (14.1-18.7) measured 72 h after the end of surgery. Maximum post-operative concentrations of hepcidin correlated positively with maximum IL-6 levels. Both hepcidin and IL-6 maximum concentrations correlated positively with extracorporeal circulation time. In conclusions, the study demonstrated that plasma hepcidin is a positive acute-phase reactant in relation to an uncomplicated large cardiac surgery. Hepcidin increase was related to IL-6 concentrations and to the duration of surgical procedure. Our clinical findings are in conformity with recent experimental studies defining hepcidin as a type II acute-phase protein.
Collapse
Affiliation(s)
- P Maruna
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | | | | |
Collapse
|
22
|
Corradini E, Schmidt PJ, Meynard D, Garuti C, Montosi G, Chen S, Vukicevic S, Pietrangelo A, Lin HY, Babitt JL. BMP6 treatment compensates for the molecular defect and ameliorates hemochromatosis in Hfe knockout mice. Gastroenterology 2010; 139:1721-9. [PMID: 20682319 PMCID: PMC3295242 DOI: 10.1053/j.gastro.2010.07.044] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/01/2010] [Accepted: 07/22/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Abnormal hepcidin regulation is central to the pathogenesis of HFE hemochromatosis. Hepatic bone morphogenetic protein 6 (BMP6)-SMAD signaling is a main regulatory mechanism controlling hepcidin expression, and this pathway was recently shown to be impaired in Hfe knockout (Hfe(-/-)) mice. To more definitively determine whether HFE regulates hepcidin expression through an interaction with the BMP6-SMAD signaling pathway, we investigated whether hepatic Hfe overexpression activates the BMP6-SMAD pathway to induce hepcidin expression. We then investigated whether excess exogenous BMP6 administration overcomes the BMP6-SMAD signaling impairment and ameliorates hemochromatosis in Hfe(-/-) mice. METHODS The BMP6-SMAD pathway and the effects of neutralizing BMP6 antibody were examined in Hfe transgenic mice (Hfe Tg) compared with wild-type (WT) mice. Hfe(-/-) and WT mice were treated with exogenous BMP6 and analyzed for hepcidin expression and iron parameters. RESULTS Hfe Tg mice exhibited hepcidin excess and iron deficiency anemia. Hfe Tg mice also exhibited increased hepatic BMP6-SMAD target gene expression compared with WT mice, whereas anti-BMP6 antibody administration to Hfe Tg mice improved the hepcidin excess and iron deficiency. In Hfe(-/-) mice, supraphysiologic doses of exogenous BMP6 improved hepcidin deficiency, reduced serum iron, and redistributed tissue iron to appropriate storage sites. CONCLUSIONS HFE interacts with the BMP6-SMAD signaling pathway to regulate hepcidin expression, but HFE is not necessary for hepcidin induction by BMP6. Exogenous BMP6 treatment in mice compensates for the molecular defect underlying Hfe hemochromatosis, and BMP6-like agonists may have a role as an alternative therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Elena Corradini
- Program in Membrane Biology, Nephrology Division, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Paul J. Schmidt
- Department of Pathology, Children’s Hospital Boston, Boston, Massachusetts
| | - Delphine Meynard
- Program in Membrane Biology, Nephrology Division, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cinzia Garuti
- Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Giuliana Montosi
- Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Shanzhuo Chen
- Program in Membrane Biology, Nephrology Division, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Slobodan Vukicevic
- Laboratory of Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonello Pietrangelo
- Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Herbert Y. Lin
- Program in Membrane Biology, Nephrology Division, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jodie L. Babitt
- Program in Membrane Biology, Nephrology Division, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Address correspondence to: Jodie L. Babitt, Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St., CPZN-8218, Boston, MA 02114, , tel (617)-643-3181, fax (617)-643-3182
| |
Collapse
|
23
|
Abstract
The human body cannot actively excrete excess iron. As a consequence, iron absorption must be strictly regulated to ensure adequate iron uptake and prevent toxic iron accumulation. Iron absorption is controlled chiefly by hepcidin, the iron-regulatory hormone. Produced by the liver and secreted into the circulation, hepcidin regulates iron metabolism by inhibiting iron release from cells, including duodenal enterocytes, which mediate the absorption of dietary iron. Hepcidin production increases in response to iron loading and decreases in iron deficiency. Such regulation of hepcidin expression serves to modulate iron absorption to meet body iron demand. This review discusses the proteins that orchestrate hepatic hepcidin production and iron absorption by the intestine. Emphasis is placed on the proteins that directly sense iron and how they coordinate and fine-tune the molecular, cellular, and physiologic responses to iron deficiency and overload.
