1
|
Vissers M, van de Garde MDB, He SWJ, Brandsen M, Hendriksen R, Nicolaie MA, van der Maas L, Meiring HD, van Els CACM, van Beek J, Rots NY. Quantity and Quality of Naturally Acquired Antibody Immunity to the Pneumococcal Proteome Throughout Life. J Infect Dis 2024; 230:1466-1475. [PMID: 38888894 DOI: 10.1093/infdis/jiae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Young children and older adults are susceptible for invasive pneumococcal disease (IPD) caused by Streptococcus pneumoniae. Pneumococcal protein-specific antibodies play a protective role against IPD; however, not much is known about the pace of acquisition, maturation, and maintenance of these antibodies throughout life. METHODS Immunoglobulin G (IgG) and IgA levels, avidity, and/or specificity to the pneumococcal proteome in serum and saliva from healthy young children, adults, and older adults, with known carriage status, were measured by enzyme-linked immunosorbent assay (ELISA) and 2-dimensional western blotting against ΔcpsTIGR4. RESULTS Eleven-month-old children, the youngest age group tested, had the lowest pneumococcal proteome-specific IgG and IgA levels and avidity in serum and saliva, followed by 24-month-old children and were further elevated in adult groups. Among adult groups, the parents had the highest serum and saliva IgG and IgA antibody levels. In children, antibody levels and avidity correlated with daycare attendance and presence of siblings, posing as proxy for exposure and immunization. Immunodominance patterns slightly varied throughout life. CONCLUSIONS Humoral immunity against the pneumococcal proteome is acquired through multiple episodes of pneumococcal exposure. Low-level and low-avidity antiproteome antibody profiles in young children may contribute to their IPD susceptibility, while in overall antiproteome antibody-proficient older adults other factors likely play a role.
Collapse
Affiliation(s)
- Marloes Vissers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn D B van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Samantha W J He
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Milou Brandsen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Rosanne Hendriksen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Mioara Alina Nicolaie
- Expertise Centre for Methodology and Information Services, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Larissa van der Maas
- Product Characterization and Formulation, Institute for Translational Vaccinology, Bilthoven, The Netherlands
| | - Hugo D Meiring
- Product Characterization and Formulation, Institute for Translational Vaccinology, Bilthoven, The Netherlands
| | - Cecile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
2
|
Selvaskandan H, Barratt J. The mucosal microbiome and IgA nephropathy: a new target for treatment? Kidney Int 2024; 106:1008-1011. [PMID: 39332814 DOI: 10.1016/j.kint.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024]
Affiliation(s)
- Haresh Selvaskandan
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK; Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK; Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
3
|
Roberts LE, Williams CEC, Oni L, Barratt J, Selvaskandan H. IgA Nephropathy: Emerging Mechanisms of Disease. Indian J Nephrol 2024; 34:297-309. [PMID: 39156850 PMCID: PMC11326799 DOI: 10.25259/ijn_425_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 08/20/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis reported across the world and is characterized by immunoglobulin A (IgA) dominant mesangial deposits, which are poorly O-glycosylated. This deposition leads to a cascade of glomerular and tubulointerstitial inflammation and fibrosis, which can progress to chronic kidney disease. The variability in rate of progression reflects the many genetic and environmental factors that drive IgAN. Here, we summarize the contemporary understanding of the disease mechanisms that drive IgAN and provide an overview of new and emerging therapies, which target these mechanisms.
Collapse
Affiliation(s)
- Lydia E Roberts
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Chloe E C Williams
- Royal Liverpool and Broadgreen University Hospital Trusts, Liverpool, United Kingdom
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Louise Oni
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Nephrology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Haresh Selvaskandan
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
4
|
Najary S, Vatankhah M, Khadivi G, Salehi SN, Tabari MAK, Samieefar N, Behnaz M. A comprehensive review of oral microenvironment changes and orofacial adverse reactions after COVID-19 vaccination: The good, the bad, and the ugly. Health Sci Rep 2024; 7:e1967. [PMID: 38482134 PMCID: PMC10935892 DOI: 10.1002/hsr2.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 08/13/2024] Open
Abstract
Background and Aims Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have the potential to alter several biological systems concurrently with remolding the immune system, most of which are related to immunization, while some others are known as adverse effects. This review aims to explore the potential effects of vaccination on the oral microenvironment and classifies them as good, bad, or ugly, with a brief review of facial diseases following coronavirus disease 2019 (COVID-19) vaccination. Methods This study was a comprehensive review conducted through searching related articles in Medline, Scopus, and Google Scholar databases. Results On one side, the "Good" impacts of vaccination on the oro-nasal mucosa are explained as if the mucosal immune responses followed by SARS-CoV-2 vaccines are enough to provide immunity. On the other side, the possible "Bad" and "Ugly" effects of the vaccine, which manifest as orofacial adverse events and autoimmune reactivations, respectively, should be noted. Exacerbation of pre-existing autoimmune conditions such as lichen planus, pemphigus vulgaris, bullous pemphigoid, and Stevens-Johnson syndrome have been reported. Conclusion COVID-19 vaccines could affect different biological systems alongside stimulating the immune system, and some of these effects are referred to as adverse effects. Nonetheless, these adverse effects are treatable, and healthcare professionals should not prevent patients from taking the first available vaccination.
Collapse
Affiliation(s)
- Shaghayegh Najary
- School of DentistryShahid Beheshti University of Medical SciencesTehranIran
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
- Network of Interdisciplinarity in Neonates and Infants (NINI)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Mohammadreza Vatankhah
- Center for Craniofacial Molecular Biology, Herman Ostrow School of DentistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gita Khadivi
- School of DentistryShahid Beheshti University of Medical SciencesTehranIran
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
| | - Seyyede N. Salehi
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
- Dentistry Student, Executive Secretary of Research Committee, Board Director of Scientific Society, Dental FacultyIslamic Azad UniversityTehranIran
| | - Mohammad A. K. Tabari
- Network of Interdisciplinarity in Neonates and Infants (NINI)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeMazandaran University of Medical SciencesSariIran
- USERN OfficeMazandaran University of Medical SciencesSariIran
| | - Noosha Samieefar
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
- Network of Interdisciplinarity in Neonates and Infants (NINI)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Mohammad Behnaz
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
- Dental Research Center, Research Institute of Dental Sciences, School of DentistryShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Esmat K, Jamil B, Kheder RK, Kombe Kombe AJ, Zeng W, Ma H, Jin T. Immunoglobulin A response to SARS-CoV-2 infection and immunity. Heliyon 2024; 10:e24031. [PMID: 38230244 PMCID: PMC10789627 DOI: 10.1016/j.heliyon.2024.e24031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
The novel coronavirus disease (COVID-19) and its infamous "Variants" of the etiological agent termed Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has proven to be a global health concern. The three antibodies, IgA, IgM, and IgG, perform their dedicated role as main workhorses of the host adaptive immune system in virus neutralization. Immunoglobulin-A (IgA), also known as "Mucosal Immunoglobulin", has been under keen interest throughout the viral infection cycle. Its importance lies because IgA is predominant mucosal antibody and SARS family viruses primarily infect the mucosal surfaces of human respiratory tract. Therefore, IgA can be considered a diagnostic and prognostic marker and an active infection biomarker for SARS CoV-2 infection. Along with molecular analyses, serological tests, including IgA detection tests, are gaining ground in application as an early detectable marker and as a minimally invasive detection strategy. In the current review, it was emphasized the role of IgA response in diagnosis, host defense strategies, treatment, and prevention of SARS-CoV-2 infection. The data analysis was performed through almost 100 published peer-reviewed research reports and comprehended the importance of IgA in antiviral immunity against SARS-CoV-2 and other related respiratory viruses. Taken together, it is concluded that secretory IgA- Abs can serve as a promising detection tool for respiratory viral diagnosis and treatment parallel to IgG-based therapeutics and diagnostics. Vaccine candidates that target and trigger mucosal immune response may also be employed in future dimensions of research against other respiratory viruses.
Collapse
Affiliation(s)
- Khaleqsefat Esmat
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Baban Jamil
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, KRG, Erbil, Iraq
| | - Ramiar Kaml Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Weihong Zeng
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Huan Ma
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
6
|
Zaidi AK, Bajpai S, Dehgani-Mobaraki P. B cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:155-181. [PMID: 38237985 DOI: 10.1016/bs.pmbts.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides an overview of B cell responses in COVID-19, highlighting the structure of SARS-CoV-2 and its impact on B cell immunity. It explores the production and maturation of SARS-CoV-2-specific B cells, with a focus on the two distinct phases of the humoral immune response: the extrafollicular (EF) phase and the germinal center (GC) phase. Furthermore, the interplay between B cells, follicular T helper cells, CD4+ T cells, and plasma cells is discussed, emphasizing their collaborative role in mounting an effective humoral immune response against SARS-CoV-2. The concept of immunological memory is explored, highlighting the roles of plasma cells and B memory cells in providing long-term protection. The chapter delves into the antibody response during SARS-CoV-2 infection, categorizing the types of antibodies generated. This includes a detailed analysis of neutralizing antibodies, such as those directed against the receptor-binding domain (RBD) and the N-terminal domain (NTD), as well as non-neutralizing antibodies. The role of mucosal antibodies, cross-reactive antibodies, and auto-reactive antibodies is also discussed. Factors influencing the dynamics of anti-SARS-CoV-2 antibodies are examined, including the duration and strength of the humoral response. Additionally, the chapter highlights the impact of the Omicron variant on humoral immune responses and its implications for vaccine efficacy and antibody-mediated protection.
