1
|
Peter A, Berneman ZN, Cools N. Cellular respiration in dendritic cells: Exploring oxygen-dependent pathways for potential therapeutic interventions. Free Radic Biol Med 2025; 227:536-556. [PMID: 39643130 DOI: 10.1016/j.freeradbiomed.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.
Collapse
Affiliation(s)
- Antonia Peter
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
2
|
da Silva CP, Silva MDS, Santana HM, Paloschi MV, Ferreira E Ferreira AA, Brilhante LMV, Cruz LF, Serrath SN, Eulálio MDMC, Setúbal SDS, Vallochi AL, Nery NM, Zuliani JP. Bothrops atrox snake venom decreased MHC-II and CD86 expression in bone marrow-derived dendritic cells. Acta Trop 2024; 260:107426. [PMID: 39393479 DOI: 10.1016/j.actatropica.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
The effect of Bothrops atrox venom (BaV) on the maturation of bone marrow-derived dendritic cells (BMDCs) from mice was investigated, with a focus on selected cell markers, TAP1 expression, and the release of pro-inflammatory cytokines during this process. The objective was to evaluate BaV's impact on dendritic cell (DC) function, as DCs are pivotal in antigen presentation and responsible for initiating the immune response mediated by naïve T cells, as well as regulating the immune system. Bone marrow cells were obtained from Swiss mice, and hematopoietic precursors were differentiated into BMDCs using GM-CSF and IL-4. On the 7th day, BaV and LPS were introduced into the culture, and the cells were analyzed 24 h later. BaV's ability to stimulate BMDC maturation was assessed through the analysis of surface marker expression. The findings demonstrated that BMDCs are highly influenced by culture environment factors, such as GM-CSF and IL-4, and are sensitive to additional stimuli like LPS and BaV. Mature DCs exhibited elevated levels of critical markers for T cell activation, such as MHC-II, CD80, and CD86, displaying specific phenotypic characteristics. However, the observed reduction in MHC-II and CD86 expression following BaV exposure suggests a substantial impact on the immunological activation capacity of these cells, potentially interfering with the adaptive immune response. Furthermore, the selective release of cytokines, such as IL-6, but not TNF-α or IL-1β, indicates differentiated modulation of inflammatory responses by DCs under various stimulation conditions.
Collapse
Affiliation(s)
- Carolina P da Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena D S Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Hallison M Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Alex A Ferreira E Ferreira
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Lívia M V Brilhante
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Larissa F Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Suzanne N Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Micaela de M C Eulálio
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da S Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Adriana L Vallochi
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Neriane M Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil.
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
3
|
Xiao X, Xu F, Jia F. Early Transcriptional Changes in Feline Herpesvirus-1-Infected Crandell-Rees Feline Kidney Cells. Vet Sci 2024; 11:529. [PMID: 39591303 PMCID: PMC11599068 DOI: 10.3390/vetsci11110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
FHV-1 is a highly contagious pathogen that significantly threatens feline health and contributes to rising pet healthcare costs. The mechanisms underlying FHV-1 and host interactions remain poorly understood. For the first time, we conducted a systematic analysis of transcriptomic changes in CRFK cells following FHV-1 infection using RNA-seq. The differentially expressed genes (DEGs) displayed significant associations with cellular components, particularly the chromatin structure. Pathway analysis of the DEGs highlighted key host immune responses, including Toll-like receptors (TLRs), IL-17, TNF, MAPK, and Rap1 signaling pathways. By integrating the RNA-seq and RT-qPCR results, we identified CXCL8, CXCL10, MMP1, MMP9, CSF2, CSF3, CCL20, TLR2, TLR3, TLR4, TNF, and FOS as potentially important genes in the host's immune response to FHV-1. These findings provide valuable insights into the mechanisms underlying FHV-1 and host interactions.
Collapse
Affiliation(s)
- Xiuqing Xiao
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.X.); (F.X.)
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.X.); (F.X.)
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Fan Jia
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.X.); (F.X.)
