1
|
Karanika S, Wang T, Yilma A, Castillo JR, Gordy JT, Bailey H, Quijada D, Fessler K, Tasneen R, Rouse Salcido EM, Harris HT, Bates RE, Ton H, Meza J, Li Y, Taylor AD, Zheng JJ, Zhang J, Peske JD, Karantanos T, Maxwell AR, Nuermberger E, Markham RB, Karakousis PC. Therapeutic DNA Vaccine Targeting Mycobacterium tuberculosis Persisters Shortens Curative Tuberculosis Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611055. [PMID: 39282461 PMCID: PMC11398349 DOI: 10.1101/2024.09.03.611055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Mycobacterium tuberculosis ( Mtb) is one of the leading infectious causes of death worldwide. There is no available licensed therapeutic vaccine that shortens active tuberculosis (TB) disease drug treatment and prevents relapse, despite the World Health Organization's calls. Here, we show that an intranasal DNA vaccine containing a fusion of the stringent response rel Mtb gene with the gene encoding the immature dendritic cell-targeting chemokine, MIP-3α/CCL20, shortens the duration of curative TB treatment in immunocompetent mice. Compared to the first-line regimen for drug-susceptible TB alone, our novel adjunctive vaccine induced greater Rel Mtb -specific T-cell responses associated with optimal TB control in spleen, blood, lungs, mediastinal lymph nodes, and bronchoalveolar lavage (BAL) fluid. These responses were sustained, if not augmented, over time. It also triggered more effective dendritic cell recruitment, activation, and colocalization with T cells, implying enhanced crosstalk between innate and adaptive immunity. Moreover, it potentiated a 6-month TB drug-resistant regimen, rendering it effective across treatment regimens, and also showed promising results in CD4+ knockout mice, perhaps due to enhanced Rel-specific CD8+ T-cell responses. Notably, our novel fusion vaccine was also immunogenic in nonhuman primates, the gold standard animal model for TB vaccine studies, eliciting antigen-specific T-cell responses in blood and BAL fluid analogous to those observed in protected mice. Our findings have critical implications for therapeutic TB vaccine clinical development in immunocompetent and immunocompromised populations and may serve as a model for defining immunological correlates of therapeutic vaccine-induced protection. One sentence summary A TB vaccine shortens curative drug treatment in mice by eliciting strong TB-protective immune responses and induces similar responses in macaques.
Collapse
|
2
|
Kotov DI, Lee OV, Fattinger SA, Langner CA, Guillen JV, Peters JM, Moon A, Burd EM, Witt KC, Stetson DB, Jaye DL, Bryson BD, Vance RE. Early cellular mechanisms of type I interferon-driven susceptibility to tuberculosis. Cell 2023; 186:5536-5553.e22. [PMID: 38029747 PMCID: PMC10757650 DOI: 10.1016/j.cell.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/16/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.
Collapse
Affiliation(s)
- Dmitri I Kotov
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Ophelia V Lee
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefan A Fattinger
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Charlotte A Langner
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jaresley V Guillen
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andres Moon
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Kristen C Witt
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
4
|
Yang L, Zhuang L, Ye Z, Li L, Guan J, Gong W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023; 26:107881. [PMID: 37841590 PMCID: PMC10570004 DOI: 10.1016/j.isci.2023.107881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.
Collapse
Affiliation(s)
- Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, Hebei 075000, China
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jingzhi Guan
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
5
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
6
|
Rodrigues TS, Conti BJ, Fraga-Silva TFDC, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol 2020; 108:1139-1156. [PMID: 32620048 DOI: 10.1002/jlb.4mr0520-112r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno José Conti
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fausto Almeida
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Dotta L, Vairo D, Giacomelli M, Moratto D, Tamassia N, Vermi W, Lonardi S, Casanova JL, Bustamante J, Giliani S, Badolato R. Transient Decrease of Circulating and Tissular Dendritic Cells in Patients With Mycobacterial Disease and With Partial Dominant IFNγR1 Deficiency. Front Immunol 2020; 11:1161. [PMID: 32676075 PMCID: PMC7333364 DOI: 10.3389/fimmu.2020.01161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/12/2020] [Indexed: 01/19/2023] Open
Abstract
Interferon-γ receptor 1 (IFNγR1) deficiency is one of the inborn errors of IFN-γ immunity underlying Mendelian Susceptibility to Mycobacterial Disease (MSMD). This molecular circuit plays a crucial role in regulating the interaction between dendritic cells (DCs) and T lymphocytes, thus affecting DCs activation, maturation, and priming of T cells involved in the immune response against intracellular pathogens. We studied a girl who developed at the age of 2.5 years a Mycobacterium avium infection characterized by disseminated necrotizing granulomatous lymphadenitis, and we compared her findings with other patients with the same genetic condition. The patient carried a heterozygous 818del4 mutation in the IFNGR1 gene responsible of autosomal dominant (AD) partial IFNγR1 deficiency. During the acute infection blood cells immunophenotyping showed a marked reduction in DCs counts, including both myeloid (mDCs) and plasmacytoid (pDCs) subsets, that reversed after successful prolonged antimicrobial therapy. Histology of her abdomen lymph node revealed a profound depletion of tissue pDCs, as compared to other age-matched granulomatous lymphadenitis of mycobacterial origin. Circulating DCs depletion was also observed in another patient with AD partial IFNγR1 deficiency during mycobacterial infection. To conclude, AD partial IFNγR1 deficiency can be associated with a transient decrease in both circulating and tissular DCs during acute mycobacterial infection, suggesting that DCs counts monitoring might constitute a useful marker of treatment response.
Collapse
Affiliation(s)
- Laura Dotta
- Department of Pediatrics, A. Nocivelli Institute for Molecular Medicine, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Donatella Vairo
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Mauro Giacomelli
- A. Nocivelli Institute for Molecular Medicine, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Daniele Moratto
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, United States
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Silvia Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Department of Pediatrics, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
8
|
Yang H, Zhan Y, Wu H, Xiang L. Bacillus Calmette-Guérin (BCG) stimulates changes in dendritic cell surface marker expression in vitamin D-deficient mice. J Int Med Res 2020; 48:300060519896892. [PMID: 32223658 PMCID: PMC7133090 DOI: 10.1177/0300060519896892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective Vitamin D (VD) deficiency increases susceptibility to tuberculosis and is an important immunomodulator. Dendritic cells (DCs) are important antigen-presenting cells that play a critical role during tuberculosis infection, and Mycobacterium tuberculosis modulates DC responses. The underlying mechanism is poorly understood. Our aim was to study changes in DC surface markers in VD deficient mice administered Bacillus Calmette-Guérin (BCG). Methods We divided C57BL/6 mice into a normal group and a VD deficient group. Two groups of mouse bone marrow-derived cells were isolated and cultured with granulocyte-macrophage colony-stimulating factor (20 ng/mL) and interleukin-4 (10 ng/mL) for 6 days. On day 7, BCG (0, 1 or 2 mg/mL) was administered to both groups for 24 hours. Non-adherent cells were harvested to assess DC phenotypic changes induced by different concentrations of BCG. Results Expression levels of CD80, MHC-I, MHC-II and CD86 on the surfaces of DCs from VD deficient mice were lower than those in DCs from normal mice. By contrast, the expression level of CD11c on DCs was higher in VD deficient mice than in normal mice. Changes in all factors were concentration-dependent. Conclusions These findings indicate that BCG reduced DC surface marker expression to modulate immune responses during M. tuberculosis infection.