Collapse
Affiliation(s)
| | - Sanchit Bajpai
- Consultant ENT & Head and Neck Surgeon at TSM Medical College and Multispeciality Hospital, Lucknow, India.
| | - Puya Dehgani-Mobaraki
- Founder and President, Associazione Naso Sano, Ringgold Institution ID 567754, San Mariano, Italy
| |
Collapse
|
7
|
Conca W, Saleh SM, Al-Rabiah R, Parhar RS, Abd-Elnaeim M, Al-Hindas H, Tinson A, Kroell KB, Liedl KR, Collison K, Kishore U, Al-Mohanna F. The immunoglobulin A isotype of the Arabian camel ( Camelus dromedarius) preserves the dualistic structure of unconventional single-domain and canonical heavy chains. Front Immunol 2023; 14:1289769. [PMID: 38162642 PMCID: PMC10756906 DOI: 10.3389/fimmu.2023.1289769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The evolution of adaptive immunity in Camelidae resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (CH) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype. Methods Gene-specific primers were used to generate an IgA heavy chain cDNA library derived from RNA extracted from the dromedary's third eyelid where isolated lymphoid follicles and plasma cells abound at inductive and effector sites, respectively. Results Majority of the cDNA clones revealed hallmarks of heavy chain-only antibodies, i.e. camelid-specific amino acid substitutions in framework region 1 and 2, broad length distribution of complementarity determining region 3, and the absence of the CHα1 domain. In a few clones, however, the cDNA of the canonical IgA heavy chain was amplified which included the CHα1 domain, analogous to CHγ1 domain in IgG1 subclass. Moreover, we noticed a short, proline-rich hinge, and, at the N-terminal end of the CHα3 domain, a unique, camelid-specific pentapeptide of undetermined function, designated as the inter-α region. Immunoblots using rabbit anti-camel IgA antibodies raised against CHα2 and CHα3 domains as well as the inter-α region revealed the expression of a ~52 kDa and a ~60 kDa IgA species, corresponding to unconventional and canonical IgA heavy chain, respectively, in the third eyelid, trachea, small and large intestine. In contrast, the leporine anti-CHα1 antibody detected canonical, but not unconventional IgA heavy chain, in all the examined tissues, milk, and serum, in addition to another hitherto unexplored species of ~45 kDa in milk and serum. Immunohistology using anti-CHα domain antibodies confirmed the expression of both variants of IgA heavy chains in plasma cells in the third eyelid's lacrimal gland, conjunctiva, tracheal and intestinal mucosa. Conclusion We found that in the dromedary, the IgA isotype has expanded the immunoglobulin repertoire by co-expressing unconventional and canonical IgA heavy chains, comparable to the IgG class, thus underscoring the crucial role of heavy chain-only antibodies not only in circulation but also at the mucosal frontiers.
Collapse
Affiliation(s)
- Walter Conca
- Department of Executive Health Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Soad M. Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rana Al-Rabiah
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ranjit Singh Parhar
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mahmoud Abd-Elnaeim
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hussein Al-Hindas
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Alexander Tinson
- Management of Scientific Centers and Presidential Camels, Department of President’s Affairs, Hilli ET and Cloning Centre, Al Ain, United Arab Emirates
| | | | - Klaus Roman Liedl
- Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria
| | - Kate Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Liao Q, Shen J, Chen Y, Shu Y. Mendelian randomization study on the causal effect of serum IgA levels on H7N9 avian influenza A virus susceptibility. J Med Virol 2023; 95:e29266. [PMID: 38009617 DOI: 10.1002/jmv.29266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Avian influenza A viruses (IAVs) that cross the species barrier to infect humans have the potential to initiate a new pandemic. However, the host factors influencing avian IAV infection remain poorly understood. To address this knowledge gap, we conducted a two-sample Mendelian randomization (MR) analysis by integrating our in-house genome-wide association study (GWAS) of avian IAV H7N9 susceptibility (with 217 cases and 116 controls) with the largest GWAS of serum IgA levels to date (sample size 41 263). Using the inverse-variance weighted (IVW) method, we discovered that genetically decreased serum IgA levels were associated with an increased risk of H7N9 infection (β = -2.528, 95% confidence interval [CI]: -4.572 to -0.484; p = 0.015). Consistent results were obtained from three other MR methods, including robust IVW estimation (β = -2.506, 95% CI: -4.109 to -0.902; p = 0.002), generalized summary-data-based MR (GSMR) (β = -2.238, 95% CI: -4.106 to -0.602; p = 0.019), and MR-pleiotropy residual sum and outlier (MR-PRESSO) (β = -2.528, 95% CI: -4.396 to -0.892; p = 0.026). In conclusion, our analysis provided compelling evidence support a causal relationship between genetically predicted serum IgA levels and avian IAV H7N9 susceptibility.
Collapse
Affiliation(s)
- Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, People's Republic of China
- BGI Research, Shenzhen, People's Republic of China
| | - Juan Shen
- BGI Research, Shenzhen, People's Republic of China
| | - Yongkun Chen
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, People's Republic of China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
9
|
Oyama A, Takaki A, Adachi T, Wada N, Takeuchi Y, Onishi H, Shiraha H, Okada H, Otsuka M. Oxidative stress-related markers as prognostic factors for patients with primary sclerosing cholangitis in Japan. Hepatol Int 2023; 17:1215-1224. [PMID: 37493884 PMCID: PMC10522747 DOI: 10.1007/s12072-023-10557-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/27/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND/PURPOSE Primary sclerosing cholangitis (PSC) is a rare chronic liver disease. The mechanisms and prediction of PSC progression are unclear. Recent investigations have shown that general conditions, such as oxidative stress, affect the course of chronic diseases. We investigated the clinical course and oxidative stress-related condition of PSC to determine prognostic factors. METHODS We recruited 58 patients with PSC (mean age; 37.4 years, mean observation period; 1382 days) who visited our department from 2003 to 2021. Clinical characteristics were investigated to define prognostic factors. Oxidative stress status was evaluated using two types of markers: an oxidative stress marker (serum reactive oxygen metabolite; dROM) and an antioxidant marker (serum OXY adsorbent test; OXY). RESULTS The revised Mayo risk, Child-Pugh, model for end-stage liver disease-sodium (MELD-Na) scores or fibrosis-related FIB-4 index significantly predicted poor overall survival. High intestinal immunoglobulin A (IgA) levels predicted poor survival. Among patients with high and intermediate revised Mayo risk scores, those with physiologically high dROM levels showed better survival than those with lower dROM levels. In this population, dROM was negatively correlated with AST and IgA, which are both correlated with survival. CONCLUSIONS High and intermediate revised Mayo risk score group predicted a poor clinical course in PSC. Additionally, the Child-Pugh score, MELD-Na score, FIB-4 index, and serum IgA were significantly correlated with survival. In patients with high and intermediate revised Mayo risk scores, physiologically high oxidative stress status correlated with low IgA levels and a good prognosis.
Collapse
Affiliation(s)
- Atsushi Oyama
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Nozomu Wada
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hideki Onishi
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
10
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|
11
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
12
|
Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat Rev Immunol 2022:10.1038/s41577-022-00813-1. [PMID: 36536068 PMCID: PMC9761659 DOI: 10.1038/s41577-022-00813-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Neutralizing antibodies are known to have a crucial role in protecting against SARS-CoV-2 infection and have been suggested to be a useful correlate of protection for vaccine clinical trials and for population-level surveys. In addition to neutralizing virus directly, antibodies can also engage immune effectors through their Fc domains, including Fc receptor-expressing immune cells and complement. The outcome of these interactions depends on a range of factors, including antibody isotype-Fc receptor combinations, Fc receptor-bearing cell types and antibody post-translational modifications. A growing body of evidence has shown roles for these Fc-dependent antibody effector functions in determining the outcome of SARS-CoV-2 infection. However, measuring these functions is more complicated than assays that measure antibody binding and virus neutralization. Here, we examine recent data illuminating the roles of Fc-dependent antibody effector functions in the context of SARS-CoV-2 infection, and we discuss the implications of these data for the development of next-generation SARS-CoV-2 vaccines and therapeutics.
Collapse
|
13
|
Taylor JA, Hutchinson MA, Gearhart PJ, Maul RW. Antibodies in action: the role of humoral immunity in the fight against atherosclerosis. Immun Ageing 2022; 19:59. [PMID: 36461105 PMCID: PMC9717479 DOI: 10.1186/s12979-022-00316-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
The sequestering of oxidation-modified low-density lipoprotein by macrophages results in the accumulation of fatty deposits within the walls of arteries. Necrosis of these cells causes a release of intercellular epitopes and the activation of the adaptive immune system, which we predict leads to robust autoantibody production. T cells produce cytokines that act in the plaque environment and further stimulate B cell antibody production. B cells in atherosclerosis meanwhile have a mixed role based on subclass. The current model is that B-1 cells produce protective IgM antibodies in response to oxidation-specific epitopes that work to control plaque formation, while follicular B-2 cells produce class-switched antibodies (IgG, IgA, and IgE) which exacerbate the disease. Over the course of this review, we discuss further the validation of these protective antibodies while evaluating the current dogma regarding class-switched antibodies in atherosclerosis. There are several contradictory findings regarding the involvement of class-switched antibodies in the disease. We hypothesize that this is due to antigen-specificity, and not simply isotype, being important, and that a closer evaluation of these antibodies' targets should be conducted. We propose that specific antibodies may have therapeutical potential in preventing and controlling plaque development within a clinical setting.
Collapse
Affiliation(s)
- Joshua A. Taylor
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mark A. Hutchinson
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Patricia J. Gearhart
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Robert W. Maul
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| |
Collapse
|
14
|
Bartsch YC, St Denis KJ, Kaplonek P, Kang J, Lam EC, Burns MD, Farkas EJ, Davis JP, Boribong BP, Edlow AG, Fasano A, Shreffler WG, Zavadska D, Johnson M, Goldblatt D, Balazs AB, Yonker LM, Alter G. SARS-CoV-2 mRNA vaccination elicits robust antibody responses in children. Sci Transl Med 2022; 14:eabn9237. [PMID: 35881018 PMCID: PMC9348753 DOI: 10.1126/scitranslmed.abn9237] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/01/2022] [Indexed: 01/11/2023]
Abstract
Although children have been largely spared from coronavirus disease 2019 (COVID-19), the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with increased transmissibility, combined with fluctuating mask mandates and school reopenings, has led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remain unclear. Here, we aimed to deeply profile the vaccine-induced humoral immune response in 6- to 11-year-old children receiving either a pediatric (50 μg) or adult (100 μg) dose of the mRNA-1273 vaccine and to compare these responses to vaccinated adults, infected children, and children who experienced multisystem inflammatory syndrome in children (MIS-C). Children elicited an IgG-dominant vaccine-induced immune response, surpassing adults at a matched 100-μg dose but more variable immunity at a 50-μg dose. Irrespective of titer, children generated antibodies with enhanced Fc receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron-specific receptor binding domain, but robustly preserved omicron spike protein binding. Fc receptor binding capabilities were also preserved in a dose-dependent manner. These data indicate that both the 50- and 100-μg doses of mRNA vaccination in children elicit robust cross-VOC antibody responses and that 100-μg doses in children result in highly preserved omicron-specific functional humoral immunity.