Collapse
Affiliation(s)
- Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611-2710, USA.
| |
Collapse
|
24
|
Babitt JL, Lin HY. Molecular mechanisms of hepcidin regulation: implications for the anemia of CKD. Am J Kidney Dis 2010; 55:726-41. [PMID: 20189278 DOI: 10.1053/j.ajkd.2009.12.030] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 12/31/2009] [Indexed: 02/06/2023]
Abstract
Anemia is prevalent in patients with chronic kidney disease (CKD) and is associated with lower quality of life and higher risk of adverse outcomes, including cardiovascular disease and death. Anemia management in patients with CKD currently revolves around the use of erythropoiesis-stimulating agents and supplemental iron. However, many patients do not respond adequately and/or require high doses of these medications. Furthermore, recent clinical trials have shown that targeting higher hemoglobin levels with conventional therapies leads to increased cardiovascular morbidity and mortality, particularly when higher doses of erythropoiesis-stimulating agents are used and in patients who are poorly responsive to therapy. One explanation for the poor response to conventional therapies in some patients is that these treatments do not fully address the underlying cause of the anemia. In many patients with CKD, as with patients with other chronic inflammatory diseases, poor absorption of dietary iron and the inability to use the body's iron stores contribute to the anemia. Recent research suggests that these abnormalities in iron balance may be caused by increased levels of the key iron regulatory hormone hepcidin. This article reviews the pathogenesis of anemia in CKD, the role and regulation of hepcidin in systemic iron homeostasis and the anemia of CKD, and the potential diagnostic and therapeutic implications of these findings.
Collapse
Affiliation(s)
- Jodie L Babitt
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
25
|
Abstract
Primary iron overload is one of the most common inherited diseases worldwide. Several genetic mutations underlie the various forms of the disease, which have similar pathophysiological profiles but distinct clinical presentations. Patients with hereditary hemochromatosis absorb too much iron from the diet, which accumulates over time within parenchymal cells. This accumulation leads to eventual organ failure as a consequence of iron-mediated formation of free radicals. The mechanism underlying this excessive absorption of iron is a sensing defect caused by the reduced formation of hepcidin, the master regulator of iron homeostasis, as a consequence of mutations in the genes encoding several membrane-bound signaling molecules present on hepatocytes. A considerable number of carriers of these specific genetic mutations, however, do not develop iron overload, indicating that additional genetic and environmental factors modify the severity and clinical penetrance of disease. In affected patients, early initiation of treatment by phlebotomy can prevent organ damage. Genetic screening of first-degree relatives can be also used to identify individuals at risk. Our expanding knowledge of the regulation of iron metabolism and the role of factors that modify the severity of the disease may lead to the design of new and improved treatments.
Collapse
|
26
|
Echinococcus multilocularis as an experimental model in stem cell research and molecular host-parasite interaction. Parasitology 2009; 137:537-55. [PMID: 19961652 DOI: 10.1017/s0031182009991727] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Totipotent somatic stem cells (neoblasts) are key players in the biology of flatworms and account for their amazing regenerative capability and developmental plasticity. During recent years, considerable progress has been made in elucidating molecular features of neoblasts from free-living flatworms, whereas their role in parasitic species has so far merely been addressed by descriptive studies. Very recently, however, significant advances have been made in the in vitro culture of neoblasts from the cestode Echinococcus multilocularis. The isolated cells proved capable of generating mature metacestode vesicles under laboratory conditions in a manner that closely resembles the oncosphere-metacestode transition during natural infections. Using the established neoblast cultivation protocols, combined with targeted manipulation of Echinococcus genes by RNA-interference, several fundamental questions of host-dependent parasite development can now be addressed. Here, I give an overview of current cultivation techniques for E. multilocularis neoblasts and present experimental approaches to study their function. Furthermore, I introduce the E. multilocularis genome sequencing project that is presently in an advanced stage. The combined input of data from the E. multilocularis sequencing project, stem cell cultivation, and recently initiated attempts to genetically manipulate Echinococcus will provide an ideal platform for hypothesis-driven research into cestode development in the next years.
Collapse
|
27
|
Abstract
The BMP signaling pathway controls a number of cell processes during development and in adult tissues. At the cellular level, ligands of the BMP family act by binding a hetero-tetrameric signaling complex, composed of two type I and two type II receptors. BMP ligands make use of a limited number of receptors, which in turn activate a common signal transduction cascade at the intracellular level. A complex regulatory network is required in order to activate the signaling cascade at proper times and locations, and to generate specific downstream effects in the appropriate cellular context. One such regulatory mechanism is the repulsive guidance molecule (RGM) family of BMP co-receptors. This article reviews the current knowledge regarding the structure, regulation, and function of RGMs, focusing on known and potential roles of RGMs in physiology and pathophysiology.