Collapse
Affiliation(s)
- Huifeng Yang
- Department of Orthopedics, Shenyang Military Region General Hospital, Shengyang, China
| | - Yang Zhan
- Department of Orthopedics, Shenyang Orthopaedic Hospital, Shengyang, China
| | - Haotian Wu
- The third Medical Central, Shenyang Military Region General Hospital, Shengyang, China
| | - Liangbi Xiang
- Department of Orthopedics, Shenyang Military Region General Hospital, Shengyang, China
| |
Collapse
|
9
|
Helmin-Basa A, Wiese-Szadkowska M, Szaflarska-Popławska A, Kłosowski M, Januszewska M, Bodnar M, Marszałek A, Gackowska L, Michalkiewicz J. Relationship between Helicobacter pylori Infection and Plasmacytoid and Myeloid Dendritic Cells in Peripheral Blood and Gastric Mucosa of Children. Mediators Inflamm 2019; 2019:7190596. [PMID: 31827378 PMCID: PMC6885256 DOI: 10.1155/2019/7190596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/29/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To investigate the frequency and activation status of peripheral plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) as well as gastric mucosa DC subset distribution in Helicobacter pylori- (H. pylori-) infected and noninfected children. MATERIALS AND METHODS Thirty-six children were studied; twenty-one had H. pylori. The frequencies of circulating pDCs (lineage-HLA-DR+CD123+) and mDCs (lineage-HLA-DR+CD11c+) and their activation status (CD83, CD86, and HLA-DR expression) were assessed by flow cytometry. Additionally, the densities of CD11c+, CD123+, CD83+, CD86+, and LAMP3+ cells in the gastric mucosa were determined by immunohistochemistry. RESULTS The frequency of circulating CD83+ mDCs was higher in H. pylori-infected children than in the noninfected controls. The pDCs demonstrated upregulated HLA-DR surface expression, but no change in CD86 expression. Additionally, the densities of gastric lamina propria CD11c+ cells and epithelial pDCs were increased. There was a significant association between frequency of circulating CD83+ mDCs and gastric lamina propria mDC infiltration. CONCLUSION This study shows that although H. pylori-infected children had an increased population of mature mDCs bearing CD83 in the peripheral blood, they lack mature CD83+ mDCs in the gastric mucosa, which may promote tolerance to local antigens rather than immunity. In addition, this may reduce excessive inflammatory activity as reported for children compared to adults.
Collapse
Affiliation(s)
- Anna Helmin-Basa
- Department of Immunology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | | | - Anna Szaflarska-Popławska
- Department of Pediatric Endoscopy and Gastrointestinal Function Testing, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Maciej Kłosowski
- Department of Immunology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Milena Januszewska
- Department of Immunology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
- Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Science, Poznan 61-866, Poland
| | - Andrzej Marszałek
- Chair of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences & Greater Poland Cancer Center, Poznan 61-866, Poland
| | - Lidia Gackowska
- Department of Immunology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Jacek Michalkiewicz
- Department of Immunology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
- Department of Microbiology and Immunology, The Children's Memorial Health Institute, Warsaw 04-730, Poland
| |
Collapse
|
10
|
Yang H, Zhang H, Li Y, Xiang L, Liu J. BCG stimulation promotes dendritic cell proliferation and expression of VDR and CYP27B1 in vitamin D‑deficient mice. Mol Med Rep 2019; 20:5265-5271. [PMID: 31702812 DOI: 10.3892/mmr.2019.10780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/12/2019] [Indexed: 11/05/2022] Open
Abstract
Vitamin D deficiency may lead to an increased risk of tuberculosis. In the present study, the effects of Mycobacterium tuberculosis (Mtb) infection on dendritic cells (DCs) derived from vitamin D‑deficient mice or normal control mice were investigated. A vitamin D‑deficient mouse model was established, and bone marrow‑derived DCs (BMDCs) were isolated and treated with GM‑CSF and interleukin (IL)‑4 for 6 days, followed by an additional 24 h of treatment with Bacillus Calmette‑Guérin (BCG). The expression levels of surface molecules of DCs, including integrin alpha‑X and T‑lymphocyte activation antigen CD86, were significantly increased by BCG in the vitamin D‑deficient mice model group compared with the control group, while those of T‑lymphocyte activation antigen CD80, major histocompatibility complex class I and major histocompatibility complex class II were significantly decreased. These changes were BCG concentration‑dependent. In addition, the levels of IL‑4, IL‑6 and IL‑10 in the BMDCs from the vitamin D‑deficient mice were significantly decreased compared with the control mice, while the levels of tumor necrosis factor‑α, IL‑5, IL‑2, IL‑12 and interferon‑γ were significantly increased. Furthermore, the expression levels of vitamin D receptor (VDR) and CYP27B1 protein in the BMDCs from the vitamin D‑deficient mice were decreased compared with the control. BCG significantly increased the expression levels of VDR and CYP27B1 in the BMDCs. The DCs treated with BCG significantly induced the viability of CD4+ T lymphocytes. Therefore, BCG increases DCs and may enhance immunofunction, which may assist in preventing the risk of tuberculosis in patients with a vitamin D deficiency.
Collapse
Affiliation(s)
- Huifeng Yang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, Liaoning 110015, P.R. China
| | - Haocong Zhang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, Liaoning 110015, P.R. China
| | - Yu Li
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, Liaoning 110015, P.R. China
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, Liaoning 110015, P.R. China
| | - Jun Liu
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, Liaoning 110015, P.R. China
| |
Collapse
|
11
|
Chen P, Li Y, Huang H, Li Y, Huang X, Chen Z, Liu X, Qiu L, Ou C, Huang Z, Lin Z, Ran H, Liu W. Imbalance of the two main circulating dendritic cell subsets in patients with myasthenia gravis. Clin Immunol 2018; 205:130-137. [PMID: 30359772 DOI: 10.1016/j.clim.2018.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
Abstract
Although it is well documented that circulating dendritic cells (DCs) have specialized features during many kinds of physiological and pathological conditions, there are few reports about the features of DCs in the peripheral blood of myasthenia gravis (MG) patients. We investigated the quantitative and component features of DCs and their implications in MG. Peripheral blood samples from different kinds of MG patients were collected and their clinical characteristics were recorded. Using flow cytometry, we distinguished circulating DC subsets [plasmacytoid DCs (pDCs) and myeloid DCs (mDCs)] and enumerated their densities in peripheral blood. Absolute numbers of circulating pDCs were significantly decreased in naïve MG patients compared with healthy controls, resulting in a markedly lower ratio of the pDC to mDC percentage in total circulating DCs (pDCs/mDCs), suggesting an imbalance in the proportions of the two main circulating DC subsets. The clinical status of MG patients was improved after drug treatment, together with increased pDCs/mDCs. In a longitudinal follow-up, we observed that circulating mDCs were significantly reduced after 1 month of therapy with a corticosteroid and immunosuppressant, resulting in recovery of pDCs/mDCs. Although the exact meaning of the proportion change in circulating DC subsets is unknown, pDCs/mDCs might reflect the balance between the autoimmune response and immune tolerance of a patient. Moreover, changes in pDCs/mDCs during treatment might be a promising marker to predict the efficacy of a specific drug used for MG patients.