Collapse
Affiliation(s)
- Yannic C Bartsch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kerri J St Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jaewon Kang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Madeleine D Burns
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA 02114, USA
| | - Eva J Farkas
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA 02114, USA
| | - Jameson P Davis
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA 02114, USA
| | - Brittany P Boribong
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA 02114, USA
| | - Andrea G Edlow
- Massachusetts General Hospital Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Vincent Center for Reproductive Biology, Boston, MA 02114, USA
| | - Alessio Fasano
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA 02114, USA
| | - Wayne G Shreffler
- Massachusetts General Hospital Food Allergy Center, Division of Pediatric Allergy and Immunology, Boston, MA 02114, USA
| | - Dace Zavadska
- Children's Clinical University Hospital, Riga, LV-1004, Latvia
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | | | - Lael M Yonker
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA 02114, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Takeuchi T, Ohno H. IgA in human health and diseases: Potential regulator of commensal microbiota. Front Immunol 2022; 13:1024330. [PMID: 36439192 PMCID: PMC9685418 DOI: 10.3389/fimmu.2022.1024330] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/27/2022] [Indexed: 07/29/2023] Open
Abstract
Gut microbiota has extensive and tremendous impacts on human physiology and pathology. The regulation of microbiota is therefore a cardinal problem for the mutualistic relationship, as both microbial overgrowth and excessive immune reactions toward them could potentially be detrimental to host homeostasis. Growing evidence suggests that IgA, the most dominant secretory immunoglobulin in the intestine, regulates the colonization of commensal microbiota, and consequently, the microbiota-mediated intestinal and extra-intestinal diseases. In this review, we discuss the interactions between IgA and gut microbiota particularly relevant to human pathophysiology. We review current knowledge about how IgA regulates gut microbiota in humans and about the molecular mechanisms behind this interaction. We further discuss the potential role of IgA in regulating human diseases by extrapolating experimental findings, suggesting that IgA can be a future therapeutic strategy that functionally modulates gut microbiota.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
16
|
Cross Protectivity Analysis of 49.8 kDa Pili Subunits of S. flexneri against Vibrio cholerae Infection. Interdiscip Perspect Infect Dis 2022; 2022:3751521. [PMID: 35757682 PMCID: PMC9217611 DOI: 10.1155/2022/3751521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Although the AMV and AMS vaccine candidates have similar characteristics as hemagglutinin and adhesive molecules, there are differences in molecular weight. Objective The research aims to determine the immunological cross-reaction between AMS and AMV. Method Antihemagglutination test used the anti-adhesion molecular antibody AMS. Next, we examined the immune response that has to be linked with protectivity. The model of the research uses MLIL. The sample separated the mice into four groups, and each group had five mice. The first group was the negative control group. The second group was given AMV and infected with Shigella flexneri. The third group was immunized with AMV before being exposed to Shigella flexneri. The last group was infected with Vibrio cholerae. The immune response results were evaluated by calculating the weight of MLIL and counting the colony of bacteria. We also examined other AMS immune responses, namely, β-defensin and s-IgA levels. To get the data, we measured the number of Th17 immune effector cells, T-reg, and proinflammatory cytokine IL-17A. Data analysis was performed using ANOVA, independent t-test, Kruskal–Wallis, and Mann–Whitney tests. Results An antihemagglutination cross immune response, intestinal weight, the number of bacterial colonies, and other findings were found to be significant (p < 0.05) for the levels of β-defensin, s-IgA, Th17, T-reg, and IL-17A. Conclusion The 49.8 kDa·MW protein subunit of the Shigella flexneri adhesion molecule could act as a candidate vaccine homologous for shigellosis and cholera in the future.
Collapse
|
17
|
Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, Prince MEP, Lobanova L, Chen X, Papagerakis P. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnol Adv 2022; 59:107961. [PMID: 35427723 DOI: 10.1016/j.biotechadv.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022]
|
18
|
Bartsch YC, St Denis KJ, Kaplonek P, Kang J, Lam EC, Burns MD, Farkas EJ, Davis JP, Boribong BP, Edlow AG, Fasano A, Shreffler W, Zavadska D, Johnson M, Goldblatt D, Balazs AB, Yonker LM, Alter G. Comprehensive antibody profiling of mRNA vaccination in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.07.463592. [PMID: 35018376 PMCID: PMC8750651 DOI: 10.1101/2021.10.07.463592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While children have been largely spared from COVID-19 disease, the emergence of viral variants of concern (VOC) with increased transmissibility, combined with fluctuating mask mandates and school re-openings have led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remains unclear. Given the recent announcement of incomplete immunity induced by the pediatric dose of the BNT162b2 vaccine in young children, here we aimed to deeply profile and compare the vaccine-induced humoral immune response in 6-11 year old children receiving the pediatric (50μg) or adult (100μg) dose of the mRNA-1273 vaccine compared to adults and naturally infected children or children that experienced multi inflammatory syndrome in children (MIS-C) for the first time. Children elicited an IgG dominant vaccine induced immune response, surpassing adults at a matched 100μg dose, but more variable immunity at a 50μg dose. Irrespective of titer, children generated antibodies with enhanced Fc-receptor binding capacity. Moreover, like adults, children generated cross-VOC humoral immunity, marked by a decline of omicron receptor binding domain-binding, but robustly preserved omicron Spike-receptor binding, with robustly preserved Fc-receptor binding capabilities, in a dose dependent manner. These data indicate that while both 50μg and 100μg of mRNA vaccination in children elicits robust cross-VOC antibody responses, 100ug of mRNA in children results in highly preserved omicron-specific functional humoral immunity.
Collapse
Affiliation(s)
| | | | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA, USA
- Massachusetts General Hospital Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Vincent Center for Reproductive Biology, Boston, MA, USA
- Massachusetts General Hospital Food Allergy Center, Division of Pediatric Allergy and Immunology, Boston, MA, USA
- Children's Clinical University Hospital, Riga, Latvia
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Jaewon Kang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Madeleine D Burns
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Eva J Farkas
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Jameson P Davis
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Brittany P Boribong
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Andrea G Edlow
- Massachusetts General Hospital Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Vincent Center for Reproductive Biology, Boston, MA, USA
| | - Alessio Fasano
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Wayne Shreffler
- Massachusetts General Hospital Food Allergy Center, Division of Pediatric Allergy and Immunology, Boston, MA, USA
| | - Dace Zavadska
- Children's Clinical University Hospital, Riga, Latvia
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | | | - Lael M Yonker
- Massachusetts General Hospital Department of Pediatrics, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
19
|
Arshad MA, Hassan FU, Rehman MS, Huws SA, Cheng Y, Din AU. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:883-895. [PMID: 34632119 PMCID: PMC8484983 DOI: 10.1016/j.aninu.2021.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colonization and development of the gut microbiome is a crucial consideration for optimizing the health and performance of livestock animals. This is mainly attributed to the fact that dietary and management practices greatly influence the gut microbiota, subsequently leading to changes in nutrient utilization and immune response. A favorable microbiome can be implanted through dietary or management interventions of livestock animals, especially during early life. In this review, we explore all the possible factors (for example gestation, colostrum, and milk feeding, drinking water, starter feed, inoculation from healthy animals, prebiotics/probiotics, weaning time, essential oil and transgenesis), which can influence rumen microbiome colonization and development. We discuss the advantages and disadvantages of potential strategies used to manipulate gut development and microbial colonization to improve the production and health of newborn calves at an early age when they are most susceptible to enteric disease. Moreover, we provide insights into possible interventions and their potential effects on rumen development and microbiota establishment. Prospects of latest techniques like transgenesis and host genetics have also been discussed regarding their potential role in modulation of rumen microbiome and subsequent effects on gut development and performance in neonatal ruminants.
Collapse
Affiliation(s)
- Muhammad A Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Muhammad S Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University of Belfast, Belfast, BT9 5DL, GB-NIR, UK
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmad U Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
20
|
Nelson S, Curran CC, Sutcliffe DL, Rofaiel G, Chang YC, Easterling L, Wood RP. SARS-CoV-2 Antibody Serology Testing in a 3-Month-Old Organ Donor: A Case Report and Review of Available Literature. Transplant Proc 2021; 53:2435-2437. [PMID: 34301402 PMCID: PMC8249701 DOI: 10.1016/j.transproceed.2021.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a highly prevalent infectious disease. Currently, organs are not being transplanted from donors who are SARS-CoV-2 positive. It remains unclear as to how to differentiate active from recovered patients. We report our recent experience of a 3-month-old deceased organ donor who died as the result of an anoxic brain injury after a cardiopulmonary arrest (presumed sudden infant death syndrome). The child was born to a mother presumed to have coronavirus disease 2019. The donor tested negative for SARS-CoV-2 reverse transcriptase–polymerase chain reaction and positive for SARS-CoV-2 immunoglobulin A antibodies. We suspect this is the first known report of its kind and noteworthy for the organ donation and transplantation community.
Collapse
Affiliation(s)
| | | | | | - George Rofaiel
- Division of Abdominal Transplantation and Advance Hepatobiliary Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Yeh-Chung Chang
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | | | | |
Collapse
|
21
|
Jin X, Zhou W, Luo M, Wang P, Xu Z, Ma K, Cao H, Xu C, Huang Y, Cheng R, Xiao L, Lin X, Pang F, Li Y, Nie H, Jiang Q. Global characterization of B cell receptor repertoire in COVID-19 patients by single-cell V(D)J sequencing. Brief Bioinform 2021; 22:6278607. [PMID: 34015809 PMCID: PMC8194558 DOI: 10.1093/bib/bbab192] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
The world is facing a pandemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Adaptive immune responses are essential for SARS-CoV-2 virus clearance. Although a large body of studies have been conducted to investigate the immune mechanism in COVID-19 patients, we still lack a comprehensive understanding of the BCR repertoire in patients. In this study, we used the single-cell V(D)J sequencing to characterize the BCR repertoire across convalescent COVID-19 patients. We observed that the BCR diversity was significantly reduced in disease compared with healthy controls. And BCRs tend to skew toward different V gene segments in COVID-19 and healthy controls. The CDR3 sequences of heavy chain in clonal BCRs in patients were more convergent than that in healthy controls. In addition, we discovered increased IgG and IgA isotypes in the disease, including IgG1, IgG3 and IgA1. In all clonal BCRs, IgG isotypes had the most frequent class switch recombination events and the highest somatic hypermutation rate, especially IgG3. Moreover, we found that an IgG3 cluster from different clonal groups had the same IGHV, IGHJ and CDR3 sequences (IGHV4-4-CARLANTNQFYDSSSYLNAMDVW-IGHJ6). Overall, our study provides a comprehensive characterization of the BCR repertoire in COVID-19 patients, which contributes to the understanding of the mechanism for the immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiyun Jin
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Wenyang Zhou
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Meng Luo
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Pingping Wang
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Zhaochun Xu
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Kexin Ma
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Huimin Cao
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Chang Xu
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Yan Huang
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Rui Cheng
- Harbin Institute of Technology, China
| | - Lixing Xiao
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | | | | | - Yiqun Li
- Harbin Institute of Technology, China
| | - Huan Nie
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Qinghua Jiang
- School of Life Science and Technology at the Harbin Institute of Technology, China
| |
Collapse
|
22
|
Bartsch YC, Wang C, Zohar T, Fischinger S, Atyeo C, Burke JS, Kang J, Edlow AG, Fasano A, Baden LR, Nilles EJ, Woolley AE, Karlson EW, Hopke AR, Irimia D, Fischer ES, Ryan ET, Charles RC, Julg BD, Lauffenburger DA, Yonker LM, Alter G. Humoral signatures of protective and pathological SARS-CoV-2 infection in children. Nat Med 2021; 27:454-462. [PMID: 33589825 PMCID: PMC8315827 DOI: 10.1038/s41591-021-01263-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread relentlessly, associated with a high frequency of respiratory failure and mortality. Children experience largely asymptomatic disease, with rare reports of multisystem inflammatory syndrome in children (MIS-C). Identifying immune mechanisms that result in these disparate clinical phenotypes in children could provide critical insights into coronavirus disease 2019 (COVID-19) pathogenesis. Using systems serology, in this study we observed in 25 children with acute mild COVID-19 a functional phagocyte and complement-activating IgG response to SARS-CoV-2, similar to the acute responses generated in adults with mild disease. Conversely, IgA and neutrophil responses were significantly expanded in adults with severe disease. Moreover, weeks after the resolution of SARS-CoV-2 infection, children who develop MIS-C maintained highly inflammatory monocyte-activating SARS-CoV-2 IgG antibodies, distinguishable from acute disease in children but with antibody levels similar to those in convalescent adults. Collectively, these data provide unique insights into the potential mechanisms of IgG and IgA that might underlie differential disease severity as well as unexpected complications in children infected with SARS-CoV-2.