Collapse
|
28
|
Moreno López R, Sicilia Aladrén B, Gomollón García F. Use of agents stimulating erythropoiesis in digestive diseases. World J Gastroenterol 2009; 15:4675-85. [PMID: 19787831 PMCID: PMC2754516 DOI: 10.3748/wjg.15.4675] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anemia is the most common complication of inflammatory bowel disease (IBD). Control and inadequate treatment leads to a worse quality of life and increased morbidity and hospitalization. Blood loss, and to a lesser extent, malabsorption of iron are the main causes of iron deficiency in IBD. There is also a variable component of anemia related to chronic inflammation. The anemia of chronic renal failure has been treated for many years with recombinant human erythropoietin (rHuEPO), which significantly improves quality of life and survival. Subsequently, rHuEPO has been used progressively in other conditions that occur with anemia of chronic processes such as cancer, rheumatoid arthritis or IBD, and anemia associated with the treatment of hepatitis C virus. Erythropoietic agents complete the range of available therapeutic options for treatment of anemia associated with IBD, which begins by treating the basis of the inflammatory disease, along with intravenous iron therapy as first choice. In cases of resistance to treatment with iron, combined therapy with erythropoietic agents aims to achieve near-normal levels of hemoglobin/hematocrit (11-12 g/dL). New formulations of intravenous iron (iron carboxymaltose) and the new generation of erythropoietic agents (darbepoetin and continuous erythropoietin receptor activator) will allow better dosing with the same efficacy and safety.
Collapse
|
29
|
Corradini E, Garuti C, Montosi G, Ventura P, Andriopoulos B, Lin HY, Pietrangelo A, Babitt JL. Bone morphogenetic protein signaling is impaired in an HFE knockout mouse model of hemochromatosis. Gastroenterology 2009; 137:1489-97. [PMID: 19591830 PMCID: PMC2757523 DOI: 10.1053/j.gastro.2009.06.057] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/05/2009] [Accepted: 06/24/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS Mutations in HFE are the most common cause of the iron-overload disorder hereditary hemochromatosis. Levels of the main iron regulatory hormone, hepcidin, are inappropriately low in hereditary hemochromatosis mouse models and patients with HFE mutations, indicating that HFE regulates hepcidin. The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is an important endogenous regulator of hepcidin expression. We investigated whether HFE is involved in BMP6-SMAD regulation of hepcidin expression. METHODS The BMP6-SMAD pathway was examined in Hfe knockout (KO) mice and in wild-type (WT) mice as controls. Mice were placed on diets of varying iron content. Hepcidin induction by BMP6 was examined in primary hepatocytes from Hfe KO mice; data were compared with those of WT mice. RESULTS Liver levels of Bmp6 messenger RNA (mRNA) were higher in Hfe KO mice; these were appropriate for the increased hepatic levels of iron in these mice, compared with WT mice. However, levels of hepatic phosphorylated Smad 1/5/8 protein (an intracellular mediator of Bmp6 signaling) and Id1 mRNA (a target gene of Bmp6) were inappropriately low for the body iron burden and Bmp6 mRNA levels in Hfe KO, compared with WT mice. BMP6 induction of hepcidin expression was reduced in Hfe KO hepatocytes compared with WT hepatocytes. CONCLUSIONS HFE is not involved in regulation of BMP6 by iron, but does regulate the downstream signals of BMP6 that are triggered by iron.
Collapse
Affiliation(s)
- Elena Corradini
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Cinzia Garuti
- Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Giuliana Montosi
- Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Paolo Ventura
- Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy
| | - Billy Andriopoulos
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Herbert Y. Lin
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Antonello Pietrangelo
- Center for Hemochromatosis, University Hospital of Modena and Reggio Emilia, Modena Italy, These authors contributed equally. Address correspondence to: Jodie L. Babitt, Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St., CPZN-8218, Boston, MA 02114, , tel (617)-643-3181, fax (617)-643-3182; or Antonello Pietrangelo, MD, PhD, Department of Internal Medicine, Center for Hemochromatosis, University Hospital of Modena, Policlinico, Via del Pozzo 71, 41100 Modena, Italy. E-mail: , tel: 059-4224356, fax:059-4223041
| | - Jodie L. Babitt
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, These authors contributed equally. Address correspondence to: Jodie L. Babitt, Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St., CPZN-8218, Boston, MA 02114, , tel (617)-643-3181, fax (617)-643-3182; or Antonello Pietrangelo, MD, PhD, Department of Internal Medicine, Center for Hemochromatosis, University Hospital of Modena, Policlinico, Via del Pozzo 71, 41100 Modena, Italy. E-mail: , tel: 059-4224356, fax:059-4223041
| |
Collapse
|
30
|
Sow FB, Alvarez GR, Gross RP, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Role of STAT1, NF-kappaB, and C/EBPbeta in the macrophage transcriptional regulation of hepcidin by mycobacterial infection and IFN-gamma. J Leukoc Biol 2009; 86:1247-58. [PMID: 19652026 DOI: 10.1189/jlb.1208719] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hepcidin is an antimicrobial peptide involved in regulating iron homeostasis. It is induced by iron overload and decreased by hypoxia and anemia. Hepcidin regulates iron metabolism by inhibiting iron absorption by the duodenum and by inhibiting macrophage iron recycling. Hepcidin is induced in hepatocytes during the acute-phase response by IL-6. Previously, we have shown that hepcidin is not induced in macrophages by IL-6 but is induced by the synergistic interaction of IFN-gamma and Mycobacterium tuberculosis infection. In the present study, we examined the pathways involved in inducing macrophage hepcidin expression. We show that TLRs TLR2 and TLR4 and the transcription factor STAT1 are required for induction of hepcidin mRNA. Hepcidin promoter activity is also synergistically induced in RAW264.7 macrophages by IFN-gamma and M. tuberculosis. NF-kappaB and C/CEBP binding sites are required for promoter activity. Binding of NF-kappaB (p50/p65) to the NF-kappaB site and STAT1 and C/EBPbeta to the C/CEBP site was confirmed by EMSA. Knockdown of STAT1 and C/EBPbeta expression in RAW264.7 cells with siRNA plasmids inhibited hepcidin promoter activity induced by IFN-gamma and M. tuberculosis. Together, these studies demonstrate that macrophage hepcidin expression is induced by the activation of STAT1 and NF-kappaB and the induction of C/EBPbeta expression.