Collapse
Affiliation(s)
- Pei Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingkai Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Huang
- Department of Neurology, The First People's Hospital of Nanning, Nanning 530000, China
| | - Yan Li
- Department of Neurosurgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenguang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxi Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li Qiu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changyi Ou
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhidong Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongqiang Lin
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Ran
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Weibin Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
12
|
Liu Y, Wang R, Jiang J, Cao Z, Zhai F, Sun W, Cheng X. A subset of CD1c + dendritic cells is increased in patients with tuberculosis and promotes Th17 cell polarization. Tuberculosis (Edinb) 2018; 113:189-199. [PMID: 30514502 DOI: 10.1016/j.tube.2018.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/19/2023]
Abstract
The role of primary subsets of DCs in Mycobacterium tuberculosis infection in humans is incompletely understood. In this study, we identified a CD1c DC subset with phenotype of CD1c+CD11c+CD19-CD11b+ that was significantly increased in tuberculous pleural effusions and in peripheral blood from patients with TB compared with that from healthy controls (p < 0.0001). Sputum smear/culture-positive patients with tuberculosis had significantly higher frequency of CD1c+CD11b+ DC subset than sputum smear/culture-negative patients (p < 0.0001). After effective anti-TB chemotherapy, the frequency of CD1c+CD11b+ DC subset in peripheral blood and tuberculous pleural effusions was decreased. CD1c+CD11b+ DC subset from tuberculous pleural effusions expressed higher levels of TLR2, TLR4, CD172a, CD206 and FcεRⅠ, but lower levels of CD80, CD83 and CD86 compared with CD1c+CD11b- DC subset. Expression of IL-1β, IL-6, IL-8, IL-23, TNF-α, IFN-γ and TGF-β mRNA in CD1c+CD11b+ DCs was higher than in CD1c+CD11b- DC subset. Co-culture of autologous naive CD4+ T cells with sorted CD1c+CD11b+ DCs expressed significantly increased levels of IL-17A and RORγt transcripts as compared with those co-cultured with CD11b- subset. In conclusion, a CD1c+CD11b+ DC subset with elevated frequency in patients with tuberculosis was identified and it promoted Th17 cell differentiation.
Collapse
Affiliation(s)
- Yanhua Liu
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Ruo Wang
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Jing Jiang
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Zhihong Cao
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Fei Zhai
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Weiguo Sun
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Xiaoxing Cheng
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China.
| |
Collapse
|
13
|
Type 1 interferon-inducible gene expression in QuantiFERON Gold TB-positive uveitis: A tool to stratify a high versus low risk of active tuberculosis? PLoS One 2018; 13:e0206073. [PMID: 30336493 PMCID: PMC6193765 DOI: 10.1371/journal.pone.0206073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 10/06/2018] [Indexed: 01/10/2023] Open
Abstract
QuantiFERON-Gold TB (QFT)-positive patients with undetermined cause of uveitis are problematic in terms of whether to diagnose and treat them for tuberculosis (TB). Here, we investigated whether peripheral blood expression of type 1 interferon (IFN)-inducible genes may be of use to stratify QFT-positive patients with uveitis into groups of high versus low risk of having active TB-associated uveitis. We recruited all new uveitis patients in Cipto Mangunkusumo Hospital, Jakarta, Indonesia for one year. We included 12 patients with uveitis and clinically diagnosed active pulmonary TB, 58 QFT-positive patients with uveitis of unknown cause, 10 newly diagnosed sputum-positive active pulmonary TB patients without uveitis and 23 QFT-negative healthy controls. Expression of 35 type 1 IFN-inducible genes was measured in peripheral blood cells from active pulmonary TB patients without uveitis and healthy controls. Differentially expressed genes were identified and used for further clustering analyses of the uveitis groups. A type-1 IFN gene signature score was calculated and the optimal cut-off value for this score to differentiate active pulmonary TB from healthy controls was determined and applied to QFT-positive patients with uveitis of unknown cause. Ten type 1 IFN-inducible genes were differentially expressed between active pulmonary TB and healthy controls. Expression of these 10 genes in QFT-positive patients with uveitis of unknown cause revealed three groups: 1); patients resembling active pulmonary TB, 2); patients resembling healthy controls, and 3); patients displaying an in-between gene expression pattern. A type 1 IFN gene signature score ≥5.61 displayed high sensitivity (100%) and specificity (91%) for identification of active TB. Application of this score to QFT-positive patients with uveitis of unknown cause yielded two groups with expected different likelihood (high vs. low) of having active-TB uveitis, and therefore may be useful in clinical management decisions.
Collapse
|
14
|
Dirix V, Corbière V, Wyndham-Thomas C, Selis E, Allard S, Hites M, Aerts L, Giese T, Mascart F. Blood tolerogenic monocytes and low proportions of dendritic cell subpopulations are hallmarks of human tuberculosis. J Leukoc Biol 2018; 103:945-954. [PMID: 29489031 DOI: 10.1002/jlb.4a1117-448r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The immune mechanisms underlying the pathogenesis of tuberculosis (TB) need better understanding to improve TB management, as the disease still causes more than 1.5 million deaths annually. This study tested the hypothesis that a modulation of the proportions or activation status of APC during Mycobacterium tuberculosis infection may impact on the course of the disease. PROCEDURE Proportions of circulating APC subsets and the expression of stimulatory (CD86), inhibitory (ILT-3, ILT-4, ILT-7), or apoptosis-inducing (PDL-1, PDL-2) molecules were analyzed in 2 independent cohorts, on blood monocytes and dendritic cell (DC) subsets from patients with active or latent TB infection (aTB /LTBI) and from uninfected subjects. RESULTS Higher proportions of classical CD14+ CD16- and intermediate CD14+ CD16+ monocytes, and lower proportions of plasmacytoid DC (pDC) and type 2 myeloid DC were observed in the blood from untreated patients with aTB compared with those with LTBI and with healthy subjects, with an early normalization of the proportions of pDC during treatment. In addition, monocytes from M. tuberculosis-infected subjects expressed higher levels of ILT-3, ILT-4, and PDL-1 compared with healthy controls, these differences being more important for patients with aTB than for those with LTBI. CONCLUSIONS These results confirm the hypothesis of a modulation of the proportions and activation status of APC during M. tuberculosis infection and suggest that these cells could play a role in driving the course of M. tuberculosis infection.
Collapse
Affiliation(s)
- Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Chloé Wyndham-Thomas
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Elodie Selis
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Sabine Allard
- Department of Internal Medicine and Infectious Diseases, UZ Brussel, Brussels, Belgium
| | - Maya Hites
- Department of Internal Medicine and Infectious Diseases, Hôpital Erasme, Brussels, Belgium
| | - Laetitia Aerts
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Thomas Giese
- Laboratory of Molecular Immunodiagnostics, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,Immunobiology Clinic, Hôpital Erasme, Brussels, Belgium
| |
Collapse
|
15
|
Rao D, Venkataswamy MM, Vasanthapuram R, Satishchandra P, Desai A. Alterations in natural killer and dendritic cell subsets in individuals with HIV-associated neurotuberculosis. J Med Virol 2018; 90:899-906. [PMID: 29396991 DOI: 10.1002/jmv.25042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/18/2018] [Indexed: 11/11/2022]
Abstract
One of the commonest HIV-associated opportunistic infections of the central nervous system is neurotuberculosis. Interaction between HIV, Mycobacterium tuberculosis and host immune system in co-infected individuals may result in altered frequencies of immune cells, thereby modulating dissemination and disease progression. We examined the frequencies of natural killer (NK) cell and dendritic cell (DC) subsets in HIV infected individuals with neurotuberculosis (HIVNTB) as compared to individuals with HIV associated systemic TB (HIVSTB), asymptomatic HIV, non-HIV NTB, non-HIV STB, and healthy controls. Peripheral blood mononuclear cells (PBMC) were stained with fluorochrome-conjugated monoclonal antibodies- Lineage cocktail (containing CD3, CD14, CD19, and CD20), HLA-DR, CD16, CD56, CD11c, and CD123, fixed with 2% paraformaldehyde and analyzed on the flow cytometer. The pDCs were significantly reduced in all HIV infected groups, with a marked reduction in HIVNTB cases as compared to healthy controls. While the CD56- CD16bt NK cell subset displayed a significant increase in frequency in all three HIV infected groups compared the three HIV negative groups, the CD56dim CD16bt subset was significantly lower in frequency in the HIVNTB compared to healthy controls. The decreased frequencies of plasmacytoid DCs and cytotoxic NK cells, which are crucial for innate immune defence against HIV, may result in ineffective virus control and lead to an exacerbated course of disease in HIVNTB individuals.