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| |
Collapse
|
4
|
Teodoro Da Silva L, Tiaki Tiyo B, de Jesus Mota S, Mazzilli Ortega M, Justamante Handel Schmitz G, Nosomi Taniwaki N, Mitsue Namiyama Nishina G, José da Silva Duarte A, Miyuki Oshiro T. Effects of Injectable Solutions on the Quality of Monocyte-Derived Dendritic Cells for Immunotherapy. J Immunol Res 2024; 2024:6817965. [PMID: 38962578 PMCID: PMC11221978 DOI: 10.1155/2024/6817965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024] Open
Abstract
Therapeutic vaccines based on monocyte-derived dendritic cells have been shown to be promising strategies and may act as complementary treatments for viral infections, cancers, and, more recently, autoimmune diseases. Alpha-type-1-polarized dendritic cells (aDC1s) have been shown to induce type-1 immunity with a high capacity to produce interleukin-12p70 (IL-12p70). In the clinical use of cell-based therapeutics, injectable solutions can affect the morphology, immunophenotypic profile, and viability of cells before delivery and their survival after injection. In this sense, preparing a cell suspension that maintains the quality of aDC1s is essential to ensure effective immunotherapy. In the present study, monocytes were differentiated into aDC1s in the presence of IL-4 and GM-CSF. On day 5, the cells were matured by the addition of a cytokine cocktail consisting of IFN-α, IFN-γ, IL-1β, TNF-α, and Poly I:C. After 48 hr, mature aDC1s were harvested and suspended in two different solutions: normal saline and Ringer's lactate. The maintenance of cells in suspension was evaluated after 4, 6, and 8 hr of storage. Cell viability, immunophenotyping, and apoptosis analyses were performed by flow cytometry. Cellular morphology was observed by electron microscopy, and the production of IL-12p70 by aDC1s was evaluated by ELISA. Compared with normal saline, Ringer's lactate solution was more effective at maintaining DC viability for up to 8 hr of incubation at 4 or 22°C.
Collapse
Affiliation(s)
- Laís Teodoro Da Silva
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bruna Tiaki Tiyo
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia de Jesus Mota
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Marina Mazzilli Ortega
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriela Justamante Handel Schmitz
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Telma Miyuki Oshiro
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Jesus S, Panão Costa J, Colaço M, Lebre F, Mateus D, Sebastião AI, Cruz MT, Alfaro-Moreno E, Borges O. Exploring the immunomodulatory properties of glucan particles in human primary cells. Int J Pharm 2024; 655:123996. [PMID: 38490404 DOI: 10.1016/j.ijpharm.2024.123996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The immunomodulatory properties of β-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of β-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of β-glucan-based delivery systems as future vaccine adjuvants.
Collapse
Affiliation(s)
- Sandra Jesus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - João Panão Costa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Mariana Colaço
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Filipa Lebre
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Daniela Mateus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Ana Isabel Sebastião
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | - Maria T Cruz
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal
| | | | - Olga Borges
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
6
|
Xu JC, Wu K, Ma RQ, Li JH, Tao J, Hu Z, Fan XY. Establishment of an in vitro model of monocyte-like THP-1 cells for trained immunity induced by bacillus Calmette-Guérin. BMC Microbiol 2024; 24:130. [PMID: 38643095 PMCID: PMC11031977 DOI: 10.1186/s12866-024-03191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/10/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Mycobacteria bloodstream infections are common in immunocompromised people and usually have disastrous consequences. As the primary phagocytes in the bloodstream, monocytes and neutrophils play critical roles in the fight against bloodstream mycobacteria infections. In contrast to macrophages, the responses of monocytes infected with the mycobacteria have been less investigated. RESULTS In this study, we first established a protocol for infection of non-adherent monocyte-like THP-1 cells (i.e. without the differentiation induced by phorbol 12-myristate 13-acetate (PMA) by bacillus Calmette-Guérin (BCG). Via the protocol, we were then capable of exploring the global transcriptomic profiles of non-adherent THP-1 cells infected with BCG, and found that NF-κB, MAPK and PI3K-Akt signaling pathways were enhanced, as well as some inflammatory chemokine/cytokine genes (e.g. CCL4, CXCL10, TNF and IL-1β) were up-regulated. Surprisingly, the Akt-HIF-mTOR signaling pathway was also activated, which induces trained immunity. In this in vitro infection model, increased cytokine responses to lipopolysaccharides (LPS) restimulation, higher cell viability, and decreased Candida albicans loads were observed. CONCLUSIONS We have first characterized the transcriptomic profiles of BCG-infected non-adherent THP-1 cells, and first developed a trained immunity in vitro model of the cells.