Collapse
Affiliation(s)
- Fatoumata B Sow
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Katodritou E, Ganz T, Terpos E, Verrou E, Olbina G, Gastari V, Hadjiaggelidou C, Varthaliti M, Georgiadou S, Westerman M, Zervas K. Sequential evaluation of serum hepcidin in anemic myeloma patients: study of correlations with myeloma treatment, disease variables, and anemia response. Am J Hematol 2009; 84:524-6. [PMID: 19536845 DOI: 10.1002/ajh.21448] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Altes Hernández A, Aranalde Fortó J. [Role of hepcidin in the pathogenesis of hemochromatosis]. GASTROENTEROLOGIA Y HEPATOLOGIA 2009; 32:622-6. [PMID: 19625109 DOI: 10.1016/j.gastrohep.2009.01.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 11/26/2022]
Abstract
In the last few years, biochemical and molecular study of the various types of hemochromatosis have established that the hepcidin peptide is the central regulator of iron absorption. This peptide, which is synthesized in the liver, acts through ferroportin degradation. Ferroportin is an iron exporter situated in the intestinal epithelium and in the macrophage membrane whose function is to transport iron from the intestinal cell to plasma and from the macrophage to the erythron. In hemochromatosis, there is a physical or functional hepcidin deficit that increases ferroportin, thus producing excessive iron absorption. The opposite occurs in situations of inflammation: hepcidin synthesis is stimulated while iron entry into the organism and hemoglobin synthesis are blocked.
Collapse
|
33
|
Viatte L, Gröne HJ, Hentze MW, Galy B. In vivo role(s) of the iron regulatory proteins (IRP) 1 and 2 in aseptic local inflammation. J Mol Med (Berl) 2009; 87:913-21. [DOI: 10.1007/s00109-009-0494-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/05/2009] [Accepted: 06/02/2009] [Indexed: 01/24/2023]
|
34
|
Lee PL, Beutler E. Regulation of hepcidin and iron-overload disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:489-515. [PMID: 19400694 DOI: 10.1146/annurev.pathol.4.110807.092205] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepcidin, a 25-amino-acid antimicrobial peptide, is the central regulator of iron homeostasis. Hepcidin transcription is upregulated by inflammatory cytokines, iron, and bone morphogenetic proteins and is downregulated by iron deficiency, ineffective erythropoiesis, and hypoxia. The iron transporter ferroportin is the cognate receptor of hepcidin and is destroyed as a result of interaction with the peptide. Except for inherited defects of ferroportin and hepcidin itself, all forms of iron-storage disease appear to arise from hepcidin dysregulation. Studies using multiple approaches have begun to delineate the molecular mechanisms that regulate hepcidin expression, particularly at the transcriptional level. Knowledge of the regulation of hepcidin by inflammation, iron, erythropoiesis, and hypoxia will lead to an understanding of the pathogenesis of primary hemochromatosis, secondary iron overload, and anemia of inflammatory disease.