Collapse
Affiliation(s)
- Deepashri Rao
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Manjunatha M Venkataswamy
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ravi Vasanthapuram
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Anita Desai
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
16
|
Parlato S, Chiacchio T, Salerno D, Petrone L, Castiello L, Romagnoli G, Canini I, Goletti D, Gabriele L. Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis. PLoS One 2018; 13:e0189477. [PMID: 29320502 PMCID: PMC5761858 DOI: 10.1371/journal.pone.0189477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.
Collapse
Affiliation(s)
- Stefania Parlato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Teresa Chiacchio
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
| | - Debora Salerno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
| | | | - Giulia Romagnoli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Irene Canini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
- * E-mail: (LG); (DG)
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (LG); (DG)
| |
Collapse
|
17
|
Lu YB, Xiao DQ, Liang KD, Zhang JA, Wang WD, Yu SY, Zheng BY, Gao YC, Dai YC, Jia Y, Chen C, Zhuang ZG, Wang X, Fu XX, Zhou Y, Zhong J, Chen ZW, Xu JF. Profiling dendritic cell subsets in the patients with active pulmonary tuberculosis. Mol Immunol 2017; 91:86-96. [PMID: 28889065 DOI: 10.1016/j.molimm.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/30/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Dendritic cell (DC) plays an important role in the immune response against pulmonary tuberculosis. However, the phenotypic profile of DC subsets in peripheral blood in individuals with active pulmonary tuberculosis (APT) is still inconclusive. Here, we demonstrated that the absolute numbers of total DC (tDC), myeloid DC (mDC) and plasmacytoid DC (pDC) in individuals with APT were decreased compared to healthy controls (HCs). The decreased number of DCs, especially of pDC, seems to be a useful diagnostic marker of APT. Meanwhile, the number of DCs was associated with the prolonged/complicated TB, ATD treatment effect and lymphocyte immune reactions, as manifested that relapsed APT patients with a higher number of tDC and lower number of pDC compared to newly diagnosed patients. Interestingly, mDC from APT patients displayed high expressions of CD83 and CCR7, but pDC displayed low expressions of CD83 and CCR7. Moreover, DCs from APT patients expressed lower levels of HLA-DR and CD80, but expressed a higher level of CD86 than those from HCs. However, the antigen uptake capacity of DC subsets was not different between APT and HCs, despite the antigen uptake capacity of pDC was much lower than that of mDC in both APT patients and HCs. Our data represent a systematic profile of DC subsets in the blood of APT patients, and would represent a useful biomarker for APT.
Collapse
Affiliation(s)
- Yuan-Bin Lu
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Department of Laboratory Medicine, Dongguan 5th Hospital, Dongguan 523000, China
| | - De-Qian Xiao
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China
| | - Kui-Di Liang
- Department of Respiration, Dongguan 6th Hospital, Dongguan 523000, China
| | - Jun-Ai Zhang
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Wan-Dang Wang
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shi-Yan Yu
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Bi-Ying Zheng
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China
| | - Yu-Chi Gao
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - You-Chao Dai
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Yan Jia
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Chen Chen
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Ze-Gang Zhuang
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Xin Wang
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Xiao-Xia Fu
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China
| | - Yong Zhou
- Department of Laboratory Medicine, Dongguan 5th Hospital, Dongguan 523000, China
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jun-Fa Xu
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China.
| |
Collapse
|
18
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
19
|
Taraldsrud E, Fevang B, Aukrust P, Beiske KH, Fløisand Y, Frøland S, Rollag H, Olweus J. Common variable immunodeficiency revisited: normal generation of naturally occurring dendritic cells that respond to Toll-like receptors 7 and 9. Clin Exp Immunol 2014; 175:439-48. [PMID: 24237110 DOI: 10.1111/cei.12239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 01/21/2023] Open
Abstract
Patients with common variable immunodeficiency (CVID) have reduced numbers and frequencies of dendritic cells (DCs) in blood, and there is also evidence for defective activation through Toll-like receptors (TLRs). Collectively, these observations may point to a primary defect in the generation of functional DCs. Here, we measured frequencies of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) in peripheral blood of 26 CVID patients and 16 healthy controls. The results show that the patients have reduced absolute counts of both subsets. However, the decreased numbers in peripheral blood were not reflected in reduced frequencies of CD34(+) pDC progenitors in the bone marrow. Moreover, studies at the single cell level showed that DCs from CVID patients and healthy controls produced similar amounts of interferon-α or interleukin-12 and expressed similar levels of activation markers in response to human cytomegalovirus and ligands for TLR-7 and TLR-9. The study represents the most thorough functional characterization to date, and the first to assess bone marrow progenitor output, of naturally occurring DCs in CVID. In conclusion, it seems unlikely that CVID is secondary to insufficient production of naturally occurring DCs or a defect in their signalling through TLR-7 or TLR-9.
Collapse
Affiliation(s)
- E Taraldsrud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Cancer Immunotherapy and K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Miles B, Abdel-Ghaffar KA, Gamal AY, Baban B, Cutler CW. Blood dendritic cells: "canary in the coal mine" to predict chronic inflammatory disease? Front Microbiol 2014; 5:6. [PMID: 24478766 PMCID: PMC3902297 DOI: 10.3389/fmicb.2014.00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/07/2014] [Indexed: 12/19/2022] Open
Abstract
The majority of risk factors for chronic inflammatory diseases are unknown. This makes personalized medicine for assessment, prognosis, and choice of therapy very difficult. It is becoming increasingly clear, however, that low-grade subclinical infections may be an underlying cause of many chronic inflammatory diseases and thus may contribute to secondary outcomes (e.g., cancer). Many diseases are now categorized as inflammatory-mediated diseases that stem from a dysregulation in host immunity. There is a growing need to study the links between low-grade infections, the immune responses they elicit, and how this impacts overall health. One such link explored in detail here is the extreme sensitivity of myeloid dendritic cells (mDCs) in peripheral blood to chronic low-grade infections and the role that these mDCs play in arbitrating the resulting immune responses. We find that emerging evidence supports a role for pathogen-induced mDCs in chronic inflammation leading to increased risk of secondary clinical disease. The mDCs that are elevated in the blood as a result of low-grade bacteremia often do not trigger a productive immune response, but can disseminate the pathogen throughout the host. This aberrant trafficking of mDCs can accelerate systemic inflammatory disease progression. Conversely, restoration of dendritic cell homeostasis may aid in pathogen elimination and minimize dissemination. Thus it would seem prudent when assessing chronic inflammatory disease risk to consider blood mDC numbers, and the microbial content (microbiome) and activation state of these mDCs. These may provide important clues (“the canary in the coal mine”) of high inflammatory disease risk. This will facilitate development of novel immunotherapies to eliminate such smoldering infections in atherosclerosis, cancer, rheumatoid arthritis, and pre-eclampsia.