Collapse
Affiliation(s)
- Jin-Chuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Kang Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
- Shanghai R & S Biotech. Co., Ltd, Shanghai, China
- Zhejiang Free Trade Area R & S Biomedical Technology Co., Ltd, Zhoushan, Zhejiang, China
| | - Rui-Qing Ma
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Jian-Hui Li
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Jie Tao
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Swietlik JJ, Bärthel S, Falcomatà C, Fink D, Sinha A, Cheng J, Ebner S, Landgraf P, Dieterich DC, Daub H, Saur D, Meissner F. Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation. Nat Commun 2023; 14:2642. [PMID: 37156840 PMCID: PMC10167354 DOI: 10.1038/s41467-023-38171-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Cell-selective proteomics is a powerful emerging concept to study heterocellular processes in tissues. However, its high potential to identify non-cell-autonomous disease mechanisms and biomarkers has been hindered by low proteome coverage. Here, we address this limitation and devise a comprehensive azidonorleucine labeling, click chemistry enrichment, and mass spectrometry-based proteomics and secretomics strategy to dissect aberrant signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture and in vivo analyses cover more than 10,000 cancer cell-derived proteins and reveal systematic differences between molecular PDAC subtypes. Secreted proteins, such as chemokines and EMT-promoting matrisome proteins, associated with distinct macrophage polarization and tumor stromal composition, differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600 cancer cell-derived proteins including cytokines and pre-metastatic niche formation-associated factors in mouse serum reflect tumor activity in circulation. Our findings highlight how cell-selective proteomics can accelerate the discovery of diagnostic markers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jonathan J Swietlik
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Diana Fink
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ankit Sinha
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jingyuan Cheng
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Ebner
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Daub
- NEOsphere Biotechnologies GmbH, Martinsried, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Hornschuh M, Haas V, Winkel PP, Gökyildirim MY, Mullins CS, Wrobel IM, Manteuffel C, Wirthgen E. Negative Magnetic Sorting Preserves the Functionality of Ex Vivo Cultivated Non-Adherent Human Monocytes. BIOLOGY 2022; 11:1583. [PMID: 36358284 PMCID: PMC9687732 DOI: 10.3390/biology11111583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 01/17/2025]
Abstract
BACKGROUND Monocyte-derived macrophages or dendritic cells are of increasing interest for cellular therapeutic products to treat inflammation-related diseases and cancer. However, the isolation method and the culture conditions applied influence the functionality of cells. For some approaches, the adhesion-induced differentiation into macrophages must be prevented to maintain functions attributed to circulating monocytes. The effects of the isolation method on the functionality of non-adherent peripheral monocytes have not yet been investigated. METHODS The present study examines the impact of the isolation method on cell viability, growth, metabolism, inflammation-induced cytokine response, migratory capacity, and adherence of non-adherent human peripheral monocytes. The monocytes were isolated by magnetic sorting using either positive or negative selection and cultured in cell-repellent plates. RESULTS The purity and yield of monocytes were higher after positive selection. However, the adherence and migratory capacity, cytokine response, and metabolic activity were decreased compared to negatively selected monocytes. The impaired functionality presented in combination with cell shrinking, thus, indicates the start of cell viability loss. Negatively selected non-adherent monocytes showed no impairment in functionality, and the viability remained high. In conclusion, this approach is better suited for conducting ex vivo modifications of monocytes prior to the intended experimental setup or therapeutic application.
Collapse
Affiliation(s)
- Melanie Hornschuh
- Department of Pediatrics, Rostock University Medical Center, 18057 Rostock, Germany
| | - Vivian Haas
- Medical School, Rostock University, 18057 Rostock, Germany
| | - Paul P. Winkel
- Medical School, Rostock University, 18057 Rostock, Germany
| | - Mira Y. Gökyildirim
- Department of Pediatrics, Rostock University Medical Center, 18057 Rostock, Germany
| | - Christina S. Mullins
- Department of General Surgery, Patient Models for Precision Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Ida Maria Wrobel
- Department of Transfusion Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Christian Manteuffel
- Institute of Behavioral Physiology, Research Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Elisa Wirthgen
- Department of Pediatrics, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
9
|
Cheng EL, Kacherovsky N, Pun SH. Aptamer-Based Traceless Multiplexed Cell Isolation Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44136-44146. [PMID: 36149728 DOI: 10.1021/acsami.2c11783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In both biomedical research and clinical cell therapy manufacturing, there is a need for cell isolation systems that recover purified cells in the absence of any selection agent. Reported traceless cell isolation methods using engineered antigen-binding fragments or aptamers have been limited to processing a single cell type at a time. There remains an unmet need for cell isolation processes that rapidly sort multiple target cell types. Here, we utilized two aptamers along with their designated complementary strands (reversal agents) to tracelessly isolate two cell types from a mixed cell population with one aptamer-labeling step and two sequential cell elution steps with reversal agents. We engineered a CD71-binding aptamer (rvCD71apt) and a reversal agent pair to be used simultaneously with our previously reported traceless purification approach using the CD8 aptamer (rvCD8apt) and its reversal agent. We verified the compatibility of the two aptamer displacement mechanisms by flow cytometry and the feasibility of incorporating rvCD71apt with a magnetic solid state. We then combined rvCD71apt with rvCD8apt to isolate activated CD4+ T cells and resting CD8+ cells by eluting these target cells into separate fractions with orthogonal strand displacements. This is the first demonstration of isolating different cell types using two aptamers and reversal agents at the same time. Potentially, different or more aptamers can be included in this traceless multiplexed isolation system for diverse applications with a shortened operation time and a lower production cost.
