1
|
Zhang J, Luo W, Cui Y, Sun B. B-cell epitope peptide immunotherapy alleviates chitin-binding protein-induced type 2 airway inflammation in a Blomia tropicalis-murine model. Respir Res 2025; 26:129. [PMID: 40205365 PMCID: PMC11983821 DOI: 10.1186/s12931-025-03207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Peptide immunotherapy (PIT) offers a safe and effective treatment with minimal side effects. This study aims to identify B-cell epitopes of a novel allergen from Blomia tropicalis (B. tropicalis), specifically the Chitin-binding domain type 2 (ChtBD2) protein, and evaluate the therapeutic effects of peptide treatment in a murine model. METHODS Using Alphafold2, the 3D structure of ChtBD2 was constructed. AI-based and traditional computational tools predicted the predominant B-cell epitopes. Twelve synthesized peptides were assessed for allergenicity and immunogenicity. A murine model of B. tropicalis-induced allergic airway inflammation mimicking human atopic asthma was developed and analyzed. RESULTS Predominant B-cell epitopes of ChtBD2 were identified as promising IgE-binding domains. Peptide 1 (PT1: 1-15) showed significant IgE-binding activity and the highest inhibition rate in competitive IgE-binding assays. PT1 upregulated IL-4, IL-13, and CD63 in B. tropicalis-sensitized patients' PBMCs and basophils, respectively. Notably, IT groups showed reduced lung cellular infiltration and type 2 cytokine expression in BALF. Specific IgE levels were reduced, with a decline in the IgG1/IgG2a ratio. CONCLUSIONS This study represents the first AI-facilitated development of a B-cell epitope-based ChtBD2 PIT, showing promise as an immunotherapy for B. tropicalis-allergic patients with reduced allergenicity and high immunogenicity in inducing IgG-blocking antibodies. CLINICAL TRIAL Not applicable.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- Guangzhou Laboratory, Guangzhou, China
| | - Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- Guangzhou Laboratory, Guangzhou, China
| | - YuBao Cui
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China.
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
- Guangzhou Laboratory, Guangzhou, China.
| |
Collapse
|
2
|
Ball A, Khatri K, Glesner J, Vailes LD, Wünschmann S, Gabel SA, Mueller GA, Zhang J, Peebles RS, Chapman MD, Smith SA, Chruszcz M, Pomés A. Structural analysis of human IgE monoclonal antibody epitopes on dust mite allergen Der p 2. J Allergy Clin Immunol 2024; 154:447-457. [PMID: 38697404 PMCID: PMC11409219 DOI: 10.1016/j.jaci.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Human IgE (hIgE) mAbs against major mite allergen Der p 2 developed using human hybridoma technology were used for IgE epitope mapping and analysis of epitopes associated with the hIgE repertoire. OBJECTIVE We sought to elucidate the new hIgE mAb 4C8 epitope on Der p 2 and compare it to the hIgE mAb 2F10 epitope in the context of the allergenic structure of Der p 2. METHODS X-ray crystallography was used to determine the epitope of anti-Der p 2 hIgE mAb 4C8. Epitope mutants created by targeted mutagenesis were analyzed by immunoassays and in vivo using a human high-affinity IgE receptor (FcεRIα)-transgenic mouse model of passive systemic anaphylaxis. RESULTS The structure of recombinant Der p 2 with hIgE mAb 4C8 Fab was determined at 3.05 Å. The newly identified epitope region does not overlap with the hIgE mAb 2F10 epitope or the region recognized by 3 overlapping hIgE mAbs (1B8, 5D10, and 2G1). Compared with wild-type Der p 2, single or double 4C8 and 2F10 epitope mutants bound less IgE antibodies from allergic patients by as much as 93%. Human FcεRIα-transgenic mice sensitized by hIgE mAbs, which were susceptible to anaphylaxis when challenged with wild-type Der p 2, could no longer cross-link FcεRI to induce anaphylaxis when challenged with the epitope mutants. CONCLUSIONS These data establish the structural basis of allergenicity of 2 hIgE mAb nonoverlapping epitopes on Der p 2, which appear to make important contributions to the hIgE repertoire against Der p 2 and provide molecular targets for future design of allergy therapeutics.
Collapse
Affiliation(s)
| | - Kriti Khatri
- Michigan State University, East Lansing, Mich; University of South Carolina, Columbia, SC
| | | | | | | | - Scott A Gabel
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Jian Zhang
- Vanderbilt University Medical Center, Nashville, Tenn
| | | | | | - Scott A Smith
- Vanderbilt University Medical Center, Nashville, Tenn
| | - Maksymilian Chruszcz
- Michigan State University, East Lansing, Mich; University of South Carolina, Columbia, SC.
| | | |
Collapse
|
3
|
Khaitov M, Shilovskiy I, Valenta R, Weber M, Korneev A, Tulaeva I, Gattinger P, van Hage M, Hofer G, Konradsen JR, Keller W, Akinfenwa O, Poroshina A, Ilina N, Fedenko E, Elisyutina O, Litovkina A, Smolnikov E, Nikonova A, Rybalkin S, Aldobaev V, Smirnov V, Shershakova N, Petukhova O, Kudlay D, Shatilov A, Timofeeva A, Campana R, Udin S, Skvortsova V. Recombinant PreS-fusion protein vaccine for birch pollen and apple allergy. Allergy 2024; 79:1001-1017. [PMID: 37855043 DOI: 10.1111/all.15919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND IgE cross-sensitization to major birch pollen allergen Bet v 1 and pathogenesis-related (PR10) plant food allergens is responsible for the pollen-food allergy syndrome. METHODS We designed a recombinant protein, AB-PreS, consisting of non-allergenic peptides derived from the IgE-binding sites of Bet v 1 and the cross-reactive apple allergen, Mal d 1, fused to the PreS domain of HBV surface protein as immunological carrier. AB-PreS was expressed in E. coli and purified by chromatography. The allergenic and inflammatory activity of AB-PreS was tested using basophils and PBMCs from birch pollen allergic patients. The ability of antibodies induced by immunization of rabbits with AB-PreS and birch pollen extract-based vaccines to inhibit allergic patients IgE binding to Bet v 1 and Mal d 1 was assessed by ELISA. RESULTS IgE-binding experiments and basophil activation test revealed the hypoallergenic nature of AB-PreS. AB-PreS induced lower T-cell activation and inflammatory cytokine production in cultured PBMCs from allergic patients. IgG antibodies induced by five injections with AB-PreS inhibited allergic patients' IgE binding to Bet v 1 and Mal d 1 better than did IgG induced by up to 30 injections of six licensed birch pollen allergen extract-based vaccines. Additionally, immunization with AB-PreS induced HBV-specific antibodies potentially protecting from infection with HBV. CONCLUSION The recombinant AB-PreS-based vaccine is hypoallergenic and superior over currently registered allergen extract-based vaccines regarding the induction of blocking antibodies to Bet v 1 and Mal d 1 in animals.
Collapse
Affiliation(s)
- Musa Khaitov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Igor Shilovskiy
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Rudolf Valenta
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Karl Landsteiner University for Healthcare Sciences, Krems, Austria
| | - Milena Weber
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Artem Korneev
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Inna Tulaeva
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gerhard Hofer
- Department of Materials and Environmental Chemistry, University of Stockholm, Stockholm, Sweden
| | - Jon R Konradsen
- Department of Women's and Children's Health, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Oluwatoyin Akinfenwa
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Poroshina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Nataliya Ilina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Elena Fedenko
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Olga Elisyutina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Alla Litovkina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Evgenii Smolnikov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | | | - Sergei Rybalkin
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vladimir Aldobaev
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Valeriy Smirnov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Olga Petukhova
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Dmitriy Kudlay
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Artem Shatilov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | | | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sergei Udin
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Moscow, Russian Federation
| | - Veronica Skvortsova
- Federal Medical Biological Agency of Russia (FMBA Russia), Moscow, Russian Federation
| |
Collapse
|
4
|
Hesse L, Oude Elberink J, van Oosterhout AJ, Nawijn MC. Allergen immunotherapy for allergic airway diseases: Use lessons from the past to design a brighter future. Pharmacol Ther 2022; 237:108115. [DOI: 10.1016/j.pharmthera.2022.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
5
|
Khatri K, Richardson CM, Glesner J, Kapingidza AB, Mueller GA, Zhang J, Dolamore C, Vailes LD, Wünschmann S, Peebles RS, Chapman MD, Smith SA, Chruszcz M, Pomés A. Human IgE monoclonal antibody recognition of mite allergen Der p 2 defines structural basis of an epitope for IgE cross-linking and anaphylaxis in vivo. PNAS NEXUS 2022; 1:pgac054. [PMID: 35799831 PMCID: PMC9248284 DOI: 10.1093/pnasnexus/pgac054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/24/2022] [Indexed: 01/28/2023]
Abstract
Immunoglobulin E (IgE) antibody is a critical effector molecule for adaptive allergen-induced immune responses, which affect up to 40% of the population worldwide. Allergens are usually innocuous molecules but induce IgE antibody production in allergic subjects. Allergen cross-linking of IgE bound to its high affinity receptor (FcεRI) on mast cells and basophils triggers release of histamine and other mediators that cause allergic symptoms. Little is known about the direct allergen-IgE antibody interaction due to the polyclonal nature of serum IgE and the low frequency of IgE-producing B cells in blood. Here, we report the X-ray crystal structure of a house dust mite allergen, Der p 2, in complex with Fab of a human IgE monoclonal antibody (mAb) isolated by hybridoma technology using human B cells from an allergic subject. This IgE mAb, 2F10, has the correct pairing of heavy and light chains as it occurs in vivo. Key amino acids forming the IgE epitope on Der p 2 were identified. Mutation of these residues ablated their functional ability to cross-link IgE in a mouse model of passive systemic anaphylaxis. These analyses revealed an important conformational epitope associated with the IgE antibody repertoire to a major mite allergen.
Collapse
Affiliation(s)
- Kriti Khatri
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | - Anyway Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Cole Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | - R Stokes Peebles
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
6
|
Abstract
Both subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) are effective clinically against allergic rhinitis and allergic asthma, and modify the underlying immunologic abnormalities. Despite this, many patients who could benefit from receiving SCIT and SLIT do not because of concerns about safety and the inconvenience in receiving SCIT, and the long duration of treatment with both, 3-4 years being required for lasting benefit. Attempts to improve the efficacy and safety, and to shorten the course of allergen immunotherapy have taken many approaches. Some approaches have generated great enthusiasm, only to fail in larger trials and be discarded. Other approaches show some promise but perhaps not enough to achieve regulatory approval. Those approaches that seem to have the best chance of becoming available in the next few years include the following: intralymphatic and epicutaneous immunotherapy, vitamin D in patients with insufficient serum 25 hydroxy vitamin D, probiotics, and allergoids, but all require further studies before being ready for nonexperimental use or, where necessary, for regulatory approval.