Collapse
Affiliation(s)
| | - Chuangqi Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tomer Zohar
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - John S Burke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jaewon Kang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Andrea G Edlow
- Massachusetts General Hospital Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Boston, MA, USA
| | - Alessio Fasano
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
| | | | | | | | | | - Alex R Hopke
- Massachusetts General Hospital, BioMEMS Resource Center, Boston, MA, USA
| | - Daniel Irimia
- Massachusetts General Hospital, BioMEMS Resource Center, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- Massachusetts General Hospital, BioMEMS Resource Center, Boston, MA, USA
| | - Richelle C Charles
- Massachusetts General Hospital, BioMEMS Resource Center, Boston, MA, USA
| | - Boris D Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lael M Yonker
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA.
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
23
|
Teh AYH, Cavacini L, Hu Y, Kumru OS, Xiong J, Bolick DT, Joshi SB, Grünwald-Gruber C, Altmann F, Klempner M, Guerrant RL, Volkin DB, Wang Y, Ma JKC. Investigation of a monoclonal antibody against enterotoxigenic Escherichia coli, expressed as secretory IgA1 and IgA2 in plants. Gut Microbes 2021; 13:1-14. [PMID: 33439092 PMCID: PMC7833773 DOI: 10.1080/19490976.2020.1859813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 02/04/2023] Open
Abstract
Passive immunization with antibodies is a promising approach against enterotoxigenic Escherichia coli diarrhea, a prevalent disease in LMICs. The objective of this study was to investigate expression of a monoclonal anti-ETEC CfaE secretory IgA antibody in N. benthamiana plants, with a view to facilitating access to ETEC passive immunotherapy. SIgA1 and SIgA2 forms of mAb 68-81 were produced by co-expressing the light and engineered heavy chains with J chain and secretory component in N. benthamiana. Antibody expression and assembly were compared with CHO-derived antibodies by SDS-PAGE, western blotting, size-exclusion chromatography and LC-MS peptide mapping. N-linked glycosylation was assessed by rapid fluorescence/mass spectrometry and LC-ESI-MS. Susceptibility to gastric digestion was assessed in an in vitro model. Antibody function was compared for antigen binding, a Caco-2 cell-based ETEC adhesion assay, an ETEC hemagglutination inhibition assay and a murine in vivo challenge study. SIgA1 assembly appeared superior to SIgA2 in plants. Both sub-classes exhibited resistance to degradation by simulated gastric fluid, comparable to CHO-produced 68-61 SIgA1. The plant expressed SIgAs had more homogeneous N-glycosylation than CHO-derived SIgAs, but no alteration of in vitro functional activity was observed, including antibodies expressed in a plant line engineered for mammalian-like N glycosylation. The plant-derived SIgA2 mAb demonstrated protection against diarrhea in a murine infection model. Although antibody yield and purification need to be optimized, anti-ETEC SIgA antibodies produced in a low-cost plant platform are functionally equivalent to CHO antibodies, and provide promise for passive immunotherapy in LMICs.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/metabolism
- Antibodies, Bacterial/therapeutic use
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity
- Bacterial Adhesion/drug effects
- Caco-2 Cells
- Enterotoxigenic Escherichia coli/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Infections/therapy
- Gastric Acid/metabolism
- Glycosylation
- Humans
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin A, Secretory/therapeutic use
- Immunotherapy
- Mice
- Plants, Genetically Modified
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Audrey Y-H Teh
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, UK
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Yue Hu
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Ozan S. Kumru
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Jian Xiong
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - David T. Bolick
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sangeeta B. Joshi
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Clemens Grünwald-Gruber
- Department for Chemistry, Division of Biochemistry, Universität Für Bodenkultur Wien, Vienna, Austria
| | - Friedrich Altmann
- Department for Chemistry, Division of Biochemistry, Universität Für Bodenkultur Wien, Vienna, Austria
| | - Mark Klempner
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Richard L. Guerrant
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David B. Volkin
- Vaccine Analytics and Formulation Center, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, USA
| | - Julian K-C. Ma
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George’s University of London, London, UK
| |
Collapse
|
24
|
Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, Schmidt M. Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. Int J Mol Sci 2020; 21:ijms21239254. [PMID: 33291586 PMCID: PMC7731431 DOI: 10.3390/ijms21239254] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Secretory IgA (SIgA) is the dominant antibody class in mucosal secretions. The majority of plasma cells producing IgA are located within mucosal membranes lining the intestines. SIgA protects against the adhesion of pathogens and their penetration into the intestinal barrier. Moreover, SIgA regulates gut microbiota composition and provides intestinal homeostasis. In this review, we present mechanisms of SIgA generation: T cell-dependent and -independent; in different non-organized and organized lymphoid structures in intestinal lamina propria (i.e., Peyer’s patches and isolated lymphoid follicles). We also summarize recent advances in understanding of SIgA functions in intestinal mucosal secretions with focus on its role in regulating gut microbiota composition and generation of tolerogenic responses toward its members.
Collapse
Affiliation(s)
- Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-627 Poznań, Poland;
- Correspondence: (B.P.); (M.S.)
| | - Katarzyna Tomela
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznań, Poland; (K.T.); (A.M.)
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-627 Poznań, Poland;
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznań, Poland; (K.T.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznań, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego, 60-627 Poznań, Poland;
- Correspondence: (B.P.); (M.S.)
| |
Collapse
|
25
|
Odineal DD, Gershwin ME. The Epidemiology and Clinical Manifestations of Autoimmunity in Selective IgA Deficiency. Clin Rev Allergy Immunol 2020; 58:107-133. [PMID: 31267472 DOI: 10.1007/s12016-019-08756-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective immunoglobulin A deficiency (SIgAD) is the most common primary immunodeficiency, defined as an isolated deficiency of IgA (less than 0.07 g/L). Although the majority of people born with IgA deficiency lead normal lives without significant pathology, there is nonetheless a significant association of IgA deficiency with mucosal infection, increased risks of atopic disease, and a higher prevalence of autoimmune disease. To explain these phenomena, we have performed an extensive literature review to define the geoepidemiology of IgA deficiency and particularly the relative risks for developing systemic lupus erythematosus, hyperthyroidism, hypothyroidism, type 1 diabetes mellitus, Crohn's disease, ulcerative colitis, rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, and vitiligo; these diseases have strong data to support an association. We also note weaker associations with scleroderma, celiac disease, autoimmune hepatitis, immune thrombocytopenic purpura, and autoimmune hemolytic anemia. Minimal if any associations are noted with myasthenia gravis, lichen planus, and multiple sclerosis. Finally, more recent data provide clues on the possible immunologic mechanisms that lead to the association of IgA deficiency and autoimmunity; these lessons are important for understanding the etiology of autoimmune disease.
Collapse
Affiliation(s)
- David D Odineal
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| |
Collapse
|
26
|
Clawson ML, Schuller G, Dickey AM, Bono JL, Murray RW, Sweeney MT, Apley MD, DeDonder KD, Capik SF, Larson RL, Lubbers BV, White BJ, Blom J, Chitko-McKown CG, Brichta-Harhay DM, Smith TPL. Differences between predicted outer membrane proteins of genotype 1 and 2 Mannheimia haemolytica. BMC Microbiol 2020; 20:250. [PMID: 32787780 PMCID: PMC7424683 DOI: 10.1186/s12866-020-01932-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mannheimia haemolytica strains isolated from North American cattle have been classified into two genotypes (1 and 2). Although members of both genotypes have been isolated from the upper and lower respiratory tracts of cattle with or without bovine respiratory disease (BRD), genotype 2 strains are much more frequently isolated from diseased lungs than genotype 1 strains. The mechanisms behind the increased association of genotype 2 M. haemolytica with BRD are not fully understood. To address that, and to search for interventions against genotype 2 M. haemolytica, complete, closed chromosome assemblies for 35 genotype 1 and 34 genotype 2 strains were generated and compared. Searches were conducted for the pan genome, core genes shared between the genotypes, and for genes specific to either genotype. Additionally, genes encoding outer membrane proteins (OMPs) specific to genotype 2 M. haemolytica were identified, and the diversity of their protein isoforms was characterized with predominantly unassembled, short-read genomic sequences for up to 1075 additional strains. RESULTS The pan genome of the 69 sequenced M. haemolytica strains consisted of 3111 genes, of which 1880 comprised a shared core between the genotypes. A core of 112 and 179 genes or gene variants were specific to genotype 1 and 2, respectively. Seven genes encoding predicted OMPs; a peptidase S6, a ligand-gated channel, an autotransporter outer membrane beta-barrel domain-containing protein (AOMB-BD-CP), a porin, and three different trimeric autotransporter adhesins were specific to genotype 2 as their genotype 1 homologs were either pseudogenes, or not detected. The AOMB-BD-CP gene, however, appeared to be truncated across all examined genotype 2 strains and to likely encode dysfunctional protein. Homologous gene sequences from additional M. haemolytica strains confirmed the specificity of the remaining six genotype 2 OMP genes and revealed they encoded low isoform diversity at the population level. CONCLUSION Genotype 2 M. haemolytica possess genes encoding conserved OMPs not found intact in more commensally prone genotype 1 strains. Some of the genotype 2 specific genes identified in this study are likely to have important biological roles in the pathogenicity of genotype 2 M. haemolytica, which is the primary bacterial cause of BRD.