Collapse
Affiliation(s)
- Emmeline L Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Nataly Kacherovsky
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
10
|
Bloomer SA. Hepatic Macrophage Abundance and Phenotype in Aging and Liver Iron Accumulation. Int J Mol Sci 2022; 23:ijms23126502. [PMID: 35742946 PMCID: PMC9223835 DOI: 10.3390/ijms23126502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Liver macrophages serve important roles in iron homeostasis through phagocytosis of effete erythrocytes and the export of iron into the circulation. Conversely, intracellular iron can alter macrophage phenotype. Aging increases hepatic macrophage number and nonparenchymal iron, yet it is unknown whether age-related iron accumulation alters macrophage number or phenotype. To evaluate macrophages in a physiological model of iron loading that mimicked biological aging, young (6 mo) Fischer 344 rats were given one injection of iron dextran (15 mg/kg), and macrophage number and phenotype were evaluated via immunohistochemistry. A separate group of old (24 mo) rats was treated with 200 mg/kg deferoxamine every 12 h for 4 days. Iron administration to young rats resulted in iron concentrations that matched the values and pattern of tissue iron deposition observed in aged animals; however, iron did not alter macrophage number or phenotype. Aging resulted in significantly greater numbers of M1 (CD68+) and M2 (CD163+) macrophages in the liver, but neither macrophage number nor phenotype were affected by deferoxamine. Double-staining experiments demonstrated that both M1 (iNOS+) and M2 (CD163+) macrophages contained hemosiderin, suggesting that macrophages of both phenotypes stored iron. These results also suggest that age-related conditions other than iron excess are responsible for the accumulation of hepatic macrophages with aging.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington, 1600 Woodland Rd, Abington, PA 19001, USA
| |
Collapse
|
11
|
The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol Ther 2022; 30:2130-2152. [PMID: 35149193 PMCID: PMC9171249 DOI: 10.1016/j.ymthe.2022.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy with antigen-specific T cells is a promising, targeted therapeutic option for patients with cancer as well as for immunocompromised patients with virus infections. In this review, we characterize and compare current manufacturing protocols for the generation of T cells specific to viral and non-viral tumor-associated antigens. Specifically, we discuss: (1) the different methodologies to expand virus-specific T cell and non-viral tumor-associated antigen-specific T cell products, (2) an overview of the immunological principles involved when developing such manufacturing protocols, and (3) proposed standardized methodologies for the generation of polyclonal, polyfunctional antigen-specific T cells irrespective of donor source. Ex vivo expanded cells have been safely administered to treat numerous patients with virus-associated malignancies, hematologic malignancies, and solid tumors. Hence, we have performed a comprehensive review of the clinical trial results evaluating the safety, feasibility, and efficacy of these products in the clinic. In summary, this review seeks to provide new insights regarding antigen-specific T cell technology to benefit a rapidly expanding T cell therapy field.