Collapse
Affiliation(s)
- Brodie Miles
- Department of Periodontics, College of Dental Medicine, Georgia Regents University Augusta, GA, USA
| | | | | | - Babak Baban
- Department of Oral Biology, Georgia Regents University Augusta, GA, USA
| | - Christopher W Cutler
- Department of Periodontics, College of Dental Medicine, Georgia Regents University Augusta, GA, USA
| |
Collapse
|
21
|
Balboa L, Romero MM, Laborde E, Sabio Y García CA, Basile JI, Schierloh P, Yokobori N, Musella RM, Castagnino J, de la Barrera S, Sasiain MC, Alemán M. Impaired dendritic cell differentiation of CD16-positive monocytes in tuberculosis: role of p38 MAPK. Eur J Immunol 2013. [PMID: 23192690 DOI: 10.1002/eji.201242557] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tuberculosis (TB) is one of the world's most pernicious diseases mainly due to immune evasion strategies displayed by its causative agent Mycobacterium tuberculosis (Mtb). Blood monocytes (Mos) represent an important source of DCs during chronic infections; consequently, the alteration of their differentiation constitutes an escape mechanism leading to mycobacterial persistence. We evaluated whether the CD16(+)/CD16(-) Mo ratio could be associated with the impaired Mo differentiation into DCs found in TB patients. The phenotype and ability to stimulate Mtb-specific memory clones DCs from isolated Mo subsets were assessed. We found that CD16(-) Mos differentiated into CD1a(+) DC-SIGN(high) cells achieving an efficient recall response, while CD16(+) Mos differentiated into a CD1a(-) DC-SIGN(low) population characterized by a poor mycobacterial Ag-presenting capacity. The high and sustained phosphorylated p38 expression observed in CD16(+) Mos was involved in the altered DC profile given that its blockage restored DC phenotype and its activation impaired CD16(-) Mo differentiation. Furthermore, depletion of CD16(+) Mos indeed improved the differentiation of Mos from TB patients toward CD1a(+) DC-SIGN(high) DCs. Therefore, Mos from TB patients are less prone to differentiate into DCs due to their increased proportion of CD16(+) Mos, suggesting that during Mtb infection Mo subsets may have different fates after entering the lungs.
Collapse
Affiliation(s)
- Luciana Balboa
- IMEX-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hui-feng Yang, Zhang ZH, Xiang LB, Tang KL, Luo F, Liu CY, Zhou JB, Li JQ, Xu JZ. 25(OH)D(3) affects the maturation and function of mouse bone marrow-derived dendritic cells stimulated by Mycobacterium bovis BCG. PLoS One 2012; 7:e48062. [PMID: 23144845 PMCID: PMC3489893 DOI: 10.1371/journal.pone.0048062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 09/20/2012] [Indexed: 01/07/2023] Open
Abstract
It has been shown that vitamin D deficiency increases an individual's susceptibility to tuberculosis (TB). However, very little is known about the effect of vitamin D on the immune response to Mycobacterium tuberculosis (M. tb) in dendritic cells (DCs). Because DCs play an important role in TB infection, we investigated the phenotypic characteristics and functional capabilities of mouse bone marrow-derived dendritic cells (BMDCs) after stimulation with Bacillus Calmette-Guérin (BCG) in the presence or absence of 25(OH)D(3)(100 nM). Bone marrow cells from mice were cultured with GM-CSF (20 ng/ml) and were then treated with 25(OH)D(3) for 7 days. On day 6, 5 µg/ml of BCG (≥1.0×10(6) CFU/mg) was added to the cells for 24 hours, and on day 7, the non-adherent cells were harvested for phenotypic and functional analyses. After incubation with 25(OH)D(3), the expression levels of MHC-II and CD86 on the surface of the dendritic cells (DCs) and the ability of the DCs to stimulate proliferation of allogeneic mixed lymphocytes were lower than control cells (p<0.05). Furthermore, the level of Interleukin (IL) -4 secreted by the BMDCs in the 25(OH)D(3) culture was lower than that in the control culture (p<0.01). However, the BMDCs cultured with 25(OH)D(3) produced significantly higher levels of IL-2, IL-6, IL-10 and interferon gamma(IFN-γ) than those in the control culture (p<0.05). These findings suggest that 25(OH)D(3) modulates the immune response during mycobacterial infection by affecting the maturation and function of DCs.
Collapse
Affiliation(s)
- Hui-feng Yang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Ze-hua Zhang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Liang-bi Xiang
- Department of Orthopedic Surgery, General Hospital of Shenyang Military Command, Shenyang, People’s Republic of China
| | - Kang-lai Tang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Fei Luo
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chun-yu Liu
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jian-bo Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jin-qing Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jian-zhong Xu
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
23
|
Hensley TR, Easter AB, Gerdts SE, De Rosa SC, Heit A, McElrath MJ, Andersen-Nissen E. Enumeration of major peripheral blood leukocyte populations for multicenter clinical trials using a whole blood phenotyping assay. J Vis Exp 2012:e4302. [PMID: 23007739 DOI: 10.3791/4302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cryopreservation of peripheral blood leukocytes is widely used to preserve cells for immune response evaluations in clinical trials and offers many advantages for ease and standardization of immunological assessments, but detrimental effects of this process have been observed on some cell subsets, such as granulocytes, B cells, and dendritic cells. Assaying fresh leukocytes gives a more accurate picture of the in vivo state of the cells, but is often difficult to perform in the context of large clinical trials. Fresh cell assays are dependent upon volunteer commitments and timeframes and, if time-consuming, their application can be impractical due to the working hours required of laboratory personnel. In addition, when trials are conducted at multiple centers, laboratories with the resources and training necessary to perform the assays may not be located in sufficient proximity to clinical sites. To address these issues, we have developed an 11-color antibody staining panel that can be used with Trucount tubes (Becton Dickinson; San Jose, CA) to phenotype and enumerate the major leukocyte populations within the peripheral blood, yielding more robust cell-type specific information than assays such as a complete blood count (CBC) or assays with commercially-available panels designed for Trucount tubes that stain for only a few cell types. The staining procedure is simple, requires only 100 μl of fresh whole blood, and takes approximately 45 minutes, making it feasible for standard blood-processing labs to perform. It is adapted from the BD Trucount tube technical data sheet (version 8/2010). The staining antibody cocktail can be prepared in advance in bulk at a central assay laboratory and shipped to the site processing labs. Stained tubes can be fixed and frozen for shipment to the central assay laboratory for multicolor flow cytometry analysis. The data generated from this staining panel can be used to track changes in leukocyte concentrations over time in relation to intervention and could easily be further developed to assess activation states of specific cell types of interest. In this report, we demonstrate the procedure used by blood-processing lab technicians to perform staining on fresh whole blood and the steps to analyze these stained samples at a central assay laboratory supporting a multicenter clinical trial. The video details the procedure as it is performed in the context of a clinical trial blood draw in the HIV Vaccine Trials Network (HVTN).