Collapse
Affiliation(s)
- Michael L Clawson
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | - Gennie Schuller
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Aaron M Dickey
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - James L Bono
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | | | | | | | - Keith D DeDonder
- Veterinary and Biomedical Research Center, Inc, Manhattan, KS, USA
| | - Sarah F Capik
- Texas A&M AgriLife Research, Texas A&M University System, Amarillo, TX, USA
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | | | | | - Jochen Blom
- Justus-Liebig-University Giessen, Giessen, Hesse, Germany
| | - Carol G Chitko-McKown
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Dayna M Brichta-Harhay
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Timothy P L Smith
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
27
|
Ghraichy M, Galson JD, Kovaltsuk A, von Niederhäusern V, Pachlopnik Schmid J, Recher M, Jauch AJ, Miho E, Kelly DF, Deane CM, Trück J. Maturation of the Human Immunoglobulin Heavy Chain Repertoire With Age. Front Immunol 2020; 11:1734. [PMID: 32849618 PMCID: PMC7424015 DOI: 10.3389/fimmu.2020.01734] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
B cells play a central role in adaptive immune processes, mainly through the production of antibodies. The maturation of the B cell system with age is poorly studied. We extensively investigated age-related alterations of naïve and antigen-experienced immunoglobulin heavy chain (IgH) repertoires. The most significant changes were observed in the first 10 years of life, and were characterized by altered immunoglobulin gene usage and an increased frequency of mutated antibodies structurally diverging from their germline precursors. Older age was associated with an increased usage of downstream IgH constant region genes and fewer antibodies with self-reactive properties. As mutations accumulated with age, the frequency of germline-encoded self-reactive antibodies decreased, indicating a possible beneficial role of self-reactive B cells in the developing immune system. Our results suggest a continuous process of change through childhood across a broad range of parameters characterizing IgH repertoires and stress the importance of using well-selected, age-appropriate controls in IgH studies.
Collapse
Affiliation(s)
- Marie Ghraichy
- Division of Immunology, University Children's Hospital, University of Zurich, Zurich, Switzerland.,Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Jacob D Galson
- Children's Research Center, University of Zurich, Zurich, Switzerland.,Alchemab Therapeutics Ltd, London, United Kingdom
| | | | - Valentin von Niederhäusern
- Division of Immunology, University Children's Hospital, University of Zurich, Zurich, Switzerland.,Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital, University of Zurich, Zurich, Switzerland.,Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Annaïse J Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,aiNET GmbH, Basel, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Johannes Trück
- Division of Immunology, University Children's Hospital, University of Zurich, Zurich, Switzerland.,Children's Research Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Zhang J, Kong W, Ni J, Guo Z, Yang X, Cao Q, Wang S, Feng Y, Zhou Y, Weng W, Liang S, Li S, Chen Y, Liu J. The epidemiology and clinical feature of selective immunoglobulin a deficiency of Zhejiang Province in China. J Clin Lab Anal 2020; 34:e23440. [PMID: 32715518 PMCID: PMC7595911 DOI: 10.1002/jcla.23440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Background Selective immunoglobulin A deficiency (SIgAD) is the most common primary antibody deficiency disease and frequently reported in the Western countries. However, large‐scale epidemiologic studies on SIgAD in China are still lacking. Methods The clinical information of 555 180 subjects (age >4 years) including the outpatient, inpatient, and healthy subjects who had ordered serum immunoglobulin A, G, M in 9 hospitals of Zhejiang Province in China was collected. The SIgAD individuals were defined as IgA level <0.07 g/L with normal levels of serum IgG and IgM, whose age should be over 4 years, and any other secondary diseases causing SIgAD were also excluded. Then, the geographical and prevalence distribution of SIgAD individuals in Zhejiang Province and patients' clinical characteristics at the time of diagnosis were also reviewed. Result Among these 555 180 subjects who had ordered the immunoglobulin evaluation, the prevalence of SIgAD was 109/555180 (0.02%). The ratio of male to female of these SIgAD individuals was 1:1.37, which also included 87 adults (≥18 years) and 22 children (18 > age >4 years). For adults, the common clinical features were infections (43/87, 49.43%), autoimmune disorders (31/87, 35.63%), allergic cases (5/87, 5.75%), and tumor cases (4/87, 4.60%). Additionally, infectious diseases (20/22, 90.91%), autoimmune disorders (4/22, 18.18%), and allergic cases (1/22, 4.55%) were found in 22 children. Conclusion We first describe a large cohort of SIgAD individuals of Zhejiang Province in China. The incidence was 0.020%. The common clinical features were infection, autoimmune disorders, tumor, and allergy, and the infection rate was higher in children than the adults.
Collapse
Affiliation(s)
- Junwu Zhang
- Department of Clinical Laboratory, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Wanzhong Kong
- Department of Clinical Laboratory, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Jinyao Ni
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Guo
- Department of Clinical Laboratory, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xunjun Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of WMU, Wenzhou, China
| | - Qun Cao
- Department of Clinical Laboratory, The First Hospital of Jiaxing, Jiaxing, China
| | - Sheliang Wang
- Department of Clinical Laboratory, Shaoxing Second Hospital, Jiaxing, China
| | - Yijun Feng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Ying Zhou
- Department of Clinical Laboratory, Lishui City People's Hospital, Lishui, China
| | - Wei Weng
- Department of Clinical Laboratory, Jinhua People's hospital, Jinhua, China
| | - Shanyan Liang
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Shuang Li
- Department of Clinical Laboratory, Ningbo Traditional Chinese Medicine Hospital, Ningbo, China
| | - Yanxia Chen
- Department of Rheumatology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinlin Liu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, hangzhou, China
| |
Collapse
|
29
|
Gnanesh Kumar B, Rawal A. Sequence characterization and N-glycoproteomics of secretory immunoglobulin A from donkey milk. Int J Biol Macromol 2020; 155:605-613. [DOI: 10.1016/j.ijbiomac.2020.03.253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
|
30
|
Brochu HN, Tseng E, Smith E, Thomas MJ, Jones AM, Diveley KR, Law L, Hansen SG, Picker LJ, Gale M, Peng X. Systematic Profiling of Full-Length Ig and TCR Repertoire Diversity in Rhesus Macaque through Long Read Transcriptome Sequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3434-3444. [PMID: 32376650 PMCID: PMC7276939 DOI: 10.4049/jimmunol.1901256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
The diversity of Ig and TCR repertoires is a focal point of immunological studies. Rhesus macaques (Macaca mulatta) are key for modeling human immune responses, placing critical importance on the accurate annotation and quantification of their Ig and TCR repertoires. However, because of incomplete reference resources, the coverage and accuracy of the traditional targeted amplification strategies for profiling rhesus Ig and TCR repertoires are largely unknown. In this study, using long read sequencing, we sequenced four Indian-origin rhesus macaque tissues and obtained high-quality, full-length sequences for over 6000 unique Ig and TCR transcripts, without the need for sequence assembly. We constructed, to our knowledge, the first complete reference set for the constant regions of all known isotypes and chain types of rhesus Ig and TCR repertoires. We show that sequence diversity exists across the entire variable regions of rhesus Ig and TCR transcripts. Consequently, existing strategies using targeted amplification of rearranged variable regions comprised of V(D)J gene segments miss a significant fraction (27-53% and 42-49%) of rhesus Ig/TCR diversity. To overcome these limitations, we designed new rhesus-specific assays that remove the need for primers conventionally targeting variable regions and allow single cell level Ig and TCR repertoire analysis. Our improved approach will enable future studies to fully capture rhesus Ig and TCR repertoire diversity and is applicable for improving annotations in any model organism.
Collapse
Affiliation(s)
- Hayden N Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | | | - Elise Smith
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Matthew J Thomas
- Department of Immunology, University of Washington, Seattle, WA 98109
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA 98109
| | - Aiden M Jones
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
- Genetics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Kayleigh R Diveley
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607
- Genetics Graduate Program, North Carolina State University, Raleigh, NC 27695
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, WA 98109
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA 98109
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA 98109
- Washington National Primate Research Center, University of Washington, Seattle, WA 98121; and
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607;
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
31
|
Ling WL, Lua WH, Gan SKE. Sagacity in antibody humanization for therapeutics, diagnostics and research purposes: considerations of antibody elements and their roles. Antib Ther 2020; 3:71-79. [PMID: 33928226 PMCID: PMC7990220 DOI: 10.1093/abt/tbaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
The humanization of antibodies for therapeutics is a critical process that can determine the success of antibody drug development. However, the science underpinning this process remains elusive with different laboratories having very different methods. Well-funded laboratories can afford automated high-throughput screening methods to derive their best binder utilizing a very expensive initial set of equipment affordable only to a few. Often within these high-throughput processes, only standard key parameters, such as production, binding and aggregation are analyzed. Given the lack of suitable animal models, it is only at clinical trials that immunogenicity and allergy adverse effects are detected through anti-human antibodies as per FDA guidelines. While some occurrences that slip through can be mitigated by additional desensitization protocols, such adverse reactions to grafted humanized antibodies can be prevented at the humanization step. Considerations such as better antibody localization, avoidance of unspecific interactions to superantigens and the tailoring of antibody dependent triggering of immune responses, the antibody persistence on cells, can all be preemptively considered through a holistic sagacious approach, allowing for better outcomes in therapy and for research and diagnostic purposes.
Collapse
Affiliation(s)
- Wei-Li Ling
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Wai-Heng Lua
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- p53 Laboratory, ASTAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648
- Experimental Drug Development Center, ASTAR, 10 Biopolis Road, #05-01, Chromos, Singapore 138670
| |
Collapse
|
32
|
Riley CB, Jenvey CJ, Baker FJ, Corripio A. A pilot study to investigate the measurement of immunoglobulin A in Welsh Cob and Welsh Pony foals' faeces and their dam's milk. N Z Vet J 2020; 68:225-230. [PMID: 32078786 DOI: 10.1080/00480169.2020.1732245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aims: To determine if an ELISA for measurement of IgA in equine serum could be used to measure concentrations of IgA in foal faeces and to determine correlations with concentrations in the milk of the dam.Methods: Faeces from 20 Welsh Cob and Welsh Pony foals and milk from their dams were collected within 12 hours (Day 0) and at 6 days after parturition (Day 6). On Day 6, faeces could not be collected from 2/20 foals, and milk samples could not be collected from 3/20 mares. An equine IgA ELISA validated for serum and plasma was used to measure concentrations of IgA in all samples in triplicate. The precision of the assay for each sample type was determined using modified CV.Results: IgA was not detectable in 7/20 Day 0 faecal samples and in 2/18 Day 6 faecal samples. For samples with detectable IgA, the mean modified CV was 10.5 (95% CI = 6.0-15.0)% for Day 0 faecal samples, and was 6.8 (95% CI = 4.3-9.4)% for Day 6 faecal samples. Median concentrations of IgA in faeces on Day 0 were lower than concentrations on Day 6 (0.7 mg/g vs. 37 mg/g dry matter; p = 0.003). Concentrations of IgA in milk and faeces on Day 6 were statistically correlated (r = 0.59; p = 0.006).Conclusions and clinical relevance: The IgA ELISA showed acceptable precision when used to estimate concentrations of IgA in foal faeces during the first week of life, but IgA could not be detected in 37% of meconium samples collected on Day 0. This assay may be useful for investigation of the role of maternal milk IgA in the gastrointestinal tract of neonatal foals, but further assessment of both accuracy and precision of the ELISA is required.