Collapse
|
12
|
Lai X, Keller C, Santos G, Schaft N, Dörrie J, Vera J. Multi-Level Computational Modeling of Anti-Cancer Dendritic Cell Vaccination Utilized to Select Molecular Targets for Therapy Optimization. Front Cell Dev Biol 2022; 9:746359. [PMID: 35186943 PMCID: PMC8847669 DOI: 10.3389/fcell.2021.746359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Dendritic cells (DCs) can be used for therapeutic vaccination against cancer. The success of this therapy depends on efficient tumor-antigen presentation to cytotoxic T lymphocytes (CTLs) and the induction of durable CTL responses by the DCs. Therefore, simulation of such a biological system by computational modeling is appealing because it can improve our understanding of the molecular mechanisms underlying CTL induction by DCs and help identify new strategies to improve therapeutic DC vaccination for cancer. Here, we developed a multi-level model accounting for the life cycle of DCs during anti-cancer immunotherapy. Specifically, the model is composed of three parts representing different stages of DC immunotherapy - the spreading and bio-distribution of intravenously injected DCs in human organs, the biochemical reactions regulating the DCs' maturation and activation, and DC-mediated activation of CTLs. We calibrated the model using quantitative experimental data that account for the activation of key molecular circuits within DCs, the bio-distribution of DCs in the body, and the interaction between DCs and T cells. We showed how such a data-driven model can be exploited in combination with sensitivity analysis and model simulations to identify targets for enhancing anti-cancer DC vaccination. Since other previous works show how modeling improves therapy schedules and DC dosage, we here focused on the molecular optimization of the therapy. In line with this, we simulated the effect in DC vaccination of the concerted modulation of combined intracellular regulatory processes and proposed several possibilities that can enhance DC-mediated immunogenicity. Taken together, we present a comprehensive time-resolved multi-level model for studying DC vaccination in melanoma. Although the model is not intended for personalized patient therapy, it could be used as a tool for identifying molecular targets for optimizing DC-based therapy for cancer, which ultimately should be tested in in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie and Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christine Keller
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Guido Santos
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Departament of Biochemistry, Microbiology, Cell Biology and Genetics, Faculty of Sciences, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Niels Schaft
- Deutsches Zentrum Immuntherapie and Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jan Dörrie
- Deutsches Zentrum Immuntherapie and Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- RNA Group, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie and Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
13
|
Sayed IM, Masso-Silva JA, Mittal A, Patel A, Lin E, Moshensky A, Shin J, Bojanowski CM, Das S, Akuthota P, Crotty Alexander LE. Inflammatory phenotype modulation in the respiratory tract and systemic circulation of e-cigarette users: a pilot study. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1134-L1146. [PMID: 34704852 PMCID: PMC8715026 DOI: 10.1152/ajplung.00363.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Over 40 million people use e-cigarettes worldwide, but the impact of chronic e-cigarette use on health has not been adequately defined. In particular, effects of e-cigarette aerosol inhalation on inflammation and host defenses across the body are not fully understood. We conducted a longitudinal cohort pilot study to explore changes in the inflammatory state and monocyte function of e-cigarette users (n = 20) versus healthy controls (n = 13) and to evaluate effects of e-cigarette use reduction on the same. Saliva, sputum, and blood were obtained from e-cigarette users at baseline and after a 2-wk intervention of decreased e-cigarette use. Overall, across 38 proteins quantified by multiplex, airway samples from e-cigarette users tended to have decreased levels of immunomodulatory proteins relative to healthy controls, whereas levels of cytokines, chemokines, and growth factors in the circulation tended to be elevated. Specifically, e-cigarette users had lower levels of IL-1 receptor antagonist (IL-1Ra) in saliva (P < 0.0001), with higher IL-1Ra and growth-regulated oncogene (GRO) levels in sputum (P < 0.01 and P < 0.05, respectively), and higher levels of both TNFβ (P < 0.0001) and VEGF (P < 0.0001) in plasma. Circulating monocytes from e-cigarette users had alterations in their inflammatory phenotype in response to reduced e-cigarette use, with blunted IL-8 and IL-6 release upon challenge with bacterial lipopolysaccharide (P < 0.001 and P < 0.05, respectively), suggesting a decreased ability to appropriately respond to bacterial infection. Based on these findings, chronic inhalation of e-cigarette aerosols alters the inflammatory state of the airways and systemic circulation, raising concern for the development of both inflammatory and infectious diseases in chronic users of e-cigarettes.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Jorge A Masso-Silva
- Section of Pulmonary and Critical Care Medicine, Veterans Affairs San Diego Healthcare System, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California
| | - Ankita Mittal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California
| | - Arjun Patel
- Section of Pulmonary and Critical Care Medicine, Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Erica Lin
- Section of Pulmonary and Critical Care Medicine, Veterans Affairs San Diego Healthcare System, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California
| | - Alex Moshensky