Collapse
Affiliation(s)
- Tiffany R Hensley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | | | | | | | | | | | | |
Collapse
|
24
|
Bozzano F, Picciotto A, Costa P, Marras F, Fazio V, Hirsch I, Olive D, Moretta L, De Maria A. Activating NK cell receptor expression/function (NKp30, NKp46, DNAM-1) during chronic viraemic HCV infection is associated with the outcome of combined treatment. Eur J Immunol 2011; 41:2905-14. [PMID: 21695691 DOI: 10.1002/eji.201041361] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Specific NK cell killer inhibitory receptor (KIR):HLA haplotype combinations have been associated with successful clearance of acute and chronic HCV infection. Whether an imbalance of activating NK cell receptors also contributes to the outcome of treatment of chronic HCV infection, however, is not known. We studied peripheral NK cell phenotype and function in 28 chronically viraemic HCV genotype I treatment-naïve patients who underwent treatment with pegylated IFN-α and ribavirin. At baseline, chronically infected patients with sustained virological response (SVR) had reduced CD56(bright) CD16(+/-) cell populations, increased CD56(dull) CD16(+) NK cell proportions, and lower expression of NKp30, DNAM-1, and CD85j. Similarly, reduced NK cell IFN-γ production but increased degranulation was observed among nonresponding (NR) patients. After treatment, CD56(bright) CD16(+/-) NK cell numbers increased in both SVR and NR patients, with a parallel significant increase in activating NKp30 molecule densities in SVR patients only. In vitro experiments using purified NK cells in the presence of rIL-2 and IFN-α confirmed upregulation of NKp30 and also of NKp46 and DNAM-1 in patients with subsequent SVR. Thus, differences in patient NK cell receptor expression and modulation during chronic HCV-1 infection are associated with subsequent outcome of standard treatment. Individual activating receptor expression/function integrates with KIR:HLA genotype carriage to determine the clearance of HCV infection upon treatment.
Collapse
|
25
|
Involvement of activating NK cell receptors and their modulation in pathogen immunity. J Biomed Biotechnol 2011; 2011:152430. [PMID: 21860586 PMCID: PMC3155793 DOI: 10.1155/2011/152430] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/23/2011] [Indexed: 01/20/2023] Open
Abstract
Natural Killer (NK) cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules) and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs), cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44). NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.
Collapse
|
26
|
Wergeland I, Aßmus J, Dyrhol-Riise AM. T Regulatory Cells and Immune Activation in Mycobacterium tuberculosis Infection and the Effect of Preventive Therapy. Scand J Immunol 2011; 73:234-42. [DOI: 10.1111/j.1365-3083.2010.02496.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Abstract
Type I interferon protects cells from virus infection through the induction of a group of genes collectively named interferon-stimulated genes (ISGs). In this study, we utilized short hairpin RNA (shRNA) to deplete ISGs in SupT1 cells in order to identify ISGs that suppress the production of human immunodeficiency virus type 1 (HIV-1). Among the ISG candidates thus identified were interferon-induced transmembrane (IFITM) proteins, including IFITM1, IFITM2, and IFITM3, that potently inhibit HIV-1 replication at least partially through interfering with virus entry. Further mutagenesis analysis shows that the intracellular region, rather than the N- and C-terminal extracellular domains, is essential for the antiviral activity of IFITM1. Altogether, these data suggest that the IFITM proteins serve as important components of the innate immune system to restrict HIV-1 infection.
Collapse
|
28
|
Simmons DP, Canaday DH, Liu Y, Li Q, Huang A, Boom WH, Harding CV. Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC antigen cross processing by TLR9. THE JOURNAL OF IMMUNOLOGY 2010; 185:2405-15. [PMID: 20660347 DOI: 10.4049/jimmunol.0904005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) cross process exogenous Ags and present them by class I MHC (MHC-I) molecules to CD8(+) T cells specific for Ags from viruses and bacteria such as Mycobacterium tuberculosis. Unmethylated CpG DNA signals through TLR9 to induce type I IFN (IFN-alpha/beta), which enhances MHC-I Ag cross processing, but lipoproteins that signal through TLR2 do not induce IFN-alpha/beta. In these studies we observed that M. tuberculosis, which expresses agonists of both TLR9 and TLR2, did not induce production of IFN-alpha/beta or cross processing by murine DCs. Furthermore, M. tuberculosis and TLR2 agonists inhibited induction of IFN-alpha/beta and DC cross processing by CpG DNA. Exogenous IFN-alpha/beta effectively enhanced cross processing of M. bovis bacillus Calmette-Guérin expressing OVA, bypassing the inhibition of induction of endogenous IFN-alpha/beta. In addition, inhibition of TLR9-induced cross processing of M. bovis bacillus Calmette-Guérin expressing OVA could be circumvented by pretreating cells with CpG DNA to induce IFN-alpha/beta and MHC-I cross processing before inhibitory mycobacterial TLR2 agonists were present. Inhibition of the response to one TLR by another may affect the ultimate response to pathogens like M. tuberculosis that express agonists of multiple TLRs, including TLR2 and TLR9. This mechanism may contribute to immune evasion and explain why IFN-alpha/beta provides little contribution to host immunity to M. tuberculosis. However, downregulation of certain TLR responses may benefit the host by preventing detrimental excessive inflammation that may occur in the presence of persistent infection.
Collapse
Affiliation(s)
- Daimon P Simmons
- Department of Pathology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Gupta V, Jaiswal A, Behera D, Prasad HK. Disparity in circulating peripheral blood dendritic cell subsets and cytokine profile of pulmonary tuberculosis patients compared with healthy family contacts. Hum Immunol 2010; 71:682-91. [PMID: 20381566 DOI: 10.1016/j.humimm.2010.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 11/15/2022]
Abstract
Dendritic cell (DC) subsets, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs) play a fundamental role in immune response to Mycobacterium tuberculosis (M. tuberculosis). Flow-cytometric estimation of DC subsets showed differences in the ratio of these subsets in untreated, smear-positive pulmonary tuberculosis patients compared with healthy family contacts (HFC, p < 0.05). The percentage of pDCs (0.14 +/- 0.01) was higher than mDCs (0.12 +/- 0.01) in patients, whereas in HFC, mDCs (0.15 +/- 0.01) was higher than pDCs (0.1 +/- 0.01). The percentage of mDCs (0.15 +/- 0.01) and pDCs (0.11 +/- 0.01) was restored in treated patients. Alteration in the DC subsets before and after chemotherapy was confirmed in the follow-up of acid-fast bacilli (AFB)-positive patients. This reversal in the percentage of mDC vs pDCs implicates the influence of active disease on circulating DC subsets. The cytokine bead array revealed an inverse relationship in the circulating levels of IL-12 and IFN-gamma. High IL-12 (37.9 +/- 15.2) and low IFN-gamma (11.09 +/- 3.6) was seen in HFCs derived serum samples compared with that of patients (p < 0.05). The higher percentage of mDCs and elevated IL-12 levels was found to be associated with high risk HFCs investigated. Furthermore CpG/LPS-stimulated whole-blood culture of untreated patients expressed high IFN-alpha in pDCs and less IL-12 in mDCs compared with those of treated patients.
Collapse
Affiliation(s)
- Vinay Gupta
- TB Immunology Laboratory, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
30
|
Everts B, Adegnika AA, Kruize YCM, Smits HH, Kremsner PG, Yazdanbakhsh M. Functional impairment of human myeloid dendritic cells during Schistosoma haematobium infection. PLoS Negl Trop Dis 2010; 4:e667. [PMID: 20422029 PMCID: PMC2857749 DOI: 10.1371/journal.pntd.0000667] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/11/2010] [Indexed: 01/27/2023] Open
Abstract
Chronic Schistosoma infection is often characterized by a state of T cell hyporesponsiveness of the host. Suppression of dendritic cell (DC) function could be one of the mechanisms underlying this phenomenon, since Schistosoma antigens are potent modulators of dendritic cell function in vitro. Yet, it remains to be established whether DC function is modulated during chronic human Schistosoma infection in vivo. To address this question, the effect of Schistosoma haematobium infection on the function of human blood DC was evaluated. We found that plasmacytoid (pDC) and myeloid DC (mDC) from infected subjects were present at lower frequencies in peripheral blood and that mDC displayed lower expression levels of HLA-DR compared to those from uninfected individuals. Furthermore, mDC from infected subjects, but not pDC, were found to have a reduced capacity to respond to TLR ligands, as determined by MAPK signaling, cytokine production and expression of maturation markers. Moreover, the T cell activating capacity of TLR-matured mDC from infected subjects was lower, likely as a result of reduced HLA-DR expression. Collectively these data show that S. haematobium infection is associated with functional impairment of human DC function in vivo and provide new insights into the underlying mechanisms of T cell hyporesponsiveness during chronic schistosomiasis.