Collapse
Affiliation(s)
- C B Riley
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - C J Jenvey
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - F J Baker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - A Corripio
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
33
|
Davis SK, Selva KJ, Kent SJ, Chung AW. Serum IgA Fc effector functions in infectious disease and cancer. Immunol Cell Biol 2020; 98:276-286. [PMID: 31785006 PMCID: PMC7217208 DOI: 10.1111/imcb.12306] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Immunoglobulin (Ig) A is the most abundant antibody isotype present at mucosal surfaces and the second most abundant in human serum. In addition to preventing pathogen entry at mucosal surfaces, IgA can control and eradicate bacterial and viral infections through a variety of antibody‐mediated innate effector cell mechanisms. The role of mucosal IgA in infection (e.g. neutralization) and in inflammatory homeostasis (e.g. allergy and autoimmunity) has been extensively investigated; by contrast, serum IgA is comparatively understudied. IgA binding to fragment crystallizable alpha receptor plays a dual role in the activation and inhibition of innate effector cell functions. Mounting evidence suggests that serum IgA induces potent effector functions against various bacterial and some viral infections including Neisseria meningitidis and rotavirus. Furthermore, in the era of immunotherapy, serum IgA provides an interesting alternative to classical IgG monoclonal antibodies to treat cancer and infectious pathogens. Here we discuss the role of serum IgA in infectious diseases with reference to bacterial and viral infections and the potential for IgA as a monoclonal antibody therapy.
Collapse
Affiliation(s)
- Samantha K Davis
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin J Selva
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Garzón-Ospina D, Buitrago SP. Igh locus structure and evolution in Platyrrhines: new insights from a genomic perspective. Immunogenetics 2019; 72:165-179. [PMID: 31838542 DOI: 10.1007/s00251-019-01151-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Non-human primates have been used as animal models because of their phylogenetic closeness to humans. However, the genetic differences between humans and non-human primates must be considered to select the appropriate animal models. Recently, New World monkeys (Platyrrhines) have generated a higher interest in biomedical research, especially in assessing vaccine safety and immunogenicity. Given the continued and renewed interest in Platyrrhines as biomedical models, it is a necessary to have a better and more complete understanding of their immune system and its implications for research. Immunoglobulins (Ig) are the main proteins that mediate humoral immunity. These proteins have evolved as part of an adaptive immune response system derived from ancient vertebrates. There are at least four Ig classes in Prosimians, whereas five have been reported in Catarrhines. Information on the structure and evolution of the loci containing immunoglobulin heavy chain constant genes (Igh) in Platyrrhines, however, is limited. Here, Igh loci were characterized in 10 Platyrrhines using the available whole genome sequences. Human and Macaca Igh loci were also assessed to compare them with their Platyrrhines counterparts. Differences in Igh locus structure were observed between Platyrrhines and Catarrhines. Noteworthy changes occur in the γ gene, which encodes a key Ig involved in organism defense that would favor protection after vaccination. The remarkable differences between the immunoglobulin proteins of Platyrrhines and Catarrhines warrant a cautionary message to biomedical researchers.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| | - Sindy P Buitrago
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| |
Collapse
|
35
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Swedzinski C, Froehlich KA, Abdelsalam KW, Chase C, Greenfield TJ, Koppien-Fox J, Casper DP. Evaluation of essential oils and a prebiotic for newborn dairy calves. Transl Anim Sci 2019; 4:75-83. [PMID: 32704968 PMCID: PMC7200517 DOI: 10.1093/tas/txz150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/03/2019] [Indexed: 01/16/2023] Open
Abstract
A blend of essential oils (EO) and a prebiotic were combined (EOC) to formulate a colostrum-based liquid birth supplement and a separate feeding supplement (Start Strong and Stay Strong, Ralco Inc., Marshall, MN). These products were designed to promote immunity and stimulate appetite to diminish health challenges and stresses experienced by newborn calves. The hypothesis was that calves supplemented with an oral dose of liquid EOC at birth (10-mL aliquot at birth and 10 mL at 12 h of age) when fed the EOC feeding supplement would result in improved growth performance, health, and immunity. The objective was to determine if an additional feeding of liquid EOC at birth in combination with EOC in the milk replacer (MR) would allow calves to demonstrate improved growth, health, and immunity compare with calves only offered EO in MR. Sixty-one Holstein calves (18 males and 43 females) from a commercial dairy operation were blocked by birth date and randomly assigned to 1 of 3 treatments. Treatments were 1) Control (CON): a 24% crude protein (CP):20% fat (as-fed basis) MR; 2) EP: a 24:20 MR with EOC mixed at 1.25 g/d; or 3) EPC: a 24:20 MR with EOC mixed at 1.25 g/d in addition to calves receiving one 10-mL oral dose of liquid EOC at birth and 10 mL again at 12 h. The 24:20 MR was fed via bucket 2 times per day at a rate of 0.57 kg/calf daily for 14 d, increased to 0.85 kg/calf at 2 times per day until 35 d and was reduced to 0.43 kg at 1 time per day at 36 d to facilitate weaning after 42 d. Decoquinate was added to the MR at 41.6 mg/kg for coccidiosis control. Calves were housed in individual hutches bedded with straw with ad libitum access to a 20% CP-pelleted calf starter and water. All data were analyzed using PROC MIXED as a randomized complete block design. Calves in this study had similar (P > 0.10) average daily gains, body weight, and growth measurements. Calves fed EPC had significantly (P < 0.05) higher IgA titers on day 0 of the trial compared with calves fed EP or CON, which was expected as calves were supplemented with liquid EOC at birth and 12 h later demonstrating an increase in immune response. The use of a liquid EOC product being administrated after birth can improve IgA titers to improve the immune status of the new born calf to fight off potential diseases and pathogens. A formulation error resulted in the EOC being fed at half the rate of the previous experiment of 2.5 g/d, which appears to be below an efficacious dosage.
Collapse
Affiliation(s)
- Caitlin Swedzinski
- Department of Veterinary Science, South Dakota State University, Brookings, SD
| | - Kelly A Froehlich
- Faculty of Agriculture and Life Science, Lincoln University, Canterbury, New Zealand
| | - Karim W Abdelsalam
- Department of Veterinary Science, South Dakota State University, Brookings, SD
| | - Christopher Chase
- Department of Veterinary Science, South Dakota State University, Brookings, SD
| | - Tony J Greenfield
- Science Department, Southwest Minnesota State University, Marshall, MN
| | | | - David P Casper
- Furst-McNess Company, Freeport, IL.,Faculty of Agriculture and Life Science, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
37
|
Breedveld A, van Egmond M. IgA and FcαRI: Pathological Roles and Therapeutic Opportunities. Front Immunol 2019; 10:553. [PMID: 30984170 PMCID: PMC6448004 DOI: 10.3389/fimmu.2019.00553] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody class present at mucosal surfaces. The production of IgA exceeds the production of all other antibodies combined, supporting its prominent role in host-pathogen defense. IgA closely interacts with the intestinal microbiota to enhance its diversity, and IgA has a passive protective role via immune exclusion. Additionally, inhibitory ITAMi signaling via the IgA Fc receptor (FcαRI; CD89) by monomeric IgA may play a role in maintaining homeostatic conditions. By contrast, IgA immune complexes (e.g., opsonized pathogens) potently activate immune cells via cross-linking FcαRI, thereby inducing pro-inflammatory responses resulting in elimination of pathogens. The importance of IgA in removal of pathogens is emphasized by the fact that several pathogens developed mechanisms to break down IgA or evade FcαRI-mediated activation of immune cells. Augmented or aberrant presence of IgA immune complexes can result in excessive neutrophil activation, potentially leading to severe tissue damage in multiple inflammatory, or autoimmune diseases. Influencing IgA or FcαRI-mediated functions therefore provides several therapeutic possibilities. On the one hand (passive) IgA vaccination strategies can be developed for protection against infections. Furthermore, IgA monoclonal antibodies that are directed against tumor antigens may be effective as cancer treatment. On the other hand, induction of ITAMi signaling via FcαRI may reduce allergy or inflammation, whereas blocking FcαRI with monoclonal antibodies, or peptides may resolve IgA-induced tissue damage. In this review both (patho)physiological roles as well as therapeutic possibilities of the IgA-FcαRI axis are addressed.
Collapse
Affiliation(s)
- Annelot Breedveld
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC, Amsterdam, Netherlands
- Department of Surgery, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
38
|
Edwards KL, Bansiddhi P, Paris S, Galloway M, Brown JL. The development of an immunoassay to measure immunoglobulin A in Asian elephant feces, saliva, urine and serum as a potential biomarker of well-being. CONSERVATION PHYSIOLOGY 2019; 7:coy077. [PMID: 30906557 PMCID: PMC6425258 DOI: 10.1093/conphys/coy077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/25/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Additional measures of well-being would be beneficial to the management of a variety of species in human care, including elephants. Immunoglobulin A (IgA) is an immune protein associated with pathogen defense, which has been demonstrated to decrease during times of stress, and increase in response to positive stimuli. This paper describes the development and validation of an enzyme immunoassay (EIA) for the quantification of Asian elephant (Elephas maximus) IgA in feces, saliva, urine, and serum. Samples were collected weekly from four females for 6 months to assess IgA and glucocorticoid (GC) concentrations, establish relationships between these two biomarkers, and determine variability in IgA within and between individuals, and across sample types. IgA was quantified in all four sample types, although urinary concentrations were low and sometimes undetectable in individual samples. Concentrations were highly variable within and between individuals, with fecal, salivary and serum IgA, and fecal, salivary and urinary GCs all differing significantly across individuals. Contrary to previous findings, IgA and GC were generally not correlated. Serum IgA was less variable within individuals, with the exception of one female that experienced a brief illness during the study. However, marked inter-individual differences were still apparent. When data from all individuals were combined, fecal IgA was significantly predicted by salivary and urinary IgA; however, this relationship did not hold when individuals were analyzed separately. Analysis of a fifth female that exhibited a more severe systemic illness demonstrated clear increases in fecal IgA and GC, suggesting these may also be useful health biomarkers. Further investigation is needed to determine what sample type is most reflective of biological state in elephants, and how IgA concentrations are associated with health and positive and negative welfare states. Based on observed variability, a longitudinal approach likely will be necessary to use IgA as a measure of well-being.