Collapse
Affiliation(s)
- Pauline L Lee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
35
|
Deferasirox Reduces Iron Overload in a Murine Model of Juvenile Hemochromatosis. Exp Biol Med (Maywood) 2009; 234:492-503. [DOI: 10.3181/0811-rm-337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in hemojuvelin (HJV) cause severe juvenile hemochromatosis, characterized by iron loading of the heart, liver, and pancreas. Knockout (KO) mice lacking HJV (Hjv−/−) spontaneously load with dietary iron and, therefore, present a model for hereditary hemochromatosis (HH). In HH, iron chelation may be considered in noncandidates for phlebotomy. We examined the effects of deferasirox, an oral chelator, in Hjv−/− mice. Hepatic, cardiac, splenic, and pancreatic iron were determined by measuring elemental iron and scoring histological sections. Heart and liver iron levels were also determined repeatedly by quantitative R2* magnetic resonance imaging (MRI). The time course of iron loading without intervention was followed from Week 8 of age (study start) to Week 20, when once-daily (5×/ week) deferasirox was administered, to Week 28. At 8 weeks, liver iron of KO mice was already markedly elevated versus wild-type mice ( P < 0.001) and reached a plateau around Week 14. In contrast, Week 8 cardiac and pancreatic iron levels were similar in both KO and wild-type mice and, compared with the liver, showed a delayed but massive iron loading up to Week 20. Contrary to the liver, heart, and pancreas, the KO mice spleen had lower iron content versus wild-type mice. In Hjv−/− mice, liver and heart iron burden was effectively reduced with deferasirox 100 mg/kg ( P < 0.05). Although deferasirox was less efficacious at this dose in the pancreas, over the observed time period, a clear trend toward reduced organ iron load was noted. There was no noticeable effect of deferasirox upon splenic iron in Hjv−/− mice. Quantitative R2* MRI demonstrated the ability to assess iron concentrations in the liver and myocardial muscle accurately and repetitively. Hepatic ( R = 0.86; P = 3.2*10− 12) and delayed myocardial ( R = 0.81; P = 2.9*10− 10) iron accumulation could be followed noninvasively with high agreement to invasive methods.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Intestinal iron absorption is an essential physiological process that is regulated by the liver-derived peptide hepcidin. This review will describe recent advances in hepcidin biology and enterocyte iron transport. RECENT FINDINGS Hepcidin acts as a repressor of iron absorption and its expression in turn reflects a range of systemic cues, including iron status, hypoxia, erythropoiesis and inflammation. These act through proteins on the hepatocyte plasma membrane such as HFE, hemojuvelin and transferrin receptor 2 to alter transcription of the hepcidin gene. Bone morphogenetic protein-SMAD signaling provides a key pathway of hepcidin activation, whereas the membrane-bound serine protease matriptase-2 and the erythroid factor growth differentiation factor 15 have emerged as important negative regulators of hepcidin expression. At the enterocyte itself, the recent demonstration of a chaperone for delivering iron to ferritin and new data on iron release from the hepcidin target ferroportin are helping to define the pathway of iron movement across the intestinal epithelium. SUMMARY Disturbances in the hepcidin regulatory pathway underlie a range of iron metabolism disorders, from iron deficiency to iron loading, and there is considerable promise that the exciting recent advances in understanding hepcidin action will be translated into improved diagnostic and therapeutic modalities in the near future.
Collapse
|
37
|
Casanovas G, Mleczko-Sanecka K, Altamura S, Hentze MW, Muckenthaler MU. Bone morphogenetic protein (BMP)-responsive elements located in the proximal and distal hepcidin promoter are critical for its response to HJV/BMP/SMAD. J Mol Med (Berl) 2009; 87:471-80. [PMID: 19229506 DOI: 10.1007/s00109-009-0447-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/19/2009] [Accepted: 01/26/2009] [Indexed: 02/07/2023]
Abstract
The hemochromatosis proteins HFE, transferrin receptor 2 (TfR2) and hemojuvelin (HJV, HFE2) positively control expression of the major iron regulatory hormone hepcidin. HJV is a bone morphogenetic protein (BMP) co-receptor that enhances the cellular response to BMP cytokines via the phosphorylation of SMAD proteins. In this study, we show that two highly conserved and sequence-identical BMP-responsive elements located at positions -84/-79 (BMP-RE1) and -2,255/-2,250 (BMP-RE2) of the human hepcidin promoter are critical for both the basal hepcidin mRNA expression and the hepcidin response to BMP-2 and BMP-6. While BMP-RE1 and BMP-RE2 show additive effects in responding to HJV-mediated BMP signals, only BMP-RE1 that is located in close proximity to a previously identified STAT-binding site is important for the hepcidin response to IL-6. These data identify a missing link between the HJV/BMP signaling pathways and hepcidin transcription, and further define the connection between inflammation and BMP-dependent hepcidin promoter activation. As such, they provide important new information furthering our understanding of disorders of iron metabolism and the anemia of inflammation.