Collapse
Affiliation(s)
- Bart Everts
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Bourgarit A, Carcelain G, Samri A, Parizot C, Lafaurie M, Abgrall S, Delcey V, Vicaut E, Sereni D, Autran B. Tuberculosis-associated immune restoration syndrome in HIV-1-infected patients involves tuberculin-specific CD4 Th1 cells and KIR-negative gammadelta T cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:3915-23. [PMID: 19726768 DOI: 10.4049/jimmunol.0804020] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB)-associated immune restoration syndrome (IRS) is a frequent event (10 to 30%) in HIV-1-infected patients receiving antiretroviral treatment and is associated with an increased number of IFN-gamma-producing tuberculin-specific cells. To further understand the immune mechanisms of TB-IRS and to identify predictive factors, we prospectively analyzed the Th1 and TCRgammadelta T cells known to be involved in mycobacterial defenses and dendritic cells at baseline and after antiretroviral and TB treatment in 24 HIV-1(+) patients, 11 with and 13 without IRS. At baseline, these two groups differed by significantly lower proportions of TCRgammadelta and Vdelta2(+) T cells displaying the inhibitory receptors CD94/NKG2 and CD158ah,b in IRS patients. The two groups did not differ in the baseline characteristics of CD8 or CD4 T cells or TLR-2 expression on monocytes or myeloid/plasmacytoid dendritic cells. During IRS, the increase in tuberculin-specific IFN-gamma-producing cells involved only highly activated effector memory multifunctional (IFN-gamma(+)TNF-alpha(+)IL-2(-)) CD4 T cells, whereas activated HLA-DR(+) CD4(+) T cells also increased during IRS. In contrast, dendritic cells decreased significantly during IRS and there were no changes in TLR-2 expression. Finally, the Vdelta2(+) T cells, mostly killer Ig-related receptor (KIR) (CD94/NKG2(-) and CD158(-)), significantly peaked during IRS but not in non-IRS patients. In conclusion, IRS is associated with an increase in the number of activated tuberculin-specific effector memory CD4 T cells and of KIR(-)Vdelta2(+) TCRgammadelta(+) T cells. Higher proportions of Vdelta2(+)TCRgammadelta(+) T cells lacking KIR expression are present as baseline and distinguish patients who will develop IRS from those who will not.
Collapse
Affiliation(s)
- Anne Bourgarit
- Laboratory of Cellular Immunology, INSERM, Pitie-Salpetriere Hospital, Assistance Publique des Hôpitaux de Paris, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vani J, Bansal K, Kazatchkine MD, Kaveri SV, Bayry J. Immunointervention for patients with HIV and tuberculosis. THE LANCET. INFECTIOUS DISEASES 2009; 9:332-3. [PMID: 19467470 DOI: 10.1016/s1473-3099(09)70127-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Bozzano F, Costa P, Passalacqua G, Dodi F, Ravera S, Pagano G, Canonica GW, Moretta L, De Maria A. Functionally relevant decreases in activatory receptor expression on NK cells are associated with pulmonary tuberculosis in vivo and persist after successful treatment. Int Immunol 2009; 21:779-91. [PMID: 19461127 DOI: 10.1093/intimm/dxp046] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Correlates for the initiation of Mycobacterium tuberculosis hominis (Mth) replication from latency are needed in order to improve Mth control. In order to analyze if perturbations of peripheral NK cells may be associated with exit from Mth latency, sequential patients with newly diagnosed lung tuberculosis (TB) were studied. Peripheral NK cells were analyzed by cytofluorometry, in vitro culture and functional assays. At the onset of lung TB, imbalances in NK cell subsets were evident. Decreased CD56(bright)CD16(+/-) subsets with significantly compromised NKp30 and NKp46 expression and with specifically decreased gamma-IFN production upon triggering were evident. These features were not completely restored when purified NK cells were cultured in vitro. Culture supplementation with alpha-IFN increased only NKp30 expression in TB and healthy donors. Extensive peripheral NK cell triggering was evident in these patients, as shown by the expression of NK cell activation markers and of the lymph node-homing chemokine receptor CCR7 on CD16(+) CD56(dull) cells. Significant persistence of decreased NKp30 and NKp46 after successful treatment with a standard four-drug regimen was detected after full recovery. NK cell function is deeply affected in patients at the onset of pulmonary TB. The involvement of multiple activatory receptors may provide a relevant contribution to the spread of mycobacteria exiting from latency.
Collapse
Affiliation(s)
- Federica Bozzano
- Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rajashree P, Krishnan G, Das SD. Impaired phenotype and function of monocyte derived dendritic cells in pulmonary tuberculosis. Tuberculosis (Edinb) 2009; 89:77-83. [PMID: 18823820 DOI: 10.1016/j.tube.2008.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/09/2008] [Indexed: 11/29/2022]
Abstract
Pulmonary tuberculosis (PTB) is often associated with impaired immunological functions. Blood monocytes, which can differentiate into dendritic cells upon cytokine stimulation, play a central role in adequate immune reactivity. Here, we investigated the morphologic, phenotypic and functional characteristics of in vitro-generated monocyte derived dendritic cells (MoDC) from PTB patients in comparison with healthy subjects. Phenotypic analysis revealed a defective differentiation of MoDC in PTB patients as assessed by a strong down regulation of CD1a, MHC II, CD80 and CD83 expression and impaired allostimulatory function under the influence of IL-4 and GM-CSF. In contrast, the expression of CD86 was not affected and remained same as in healthy subjects. Furthermore, the maturation status of lipopolysaccharide (LPS) stimulated MoDC was not optimal in PTB. However, the MoDC of PTB patients produced significantly higher levels of TNF-alpha and IL-6 but lower levels of IL-12 compared to healthy subjects. These findings suggest that there is a fundamental defect in the differentiation and maturation of dendritic cells during PTB that may compromise the antigen presentation and subsequent immune functions.
Collapse
Affiliation(s)
- P Rajashree
- Department of Immunology, Tuberculosis Research Centre, Chetpet, Chennai, India
| | | | | |
Collapse
|
35
|
Agrawal T, Vats V, Wallace P, Singh A, Salhan S, Mittal A. Recruitment of myeloid and plasmacytoid dendritic cells in cervical mucosa during Chlamydia trachomatis infection. Clin Microbiol Infect 2009; 15:50-9. [DOI: 10.1111/j.1469-0691.2008.02113.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Hosmalin A, Lichtner M, Louis S. Clinical analysis of dendritic cell subsets: the dendritogram. Methods Mol Biol 2008; 415:273-290. [PMID: 18370160 DOI: 10.1007/978-1-59745-570-1_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dendritic cells (DCs) are crucial in adaptive immunity because they are the only antigen-presenting cells that can present antigens to naive T lymphocytes. Plasmacytoid DCs (pDC) are also the main producers of type I Interferons in response to infection. We have shown that circulating myeloid DC (mDC) and pDC numbers are reduced in chronic as well as primary HIV infection. Data from different laboratories indicate that pDC counts, obtained by flow cytometry and rare event analysis, correlate inversely with the viral load, may be an early marker of recovery after antiretroviral treatment, and may predict better immune control of HIV replication. PDC counts may also be predictive of severe illness in dengue virus infection or of successful treatment against Mycobacterium tuberculosis. DC counts, or the "dendritogram", may therefore become useful in the clinical assessment of different infectious diseases.