Collapse
Affiliation(s)
- Katie L Edwards
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA, USA
| | - Pakkanut Bansiddhi
- Center of Excellence in Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, 155 Irrigation Canal Road, Mae Hia, Muang, Chiang Mai, Thailand
| | - Steve Paris
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA, USA
| | - Marie Galloway
- Center for Animal Care Sciences, Smithsonian’s National Zoological Park, 3001 Connecticut Ave, NW, Washington, DC, USA
| | - Janine L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA, USA
| |
Collapse
|
39
|
Edwards KL, Edes AN, Brown JL. Stress, Well-Being and Reproductive Success. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:91-162. [PMID: 31471796 DOI: 10.1007/978-3-030-23633-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Palipane M, Snyder JD, LeMessurier KS, Schofield AK, Woolard SN, Samarasinghe AE. Macrophage CD14 impacts immune defenses against influenza virus in allergic hosts. Microb Pathog 2018; 127:212-219. [PMID: 30529429 DOI: 10.1016/j.micpath.2018.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/15/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Asthma and influenza are leading causes of worldwide morbidity and mortality. Although these two conditions can co-exist in the same patient, the immune parameters that impact disease outcomes are not fully elucidated. The importance of macrophages to both conditions suggested a role for CD14, a co-receptor for endotoxin, as a regulatory mechanism for innate immune responses during asthma and influenza co-morbidity. Herein, we hypothesized that parameters of influenza morbidity will be reduced in the absence of CD14. Age and gender matched wild-type (WT) and CD14 knock-out (KO) mice were subjected to our validated model of Aspergillus-induced model of asthma and/or influenza. Characteristics of disease pathogenesis were investigated using standard methods in weight loss, flow cytometry, airway resistance, histology, quantitative real-time PCR, and viral titer quantification. The absence of CD14 did not have an impact on morbidity as these mice were equally susceptible to disease with similar airway resistance. Peribronchovascular inflammation and goblet cell content were equivalent between WT and KO mice in asthma alone and asthma and influenza co-morbidity. Co-morbid KO mice had less lymphocytes and eosinophils in the airways although their lung viral burden was equivalent to WT. Inflammatory gene signatures were altered in co-morbid mice in each genotype. CD14 expression on macrophages is necessary for airway inflammation but not for viral pathogenesis in allergic hosts.
Collapse
Affiliation(s)
- Maneesha Palipane
- Children's Foundation Research Institute, Memphis, TN, 38103, United States; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38103, United States
| | - John D Snyder
- Children's Foundation Research Institute, Memphis, TN, 38103, United States; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38103, United States
| | - Kim S LeMessurier
- Children's Foundation Research Institute, Memphis, TN, 38103, United States; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38103, United States
| | - Anna K Schofield
- Children's Foundation Research Institute, Memphis, TN, 38103, United States; Colorado State University, Fort Collins, CO 80523, United States
| | - Stacie N Woolard
- Department of Flow Cytometry, St Jude Children's Research Hospital, Memphis, TN, 38105, United States
| | - Amali E Samarasinghe
- Children's Foundation Research Institute, Memphis, TN, 38103, United States; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38103, United States.
| |
Collapse
|
41
|
De Keyser K, Dierick N, Kanto U, Hongsapak T, Buyens G, Kuterna L, Vanderbeke E. Medium-chain glycerides affect gut morphology, immune- and goblet cells in post-weaning piglets: In vitro fatty acid screening with Escherichia coli and in vivo consolidation with LPS challenge. J Anim Physiol Anim Nutr (Berl) 2018; 103:221-230. [PMID: 30280433 DOI: 10.1111/jpn.12998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 01/14/2023]
Abstract
The influence of medium-chain glycerides on performance and gastrointestinal well-being in weaning piglets was assessed. First, caproic (C6), caprylic (C8) and capric (C10) acid activity against Escherichia coli was screened in vitro. Pig flora of the whole small intestine was used as inoculum. Seven in vitro incubations were done in duplicate at pH = 3 and 5: C10 (15 mM), C8 (12 mM), C6 (15, 12, 10 mM), a non-incubated-negative control and incubated negative control. Culture suspensions were plated on E. coli-selective agar. Controls showed bacterial growth. C6 and C8 showed no growth at both pH-values, where C10 showed growth at pH = 5. Secondly, an in vivo study was done with 80 weaned piglets over 42 days, housed in pens of eight animals (five pens/treatment), fed a basal diet containing broken rice/soya bean meal/fish meal and supplemented with C6 and C8 in medium-chain glyceride form (MCT6/8, 0.175%) or antibiotic growth promoter (AGP, 0.020%) (Kasetsart University, Thailand) serving as control. Feed intake, daily gain and feed-to-gain ratio did not differ between MCT6/8 and AGP. Per replicate, two random selected piglets were challenged intravenously with E. coli-lipopolysaccharide (LPS) or saline solution (S) at Days 21 and 28. All challenged animals were sacrificed; blood and digestive tract samples (jejunum/ileum) were collected at Day 35. LPS challenge consistently reduced villus height and crypt depth for MCT6/8 and AGP. However, LPS-challenged piglets supplemented with MCT6/8 restored villus height, where AGP did not. MCT6/8 piglets had higher serum IgA, more jejunal IgA-positive plasma cells and goblet cells than AGP. At the ileal level, results were similar, though less pronounced. The present study offers new insight in the benefits of MCT6/8 over AGP in the post-weaning period. There is in vitro anti-microbial action of C6 and C8 on E. coli. In vivo, MCT6/8 also has protective effects in the small intestine that may result in growth promotion.
Collapse
Affiliation(s)
| | - Noël Dierick
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Uthai Kanto
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Nakhon Pathom, Thailand
| | - Tassanan Hongsapak
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Nakhon Pathom, Thailand
| | | | | | | |
Collapse
|
42
|
Nyari S, Khan SA, Rawlinson G, Waugh CA, Potter A, Gerdts V, Timms P. Vaccination of koalas (Phascolarctos cinereus) against Chlamydia pecorum using synthetic peptides derived from the major outer membrane protein. PLoS One 2018; 13:e0200112. [PMID: 29953523 PMCID: PMC6023247 DOI: 10.1371/journal.pone.0200112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022] Open
Abstract
Chlamydia pecorum is a mucosal infection, which causes debilitating disease of the urinary tract, reproductive tract and ocular sites of koalas (Phascolarctos cinereus). While antibiotics are available for treatment, they are detrimental to the koalas' gastrointestinal tract microflora leaving the implementation of a vaccine as an ideal option for the long-term management of koala populations. We have previously reported on the successes of an anti-chlamydial recombinant major outer membrane protein (rMOMP) vaccine however, recombinant protein based vaccines are not ideal candidates for scale up from the research level to small-medium production level for wider usage. Peptide based vaccines are a promising area for vaccine development, because peptides are stable, cost effective and easily produced. In this current study, we assessed, for the first time, the immune responses to a synthetic peptide based anti-chlamydial vaccine in koalas. Five healthy male koalas were vaccinated with two synthetic peptides derived from C. pecorum MOMP and another five healthy male koalas were vaccinated with full length recombinant C. pecorum MOMP (genotype G). Systemic (IgG) and mucosal (IgA) antibodies were quantified and pre-vaccination levels compared to post-vaccination levels (12 and 26 weeks). MOMP-peptide vaccinated koalas produced Chlamydia-specific IgG and IgA antibodies, which were able to recognise not only the genotype used in the vaccination, but also MOMPs from several other koala C. pecorum genotypes. In addition, IgA antibodies induced at the ocular site not only recognised recombinant MOMP protein but also, whole native chlamydial elementary bodies. Interestingly, some MOMP-peptide vaccinated koalas showed a stronger and more sustained vaccine-induced mucosal IgA antibody response than observed in MOMP-protein vaccinated koalas. These results demonstrate that a synthetic MOMP peptide based vaccine is capable of inducing a Chlamydia-specific antibody response in koalas and is a promising candidate for future vaccine development.
Collapse
Affiliation(s)
- Sharon Nyari
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Shahneaz Ali Khan
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Galit Rawlinson
- Lone Pine Koala Sanctuary, Fig Tree Pocket, Queensland, Australia
| | - Courtney A. Waugh
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Andrew Potter
- Vaccine and Infectious Disease Organisation–International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organisation–International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
43
|
Allosteric Effects between the Antibody Constant and Variable Regions: A Study of IgA Fc Mutations on Antigen Binding. Antibodies (Basel) 2018; 7:antib7020020. [PMID: 31544872 PMCID: PMC6698812 DOI: 10.3390/antib7020020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Therapeutic antibodies have shifted the paradigm of disease treatments from small molecules to biologics, especially in cancer therapy. Despite the increasing number of antibody candidates, much remains unknown about the antibody and how its various regions interact. Recent findings showed that the antibody constant region can govern localization effects that are useful in reducing side effects due to systemic circulation by the commonly used IgG isotypes. Given their localized mucosal effects, IgA antibodies are increasingly promising therapeutic biologics. While the antibody Fc effector cell activity has been a focus point, recent research showed that the Fc could also influence antigen binding, challenging the conventional idea of region-specific antibody functions. To investigate this, we analysed the IgA antibody constant region and its distal effects on the antigen binding regions using recombinant Pertuzumab IgA1 and IgA2 variants. We found that mutations in the C-region reduced Her2 binding experimentally, and computational structural analysis showed that allosteric communications were highly dependent on the antibody hinge, providing strong evidence that we should consider antibodies as whole proteins rather than a sum of functional regions.
Collapse
|
44
|
Lua WH, Ling WL, Yeo JY, Poh JJ, Lane DP, Gan SKE. The effects of Antibody Engineering CH and CL in Trastuzumab and Pertuzumab recombinant models: Impact on antibody production and antigen-binding. Sci Rep 2018; 8:718. [PMID: 29335579 PMCID: PMC5768722 DOI: 10.1038/s41598-017-18892-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Current therapeutic antibodies such as Trastuzumab, are typically of the blood circulatory IgG1 class (Cκ/ CHγ1). Due to the binding to Her2 also present on normal cell surfaces, side effects such as cardiac failure can sometimes be associated with such targeted therapy. Using antibody isotype swapping, it may be possible to reduce systemic circulation through increased tissue localization, thereby minimising unwanted side effects. However, the effects of such modifications have yet to be fully characterized, particularly with regards to their biophysical properties in antigen binding. To do this, we produced all light and heavy chain human isotypes/subtypes recombinant versions of Trastuzumab and Pertuzumab, and studied them with respect to recombinant production and Her2 binding. Our findings show that while the light chain constant region changes have no major effects on production or Her2 binding, some heavy chain isotypes, in particularly, IgM and IgD isotypes, can modulate antigen binding. This study thus provides the groundwork for such isotype modifications to be performed in the future to yield therapeutics of higher efficacy and efficiency.