Collapse
Affiliation(s)
- Guillem Casanovas
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Cho YS, Lee SY, Kim KH, Kim SK, Kim DS, Nam YK. Gene structure and differential modulation of multiple rockbream (Oplegnathus fasciatus) hepcidin isoforms resulting from different biological stimulations. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:46-58. [PMID: 18761369 DOI: 10.1016/j.dci.2008.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/16/2008] [Accepted: 07/16/2008] [Indexed: 05/26/2023]
Abstract
Hepcidin, an antimicrobial and iron-regulating peptide, is a key molecule of the innate immune system of bony fish. In this study, four isoforms of hepcidin genes were characterized from a marine Perciform fish, rockbream (Oplegnathus fasciatus), and the transcriptional modulations of these isoforms in response to different biological stimulations were also examined. All rockbream hepcidin isoform genes exhibited a tripartite structure and their promoter regions displayed typical binding motifs for the transcription factors including C/EBP, HNF, AP, NF-kbeta, GATA, USF and/or STAT. Hepcidin transcripts in juvenile or fingerling tissues were dramatically induced during experimental challenges with various bacterial species, iron overload and rockbream iridovirus infection. The transcription ofhepcidins was regulated in an isoform- and tissue-specific fashion. In addition, we identified for the first time that partially processed hepcidin transcripts were significantly elevated during bacterial infection and iron overload. Results from this study provide a good basis to better understand the isoform-specific role of hepcidin in the fish innate immune system.
Collapse
Affiliation(s)
- Young S Cho
- Department of Aquaculture, Pukyong National University, Busan 608-737, South Korea
| | | | | | | | | | | |
Collapse
|
39
|
Zhang AS, Enns CA. Molecular mechanisms of normal iron homeostasis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:207-14. [PMID: 20008200 PMCID: PMC5831338 DOI: 10.1182/asheducation-2009.1.207] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Humans possess elegant control mechanisms to maintain iron homeostasis by coordinately regulating iron absorption, iron recycling, and mobilization of stored iron. Dietary iron absorption is regulated locally by hypoxia inducible factor (HIF) signaling and iron-regulatory proteins (IRPs) in enterocytes and systematically by hepatic hepcidin, the central iron regulatory hormone. Hepcidin not only controls the rate of iron absorption but also determines iron mobilization from stores through negatively modulating the function of ferroportin, the only identified cellular iron exporter to date. The regulation of hepatic hepcidin is accomplished by the coordinated activity of multiple proteins through different signaling pathways. Recent studies have greatly expanded the knowledge in the understanding of hepcidin expression and regulation by the bone morphogenetic protein (BMP) signaling, the erythroid factors, and inflammation. In this review, we mainly focus on the roles of recently identified proteins in the regulation of iron homeostasis.
Collapse
|
40
|
Abstract
Hereditary hemochromatosis (HH) is caused by chronic hyperabsorption of dietary iron. Progressive accumulation of excess iron within tissue parenchymal cells may lead to severe organ damage. The most prevalent type of HH is linked to mutations in the HFE gene, encoding an atypical major histocompatibility complex classImolecule. Shortly after its discovery in 1996, the hemochromatosis protein HFE was shown to physically interact with transferrin receptor 1 (TfR1) and impair the uptake of transferrin-bound iron in cells. However, these findings provided no clue why HFE mutations associate with systemic iron overload. It was later established that all forms of HH result from misregulation of hepcidin expression. This liver-derived circulating peptide hormone controls iron efflux from duodenal enterocytes and reticuloendothelial macrophages by promoting the degradation of the iron exporter ferroportin. Recent studies with animal models of HH uncover a crucial role of HFE as a hepatocyte iron sensor and upstream regulator of hepcidin. Thus, hepatocyte HFE is indispensable for signaling to hepcidin, presumably as a constituent of a larger iron-sensing complex. A working model postulates that the signaling activity of HFE is silenced when the protein is bound to TfR1. An increase in the iron saturation of plasma transferrin leads to displacement of TfR1 from HFE and assembly of the putative iron-sensing complex. In this way, iron uptake by the hepatocyte is translated into upregulation of hepcidin, reinforcing the concept that the liver is the major regulatory site for systemic iron homeostasis, and not merely an iron storage depot.
Collapse
|
41
|
Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter are critical for BMP, SMAD1, and HJV responsiveness. Blood 2008; 113:688-95. [PMID: 18997172 DOI: 10.1182/blood-2008-05-160184] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepcidin plays a major role in the regulation of iron homeostasis. Several bone morphogenetic proteins (BMPs) are strong inducers of hepcidin (Hamp1, HAMP) expression. Hemojuvelin, a protein critical for maintaining appropriate levels of hepcidin, acts as a coreceptor for BMP2 and BMP4, thereby providing a link between iron homeostasis and the BMP-signaling pathway. We show that a robust BMP, hemojuvelin, and SMAD1 response by murine Hamp1 is dependent on a distal BMP responsive element (BMP-RE2), the adjacent bZIP, HNF4alpha/COUP binding sites, and plus or minus 50 bp of the flanking area within -1.6 to -1.7 kb of the Hamp1 promoter. Furthermore, the STAT site and the BMP responsive element (BMP-RE1) located in the proximal 260-bp region of the Hamp1 promoter are also indispensable for maximal activation of hepcidin transcription. The homologous motifs in the distal and proximal regions of the human HAMP promoter act in a manner similar to the murine Hamp1 promoter. Therefore, we propose that the regulation of hepcidin by the BMP pathway involves the formation of a complex of liver-specific and response-specific transcription factors bound to the distal BMP-RE2 /bZIP/HNF4alpha/COUP region and to the proximal BMP-RE1/STAT region possibly by physical association of the 2 regions.