- Section of Pulmonary and Critical Care Medicine, Veterans Affairs San Diego Healthcare System, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California
| | - John Shin
- Section of Pulmonary and Critical Care Medicine, Veterans Affairs San Diego Healthcare System, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California
| | - Christine M Bojanowski
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University, New Orleans, Louisiana
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California
| | - Laura E Crotty Alexander
- Section of Pulmonary and Critical Care Medicine, Veterans Affairs San Diego Healthcare System, La Jolla, California
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
14
|
Giorgetti SI, Etcheverrigaray M, Terry F, Martin W, De Groot AS, Ceaglio N, Oggero M, Mufarrege EF. Development of highly stable and de-immunized versions of recombinant alpha interferon: Promising candidates for the treatment of chronic and emerging viral diseases. Clin Immunol 2021; 233:108888. [PMID: 34798238 PMCID: PMC8595249 DOI: 10.1016/j.clim.2021.108888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/04/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022]
Abstract
Human interferon alpha (hIFN-α) administration constitutes the current FDA approved therapy for chronic Hepatitis B and C virus infections. Additionally, hIFN-α treatment efficacy was recently demonstrated in patients with COVID-19. Thus, hIFN-α constitutes a therapeutic alternative for those countries where vaccination is inaccessible and for people who did not respond effectively to vaccination. However, hIFN-α2b exhibits a short plasma half-life resulting in the occurrence of severe side effects. To optimize the cytokine's pharmacokinetic profile, we developed a hyperglycosylated IFN, referred to as GMOP-IFN. Given the significant number of reports showing neutralizing antibodies (NAb) formation after hIFN-α administration, here we applied the DeFT (De-immunization of Functional Therapeutics) approach to develop functional, de-immunized versions of GMOP-IFN. Two GMOP-IFN variants exhibited significantly reduced ex vivo immunogenicity and null antiproliferative activity, while preserving antiviral function. The results obtained in this work indicate that the new de-immunized GMOP-IFN variants constitute promising candidates for antiviral therapy.
Collapse
Affiliation(s)
- Sofía Inés Giorgetti
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 Km 472.4, C.C. 242. (S3000ZAA), Santa Fe, Argentina
| | - Marina Etcheverrigaray
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 Km 472.4, C.C. 242. (S3000ZAA), Santa Fe, Argentina
| | | | | | - Anne Searls De Groot
- EpiVax, Inc., Providence, RI, USA; Institute for Immunology and Informatics, University of Rhode Island, RI, USA
| | - Natalia Ceaglio
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 Km 472.4, C.C. 242. (S3000ZAA), Santa Fe, Argentina
| | - Marcos Oggero
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 Km 472.4, C.C. 242. (S3000ZAA), Santa Fe, Argentina
| | - Eduardo Federico Mufarrege
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 Km 472.4, C.C. 242. (S3000ZAA), Santa Fe, Argentina.
| |
Collapse
|
15
|
Optimized simple and affordable procedure for differentiation of monocyte-derived dendritic cells from LRF: An accessible and valid alternative biological source. Exp Cell Res 2021; 406:112754. [PMID: 34332982 DOI: 10.1016/j.yexcr.2021.112754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
Dendritic cells are one of the most popular immune cells, which plays a remarkable role in both immunotherapy and tolerance induction. Due to unwanted side effects of leukocyte presence in donated blood, the policy of blood service is the pre-storage reduction of leukocytes, which today, filtration is the most common method for this purpose. The filtration method has led to diminished access to Buffy coat as a generally used conventional source of biological cells. We developed a simple, affordable, and reproducible method for dendritic cell differentiation from filter-derived monocytes and, the results of the filter study were compared with differentiated DCs from the conventional buffy coat-derived monocytes. The Monocytes were recovered from leukoreduction filter using an optimized protocol with supplemented PBS buffer. Following the adhesion method, CD14+ Monocyte-enriched population with the purity of 94 % was obtained. After cytokine stimulation over a 6-day period and maturation induction by LPS, differentiated DCs were evaluated for morphology, surface markers (CD86, CD40, CD83 and, HLA-DR), antigen uptake potency and IL-12 secretion. Analysis and comparison of the results represented no significant difference between the two groups. Accordingly, we conclude that leukoreduction filters could be introduced as a reliable and research-grade source of monocyte for DC generation in biological research.
Collapse
|
16
|
Hussein YM, Hendawy DM, Alghamdy AN, Raafat N. Phenotypic and genetic evaluation of human monocyte-derived dendritic cells generated from whole blood for immunotherapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dendritic cells (DCs) recognize different pathogens and cancer cells and activate the adaptive immune response. The generation of effective DC-based cancer vaccines depends on the appropriate differentiation of monocytes in vitro. This study aimed to standardize a protocol for the in vitro differentiation of human peripheral blood monocytes into immature DCs upon treatment with growth factors and generate monocyte-derived DCs (MoDCs). Peripheral blood mononuclear cells were separated from peripheral blood. After monocyte enrichment by plastic adhesion, monocytes were cultured for 6 days in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 to generate immature DCs. The cells were examined by microscopy. Using flow cytometry, DCs were evaluated for the expression of the CD83 and HLA-DR surface antigens, for the uptake of fluorescein isothiocyanate conjugated dextran, and also for the expression of CD80 and CD86 mRNA.