Collapse
|
7
|
Fuhrmann V, Huang HJ, Akarsu A, Shilovskiy I, Elisyutina O, Khaitov M, van Hage M, Linhart B, Focke-Tejkl M, Valenta R, Sekerel BE. From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Front Immunol 2021; 12:742732. [PMID: 34630424 PMCID: PMC8496898 DOI: 10.3389/fimmu.2021.742732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Peanuts and tree nuts are two of the most common elicitors of immunoglobulin E (IgE)-mediated food allergy. Nut allergy is frequently associated with systemic reactions and can lead to potentially life-threatening respiratory and circulatory symptoms. Furthermore, nut allergy usually persists throughout life. Whether sensitized patients exhibit severe and life-threatening reactions (e.g., anaphylaxis), mild and/or local reactions (e.g., pollen-food allergy syndrome) or no relevant symptoms depends much on IgE recognition of digestion-resistant class I food allergens, IgE cross-reactivity of class II food allergens with respiratory allergens and clinically not relevant plant-derived carbohydrate epitopes, respectively. Accordingly, molecular allergy diagnosis based on the measurement of allergen-specific IgE levels to allergen molecules provides important information in addition to provocation testing in the diagnosis of food allergy. Molecular allergy diagnosis helps identifying the genuinely sensitizing nuts, it determines IgE sensitization to class I and II food allergen molecules and hence provides a basis for personalized forms of treatment such as precise prescription of diet and allergen-specific immunotherapy (AIT). Currently available forms of nut-specific AIT are based only on allergen extracts, have been mainly developed for peanut but not for other nuts and, unlike AIT for respiratory allergies which utilize often subcutaneous administration, are given preferentially by the oral route. Here we review prevalence of allergy to peanut and tree nuts in different populations of the world, summarize knowledge regarding the involved nut allergen molecules and current AIT approaches for nut allergy. We argue that nut-specific AIT may benefit from molecular subcutaneous AIT (SCIT) approaches but identify also possible hurdles for such an approach and explain why molecular SCIT may be a hard nut to crack.
Collapse
Affiliation(s)
- Verena Fuhrmann
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aysegul Akarsu
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Igor Shilovskiy
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Olga Elisyutina
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Musa Khaitov
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University, Hospital, Stockholm, Sweden
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Laboratory for Molecular Allergology, National Research Center (NRC) Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bulent Enis Sekerel
- Division of Allergy and Asthma, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Allergen Preparation in AIT, Now and in the Future. CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-021-00281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Akinfenwa O, Rodríguez-Domínguez A, Vrtala S, Valenta R, Campana R. Novel vaccines for allergen-specific immunotherapy. Curr Opin Allergy Clin Immunol 2021; 21:86-99. [PMID: 33369572 PMCID: PMC7810419 DOI: 10.1097/aci.0000000000000706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Allergen-specific immunotherapy (AIT) is a highly economic, effective and disease-modifying form of allergy treatment but requires accurate prescription and monitoring. New molecular approaches are currently under development to improve AIT by reducing treatment-related side effects, cumbersome protocols and patients' compliance. We review the current advances regarding refined diagnosis for prescription and monitoring of AIT and the development of novel molecular vaccines for AIT. Finally, we discuss prophylactic application of AIT. RECENT FINDINGS There is evidence that molecular allergy diagnosis not only assists in the prescription and monitoring of AIT but also allows a refined selection of patients to increase the likelihood of treatment success. New data regarding the effects of AIT treatment with traditional allergen extracts by alternative routes have become available. Experimental approaches for AIT, such as virus-like particles and cell-based treatments have been described. New results from clinical trials performed with recombinant hypoallergens and passive immunization with allergen-specific antibodies highlight the importance of allergen-specific IgG antibodies for the effect of AIT and indicate opportunities for preventive allergen-specific vaccination. SUMMARY Molecular allergy diagnosis is useful for the prescription and monitoring of AIT and may improve the success of AIT. Results with molecular allergy vaccines and by passive immunization with allergen-specific IgG antibodies indicate the importance of allergen-specific IgG capable of blocking allergen recognition by IgE and IgE-mediated allergic inflammation as important mechanism for the success of AIT. New molecular vaccines may pave the road towards prophylactic allergen-specific vaccination.
Collapse
Affiliation(s)
- Oluwatoyin Akinfenwa
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Azahara Rodríguez-Domínguez
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Li L, Guan K, Zheng SG. Biochemical Characteristics and Allergenic Activity of Common Fungus Allergens. Curr Protein Pept Sci 2020; 21:170-185. [PMID: 31309887 DOI: 10.2174/1389203720666190712121243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/26/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022]
Abstract
Fungi form a large kingdom with more than 1.5 million species. Fungal spores are universal atmospheric components and are generally recognized as important causes of allergic disorders, including allergic rhinitis, allergic rhinosinusitis, asthma, and allergic bronchopulmonary aspergillosis. The 4 genera which have the closest connection with allergic disorder are Cladosporium, Alternaria, Aspergillus and Penicillium. The cDNA sequences of many fungi allergens and the amino acids involved in their immunoglobulin E binding and T-cell activation have already been elucidated. Until now, 111 allergens from 29 fungal genera have been approved by the International Allergen Nomenclature Sub-committee. This review mainly focuses on the biochemical characteristics and allergenic activity of important allergens from common environmental fungi.
Collapse
Affiliation(s)
- Lisha Li
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, 100730, China
| | - Kai Guan
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, 100730, China
| | - Song Guo Zheng
- Ohio State College of Medicine, Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
11
|
Holzhauser T, Schuler F, Dudek S, Kaul S, Vieths S, Mahler V. [Recombinant allergens, peptides, and virus-like particles for allergy immunotherapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:1412-1423. [PMID: 33095280 PMCID: PMC7648003 DOI: 10.1007/s00103-020-03231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 11/05/2022]
Abstract
Currently, extract-based therapeutic allergens from natural allergen sources (e.g., house dust mites, tree and grass pollen) are used for allergen-specific immunotherapy (AIT), the only causative therapy that can exhibit positive disease-modifying effects by tolerance induction and prevention of disease progression. Due to variations in the natural composition of the starting materials and different manufacturing processes, there are variations in protein content, allergen composition, and allergenic activity of similar products, which poses specific challenges for their standardization. The identification of the nucleotide sequences of allergenic proteins led to the development of molecular AIT approaches. This allows for the application of exclusively relevant structures as chemically synthesized peptides, recombinant single allergens, or molecules with hypoallergenic properties that potentially allow for an up-dosing with higher allergen-doses without allergic side effects leading more quickly to effective cumulative doses. Further modifications of AIT preparations to improve allergenic and immunogenic properties may be achieved, e.g., by including the use of virus-like particles (VLPs). To date, the herein described therapeutic approaches have been tested in clinical trials only. This article provides an overview of published molecular approaches for allergy treatment used in clinical AIT studies. Their added value and challenges compared to established therapeutic allergens are discussed. The aim of these approaches is to develop highly effective and well-tolerated AIT preparations with improved patient acceptance and adherence.
Collapse
Affiliation(s)
- Thomas Holzhauser
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland.
| | - Frank Schuler
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Simone Dudek
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Susanne Kaul
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Vera Mahler
- Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und Biomedizinische Arzneimittel (PEI), Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| |
Collapse
|
12
|
Dona DW, Suphioglu C. Egg Allergy: Diagnosis and Immunotherapy. Int J Mol Sci 2020; 21:E5010. [PMID: 32708567 PMCID: PMC7404024 DOI: 10.3390/ijms21145010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hypersensitivity or an allergy to chicken egg proteins is a predominant symptomatic condition affecting 1 in 20 children in Australia; however, an effective form of therapy has not yet been found. This occurs as the immune system of the allergic individual overreacts when in contact with egg allergens (egg proteins), triggering a complex immune response. The subsequent instantaneous inflammatory immune response is characterized by the excessive production of immunoglobulin E (IgE) antibody against the allergen, T-cell mediators and inflammation. Current allergen-specific approaches to egg allergy diagnosis and treatment lack consistency and therefore pose safety concerns among anaphylactic patients. Immunotherapy has thus far been found to be the most efficient way to treat and relieve symptoms, this includes oral immunotherapy (OIT) and sublingual immunotherapy (SLIT). A major limitation in immunotherapy, however, is the difficulty in preparing effective and safe extracts from natural allergen sources. Advances in molecular techniques allow for the production of safe and standardized recombinant and hypoallergenic egg variants by targeting the IgE-binding epitopes responsible for clinical allergic symptoms. Site-directed mutagenesis can be performed to create such safe hypoallergens for their potential use in future methods of immunotherapy, providing a feasible standardized therapeutic approach to target egg allergies safely.
Collapse
Affiliation(s)
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong 3216 VIC, Australia;
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW More than 30 years ago, the first molecular structures of allergens were elucidated and defined recombinant allergens became available. We review the state of the art regarding molecular AIT with the goal to understand why progress in this field has been slow, although there is huge potential for treatment and allergen-specific prevention. RECENT FINDINGS On the basis of allergen structures, several AIT strategies have been developed and were advanced into clinical evaluation. In clinical AIT trials, promising results were obtained with recombinant and synthetic allergen derivatives inducing allergen-specific IgG antibodies, which interfered with allergen recognition by IgE whereas clinical efficacy could not yet be demonstrated for approaches targeting only allergen-specific T-cell responses. Available data suggest that molecular AIT strategies have many advantages over allergen extract-based AIT. SUMMARY Clinical studies indicate that recombinant allergen-based AIT vaccines, which are superior to existing allergen extract-based AIT can be developed for respiratory, food and venom allergy. Allergen-specific preventive strategies based on recombinant allergen-based vaccine approaches and induction of T-cell tolerance are on the horizon and hold promise that allergy can be prevented. However, progress is limited by lack of resources needed for clinical studies, which are necessary for the development of these innovative strategies.
Collapse
|
14
|
Pechsrichuang P, Jacquet A. Molecular approaches to allergen-specific immunotherapy: Are we so far from clinical implementation? Clin Exp Allergy 2020; 50:543-557. [PMID: 32078207 DOI: 10.1111/cea.13588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 12/28/2022]
Abstract
Conventional allergen-specific immunotherapy (AIT), based on administrations of allergen extracts, represents up to now the unique protocol for the desensitization of allergic patients. Whereas the effectiveness of AIT was evidenced for the treatment of allergic rhinitis and allergic asthma, such strategy remains experimental for food allergies up to now. However, important issues are commonly associated with AIT as the quality of natural allergen extracts, the long duration and adverse side-effects which negatively affect successful desensitization together with the patient compliance. The rapid progression of molecular allergology made possible the quest of safer, shorter and more effective immunotherapeutic approaches. The aim of this review was to provide an update on these different innovative recombinant derivatives including their efficacy but also their limitations. Despite promising preclinical and early clinical studies, the absence of convincing data in large phase III trials precludes so far the translation of these immunotherapeutic candidates into the clinic.
Collapse
Affiliation(s)
- Phornsiri Pechsrichuang
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | - Alain Jacquet
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Najafi N, Hofer G, Gattinger P, Smiljkovic D, Blatt K, Selb R, Stoecklinger A, Keller W, Valent P, Niederberger V, Thalhamer J, Valenta R, Flicker S. Fusion proteins consisting of Bet v 1 and Phl p 5 form IgE-reactive aggregates with reduced allergenic activity. Sci Rep 2019; 9:4006. [PMID: 30850635 PMCID: PMC6408504 DOI: 10.1038/s41598-019-39798-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/28/2019] [Indexed: 11/16/2022] Open
Abstract
The cross-linking of effector cell-bound IgE antibodies by allergens induces the release of inflammatory mediators which are responsible for the symptoms of allergy. We demonstrate that a recombinant hybrid molecule consisting of the major birch (Bet v 1) and grass (Phl p 5) pollen allergen exhibited reduced allergenic activity as compared to equimolar mixes of the isolated allergens in basophil activation experiments. The reduced allergenic activity of the hybrid was not due to reduced IgE reactivity as demonstrated by IgE binding experiments using sera from allergic patients. Physicochemical characterization of the hybrid by size exclusion chromatography, dynamic light scattering, negative-stain electron microscopy and circular dichroism showed that the hybrid occurred as folded aggregate whereas the isolated allergens were folded monomeric proteins. IgG antibodies raised in rabbits against epitopes of Bet v 1 and Phl p 5 showed reduced reactivity with the hybrid compared to the monomeric allergens. Our results thus demonstrate that aggregation can induce changes in the conformation of allergens and lead to the reduction of allergenic activity. This is a new mechanism for reducing the allergenic activity of allergens which may be important for modifying allergens to exhibit reduced side effects when used for allergen-specific immunotherapy.