Collapse
|
42
|
Lesnikov V, Gorden N, Fausto N, Spaulding E, Campbell J, Shulman H, Fleming RE, Deeg HJ. Transferrin fails to provide protection against Fas-induced hepatic injury in mice with deletion of functional transferrin-receptor type 2. Apoptosis 2008; 13:1005-12. [PMID: 18561026 DOI: 10.1007/s10495-008-0233-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We reported previously that Fas-induced hepatic failure in normal mice was attenuated or prevented by exogenous transferrin (Tf), particularly apoTf. Here we show in C57BL6J/129 mice with genetic inactivation of transferrin receptor 2 (TfR2(Y245X)), that Fas-induced hepatotoxicity (apoptosis; rise in plasma aspartate aminotransferase (AST) levels) was comparable to that in wild-type mice, but was not modified by pretreatment with Tf. Rises in plasma AST were preceded by a decline in serum iron levels. AST elevations and iron declines were more profound in female than in male mice. Female mice also showed higher baseline levels of Bcl-xL in hepatocytes, which declined significantly upon treatment with agonistic anti-Fas antibody. These data confirm the cytoprotective function of Tf, and show a novel property of TfR2. Both apoptotic Fas responses and cytoprotective effects of Tf were associated with significant shifts in plasma iron levels, which quantitatively differed between male and female mice.
Collapse
Affiliation(s)
- Vladimir Lesnikov
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D1-100, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Beirão I, Almeida S, Swinkels D, Costa PM, Moreira L, Fonseca I, Freitas C, Cabrita A, Porto G. Low serum levels of prohepcidin, but not hepcidin-25, are related to anemia in familial amyloidosis TTR V30M. Blood Cells Mol Dis 2008; 41:175-8. [DOI: 10.1016/j.bcmd.2008.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 04/29/2008] [Indexed: 11/25/2022]
|
44
|
Secretion of bioactive hepcidin-25 by liver cells correlates with its gene transcription and points towards synergism between iron and inflammation signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:2029-37. [PMID: 18775801 DOI: 10.1016/j.bbapap.2008.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/04/2008] [Accepted: 08/11/2008] [Indexed: 01/19/2023]
Abstract
Hepcidin is a small liver-derived peptide central in the regulation of systemic iron homeostasis. Although the gene regulation has been extensively studied at transcriptional level, the corresponding effects on the production of bioactive peptide are largely unknown. We therefore applied a proteomics-based approach by combining immunocapture with time-of-flight mass spectrometry to characterize hepcidin-25 produced by hepatocyte-derived cell lines. Similar to its transcriptional regulation, mature hepcidin-25 was strongly secreted upon stimulation with BMPs and IL-6. The immunocaptured peptide down-modulated iron-exporter ferroportin on the monocyte/macrophage surface. Further mass spectrometry-based analyses indicated that hepcidin-25 in its bioactive conformation was very stable in serum and urine and not converted into its smaller isoforms. Hepcidin-25 was processed in the Golgi apparatus from its precursor, while the unprocessed prohepcidin was secreted only when furin-like protease activity was intracellularly inhibited. Furthermore, the amounts of hepatocytic secretion of hepcidin-25 are highly correlated with the gene transcript levels. An unexpected observation was the synergistic effect of BMPs and IL-6 on hepcidin-25 secretion, which points towards cross-talk between iron and inflammatory stimuli. The study underscores hepcidin-25 quantification as a valuable tool to unravel regulatory pathways in iron metabolism.
Collapse
|
45
|
|
46
|
Abstract
PURPOSE OF REVIEW The peptide hormone hepcidin regulates iron metabolism in response to erythropoietic demand, iron stores and inflammation. Major advances have been made in understanding the regulation of hepcidin production, and consequently the availability of iron for erythropoiesis. RECENT FINDINGS It is becoming clear that the bone morphogenetic protein (BMP) pathway plays a major role in setting the baseline hepcidin level and, with the assistance of BMP2/4 and hemochromatosis-related proteins hemojuvelin, HFE and transferrin receptor 2, also regulates hepcidin expression in response to iron. Regulation of hepcidin in anemias has now been linked to increased erythropoietic activity and is likely mediated by factor(s) secreted by erythroid precursors. GDF-15 was identified as a candidate for one of the erythroid factors suppressing hepcidin. Tissue hypoxia may also directly contribute to hepcidin suppression in anemias. Regulation of hepcidin by inflammation may include multiple cytokines and the Toll-like receptors pathways. Although it has not yet been shown that increased hepcidin is indispensible for the development of anemia of inflammation, transgenic overexpression of hepcidin was sufficient to replicate its key features. SUMMARY Regulation of hepcidin and iron availability for erythropoiesis has revealed unexpected pathways and much complexity. The renaissance of the study of iron regulation continues to reward researchers with interesting biology and potential therapeutic targets.