Collapse
Affiliation(s)
- Wai-Heng Lua
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei-Li Ling
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joshua Yi Yeo
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun-Jie Poh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David Philip Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Samuel Ken-En Gan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,p53 Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
45
|
Metzger F, Mischek D, Stoffers F. The Connected Steady State Model and the Interdependence of the CSF Proteome and CSF Flow Characteristics. Front Neurosci 2017; 11:241. [PMID: 28579938 PMCID: PMC5437178 DOI: 10.3389/fnins.2017.00241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/12/2017] [Indexed: 11/14/2022] Open
Abstract
Here we show that the hydrodynamic radii-dependent entry of blood proteins into cerebrospinal fluid (CSF) can best be modeled with a diffusional system of consecutive interdependent steady states between barrier-restricted molecular flux and bulk flow of CSF. The connected steady state model fits precisely to experimental results and provides the theoretical backbone to calculate the in-vivo hydrodynamic radii of blood-derived proteins as well as individual barrier characteristics. As the experimental reference set we used a previously published large-scale patient cohort of CSF to serum quotient ratios of immunoglobulins in relation to the respective albumin quotients. We related the inter-individual variances of these quotient relationships to the individual CSF flow time and barrier characteristics. We claim that this new concept allows the diagnosis of inflammatory processes with Reibergrams derived from population-based thresholds to be shifted to individualized judgment, thereby improving diagnostic sensitivity. We further use the source-dependent gradient patterns of proteins in CSF as intrinsic tracers for CSF flow characteristics. We assume that the rostrocaudal gradient of blood-derived proteins is a consequence of CSF bulk flow, whereas the slope of the gradient is a consequence of the unidirectional bulk flow and bidirectional pulsatile flow of CSF. Unlike blood-derived proteins, the influence of CSF flow characteristics on brain-derived proteins in CSF has been insufficiently discussed to date. By critically reviewing existing experimental data and by reassessing their conformity to CSF flow assumptions we conclude that the biomarker potential of brain-derived proteins in CSF can be improved by considering individual subproteomic dynamics of the CSF system.
Collapse
Affiliation(s)
- Fabian Metzger
- Department of Neurology, Ulm University HospitalUlm, Germany
| | | | - Frédéric Stoffers
- Fakultät für Mathematik und Wirtschaftswissenschaften, Institute of Analysis, Universität UlmUlm, Germany
| |
Collapse
|
46
|
Hart F, Danielczyk A, Goletz S. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy. Bioengineering (Basel) 2017; 4:bioengineering4020042. [PMID: 28952521 PMCID: PMC5590476 DOI: 10.3390/bioengineering4020042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich) and hematological (CD20) cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.
Collapse
Affiliation(s)
- Felix Hart
- Glycotope GmbH, Robert-Roessle-Street 10, 13125 Berlin, Germany.
| | - Antje Danielczyk
- Glycotope GmbH, Robert-Roessle-Street 10, 13125 Berlin, Germany.
| | - Steffen Goletz
- Glycotope GmbH, Robert-Roessle-Street 10, 13125 Berlin, Germany.
| |
Collapse
|
47
|
Gut Microbiota in a Rat Oral Sensitization Model: Effect of a Cocoa-Enriched Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7417505. [PMID: 28239436 PMCID: PMC5296611 DOI: 10.1155/2017/7417505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Increasing evidence is emerging suggesting a relation between dietary compounds, microbiota, and the susceptibility to allergic diseases, particularly food allergy. Cocoa, a source of antioxidant polyphenols, has shown effects on gut microbiota and the ability to promote tolerance in an oral sensitization model. Taking these facts into consideration, the aim of the present study was to establish the influence of an oral sensitization model, both alone and together with a cocoa-enriched diet, on gut microbiota. Lewis rats were orally sensitized and fed with either a standard or 10% cocoa diet. Faecal microbiota was analysed through metagenomics study. Intestinal IgA concentration was also determined. Oral sensitization produced few changes in intestinal microbiota, but in those rats fed a cocoa diet significant modifications appeared. Decreased bacteria from the Firmicutes and Proteobacteria phyla and a higher percentage of bacteria belonging to the Tenericutes and Cyanobacteria phyla were observed. In conclusion, a cocoa diet is able to modify the microbiota bacterial pattern in orally sensitized animals. As cocoa inhibits the synthesis of specific antibodies and also intestinal IgA, those changes in microbiota pattern, particularly those of the Proteobacteria phylum, might be partially responsible for the tolerogenic effect of cocoa.
Collapse
|
48
|
Ren ST, Zhang XM, Sun PF, Sun LJ, Guo X, Tian T, Zhang J, Guo QY, Li X, Guo LJ, Che J, Wang B, Zhang H. Intranasal Immunization Using Mannatide as a Novel Adjuvant for an Inactivated Influenza Vaccine and Its Adjuvant Effect Compared with MF59. PLoS One 2017; 12:e0169501. [PMID: 28052136 PMCID: PMC5215226 DOI: 10.1371/journal.pone.0169501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Intranasal vaccination is more potent than parenteral injection for the prevention of influenza. However, because the poor efficiency of antigen uptake across the nasal mucosa is a key issue, immunostimulatory adjuvants are essential for intranasal vaccines. The immunomodulator mannatide or polyactin (PA) has been used for the clinical treatment of impaired immunity in China, but its adjuvant effect on an inactivated trivalent influenza vaccine (ITIV) via intranasal vaccination is unclear. To explore the adjuvant effect of PA, an inactivated trivalent influenza virus with or without PA or MF59 was instilled intranasally once a week in BALB/c mice. Humoral immunity was assessed by both the ELISA and hemagglutination inhibition (HI) methods using antigen-specific antibodies. Splenic lymphocyte proliferation and the IFN-γ level were measured to evaluate cell-mediated immunity. The post-vaccination serum HI antibody geometric mean titers (GMTs) for the H1N1 and H3N2 strains, antigen-specific serum IgG and IgA GMTs, mucosal SIgA GMT, splenic lymphocyte proliferation, and IFN-γ were significantly increased in the high-dose PA-adjuvanted vaccine group. The seroconversion rate and the mucosal response for the H3N2 strain were significantly elevated after high-dose PA administration. These adjuvant effects of high-dose PA for the influenza vaccine were comparable with those of the MF59 adjuvant, and abnormal signs or pathological changes were not found in the evaluated organs. In conclusion, PA is a novel mucosal adjuvant for intranasal vaccination with the ITIV that has safe and effective mucosal adjuvanticity in mice and successfully induces both serum and mucosal antibody responses and a cell-mediated response.
Collapse
Affiliation(s)
- Shu-Ting Ren
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- * E-mail: (STR); (HZ); (BW)
| | - Xue-Mei Zhang
- No. 6 Vaccine Workshop, Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Peng-Fei Sun
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Pathology, Xi’an City Center Hospital, Xi’an, China
| | - Li-Juan Sun
- Reagent R&D Dep. Scientific Research Management Center, Capital Bio Technology, Beijing, China
| | - Xue Guo
- No. 6 Vaccine Workshop, Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Tian Tian
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Qi-Yuan Guo
- No. 6 Vaccine Workshop, Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Xue Li
- No. 6 Vaccine Workshop, Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Li-Jun Guo
- Changchun Institute of Biological Products Co., Ltd., Changchun, China
| | - Jin Che
- Therapeutic Vaccines Engineering Center of Shaanxi Province, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Bing Wang
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Therapeutic Vaccines Engineering Center of Shaanxi Province, Xi’an Jiaotong University Health Science Center, Xi’an, China
- * E-mail: (STR); (HZ); (BW)
| | - Hui Zhang
- Department of Pharmacy, Xi’an Medical University Health Science Center, Xi’an, China
- * E-mail: (STR); (HZ); (BW)
| |
Collapse
|
49
|
Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM). Anal Bioanal Chem 2016; 409:589-606. [PMID: 27796459 DOI: 10.1007/s00216-016-0029-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 01/11/2023]
Abstract
Human milk plays a substantial role in the child growth, development and determines their nutritional and health status. Despite the importance of the proteins and glycoproteins in human milk, very little quantitative information especially on their site-specific glycosylation is known. As more functions of milk proteins and other components continue to emerge, their fine-detailed quantitative information is becoming a key factor in milk research efforts. The present work utilizes a sensitive label-free MRM method to quantify seven milk proteins (α-lactalbumin, lactoferrin, secretory immunoglobulin A, immunoglobulin G, immunoglobulin M, α1-antitrypsin, and lysozyme) using their unique peptides while at the same time, quantifying their site-specific N-glycosylation relative to the protein abundance. The method is highly reproducible, has low limit of quantitation, and accounts for differences in glycosylation due to variations in protein amounts. The method described here expands our knowledge about human milk proteins and provides vital details that could be used in monitoring the health of the infant and even the mother. Graphical Abstract The glycopeptides EICs generated from QQQ.
Collapse
|
50
|
Palm AKE, Wattle O, Lundström T, Wattrang E. Secretory immunoglobulin A and immunoglobulin G in horse saliva. Vet Immunol Immunopathol 2016; 180:59-65. [PMID: 27692097 DOI: 10.1016/j.vetimm.2016.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/18/2022]
Abstract
This study aimed to increase the knowledge on salivary antibodies in the horse since these constitute an important part of the immune defence of the oral cavity. For that purpose assays to detect horse immunoglobulin A (IgA) including secretory IgA (SIgA) were set up and the molecular weights of different components of the horse IgA system were estimated. Moreover, samples from 51 clinically healthy horses were tested for total SIgA and IgG amounts in saliva and relative IgG3/5 (IgG(T)) and IgG4/7 (IgGb) content were tested in serum and saliva. Results showed a mean concentration of 74μg SIgA/ml horse saliva and that there was a large inter-individual variation in salivary SIgA concentration. For total IgG the mean concentration was approx. 5 times lower than that of SIgA, i.e. 20μg IgG/ml saliva and the inter-individual variation was lower than that observed for SIgA. The saliva-serum ratio for IgG isotypes IgG3/5 and IgG4/7 was also assessed in the sampled horses and this analysis showed that the saliva-serum ratio of IgG4/7 was in general approximately 4 times higher than that of IgG3/5. The large inter-individual variation in salivary SIgA levels observed for the normal healthy horses in the present study emphasises the need for a large number of observations when studying this parameter especially in a clinical setting. Moreover, our results also indicated that some of the salivary IgG does not originate from serum but may be produced locally. Thus, these results provide novel insight, and a base for further research, into salivary antibody responses of horses.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-751 23 Uppsala, Sweden.
| | - Ove Wattle
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Torbjörn Lundström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Eva Wattrang
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-751 23 Uppsala, Sweden; Department of Microbiology, National Veterinary Institute, SE-751 89 Uppsala, Sweden.
| |
Collapse
|