Results
CD80 and CD86 genes expression was upregulated at day six and exhibited a significant difference (P < 0.05). DCs showed positive expression of the CD83 and HLA-DR surface antigens by flow cytometry and FITC-conjugated dextran uptake.
Conclusion
This study represents a preliminary trial to generate immature MoDCs in vitro from blood monocytes collected by the flask adherence method. It offers a panel of surface markers for DCs characterization and provides Immature DCs for experimental procedures after 6 incubation days.
Collapse
|
17
|
The immunogenic maturation of goat monocyte-derived dendritic cells and upregulation of toll-like receptors by five antigens of Haemonchus contortus in-vitro. Res Vet Sci 2021; 136:247-258. [PMID: 33721712 DOI: 10.1016/j.rvsc.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Previously, it was found that several proteins of Haemonchus contortus were involved in the stimulation of the host immune system. However, the information about the selection of superlative antigens with immunogenic efficacies on host DCs is lacking. In the current study, the stimulatory effects of five recombinant proteins (elongation factor-1α, arginine kinase, ES-15, ES-24, and ADP-ribosylation factor 1) of H. contortus on the maturation of goat monocyte-derived dendritic cells (md-DCs) were reported. Recombinant proteins were purified separately in E. coli expression and incubated with isolated goat peripheral blood mononuclear cells (PBMC). Immunofluorescence assay (IFA) results confirmed the binding of these molecules to the md-DC's surface as compared to control groups. In the flow cytometry analysis, recombinant proteins induced md-DC stimulation via the up-regulation of the expression of the costimulatory molecule (CD80) and MHC-II. Quantitative RT-PCR data showed a significant increase in the expression of specific genes of the WNT and toll-like receptor (TLR) signaling pathways. The result of ELISA indicated the higher levels of cytokine (IL-10, IL-12, IFN-γ, and TNF-α) secretion in the md-DC compared to the negative (pET-32a His-Tag) and blank (PBS) control groups. The data gives valuable support in the selection of potential antigens for future studies on the immunomodulation of the host against the infection of H. contortus.
Collapse
|
18
|
Pharmacokinetics Versus In Vitro Antiproliferative Potency to Design a Novel Hyperglycosylated hIFN-α2 Biobetter. Pharm Res 2021; 38:37-50. [PMID: 33443683 DOI: 10.1007/s11095-020-02978-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE IFN4N is a glycoengineered version of recombinant human interferon alpha 2 (rhIFN-α2) that was modified to exhibit four N-glycosylation sites. It shows reduced in vitro specific biological activity (SBA) mainly due to R23 mutation by N23. However, it has improved pharmacokinetics and led to a high in vivo antitumor activity in mice. In order to prepare a new IFN-based biobetter, this work compares the influence of glycosylation (affecting pharmacokinetics) with the in vitro antiproliferative SBA on the in vivo efficacy. METHODS Based on IFN4N, three groups of muteins were designed, produced, and characterized. Group A: variants with the same glycosylation degree (4N) but higher in vitro antiproliferative SBA (R23 restored); group B: muteins with higher glycosylation degree (5N) but similar in vitro antiproliferative activity; and group C: variants with improved glycosylation (5N and 6N) and in vitro antiproliferative bioactivity. RESULTS Glycoengineering was successful for improving pharmacokinetics, and R23 restoration considerably increased in vitro antiproliferative activity of new muteins compared to IFN4N. Hyperglycosylation was able to improve the in vivo efficacy similarly to or even better than R23 restoration. Additionally, the highest glycosylated mutein exhibited the lowest immunogenicity. CONCLUSIONS Hyperglycosylation constitutes a successful strategy to prepare a novel IFN biobetter.