Collapse
|
47
|
Du X, She E, Gelbart T, Truksa J, Lee P, Xia Y, Khovananth K, Mudd S, Mann N, Moresco EMY, Beutler E, Beutler B. The serine protease TMPRSS6 is required to sense iron deficiency. Science 2008; 320:1088-92. [PMID: 18451267 DOI: 10.1126/science.1157121] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepcidin, a liver-derived protein that restricts enteric iron absorption, is the key regulator of body iron content. Several proteins induce expression of the hepcidin-encoding gene Hamp in response to infection or high levels of iron. However, mechanism(s) of Hamp suppression during iron depletion are poorly understood. We describe mask: a recessive, chemically induced mutant mouse phenotype, characterized by progressive loss of body (but not facial) hair and microcytic anemia. The mask phenotype results from reduced absorption of dietary iron caused by high levels of hepcidin and is due to a splicing defect in the transmembrane serine protease 6 gene Tmprss6. Overexpression of normal TMPRSS6 protein suppresses activation of the Hamp promoter, and the TMPRSS6 cytoplasmic domain mediates Hamp suppression via proximal promoter element(s). TMPRSS6 is an essential component of a pathway that detects iron deficiency and blocks Hamp transcription, permitting enhanced dietary iron absorption.
Collapse
Affiliation(s)
- Xin Du
- Department of Genetics, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin. Blood 2008; 111:5195-204. [PMID: 18326817 DOI: 10.1182/blood-2007-09-111567] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hemojuvelin (HJV) is a coreceptor for bone morphogenetic protein (BMP) signaling that regulates hepcidin expression and iron metabolism. However, the precise combinations of BMP ligands and receptors used by HJV remain unknown. HJV has also been demonstrated to bind to neogenin, but it is not known whether this interaction has a role in regulating hepcidin expression. In the present study, we show that BMP-2, BMP-4, and BMP-6 are endogenous ligands for HJV in hepatoma-derived cell lines, and that all 3 of these ligands are expressed in human liver. We demonstrate in vitro that HJV selectively uses the BMP type II receptors ActRIIA and BMPRII, but not ActRIIB, and HJV enhances utilization of ActRIIA by BMP-2 and BMP-4. Interestingly, ActRIIA is the predominant BMP type II receptor expressed in human liver. While HJV can use all 3 BMP type I receptors (ALK2, ALK3, and ALK6) in vitro, only ALK2 and ALK3 are detected in human liver. Finally, we show that HJV-induced BMP signaling and hepcidin expression are not altered by neogenin overexpression or by inhibition of endogenous neogenin expression. Thus, HJV-mediated BMP signaling and hepcidin regulation occur via a distinct subset of BMP ligands and BMP receptors, independently of neogenin.
Collapse
|
49
|
Arnold J, Busbridge M, Sangwaiya A, Bhatkal B, Paskaran P, Pal A, Geoghegan F, Kealey T. Prohepcidin levels in refractory anaemia caused by lead poisoning. Case Rep Gastroenterol 2008; 2:49-54. [PMID: 21490838 PMCID: PMC3075166 DOI: 10.1159/000118035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent research evidence suggests a central role for hepcidin in iron homeostasis. Hepcidin is a hormone synthesized in the liver. Hepcidin is also thought to play a vital role in the pathogenic mechanism of anaemia in patients with inflammation or chronic disease. A 38-year-old female who presented with recurrent abdominal pain was found to have raised urinary porphyrins and a blood lead level of 779 μg/l. Her haemoglobin level was 8.3 g/dl. Her MCV was normal. Serum ferritin, B12 and folate were normal. Her serum prohepcidin level was 2,489 ng/ml (normal <450 ng/ml). To our knowledge, this is the first report of raised prohepcidin levels in a patient with anaemia of chronic disease resulting from lead poisoning.
Collapse
Affiliation(s)
- Jayantha Arnold
- Departments of Gastroenterology, Ealing Hospital, Southall, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Arnold J, Sangwaiya A, Bhatkal B, Arnold A. Defective release of Hepcidin not defective synthesis is the primary pathogenic mechanism in HFE-Haemochromatosis. Med Hypotheses 2008; 70:1197-200. [DOI: 10.1016/j.mehy.2007.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 10/14/2007] [Indexed: 01/06/2023]
|