Collapse
Affiliation(s)
- N Najafi
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - G Hofer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - P Gattinger
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - D Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - K Blatt
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - R Selb
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - A Stoecklinger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - W Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - P Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - V Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - J Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - R Valenta
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia.,Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - S Flicker
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Pfaar O, Lou H, Zhang Y, Klimek L, Zhang L. Recent developments and highlights in allergen immunotherapy. Allergy 2018; 73:2274-2289. [PMID: 30372537 DOI: 10.1111/all.13652] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment option for patients with IgE-mediated inhalant allergies. Though used in clinical practice for more than 100 years, most innovations in AIT efficacy and safety have been developed in the last two decades. This expert review aimed to highlight the recent progress in AIT for both application routes, the sublingual (SLIT) and subcutaneous (SCIT) forms. As such, it covers recent aspects regarding efficacy and safety in clinical trials and real-life data and outlines new concepts in consensus and position papers as well as in guidelines for AIT. Potential clinical and nonclinical biomarkers are discussed. This review also focuses on potential future perspectives in AIT, such as alternative application routes, immune-modulating adjuvants, and recombinant vaccines. In conclusion, this state of the art review provides a comprehensive overview of AIT and highlights unmet needs for the future.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery; Section of Rhinology and Allergy; University Hospital Marburg; Philipps-Universität Marburg; Marburg Germany
| | - Hongfei Lou
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy; Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Yuan Zhang
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy; Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Ludger Klimek
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - Luo Zhang
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy; Beijing TongRen Hospital; Capital Medical University; Beijing China
| |
Collapse
|
17
|
Gunawardana NC, Durham SR. New approaches to allergen immunotherapy. Ann Allergy Asthma Immunol 2018; 121:293-305. [PMID: 30025907 DOI: 10.1016/j.anai.2018.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE New insights into mechanisms should enable strategic improvement of allergen immunotherapy, aiming to make it safer, faster, more effective, and able to induce long-term tolerance. We review novel approaches with potential to translate into clinical use. DATA SOURCES Database searches were conducted in PubMed, Scopus, and Google Scholar. STUDY SELECTIONS Search terms were based on current and novel approaches in immunotherapy. Literature was selected primarily from recent randomized double-blinded placebo-controlled trials and meta-analyses. RESULTS Alum, microcrystalline tyrosine, and calcium phosphate are adjuvants in current use. Toll-like receptor-4 agonists combined with allergen have potential to shorten duration of treatment. Other novel adjuvants, nanoparticles, and virus-like particles in combination with allergen have shown early promise. Omalizumab lessens systemic side effects but does not improve efficacy. Intralymphatic immunotherapy for aeroallergens, epicutaneous immunotherapy for food allergens, and use of modified allergens (allergoids), recombinant allergens (and hypoallergenic variants), and T- and B-cell peptide approaches have shown evidence of efficacy and permitted shortened courses but have only rarely been compared with conventional extracts. CONCLUSION Novel routes of immunotherapy, use of modified allergens, and combination of allergens with immunostimulatory adjuvants or immune modifiers have been developed to augment downregulation of T-helper cell type 2 immunity and/or induce "protective" blocking antibodies. Although these strategies have permitted shortened courses, confirmatory phase 3 trials are required to confirm efficacy and safety and head-to-head trials are required for comparative efficacy. Currently, subcutaneous and sublingual immunotherapies using in-house standardized crude extracts remain the only approaches proved to induce long-term tolerance.
Collapse
Affiliation(s)
- Natasha C Gunawardana
- Imperial College London, London, United Kingdom; Royal Brompton and Harefield Hospitals, NHS Foundation Trust, London, United Kingdom
| | - Stephen R Durham
- Imperial College London, London, United Kingdom; Royal Brompton and Harefield Hospitals, NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
18
|
Patil SU, Shreffler WG. Novel vaccines: Technology and development. J Allergy Clin Immunol 2018; 143:844-851. [PMID: 29970235 DOI: 10.1016/j.jaci.2018.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/04/2018] [Accepted: 05/25/2018] [Indexed: 11/17/2022]
Abstract
The development and widespread use of vaccines, which are defined by the World Health Organization as "biological preparations that improve immunity to a particular disease," represents one of the most significant strides in medicine. Vaccination was first applied to reduce mortality and morbidity from infectious diseases. The World Health Organization estimates that vaccines prevent 2 to 3 million human deaths annually, and these numbers would increase by at least 6 million if all children received the recommended vaccination schedule. However, the origins of allergen immunotherapy share the same intellectual paradigm, and subsequent innovations in vaccine technology have been applied beyond the prevention of infection, including in the treatment of cancer and allergic diseases. This review will focus on how new and more rational approaches to vaccine development use novel biotechnology, target new mechanisms, and shape the immune system response, with an emphasis on discoveries that have direct translational relevance to the treatment of allergic diseases.
Collapse
Affiliation(s)
- Sarita U Patil
- Department of Pediatrics, Division of Allergy and Immunology, Massachusetts General Hospital, Boston, Mass; Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Center for Inflammatory and Immunological Diseases, Harvard Medical School, Boston, Mass.
| | - Wayne G Shreffler
- Department of Pediatrics, Division of Allergy and Immunology, Massachusetts General Hospital, Boston, Mass; Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Center for Inflammatory and Immunological Diseases, Harvard Medical School, Boston, Mass
| |
Collapse
|
19
|
Su Y, Romeu-Bonilla E, Heiland T. Next generation immunotherapy for tree pollen allergies. Hum Vaccin Immunother 2018; 13:2402-2415. [PMID: 28853984 DOI: 10.1080/21645515.2017.1367882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tree pollen induced allergies are one of the major medical and public health burdens in the industrialized world. Allergen-Specific Immunotherapy (AIT) through subcutaneous injection or sublingual delivery is the only approved therapy with curative potential to pollen induced allergies. AIT often is associated with severe side effects and requires long-term treatment. Safer, more effective and convenient allergen specific immunotherapies remain an unmet need. In this review article, we discuss the current progress in applying protein and peptide-based approaches and DNA vaccines to the clinical challenges posed by tree pollen allergies through the lens of preclinical animal models and clinical trials, with an emphasis on the birch and Japanese red cedar pollen induced allergies.
Collapse
Affiliation(s)
- Yan Su
- a Department of R&D , Immunomic Therapeutics, Inc. (ITI) , Rockville , MD , USA
| | | | - Teri Heiland
- a Department of R&D , Immunomic Therapeutics, Inc. (ITI) , Rockville , MD , USA
| |
Collapse
|
20
|
Curin M, Khaitov M, Karaulov A, Namazova-Baranova L, Campana R, Garib V, Valenta R. Next-Generation of Allergen-Specific Immunotherapies: Molecular Approaches. Curr Allergy Asthma Rep 2018; 18:39. [PMID: 29886521 PMCID: PMC5994214 DOI: 10.1007/s11882-018-0790-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to discuss how allergen-specific immunotherapy (AIT) can be improved through molecular approaches. We provide a summary of next-generation molecular AIT approaches and of their clinical evaluation. Furthermore, we discuss the potential of next generation molecular AIT forms for the treatment of severe manifestations of allergy and mention possible future molecular strategies for the secondary and primary prevention of allergy. RECENT FINDINGS AIT has important advantages over symptomatic forms of allergy treatment but its further development is limited by the quality of the therapeutic antigen preparations which are derived from natural allergen sources. The field of allergy diagnosis is currently undergoing a dramatic improvement through the use of molecular testing with defined, mainly recombinant allergens which allows high-resolution diagnosis. Several studies demonstrate that molecular testing in early childhood can predict the development of symptomatic allergy later on in life. Clinical studies indicate that molecular AIT approaches have the potential to improve therapy of allergic diseases and may be used as allergen-specific forms of secondary and eventually primary prevention for allergy.
Collapse
Affiliation(s)
- Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Victoria Garib
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- International Network of Universities for Molecular Allergololgy and Immunology, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
- International Network of Universities for Molecular Allergololgy and Immunology, Vienna, Austria.
| |
Collapse
|
21
|
Valenta R, Karaulov A, Niederberger V, Gattinger P, van Hage M, Flicker S, Linhart B, Campana R, Focke-Tejkl M, Curin M, Eckl-Dorna J, Lupinek C, Resch-Marat Y, Vrtala S, Mittermann I, Garib V, Khaitov M, Valent P, Pickl WF. Molecular Aspects of Allergens and Allergy. Adv Immunol 2018; 138:195-256. [PMID: 29731005 DOI: 10.1016/bs.ai.2018.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunoglobulin E (IgE)-associated allergy is the most common immune disorder. More than 30% of the population suffer from symptoms of allergy which are often severe, disabling, and life threatening such as asthma and anaphylaxis. Population-based birth cohort studies show that up to 60% of the world population exhibit IgE sensitization to allergens, of which most are protein antigens. Thirty years ago the first allergen-encoding cDNAs have been isolated. In the meantime, the structures of most of the allergens relevant for disease in humans have been solved. Here we provide an update regarding what has been learned through the use of defined allergen molecules (i.e., molecular allergology) and about mechanisms of allergic disease in humans. We focus on new insights gained regarding the process of sensitization to allergens, allergen-specific secondary immune responses, and mechanisms underlying allergic inflammation and discuss open questions. We then show how molecular forms of diagnosis and specific immunotherapy are currently revolutionizing diagnosis and treatment of allergic patients and how allergen-specific approaches may be used for the preventive eradication of allergy.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sabine Flicker
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yvonne Resch-Marat
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irene Mittermann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Victoria Garib
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; International Network of Universities for Molecular Allergology and Immunology, Vienna, Austria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Wise SK, Lin SY, Toskala E, Orlandi RR, Akdis CA, Alt JA, Azar A, Baroody FM, Bachert C, Canonica GW, Chacko T, Cingi C, Ciprandi G, Corey J, Cox LS, Creticos PS, Custovic A, Damask C, DeConde A, DelGaudio JM, Ebert CS, Eloy JA, Flanagan CE, Fokkens WJ, Franzese C, Gosepath J, Halderman A, Hamilton RG, Hoffman HJ, Hohlfeld JM, Houser SM, Hwang PH, Incorvaia C, Jarvis D, Khalid AN, Kilpeläinen M, Kingdom TT, Krouse H, Larenas-Linnemann D, Laury AM, Lee SE, Levy JM, Luong AU, Marple BF, McCoul ED, McMains KC, Melén E, Mims JW, Moscato G, Mullol J, Nelson HS, Patadia M, Pawankar R, Pfaar O, Platt MP, Reisacher W, Rondón C, Rudmik L, Ryan M, Sastre J, Schlosser RJ, Settipane RA, Sharma HP, Sheikh A, Smith TL, Tantilipikorn P, Tversky JR, Veling MC, Wang DY, Westman M, Wickman M, Zacharek M. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int Forum Allergy Rhinol 2018; 8:108-352. [PMID: 29438602 PMCID: PMC7286723 DOI: 10.1002/alr.22073] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Critical examination of the quality and validity of available allergic rhinitis (AR) literature is necessary to improve understanding and to appropriately translate this knowledge to clinical care of the AR patient. To evaluate the existing AR literature, international multidisciplinary experts with an interest in AR have produced the International Consensus statement on Allergy and Rhinology: Allergic Rhinitis (ICAR:AR). METHODS Using previously described methodology, specific topics were developed relating to AR. Each topic was assigned a literature review, evidence-based review (EBR), or evidence-based review with recommendations (EBRR) format as dictated by available evidence and purpose within the ICAR:AR document. Following iterative reviews of each topic, the ICAR:AR document was synthesized and reviewed by all authors for consensus. RESULTS The ICAR:AR document addresses over 100 individual topics related to AR, including diagnosis, pathophysiology, epidemiology, disease burden, risk factors for the development of AR, allergy testing modalities, treatment, and other conditions/comorbidities associated with AR. CONCLUSION This critical review of the AR literature has identified several strengths; providers can be confident that treatment decisions are supported by rigorous studies. However, there are also substantial gaps in the AR literature. These knowledge gaps should be viewed as opportunities for improvement, as often the things that we teach and the medicine that we practice are not based on the best quality evidence. This document aims to highlight the strengths and weaknesses of the AR literature to identify areas for future AR research and improved understanding.