Collapse
Affiliation(s)
- Anne Hosmalin
- Institut Cochin, Département d'Immunologie, Paris, France
| | | | | |
Collapse
|
37
|
Reeves RK, Fultz PN. Disparate effects of acute and chronic infection with SIVmac239 or SHIV-89.6P on macaque plasmacytoid dendritic cells. Virology 2007; 365:356-68. [PMID: 17490699 PMCID: PMC2043480 DOI: 10.1016/j.virol.2007.03.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/02/2007] [Accepted: 03/30/2007] [Indexed: 12/13/2022]
Abstract
Blood plasmacytoid dendritic cells (pDCs) contribute to both innate and adaptive immune responses by secreting high levels of IFN-alpha following acute bacterial and viral infections and indirectly by augmenting cell-mediated immunity. Cross-sectional studies have shown that the number of circulating pDCs in HIV patients, compared to that in uninfected individuals, is reduced. However, since the time of infection is usually unknown in HIV-infected patients, pDC-virus interactions that occur immediately after virus exposure are poorly understood. The current study investigated pDC dynamics during acute and chronic infections of macaques with either SIVmac239 or the pathogenic SIV-HIV chimera, SHIV-89.6P, as models for HIV infection. In three rhesus and three pig-tailed macaques infected intravenously with SIVmac239, the percentages of pDCs in blood declined 2- to 6-fold during the first 6 weeks after infection and remained depressed throughout the disease course. Surprisingly, no consistent, comparable decline in peripheral blood pDCs was observed in six macaques infected with SHIV-89.6P. In this latter group, percentages of pDCs did not correlate with CD4(+) T cells, but there was an inverse relationship with viral load. In addition, when compared to naïve controls, the percentages of pDCs were reduced in spleens and peripheral lymph nodes of SIVmac239- but not SHIV-89.6P-infected animals that had progressed to AIDS. Proviral DNA was detected during the acute phase in pDCs isolated from macaques infected with either virus. These results imply that, even though macaque pDCs can be infected by both SIVmac239 and SHIV-89.6P, the subsequent effects on in vivo pathogenesis differ. The underlying mechanism(s) for these differences is unclear, but the selection of SIV or SHIV as a challenge virus might influence the outcome of some studies, such as those evaluating vaccines or the therapeutic efficacy of drugs.
Collapse
Affiliation(s)
| | - Patricia N. Fultz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 509E, 845 19th St. South, Birmingham, AL 35294, USA
| |
Collapse
|
38
|
Pérez-Cabezas B, Naranjo-Gómez M, Fernández MA, Grífols JR, Pujol-Borrell R, Borràs FE. Reduced numbers of plasmacytoid dendritic cells in aged blood donors. Exp Gerontol 2007; 42:1033-8. [PMID: 17606348 DOI: 10.1016/j.exger.2007.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DC) play essential functions in both innate and adaptive immune responses. Peripheral blood DCs are divided into two major subsets, named conventional DC (cDC) and plasmacytoid DC (pDC), which play specific functions in the immune response. The absolute numbers of DCs (and their subsets) in peripheral blood may suffer variations due to physiological or pathological reasons, and therefore the enumeration of DC subsets in blood samples may be of clinical interest. However, to date this enumeration has produced controversial rather than consistent results. Here, using a two-tube platform approach, peripheral blood DCs have been enumerated in samples from healthy blood donors aged 18-65 years old. The results obtained showed a significant age-related decrease in pDC numbers, whilst cDC numbers remained unaltered. The different protocols used to define and enumerate DC subsets from blood samples may account for the controversial results reported before, thus emphasizing the importance of a general consensus to enumerate DCs. Reduced pDC numbers may be related to the higher susceptibility to infection and deficient response to vaccination often observed in aged individuals.
Collapse
Affiliation(s)
- Begoña Pérez-Cabezas
- Laboratory of Immunobiology for Research and Applications to Diagnosis, Blood and Tissue Bank, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Institut Investigació Germans Trias i Pujol, 08916 Badalona, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Herbeuval JP, Shearer GM. HIV-1 immunopathogenesis: how good interferon turns bad. Clin Immunol 2007; 123:121-8. [PMID: 17112786 PMCID: PMC1930161 DOI: 10.1016/j.clim.2006.09.016] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 01/29/2023]
Abstract
The hallmark of acquired immunodeficiency syndrome (AIDS) is the progressive loss of CD4+ T cells that results from infection with human immunodeficiency virus type-1 (HIV-1). Despite 25 years of AIDS research, questions remain concerning the mechanisms responsible for HIV-induced CD4+ T cell depletion. Here we briefly review the in vitro and in vivo literature concerning the protective role of interferon-alpha (IFN-alpha) in HIV/AIDS. We then develop a laboratory- and clinically supported model of CD4+ T cell apoptosis in which either infectious or noninfectious HIV-1 induces the production of type I interferon by plasmacytoid dendritic cells (pDC). The interferon produced binds to its receptor on primary CD4+ T cells resulting in membrane expression of the TNF-related apoptosis-inducing ligand (TRAIL) death molecule. The binding of infectious or noninfectious HIV-1 to CD4 on these T cells results in expression of the TRAIL death receptor 5 (DR5), leading to the selective death of HIV-exposed CD4+ T cells.
Collapse
|
40
|
Sciarra A, Lichtner M, Autran GA, Mastroianni C, Rossi R, Mengoni F, Cristini C, Gentilucci A, Vullo V, Di Silverio F. Characterization of circulating blood dendritic cell subsets DC123+ (lymphoid) and DC11C+ (myeloid) in prostate adenocarcinoma patients. Prostate 2007; 67:1-7. [PMID: 17075798 DOI: 10.1002/pros.20431] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
PURPOSE We verified whether prostate adenocarcinoma produces specific modifications in DC subsets count. METHODS Twenty-one untreated prostate adenocarcinomas were divided on the basis of clinical stage in localized and metastatic disease. As control we used a population of 18 healthy male subjects. For DCs enumeration, peripheral blood (PB) samples were obtained in all cases. A single-platform flow cytometric assay based on Tru-COUNT was used for the enumeration of the two DCs subsets, myeloid (mDCs) and plasmacytoid (pDCs). RESULTS We showed a statistically significant reduction in pDCs count in prostate cancer population when compared to healthy controls (P = 0.002). Comparing each clinical stage with healthy controls, significant differences were found between controls and the metastatic group in both pDCs and mDCs (P = 0.005 and P = 0.023 respectively) but not between controls and the localized group (P = 0.055 and P = 0.829 respectively). CONCLUSIONS We showed that DCs count in PB is significantly affected by prostate adenocarcinoma progression in a metastatic disease.
Collapse
|
41
|
Abstract
Type I IFNs display multiple biological effects. They have a strong antiviral action, not only directly but also indirectly through activation of the immune system. They may also have actions that are deleterious for the host. The cells that produce type I IFN are mostly plasmacytoid dendritic cells (pDC), but this depends on the viral stimulus. The migration and distribution of pDC into lymphoid organs, driven by chemokine interactions with their ligands, determines interaction with different cell types. In HIV infection, IFN production in vitro is impaired during primary infection and later in association with opportunistic infections. Circulating pDC numbers are decreased in parallel. These parameters may be used to help assess the prognosis of the disease and to monitor treatment.
Collapse
Affiliation(s)
- Anne Hosmalin
- Institut Cochin, Département d'Immunologie, Paris 75014, France.
| | | |
Collapse
|