Collapse
Affiliation(s)
| | | | | | | | - Cezmi A. Akdis
- Allergy/Asthma, Swiss Institute of Allergy and Asthma Research, Switzerland
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, USA
| | | | | | | | | | - Cemal Cingi
- Otolaryngology, Eskisehir Osmangazi University, Turkey
| | | | | | | | | | | | | | - Adam DeConde
- Otolaryngology, University of California San Diego, USA
| | | | | | | | | | | | | | - Jan Gosepath
- Otorhinolaryngology, Helios Kliniken Wiesbaden, Germany
| | | | | | | | - Jens M. Hohlfeld
- Respiratory Medicine, Hannover Medical School, Airway Research Fraunhofer Institute for Toxicology and Experimental Medicine, German Center for Lung Research, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | - Amber U. Luong
- Otolaryngology, McGovern Medical School at the University of Texas Health Science Center Houston, USA
| | | | | | | | - Erik Melén
- Pediatric Allergy, Karolinska Institutet, Sweden
| | | | | | - Joaquim Mullol
- Otolaryngology, Universitat de Barcelona, Hospital Clinic, IDIBAPS, Spain
| | | | | | | | - Oliver Pfaar
- Rhinology/Allergy, Medical Faculty Mannheim, Heidelberg University, Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | | | - Carmen Rondón
- Allergy, Regional University Hospital of Málaga, Spain
| | - Luke Rudmik
- Otolaryngology, University of Calgary, Canada
| | - Matthew Ryan
- Otolaryngology, University of Texas Southwestern, USA
| | - Joaquin Sastre
- Allergology, Hospital Universitario Fundacion Jiminez Diaz, Spain
| | | | | | - Hemant P. Sharma
- Allergy/Immunology, Children's National Health System, George Washington University School of Medicine, USA
| | | | | | | | | | | | - De Yun Wang
- Otolaryngology, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
23
|
Niederberger V, Neubauer A, Gevaert P, Zidarn M, Worm M, Aberer W, Malling HJ, Pfaar O, Klimek L, Pfützner W, Ring J, Darsow U, Novak N, Gerth van Wijk R, Eckl-Dorna J, Focke-Tejkl M, Weber M, Müller HH, Klinger J, Stolz F, Breit N, Henning R, Valenta R. Safety and efficacy of immunotherapy with the recombinant B-cell epitope-based grass pollen vaccine BM32. J Allergy Clin Immunol 2018; 142:497-509.e9. [PMID: 29361332 PMCID: PMC6392176 DOI: 10.1016/j.jaci.2017.09.052] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/03/2017] [Accepted: 09/27/2017] [Indexed: 12/29/2022]
Abstract
Background BM32 is a grass pollen allergy vaccine based on recombinant fusion proteins consisting of nonallergenic peptides from the IgE-binding sites of the 4 major grass pollen allergens and the hepatitis B preS protein. Objective We sought to study the safety and clinical efficacy of immunotherapy (allergen immunotherapy) with BM32 in patients with grass pollen–induced rhinitis and controlled asthma. Methods A double-blind, placebo-controlled, multicenter allergen immunotherapy field study was conducted for 2 grass pollen seasons. After a baseline season, subjects (n = 181) were randomized and received 3 preseasonal injections of either placebo (n = 58) or a low dose (80 μg, n = 60) or high dose (160 μg, n = 63) of BM32 in year 1, respectively, followed by a booster injection in autumn. In the second year, all actively treated subjects received 3 preseasonal injections of the BM32 low dose, and placebo-treated subjects continued with placebo. Clinical efficacy was assessed by using combined symptom medication scores, visual analog scales, Rhinoconjunctivitis Quality of Life Questionnaires, and asthma symptom scores. Adverse events were graded according to the European Academy of Allergy and Clinical Immunology. Allergen-specific antibodies were determined by using ELISA, ImmunoCAP, and ImmunoCAP ISAC. Results Although statistical significance regarding the primary end point was not reached, BM32-treated subjects, when compared with placebo-treated subjects, showed an improvement regarding symptom medication, visual analog scale, Rhinoconjunctivitis Quality of Life Questionnaire, and asthma symptom scores in both treatment years. This was accompanied by an induction of allergen-specific IgG without induction of allergen-specific IgE and a reduction in the seasonally induced increase in allergen-specific IgE levels in year 2. In the first year, more grade 2 reactions were observed in the active (n = 6) versus placebo (n = 1) groups, whereas there was almost no difference in the second year. Conclusions Injections of BM32 induced allergen-specific IgG, improved clinical symptoms of seasonal grass pollen allergy, and were well tolerated.
Collapse
Affiliation(s)
- Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Philippe Gevaert
- Department Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Mihaela Zidarn
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | | | - Werner Aberer
- Department of Dermatology and Venerology, Medical University Graz, Graz, Austria
| | | | - Oliver Pfaar
- Center for Rhinology/Allergology, Wiesbaden, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ludger Klimek
- Center for Rhinology/Allergology, Wiesbaden, Germany
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, Medical Center Giessen and Marburg GmbH, Marburg, Germany
| | - Johannes Ring
- Department of Dermatology and Allergy Biederstein, Technical University Munich (TUM) and ZAUM-Center of Allergy and Environment, Munich, Germany
| | - Ulf Darsow
- Department of Dermatology and Allergy Biederstein, Technical University Munich (TUM) and ZAUM-Center of Allergy and Environment, Munich, Germany
| | - Natalija Novak
- Clinic for Dermatology and Allergology, University of Bonn, Bonn, Germany
| | - Roy Gerth van Wijk
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| | - Milena Weber
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| | - Hans-Helge Müller
- Institute for Medical Information Technology, Biometrics and Epidemiology, Ludwig-Maximilians-Universität, Munich, and the Institute for Medical Biometry and Epidemiology, Philipps-University, Marburg, Germany
| | | | | | | | | | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow.
| |
Collapse
|
24
|
Epicutaneous allergen application preferentially boosts specific T cell responses in sensitized patients. Sci Rep 2017; 7:11657. [PMID: 28912492 PMCID: PMC5599525 DOI: 10.1038/s41598-017-10278-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
The effects of epicutaneous allergen administration on systemic immune responses in allergic and non-allergic individuals has not been investigated with defined allergen molecules. We studied the effects of epicutaneous administration of rBet v 1 and rBet v 1 fragments on systemic immune responses in allergic and non-allergic subjects. We conducted a clinical trial in which rBet v 1 and two hypoallergenic rBet v 1 fragments were applied epicutaneously by atopy patch testing (APT) to 15 birch pollen (bp) allergic patients suffering from atopic dermatitis, 5 bp-allergic patients suffering from rhinoconjunctivitis only, 5 patients with respiratory allergy without bp allergy and 5 non-allergic individuals. Epicutaneous administration of rBet v 1 and rBet v 1 fragments led to strong and significant increases of allergen-specific T cell proliferation (CLA+ and CCR4+T cell responses) only in bp-allergic patients with a positive APT reaction. There were no relevant changes of Bet v 1-specific IgE and IgG responses. No changes were noted in allergic subjects without bp allergy and in non-allergic subjects. Epicutaneous allergen application boosts specific T cell but not antibody responses mainly in allergic, APT-positive patients suggesting IgE-facilitated allergen presentation as mechanism for its effects on systemic allergen-specific immune responses.
Collapse
|
25
|
Patel HD, Chambliss JM, Gupta MR. Utility and Comparative Efficacy of Recombinant Allergens Versus Allergen Extract. Curr Allergy Asthma Rep 2017; 17:63. [PMID: 28822054 DOI: 10.1007/s11882-017-0727-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Allergy immunotherapy (AIT) is the only disease-modifying therapy for the treatment of allergic diseases. Although its efficacy and utility are well-established, the potential for serious adverse events, cumbersome and lengthy treatment protocols, and variability of natural allergen preparations have limited its widespread application. Recent advances in recombinant technology have opened new avenues for the development of AIT vaccines. The purpose of this review is to highlight recent evidence on the use of novel recombinant vaccines and review the mechanisms, efficacy, safety, and limitations of AIT. Emerging evidence suggests that recombinant vaccines may provide a viable treatment alternative that improves on the limitations of natural extract therapy while maintaining efficacy.
Collapse
Affiliation(s)
- Hardik D Patel
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jeffrey M Chambliss
- Department of Pediatrics, Division of Clinical and Experimental Immunology and Infectious Disease, University of Texas Medical Branch, 301 University Blvd, Route 0372, Galveston, TX, 77555, USA
| | - Meera R Gupta
- Department of Pediatrics, Division of Clinical and Experimental Immunology and Infectious Disease, University of Texas Medical Branch, 301 University Blvd, Route 0372, Galveston, TX, 77555, USA.
| |
Collapse
|
26
|
Shamji MH, Kappen JH, Akdis M, Jensen-Jarolim E, Knol EF, Kleine-Tebbe J, Bohle B, Chaker AM, Till SJ, Valenta R, Poulsen LK, Calderon MA, Demoly P, Pfaar O, Jacobsen L, Durham SR, Schmidt-Weber CB. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: an EAACI Position Paper. Allergy 2017; 72:1156-1173. [PMID: 28152201 DOI: 10.1111/all.13138] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Allergen immunotherapy (AIT) is an effective treatment for allergic rhinoconjunctivitis (AR) with or without asthma. It is important to note that due to the complex interaction between patient, allergy triggers, symptomatology and vaccines used for AIT, some patients do not respond optimally to the treatment. Furthermore, there are no validated or generally accepted candidate biomarkers that are predictive of the clinical response to AIT. Clinical management of patients receiving AIT and efficacy in randomised controlled trials for drug development could be enhanced by predictive biomarkers. METHOD The EAACI taskforce reviewed all candidate biomarkers used in clinical trials of AR patients with/without asthma in a literature review. Biomarkers were grouped into seven domains: (i) IgE (total IgE, specific IgE and sIgE/Total IgE ratio), (ii) IgG-subclasses (sIgG1, sIgG4 including SIgE/IgG4 ratio), (iii) Serum inhibitory activity for IgE (IgE-FAB and IgE-BF), (iv) Basophil activation, (v) Cytokines and Chemokines, (vi) Cellular markers (T regulatory cells, B regulatory cells and dendritic cells) and (vii) In vivo biomarkers (including provocation tests?). RESULTS All biomarkers were reviewed in the light of their potential advantages as well as their respective drawbacks. Unmet needs and specific recommendations on all seven domains were addressed. CONCLUSIONS It is recommended to explore the use of allergen-specific IgG4 as a biomarker for compliance. sIgE/tIgE and IgE-FAB are considered as potential surrogate candidate biomarkers. Cytokine/chemokines and cellular reponses provided insight into the mechanisms of AIT. More studies for confirmation and interpretation of the possible association with the clinical response to AIT are needed.
Collapse
Affiliation(s)
- M. H. Shamji
- Allergy and Clinical Immunology; National Heart and Lung Institute; Imperial College London; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
- Allergy and Clinical Immunology; Immunomodulation and Tolerance Group; Imperial College London; London UK
| | - J. H. Kappen
- Allergy and Clinical Immunology; National Heart and Lung Institute; Imperial College London; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
- Allergy and Clinical Immunology; Immunomodulation and Tolerance Group; Imperial College London; London UK
- Department of Pulmonology; STZ Centre of Excellence for Asthma & COPD; Sint Franciscus Vlietland Group; Rotterdam The Netherlands
| | - M. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zürich; Davos Switzerland
| | - E. Jensen-Jarolim
- Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology and Immunology; Medical University Vienna; Vienna Austria
- The interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna; Medical University Vienna; Vienna Austria
| | - E. F. Knol
- Departments Immunology and Dermatology/Allergology; University Medical Center Utrecht; Utrecht The Netherlands
| | - J. Kleine-Tebbe
- Allergy & Asthma Center Westend; Outpatient Clinic and Research Center Hanf, Ackermann & Kleine-Tebbe; Berlin Germany
| | - B. Bohle
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - A. M. Chaker
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Center Munich; Munich Germany
- Department of Otolaryngology; Allergy Section; Klinikum rechts der Isar; Technische Universität; Munich Germany
| | - S. J. Till
- Division of Asthma, Allergy and Lung Biology; King's College London; London UK
- Department of Allergy; Guy's and St. Thomas’ NHS Foundation Trust; London UK
| | - R. Valenta
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - L. K. Poulsen
- Allergy Clinic; Copenhagen University Hospital at Gentofte; Copenhagen Denmark
| | - M. A. Calderon
- Allergy and Clinical Immunology; National Heart and Lung Institute; Imperial College London; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
- Allergy and Clinical Immunology; Immunomodulation and Tolerance Group; Imperial College London; London UK
| | - P. Demoly
- Division of Allergy; Department of Pulmonology; Arnaud de Villeneuve Hospital; University Hospital of Montpellier and Sorbonne University; Paris France
| | - O. Pfaar
- Department of Otorhinolaryngology; Head and Neck Surgery; Universitätsmedizin Mannheim; Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - L. Jacobsen
- Allergy Learning and Consulting; Copenhagen Denmark
| | - S. R. Durham
- Allergy and Clinical Immunology; National Heart and Lung Institute; Imperial College London; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
- Allergy and Clinical Immunology; Immunomodulation and Tolerance Group; Imperial College London; London UK
| | - C. B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Center Munich; Munich Germany
| |
Collapse
|
27
|
Valenta R, Campana R, Niederberger V. Recombinant allergy vaccines based on allergen-derived B cell epitopes. Immunol Lett 2017; 189:19-26. [PMID: 28472641 PMCID: PMC6390931 DOI: 10.1016/j.imlet.2017.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
Abstract
Immunoglobulin E (IgE)-associated allergy is the most common immunologically-mediated hypersensitivity disease. It affects more than 25% of the population. In IgE-sensitized subjects, allergen encounter can causes a variety of symptoms ranging from hayfever (allergic rhinoconjunctivitis) to asthma, skin inflammation, food allergy and severe life-threatening anaphylactic shock. Allergen-specific immunotherapy (AIT) is based on vaccination with the disease-causing allergens. AIT is an extremely effective, causative and disease-modifying treatment. However, administration of natural allergens can cause severe side effects and the quality of natural allergen extracts limits its application. Research in the field of molecular allergen characterization has allowed deciphering the molecular structures of the disease-causing allergens and it has become possible to engineer novel molecular allergy vaccines which precisely target the mechanisms of the allergic immune response and even appear suitable for prophylactic allergy vaccination. Here we discuss recombinant allergy vaccines which are based on allergen-derived B cell epitopes regarding their molecular and immunological properties and review the results obtained in clinical studies with this new type of allergy vaccines.
Collapse
Affiliation(s)
- Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria.
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Groh N, von Loetzen CS, Subbarayal B, Möbs C, Vogel L, Hoffmann A, Fötisch K, Koutsouridou A, Randow S, Völker E, Seutter von Loetzen A, Rösch P, Vieths S, Pfützner W, Bohle B, Schiller D. IgE and allergen-specific immunotherapy-induced IgG 4 recognize similar epitopes of Bet v 1, the major allergen of birch pollen. Clin Exp Allergy 2016; 47:693-703. [PMID: 27770477 DOI: 10.1111/cea.12835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) with birch pollen generates Bet v 1-specific immunoglobulin (Ig)G4 which blocks IgE-mediated hypersensitivity mechanisms. Whether IgG4 specific for Bet v 1a competes with IgE for identical epitopes or whether novel epitope specificities of IgG4 antibodies are developed is under debate. OBJECTIVE We sought to analyze the epitope specificities of IgE and IgG4 antibodies from sera of patients who received AIT. METHODS 15 sera of patients (13/15 received AIT) with Bet v 1a-specific IgE and IgG4 were analyzed. The structural arrangements of recombinant (r)Bet v 1a and rBet v 1a_11x , modified in five potential epitopes, were analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. IgE binding to Bet v 1 was assessed by ELISA and mediator release assays. Competitive binding of monoclonal antibodies specific for Bet v 1a and serum IgE/IgG4 to rBet v 1a and serum antibody binding to a non-allergenic Bet v 1-type model protein presenting an individual epitope for IgE was analyzed in ELISA and western blot. RESULTS rBet v 1a_11x had a Bet v 1a - similar secondary and tertiary structure. Monomeric dispersion of rBet v 1a_11x was concentration and buffer-dependent. Up to 1500-fold increase in the EC50 for IgE-mediated mediator release induced by rBet v 1a_11x was determined. The reduction of IgE and IgG4 binding to rBet v 1a_11x was comparable in 67% (10/15) of sera. Bet v 1a-specific monoclonal antibodies inhibited binding of serum IgE and IgG4 to 66.1% and 64.9%, respectively. Serum IgE and IgG4 bound specifically to an individual epitope presented by our model protein in 33% (5/15) of sera. CONCLUSION AND CLINICAL RELEVANCE Patients receiving AIT develop Bet v 1a-specific IgG4 which competes with IgE for partly identical or largely overlapping epitopes. The similarities of epitopes for IgE and IgG4 might stimulate the development of epitope-specific diagnostics and therapeutics.
Collapse
Affiliation(s)
- N Groh
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - C S von Loetzen
- Department of Biopolymers, University of Bayreuth, Bayreuth, Germany
| | - B Subbarayal
- Department of Pathophysiology and Allergy Research and Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | - C Möbs
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - L Vogel
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - A Hoffmann
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - K Fötisch
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - A Koutsouridou
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - S Randow
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - E Völker
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - P Rösch
- Department of Biopolymers, University of Bayreuth, Bayreuth, Germany
| | - S Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - W Pfützner
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - B Bohle
- Department of Pathophysiology and Allergy Research and Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria
| | - D Schiller
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
29
|
Kappen JH, Durham SR, Veen HI', Shamji MH. Applications and mechanisms of immunotherapy in allergic rhinitis and asthma. Ther Adv Respir Dis 2016; 11:73-86. [PMID: 27678500 DOI: 10.1177/1753465816669662] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Clinical and immunologic tolerance are hallmarks of successful allergen immunotherapy (AIT). Clinical benefits such as reduced symptoms, pharmacotherapy intake and improvement of quality of life persist following cessation of treatment. Successful AIT is associated with suppression of allergic inflammatory cells such as mast cells, eosinophils and basophils in target organs. Furthermore, AIT down-regulates type 2 innate lymphoid cells and allergen-specific type 2 T-helper (Th2) cells. The immunologic tolerant state following AIT is associated with the induction of distinct phenotypes of regulatory T-cells (T-regs) including interleukin (IL)-10-, IL-35- and transforming growth factor (TGF)-β- producing T-regs and FoxP3+ T-regs. B-cell responses, including the induction of IL-10+ regulatory B-cells (B-regs) and the production of IgG4-associated blocking antibodies are also induced following successful AIT. These events are associated with the suppression of antigen-specific Th2 responses and delayed immune deviation in favour of Th1 type responses. Insight into the mechanisms of AIT has allowed identification of novel biomarkers with potential to predict the clinical response to AIT and also novel therapeutic strategies for more effective and safer AIT.
Collapse
Affiliation(s)
- Jasper H Kappen
- Department of Pulmonology, STZ centre of excellence for Asthma & COPD, Franciscus Gasthuis & Vlietland, Kleiweg 500, 3045 PM, Rotterdam, The Netherlands
| | - Stephen R Durham
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Hans In 't Veen
- Department of Pulmonology, STZ centre of excellence for Asthma & COPD, Franciscus Gasthuis & Vlietland, Kleiweg 500, 3045 PM, Rotterdam, The Netherlands
| | - Mohamed H Shamji
- Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
30
|
Zieglmayer P, Focke-Tejkl M, Schmutz R, Lemell P, Zieglmayer R, Weber M, Kiss R, Blatt K, Valent P, Stolz F, Huber H, Neubauer A, Knoll A, Horak F, Henning R, Valenta R. Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy. EBioMedicine 2016; 11:43-57. [PMID: 27650868 PMCID: PMC5049999 DOI: 10.1016/j.ebiom.2016.08.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND We have developed a recombinant B cell epitope-based vaccine (BM32) for allergen-specific immunotherapy (AIT) of grass pollen allergy. The vaccine contains recombinant fusion proteins consisting of allergen-derived peptides and the hepatitis B surface protein domain preS as immunological carrier. METHODS We conducted a randomized, double-blind, placebo-controlled AIT study to determine safety, clinical efficacy and immunological mechanism of three subcutaneous injections of three BM32 doses adsorbed to aluminum hydroxide versus aluminum hydroxide (placebo) applied monthly to grass pollen allergic patients (n=70). Primary efficacy endpoint was the difference in total nasal symptom score (TNSS) through grass pollen chamber exposure before treatment and 4weeks after the last injection. Secondary clinical endpoints were total ocular symptom score (TOSS) and allergen-specific skin response evaluated by titrated skin prick testing (SPT) at the same time points. Treatment-related side effects were evaluated as safety endpoints. Changes in allergen-specific antibody, cellular and cytokine responses were measured in patients before and after treatment. RESULTS Sixty-eight patients completed the trial. TNSS significantly decreased with mean changes of -1.41 (BM32/20μg) (P=0.03) and -1.34 (BM32/40μg) (P=0.003) whereas mean changes in the BM32/10μg and placebo group were not significant. TOSS and SPT reactions showed a dose-dependent decrease. No systemic immediate type side effects were observed. Only few grade 1 systemic late phase reactions occurred in BM32 treated patients. The number of local injection site reactions was similar in actively and placebo-treated patients. BM32 induced highly significant allergen-specific IgG responses (P<0.0001) but no allergen-specific IgE. Allergen-induced basophil activation was reduced in BM32 treated patients and addition of therapy-induced IgG significantly suppressed T cell activation (P=0.0063). CONCLUSION The B cell epitope-based recombinant grass pollen allergy vaccine BM32 is well tolerated and few doses are sufficient to suppress immediate allergic reactions as well as allergen-specific T cell responses via a selective induction of allergen-specific IgG antibodies. (ClinicalTrials.gov number, NCT01445002.).
Collapse
MESH Headings
- Adult
- Allergens/chemistry
- Allergens/immunology
- Amino Acid Sequence
- Antigens, Plant/chemistry
- Antigens, Plant/immunology
- Basophils/immunology
- Basophils/metabolism
- Cell Degranulation/immunology
- Desensitization, Immunologic/adverse effects
- Desensitization, Immunologic/methods
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Female
- Humans
- Immunoglobulin E/immunology
- Immunoglobulin G/immunology
- Lymphocyte Activation/immunology
- Male
- Middle Aged
- Models, Molecular
- Poaceae/adverse effects
- Pollen/immunology
- Protein Conformation
- Recombinant Fusion Proteins/immunology
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/therapy
- Skin/immunology
- T-Lymphocytes/immunology
- Vaccines/administration & dosage
- Vaccines/adverse effects
- Vaccines/immunology
- Young Adult
Collapse
Affiliation(s)
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Milena Weber
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Renata Kiss
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katharina Blatt
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Valenta R, Campana R, Focke-Tejkl M, Niederberger V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future. J Allergy Clin Immunol 2016; 137:351-7. [PMID: 26853127 PMCID: PMC4861208 DOI: 10.1016/j.jaci.2015.12.1299] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 11/26/2022]
Abstract
In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination.
Collapse
Affiliation(s)
- Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria.
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Margit Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | | |
Collapse
|
32
|
Spertini F, DellaCorte G, Kettner A, de Blay F, Jacobsen L, Jutel M, Worm M, Charlon V, Reymond C. Efficacy of 2 months of allergen-specific immunotherapy with Bet v 1-derived contiguous overlapping peptides in patients with allergic rhinoconjunctivitis: Results of a phase IIb study. J Allergy Clin Immunol 2016; 138:162-8. [PMID: 27373329 DOI: 10.1016/j.jaci.2016.02.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 02/08/2016] [Accepted: 02/19/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND An immunotherapy formulation consisting of 3 contiguous overlapping peptides (COPs) derived from Bet v 1, the major birch pollen allergen, showed good clinical tolerability in a previous phase I/IIa clinical trial. OBJECTIVES We sought to evaluate the efficacy and safety of allergen-specific immunotherapy using 2 dose regimens of Bet v 1 COPs versus placebo in subjects with birch pollen-induced allergic rhinoconjunctivitis. METHODS A randomized, double-blind, placebo-controlled phase IIb clinical trial was performed to assess the efficacy of Bet v 1 COP immunotherapy during the 2013 birch pollen season. Before the season, Bet v 1 COPs (50 and 100 μg in aluminum hydroxide) or placebo (saline and aluminum hydroxide) were administered as 5 subcutaneous injections to 239 adults with allergic rhinoconjunctivitis to birch pollen. Bet v 1 COPs at 25 or 50 μg were administered on day 1, and 50 or 100 μg was administered on days 8, 15, 29, and 57, respectively. Patients were monitored for adverse events during the treatment period and assessed for combined rhinoconjunctivitis symptom and medication scores, as well as quality of life. RESULTS Rhinoconjunctivitis symptom and medication scores improved in both Bet v 1 COP-treated groups, reaching statistical significance over placebo in the 50-μg group (least squares mean, -0.23; 26% improvement; P = .015). Both active groups showed significant improvement in quality of life and nighttime nasal symptom scores, supporting the primary end point findings. Bet v 1 COP injections were well tolerated, with a higher frequency of systemic adverse events in the 100-μg group. CONCLUSION Two months of preseasonal immunotherapy with 3 COPs derived from Bet v 1 at a 50-μg dose showed promising efficacy, small risk for systemic reactions, and immunomodulatory changes in this single-season, dose-finding, phase IIb trial in patients allergic to birch pollen.
Collapse
Affiliation(s)
- François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | | | - Frédéric de Blay
- Chest Diseases Department, Strasbourg University Hospital, Federation of Translational medicine, Strasbourg University, Strasbourg, France
| | - Lars Jacobsen
- Allergy Learning and Consulting, Copenhagen, Denmark
| | - Marek Jutel
- "ALL-MED" Medical Research Institute, Department of Clinical Immunology, Silesian Piasts University of Medicine, Wroclaw, Poland
| | - Margitta Worm
- Allergie-Centrum-Charité, Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
33
|
Moingeon P, Floch VBL, Airouche S, Baron-Bodo V, Nony E, Mascarell L. Allergen immunotherapy for birch pollen-allergic patients: recent advances. Immunotherapy 2016; 8:555-67. [DOI: 10.2217/imt-2015-0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As of today, allergen immunotherapy is performed with aqueous natural allergen extracts. Recombinant allergen vaccines are not yet commercially available, although they could provide patients with well-defined and highly consistent drug substances. As Bet v 1 is the major allergen involved in birch pollen allergy, with more than 95% of patients sensitized to this allergen, pharmaceutical-grade recombinant Bet v 1-based vaccines were produced and clinically tested. Herein, we compare the clinical results and modes of action of treatments based on either a birch pollen extract or recombinant Bet v 1 expressed as hypoallergenic or natural-like molecules. We also discuss the future of allergen immunotherapy with improved drugs intended for birch pollen-allergic patients suffering from rhinoconjunctivitis.
Collapse
Affiliation(s)
- Philippe Moingeon
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | | | - Sabi Airouche
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | - Véronique Baron-Bodo
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | - Emmanuel Nony
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | - Laurent Mascarell
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| |
Collapse
|
34
|
Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, EIgenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, van Hage M, van Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23:1-250. [PMID: 27288833 DOI: 10.1111/pai.12563] [Citation(s) in RCA: 535] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.
Collapse
Affiliation(s)
- P M Matricardi
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - J Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic Ackermann, Hanf, & Kleine-Tebbe, Berlin, Germany
| | - H J Hoffmann
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - R Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - C Hilger
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - S Hofmaier
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - R C Aalberse
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - I Agache
- Department of Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - D Barber
- IMMA-School of Medicine, University CEU San Pablo, Madrid, Spain
| | - K Beyer
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - T Biedermann
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Blank
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - B Bohle
- Division of Experimental Allergology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - P P Bosshard
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - H Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - H A Brough
- Paediatric Allergy, Department of Asthma, Allergy and Respiratory Science, King's College London, Guys' Hospital, London, UK
| | - L Caraballo
- Institute for Immunological Research, The University of Cartagena, Cartagena de Indias, Colombia
| | - J C Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - R Crameri
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland
| | - J M Davies
- School of Biomedical Sciences, Institute of Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - N Douladiris
- Allergy Unit, 2nd Paediatric Clinic, National & Kapodistrian University, Athens, Greece
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergology and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan
| | - P A EIgenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - M Fernandez-Rivas
- Allergy Department, Hospital Clinico San Carlos IdISSC, Madrid, Spain
| | - F Ferreira
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - G Gadermaier
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - M Glatz
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - R G Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Hawranek
- Department of Dermatology, Paracelsus Private Medical University, Salzburg, Austria
| | - P Hellings
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - T Jakob
- Department of Dermatology and Allergology, University Medical Center Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - U Jappe
- Division of Clinical and Molecular Allergology, Research Centre Borstel, Airway Research Centre North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Division, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - M Jutel
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - S D Kamath
- Molecular Allergy Research Laboratory, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville City, Qld, Australia
| | - E F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Korosec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - A Kuehn
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - G Lack
- King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Division of Asthma, Allergy and Lung Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A L Lopata
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - M Mäkelä
- Skin and Allergy Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - M Morisset
- National Service of Immuno-Allergology, Centre Hospitalier Luxembourg (CHL), Luxembourg, UK
| | - V Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - A H Nowak-Węgrzyn
- Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N G Papadopoulos
- Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - E A Pastorello
- Unit of Allergology and Immunology, Niguarda Ca' Granda Hospital, Milan, Italy
| | - G Pauli
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - T Platts-Mills
- Department of Microbiology & Immunology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Posa
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - L K Poulsen
- Allergy Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-University Bochum (IPA), Bochum, Germany
| | - J Sastre
- Allergy Division, Fundación Jimenez Díaz, Madrid, Spain
| | - E Scala
- Experimental Allergy Unit, IDI-IRCCS, Rome, Italy
| | - J M Schmid
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - P Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - M van Hage
- Department of Medicine Solna, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - R van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Vieths
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - R Weber
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Medicine, National Jewish Health Service, Denver, CO, USA
| | - M Wickman
- Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Mother and Child Health, University of Padua, Padua, Italy
| | - M Ollert
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Nony E, Martelet A, Jain K, Moingeon P. Allergen extracts for immunotherapy: to mix or not to mix? Expert Rev Clin Pharmacol 2016; 9:401-8. [PMID: 26652799 DOI: 10.1586/17512433.2015.1131122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Allergen immunotherapy (AIT) is established as a curative treatment for allergic rhinitis, asthma, as well as insect venom allergy. AIT is based on the administration of natural allergen extracts via the subcutaneous or sublingual routes to reorient the immune system towards tolerogenic mechanisms. In this regard, since many patients are poly-allergic, mixtures of allergen extracts are often used with a potential risk to cause allergen degradation, thereby affecting treatment efficacy. Herein, we discuss the advantages and drawbacks of mixing homologous (i.e., related) or heterogeneous (i.e., unrelated) allergen extracts. We provide evidence for incompatibilities between mixes of grass pollen and house dust mite extracts containing bodies and feces, and summarize critical points to consider when mixing allergen extracts for AIT.
Collapse
Affiliation(s)
- Emmanuel Nony
- a Research and Development , Stallergenes Greer , Antony cedex , France
| | - Armelle Martelet
- a Research and Development , Stallergenes Greer , Antony cedex , France
| | - Karine Jain
- a Research and Development , Stallergenes Greer , Antony cedex , France
| | - Philippe Moingeon
- a Research and Development , Stallergenes Greer , Antony cedex , France
| |
Collapse
|
36
|
Valenta R, Wollmann E. Bedeutung rekombinanter Allergene und Allergenderivate. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Ai C, Zhang Q, Ding J, Wang G, Liu X, Tian F, Zhao J, Zhang H, Chen W. Mucosal delivery of allergen peptides expressed by Lactococcus lactis inhibit allergic responses in a BALB/c mouse model. Appl Microbiol Biotechnol 2015; 100:1915-1924. [PMID: 26621801 DOI: 10.1007/s00253-015-7187-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
Allergen-specific immunotherapy (SIT) is considered to be the only curative treatment of allergy, but its safety is always affected by immunologic properties and quality of allergen. Recombinant allergen derivative could be a potential therapeutic strategy, but clinical studies showed that macromolecular derivatives could not avoid T cell-mediated side effects. In this study, five Der p2-derived peptides (DPs) containing major T cell epitopes of Der p2 were first artificially synthesized. Compared with Der p2 macromolecular derivative DM, these DPs not only fully eliminated IgE-binding capacity but also reduced T cells reactivity, suggesting these DPs could be better therapeutic molecules. For their application in vivo, Lactococcus lactis was engineered to express these DPs, and their protective effects were evaluated in BALB/c mice models. Western blot showed that all DPs could be produced in the recombinant strains. Mucosal delivery of these strains could inhibit Der p2-induced allergic responses in Der p2-sensitized mice, characterized by a reduction in specific IgE antibody and lung inflammatory responses. These protective effects were associated with an increase of specific IgG2a in serum and regulatory T cells in the mesenteric lymph nodes. On the whole, the suppressive effect induced by the DP mixture could be better than single DP, but a bit weaker than DM. These DPs could be promising candidate molecules for active vaccination and induction of tolerance, and thus promote the development of non-allergenic peptide in the treatment and prevention of allergy.
Collapse
Affiliation(s)
- Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Junrong Ding
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
38
|
Siebeneicher S, Reuter S, Wangorsch A, Krause M, Foetisch K, Heinz A, Naito S, Reuter A, Taube C, Vieths S, Scheurer S, Toda M. Epicutaneous immunotherapy with a hypoallergenic Bet v 1 suppresses allergic asthma in a murine model. Allergy 2015; 70:1559-68. [PMID: 26304061 DOI: 10.1111/all.12732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Due to reduced allergic potency, hypoallergenic variants have been suggested as safer and potentially more efficacious alternative to the corresponding wild-type allergens in allergen-specific immunotherapy. Here, we aimed at investigating the efficacy of recombinant Bet v 1B2, a hypoallergenic folding variant of Bet v 1, in epicutaneous immunotherapy to suppress asthmatic features using a murine model of birch pollen allergy. METHODS AND RESULTS Before, or after sensitization with rBet v 1 plus ALUMW and intranasal challenges with birch pollen extract, BALB/c mice received epicutaneous immunization (EPI) with rBet v 1, or rBet v 1B2 on their depilated back. Prophylactic EPI with rBet v 1B2, but not with rBet v 1, suppressed serum levels of Bet v 1-specific IgE antibodies and reduced the number of eosinophils and the concentrations of Th2 cytokines in bronchoalveolar lavage. In an established allergic condition, serum levels of Bet v 1-specific IgE antibodies were similar between PBS-treated control mice and EPI-treated mice. However, therapeutic EPI with rBet v 1B2, but not with rBet v 1, significantly suppressed the development of airway inflammation and lung function impairment. CONCLUSION This study is the first to show the effect of therapeutic EPI with a recombinant form of a hypoallergenic folding variant on the suppression of asthmatic features. Our results suggest that rBet v 1B2 along with its reduced IgE-binding capacity could be a preferred therapeutic allergen than wild-type rBet v 1 in epicutaneous immunotherapy of birch pollen-induced allergic asthma, in particular due to a lower risk of allergic side effect.
Collapse
Affiliation(s)
- S. Siebeneicher
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
| | - S. Reuter
- The III Medical Department; University Medical Centre; Mainz Germany
- Experimental Asthma Research; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Borstel Germany
| | - A. Wangorsch
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
| | - M. Krause
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
| | - K. Foetisch
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - A. Heinz
- The III Medical Department; University Medical Centre; Mainz Germany
| | - S. Naito
- Department of Quality Assurance and Radiological Protection; The National Institute of Infectious Diseases; Tokyo Japan
| | - A. Reuter
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - C. Taube
- Department of Pulmonology; Leiden University Medical Center; Leiden the Netherlands
| | - S. Vieths
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - S. Scheurer
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - M. Toda
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
| |
Collapse
|
39
|
Campana R, Moritz K, Marth K, Neubauer A, Huber H, Henning R, Blatt K, Hoermann G, Brodie TM, Kaider A, Valent P, Sallusto F, Wöhrl S, Valenta R. Frequent occurrence of T cell-mediated late reactions revealed by atopy patch testing with hypoallergenic rBet v 1 fragments. J Allergy Clin Immunol 2015; 137:601-609.e8. [PMID: 26518092 PMCID: PMC4748398 DOI: 10.1016/j.jaci.2015.08.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022]
Abstract
Background Late allergic reactions are common in the course of allergen-specific immunotherapy and even occur with allergy vaccines with reduced IgE reactivity. Objective We sought to study atopy patch test (APT) reactions and T-cell responses to the recombinant birch pollen allergen Bet v 1 and recombinant hypoallergenic T-cell epitope–containing Bet v 1 fragments in patients with birch pollen allergy with and without atopic dermatitis (AD). Methods A clinical study was conducted in 15 patients with birch pollen allergy with AD (group 1), 5 patients with birch pollen allergy without AD (group 2), 5 allergic patients without birch pollen allergy (group 3), and 5 nonallergic subjects (group 4) by performing skin prick tests and APTs with rBet v 1 and hypoallergenic rBet v 1 fragments. T-cell, cutaneous lymphocyte antigen (CLA)+ and CCR4+ T-cell and cytokine responses were studied by thymidine uptake, carboxyfluorescein diacetate succinimidyl ester staining, and Luminex technology, respectively. Results rBet v 1 and hypoallergenic rBet v 1 fragments induced APT reactions in not only most of the patients with birch pollen allergy with AD (11/15) but also in most of those without AD (4/5). Patients with birch pollen allergy with AD had higher Bet v 1–specific proliferation of CLA+ and CCR4+ T cells compared with patients with birch pollen allergy without AD. There were no differences in Bet v 1–specific CLA+ and CCR4+ proliferation and cytokine secretion in patients with and without APT reactions. Conclusion Hypoallergenic rBet v 1 fragments induce T cell–dependent late reactions not only in patients with birch pollen allergy with AD but also in those without AD, which can be determined based on APT results but not based on in vitro parameters.
Collapse
MESH Headings
- Adult
- Allergens/immunology
- Antigens, Plant/immunology
- Betula/adverse effects
- Cytokines/biosynthesis
- Dermatitis, Atopic/diagnosis
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/metabolism
- Female
- Histamine Release
- Humans
- Hypersensitivity, Delayed/diagnosis
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/metabolism
- Hypersensitivity, Immediate/diagnosis
- Hypersensitivity, Immediate/immunology
- Hypersensitivity, Immediate/metabolism
- Lymphocyte Activation/immunology
- Male
- Patch Tests
- Pollen/immunology
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/immunology
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
Collapse
Affiliation(s)
- Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology, Center of Physiology and Pathophysiology, Vienna General Hospital (AKH), Medical University of Vienna, Vienna, Austria
| | - Katharina Moritz
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Vienna General Hospital (AKH), Medical University of Vienna, Vienna, Austria
| | - Katharina Marth
- Division of Immunopathology, Department of Pathophysiology, Center of Physiology and Pathophysiology, Vienna General Hospital (AKH), Medical University of Vienna, Vienna, Austria
| | | | - Hans Huber
- Biomay AG, Vienna Competence Center, Vienna, Austria
| | | | - Katharina Blatt
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Vienna General Hospital (AKH), Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Vienna General Hospital (AKH), Medical University of Vienna, Vienna, Austria
| | - Tess M Brodie
- Cellular Immunology Laboratory, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland
| | - Alexandra Kaider
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Vienna General Hospital (AKH), Medical University of Vienna, Vienna, Austria
| | - Federica Sallusto
- Cellular Immunology Laboratory, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland
| | - Stefan Wöhrl
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Vienna General Hospital (AKH), Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology, Center of Physiology and Pathophysiology, Vienna General Hospital (AKH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Eckl‐Dorna J, Campana R, Valenta R, Niederberger V. Poor association of allergen-specific antibody, T- and B-cell responses revealed with recombinant allergens and a CFSE dilution-based assay. Allergy 2015; 70:1222-9. [PMID: 26043182 PMCID: PMC4949646 DOI: 10.1111/all.12661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND The adaptive immunity underlying allergy comprises two components, the allergen-specific antibody (i.e. IgE, IgG) and the T-cell response. These two components are responsible for different disease manifestations and can be targeted by different therapeutic approaches. Here, we investigated the association of allergen-specific antibody and T- as well as B-cell responses in pollen-allergic patients using recombinant (r) major birch pollen allergen rBet v 1 and major timothy grass pollen allergen rPhl p 5 as defined antigens. METHODS Allergen-specific IgE and IgG antibody responses were determined by ELISA, and allergen-specific T- and B-cell responses were measured in peripheral blood mononuclear cells using a carboxyfluorescein-diacetate-succinimidylester (CFSE) dilution assay. RESULTS CFSE staining in combination with T-cell- and B-cell-specific gating allowed discriminating between allergen-specific T-cell and B-cell responses. Interestingly, we identified patients where mainly T cells and others where mainly B cells proliferated in response to allergen stimulation. No association between the level of allergen-specific Ig responses and B- or T-cell proliferation was observed. CONCLUSION Purified recombinant allergens in conjunction with CFSE staining allow the dissection of allergen-specific B- and T-cell responses. The dissociation of allergen-specific antibody, and B- and T-cell responses may explain the occurrence of selective IgE- and T-cell-mediated manifestations of allergic inflammation and may be important for the development of diagnostic and therapeutic strategies selectively targeting B cells and T cells.
Collapse
Affiliation(s)
- J. Eckl‐Dorna
- Department of Otorhinolaryngology Medical University of Vienna Vienna Austria
| | - R. Campana
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - R. Valenta
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - V. Niederberger
- Department of Otorhinolaryngology Medical University of Vienna Vienna Austria
| |
Collapse
|
41
|
|
42
|
Klimek L, Bachert C, Lukat KF, Pfaar O, Meyer H, Narkus A. Allergy immunotherapy with a hypoallergenic recombinant birch pollen allergen rBet v 1-FV in a randomized controlled trial. Clin Transl Allergy 2015; 5:28. [PMID: 26328056 PMCID: PMC4553934 DOI: 10.1186/s13601-015-0071-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/28/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pollen extracts and chemically modified allergoids are used successfully in allergen immunotherapy (AIT). Recombinant extracts offer potential advantages with respect to pharmaceutical quality, standardization and dosing. A hypoallergenic recombinant folding variant of the major birch pollen allergen (rBet v 1-FV) was compared with an established native birch preparation. A pre-seasonal, randomized, actively controlled phase II study was performed in birch pollen allergic rhino-conjunctivitis with or without asthma, GINA I/ II. 51 patients (24 rBet v 1-FV, 27 native extract) started therapy with subcutaneous allergen immunotherapy (SCIT). Primary end-point was a combined symptom medication score (SMS), changes in nasal provocation test, visual rating score and specific antibody responses secondary end-points. FINDINGS After one pre-seasonal treatment course the combined SMS was 5.86 (median; IQR: 14.02) for the rBet v 1-FV group versus 12.40 (median; IQR: 9.32) for the comparator during the three weeks pollen season (p = 0.330). After treatment in the second year, scores were 3.00 (median; IQR: 6.50) and 2.93 (4.86) respectively. Allergen tolerance in a nasal provocation test improved to a comparable extent in both groups. Significant increases in birch pollen-specific IgG1 and IgG4 were observed in both treatment groups following the first treatment phase and remained significantly raised until the end of the study. CONCLUSION In this first in man, proof of concept phase II trial no statistical difference between rBet v 1-FV and an established natural pollen extract could be observed. rBet v 1-FV could be administered in higher doses than the native protein with no increase in adverse effects. TRIAL REGISTRATION The study was registered in clinicalTrials.gov (NCT00266526).
Collapse
Affiliation(s)
- Ludger Klimek
- />Center for Rhinology and Allergology, An den Quellen 10, D-65183 Wiesbaden, Germany
| | - Claus Bachert
- />Upper Airway Research Laboratory, University Hospital Ghent, Ghent, Belgium
| | | | - Oliver Pfaar
- />Center for Rhinology and Allergology, An den Quellen 10, D-65183 Wiesbaden, Germany
| | - Hanns Meyer
- />Medical Department, Allergopharma GmbH & Co. KG, Reinbek, Germany
| | - Annemie Narkus
- />Medical Department, Allergopharma GmbH & Co. KG, Reinbek, Germany
| |
Collapse
|
43
|
Nandy A, Häfner D, Klysner S. Rekombinante Allergene in der spezifischen Immuntherapie. ALLERGO JOURNAL 2015. [DOI: 10.1007/s15007-015-0882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Folded or Not? Tracking Bet v 1 Conformation in Recombinant Allergen Preparations. PLoS One 2015; 10:e0132956. [PMID: 26186356 PMCID: PMC4506129 DOI: 10.1371/journal.pone.0132956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/20/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recombinant Bet v 1a (rBet v 1a) has been used in allergy research for more than three decades, including clinical application of so-called hypoallergens. Quantitative IgE binding to rBet v 1a depends on its native protein conformation, which might be compromised upon heterologous expression, purification, or mutational engineering of rBet v 1a. OBJECTIVE To correlate experimental/theoretical comparisons of IgE binding of defined molar ratios of folded/misfolded recombinant Bet v 1a variants and to determine accuracy and precision of immuno- and physicochemical assays routinely used to assess the quality of recombinant allergen preparations. METHODS rBet v 1a and its misfolded variant rBet v 1aS112P/R145P were heterologously expressed and purified from Escherichia coli. Structural integrities and oligomerisation of the recombinant allergens were evaluated by 1H-nuclear magnetic resonance (1H-NMR), circular dichroism (CD) spectroscopy, and dynamic light scattering (DLS). IgE binding of defined combinations of rBet v 1a and rBet v 1aS112P/R145P was assessed using immunoblotting (IB), enzyme-linked immunosorbent assay (ELISA) and mediator release (MR) of humanized rat basophilic leukemia cells sensitized with serum IgE of subjects allergic to birch pollen. Experimental and theoretically expected results of the analyses were compared. RESULTS 1H-NMR spectra of rBet v 1a and rBet v 1aS112P/R145P demonstrate a native and highly disordered protein conformations, respectively. The CD spectra suggested typical alpha-helical and beta-sheet secondary structure content of rBet v 1a and random coil for rBet v 1aS112P/R145P. The hydrodynamic radii (RH) of 2.49 ± 0.39 nm (rBet v 1a) and 3.1 ± 0.56 nm (rBet v 1aS112P/R145P) showed monomeric dispersion of both allergens in solution. Serum IgE of birch pollen allergic subjects bound to 0.1% rBet v 1a in the presence of 99.9% of non-IgE binding rBet v 1aS112P/R145P. Immunoblot analysis overestimated, whereas ELISA and mediator release assay underestimated the actual quantity of IgE-reactive rBet v 1a in mixtures of rBet v 1a/rBet v 1aS112P/R145P with a molar ratio of rBet v 1a ≤ 10%. CONCLUSION Valid conclusions on quantitative IgE binding of recombinant Bet v 1a preparations depend on the accuracy and precision of physico- and immunochemical assays with which natively folded allergen is detected.
Collapse
|
45
|
Larenas-Linnemann D, Michels A, Dinger H, Arias-Cruz A, Ambriz Moreno M, Bedolla Barajas M, Javier RC, Cid Del Prado MDLL, Cruz Moreno MA, Vergara LD, García Almaráz R, García-Cobas CY, Garcia Imperial DA, Muñoz RG, Hernandez Colín D, Linares Zapien FJ, Luna Pech JA, Matta Campos JJ, Martinez Jimenez N, Avalos MM, Medina Hernandez A, Maldonado AM, López DN, Pizano Nazara LJ, Sanchez ER, Ramos López JD, Rodriguez-Pérez N, Rodriguez Ortiz PG, Shah-Hosseini K, Mösges R. In the (sub)tropics allergic rhinitis and its impact on asthma classification of allergic rhinitis is more useful than perennial-seasonal classification. Am J Rhinol Allergy 2015; 28:232-8. [PMID: 24980234 DOI: 10.2500/ajra.2014.28.4035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Two different allergic rhinitis (AR) symptom phenotype classifications exist. Treatment recommendations are based on intermittent-persistent (INT-PER) cataloging, but clinical trials still use the former seasonal AR-perennial AR (SAR-PAR) classification. This study was designed to describe how INT-PER, mild-moderate/severe and SAR-PAR of patients seen by allergists are distributed over the different climate zones in a (sub)tropical country and how these phenotypes relate to allergen sensitization patterns. METHODS Six climate zones throughout Mexico were determined, based on National Geographic Institute (Instituto Nacional de Estadística y Geografía) data. Subsequent AR patients (2-68 years old) underwent a blinded, standardized skin-prick test and filled out a validated questionnaire phenotyping AR. RESULTS Five hundred twenty-nine subjects participated in this study. In the tropical zone with 87% house-dust mite sensitization, INT (80.9%; p < 0.001) and PAR (91%; p = 0.04) were more frequent than in the subtropics. In the central high-pollen areas, there was less moderate/severe AR (65.5%; p < 0.005). Frequency of comorbid asthma showed a clear north-south gradient, from 25% in the dry north to 59% in the tropics (p < 0.005). No differences exist in AR cataloging among patients with different sensitization patterns, with two minor exceptions (more PER in tree sensitized and more PAR in mold positives; p < 0.05). CONCLUSION In a (sub)tropical country the SAR-PAR classification seems of limited value and bears poor relation with the INT-PER classification. INT is more frequent in the tropical zone. Because PER has been shown to relate to AR severity, clinical trials should select patients based on INT-PER combined with the severity cataloging because these make for a better treatment guide than SAR-PAR.
Collapse
|
46
|
Cingi C, Muluk NB, Hanci D, Ulusoy S, Sahin F. Updating the role played by immunotherapy for allergic rhinitis: meta-analysis. Int Forum Allergy Rhinol 2014; 5:132-42. [DOI: 10.1002/alr.21447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Cemal Cingi
- Department of Otorhinolaryngology; Medical Faculty, Eskisehir Osmangazi University; Eskisehir Turkey
| | - Nuray Bayar Muluk
- Department of Otorhinolaryngology; Medical Faculty, Kirikkale University; Kirikkale Turkey
| | - Deniz Hanci
- Ear Nose and Throat (ENT) Department; Liv Hospital; Istanbul Turkey
| | - Seckin Ulusoy
- ENT Clinics; Gaziosmanpaşa Taksim Education and Research Hospital; Istanbul Turkey
| | - Fezan Sahin
- Department of Biostatistics, Medical Faculty; Eskisehir Osmangazi University; Eskisehir Turkey
| |
Collapse
|
47
|
Immunization with Hypoallergens of shrimp allergen tropomyosin inhibits shrimp tropomyosin specific IgE reactivity. PLoS One 2014; 9:e111649. [PMID: 25365343 PMCID: PMC4218792 DOI: 10.1371/journal.pone.0111649] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023] Open
Abstract
Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy. Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay. Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics, including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy.
Collapse
|
48
|
Wallner M, Pichler U, Ferreira F. Recombinant allergens for pollen immunotherapy. Immunotherapy 2014; 5:1323-38. [PMID: 24283843 DOI: 10.2217/imt.13.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Specific immunotherapy (IT) represents the only potentially curative therapeutic intervention of allergic diseases capable of suppressing allergy-associated symptoms not only during treatment, but also after its cessation. Presently, IT is performed with allergen extracts, which represent a heterogeneous mixture of allergenic, as well as nonallergenic, compounds of a given allergen source. To overcome many of the problems associated with extract-based IT, strategies based on the use of recombinant allergens or derivatives thereof have been developed. This review focuses on recombinant technologies to produce allergy therapeuticals, especially for allergies caused by tree, grass and weed pollen, as they are among the most prevalent allergic disorders affecting the population of industrialized societies. The reduction of IgE-binding of recombinant allergen derivatives appears to be mandatory to increase the safety profile of vaccine candidates. Moreover, increased immunogenicity is expected to reduce the dosage regimes of the presently cumbersome treatment. In this regard, it has been convincingly demonstrated in animal models that hypoallergenic molecules can be engineered to harbor inherent antiallergenic immunologic properties. Thus, strategies to modulate the allergenic and immunogenic properties of recombinant allergens will be discussed in detail. In recent years, several successful clinical studies using recombinant wild-type or hypoallergens as active ingredients have been published and, currently, novel treatment forms with higher safety and efficacy profiles are under investigation in clinical trials. These recent developments are summarized and discussed.
Collapse
Affiliation(s)
- Michael Wallner
- Christian Doppler Laboratory for Allergy Diagnosis & Therapy, Department of Molecular Biology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
| | | | | |
Collapse
|
49
|
Abstract
Presently, allergy diagnosis and therapy procedures are undergoing a transition phase in which allergen extracts are being step-by-step replaced by molecule-based products. The new developments will allow clinicians to obtain detailed information on sensitization patterns, more accurate interpretation of allergic symptoms, and thus improved patients' management. In this respect, recombinant technology has been applied to develop this new generation of molecule-based allergy products. The use of recombinant allergens allows full validation of identity, quantity, homogeneity, structure, aggregation, solubility, stability, IgE-binding and the biologic potency of the products. In contrast, such parameters are extremely difficult to assay and standardize for extract-based products. In addition to the possibility of bulk production of wild type molecules for diagnostic purposes, recombinant technology opened the possibility of developing safer and more efficacious products for allergy therapy. A number of molecule-based hypoallergenic preparations have already been successfully evaluated in clinical trials, bringing forward the next generation of allergy vaccines. In this contribution, we review the latest developments in allergen characterization, molecule-based allergy diagnosis, and the application of recombinant allergens in therapeutic setups. A comprehensive overview of clinical trials using recombinant allergens as well as synthetic peptides is presented.
Collapse
Affiliation(s)
- Fatima Ferreira
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| | - Martin Wolf
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Michael Wallner
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
50
|
Förster U, Sperl A, Klimek L. [The NTP in allergy research : open questions regarding nasal provocation tests using allergens]. HNO 2014; 61:818-25. [PMID: 24127046 DOI: 10.1007/s00106-013-2757-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nasal provocation test (NPT) is a simple procedure with high specificity and sensitivity that is used in the investigation of allergic and nonallergic diseases. Uniform standards are of particular importance in the clinical setting and for the comparability of clinical and basic allergy research. These standards should cover the composition, dosage and pharmacological formulation of provocative substances (e.g. allergen extracts), the necessity of titration, allergen application methods and the evaluation criteria for a positive NPT reaction. Detection of various mediators and cytokines in nasal discharge can be very useful in the late phase reactions. NPT finds specific applications in studies of local IgE secretion in the nasal mucosa, the diagnosis of analgesic intolerance and in assessments of the efficacy of specific immunotherapies. Additional parameters warranting further evaluation include provocation with cold dry air in nasal hyperreactivity patients and nasal nitric oxide formation. Determination of nasal blood flow during NPT provides an additional clinical parameter.
Collapse
Affiliation(s)
- U Förster
- HNO-Klinik, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Deutschland
| | | | | |
Collapse
|