Collapse
|
19
|
Optimised generation of iPSC-derived macrophages and dendritic cells that are functionally and transcriptionally similar to their primary counterparts. PLoS One 2020; 15:e0243807. [PMID: 33332401 PMCID: PMC7746299 DOI: 10.1371/journal.pone.0243807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Induced pluripotent stem cells (iPSC) offer the possibility to generate diverse disease-relevant cell types, from any genetic background with the use of cellular reprogramming and directed differentiation. This provides a powerful platform for disease modeling, drug screening and cell therapeutics. The critical question is how the differentiated iPSC-derived cells translate to their primary counterparts. Our refinement of a published differentiation protocol produces a CD14+ monocytic lineage at a higher yield, in a smaller format and at a lower cost. These iPSC-derived monocytes can be further differentiated into macrophages or dendritic cells (DC), both with similar morphological and functional profiles as compared to their primary counterparts. Transcriptomic analysis of iPSC-derived cells at different stages of differentiation as well as comparison to their blood-derived counterparts demonstrates a complete switch of iPSCs to cells expressing a monocyte, macrophage or DC specific gene profile. iPSC-derived macrophages respond to LPS treatment by inducing expression of classic macrophage pro-inflammatory response markers. Interestingly, though iPSC-derived DC show similarities to monocyte derived DC, they are more similar transcriptionally to a newly described subpopulation of AXL+ DC. Thus, our study provides a detailed and accurate profile of iPSC-derived monocytic lineage cells.
Collapse
|
20
|
Cunningham S, Hackstein H. Recent Advances in Good Manufacturing Practice-Grade Generation of Dendritic Cells. Transfus Med Hemother 2020; 47:454-463. [PMID: 33442340 DOI: 10.1159/000512451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/11/2020] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are pivotal regulators of immune responses, specialized in antigen presentation and bridging the gap between the innate and adaptive immune system. Due to these key features, DCs have become a pillar of the continuously growing field of cellular therapies. Here we review recent advances in good manufacturing practice strategies and their individual specificities in relation to DC production for clinical applications. These take into account both small-scale experimental approaches as well as automated systems for patient care.
Collapse
Affiliation(s)
- Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
21
|
Wang M, Cai Y, Peng Y, Xu B, Hui W, Jiang Y. Exosomal LGALS9 in the cerebrospinal fluid of glioblastoma patients suppressed dendritic cell antigen presentation and cytotoxic T-cell immunity. Cell Death Dis 2020; 11:896. [PMID: 33093453 PMCID: PMC7582167 DOI: 10.1038/s41419-020-03042-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme (GBM) is highly invasive, with a high recurrence rate and limited treatment options, and is the deadliest glioma. Exosomes (Exos) have attracted much attention in the diagnosis and treatment of GBM and are expected to address the severe limitations of biopsy conditions. Exos in the cerebrospinal fluid (CSF) have great potential in GBM dynamic monitoring and intervention strategies. Here, we evaluated the difference in the proteome information of Exos from the CSF (CSF-Exos) between GBM patients and low-grade glioma patients, and the correlations between GBM-CSF-Exos and immunosuppressive properties. Our results indicates that GBM-CSF-Exos contained a unique protein, LGALS9 ligand, which bound to the TIM3 receptor of dendritic cells (DCs) in the CSF to inhibit antigen recognition, processing and presentation by DCs, leading to failure of the cytotoxic T-cell-mediated antitumor immune response. Blocking the secretion of exosomal LGALS9 from GBM tumors could cause mice to exhibit sustained DC tumor antigen-presenting activity and long-lasting antitumor immunity. We concluded that GBM cell-derived exosomal LGALS9 acts as a major regulator of tumor progression by inhibiting DC antigen presentation and cytotoxic T-cell activation in the CSF and that loss of this inhibitory effect can lead to durable systemic antitumor immunity.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Yang Cai
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Bo Xu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710000, Xi'an, Shanxi, China
| | - Wentao Hui
- Department of Biochemistry and Molecular Biology, Nanjing Normal University, 210000, Nanjing, Jiangsu, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
22
|
Mingione A, Ottaviano E, Barcella M, Merelli I, Rosso L, Armeni T, Cirilli N, Ghidoni R, Borghi E, Signorelli P. Cystic Fibrosis Defective Response to Infection Involves Autophagy and Lipid Metabolism. Cells 2020; 9:cells9081845. [PMID: 32781626 PMCID: PMC7463682 DOI: 10.3390/cells9081845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease, with 70% of patients developing a proteinopathy related to the deletion of phenylalanine 508. CF is associated with multiple organ dysfunction, chronic inflammation, and recurrent lung infections. CF is characterized by defective autophagy, lipid metabolism, and immune response. Intracellular lipid accumulation favors microbial infection, and autophagy deficiency impairs internalized pathogen clearance. Myriocin, an inhibitor of sphingolipid synthesis, significantly reduces inflammation, promotes microbial clearance in the lungs, and induces autophagy and lipid oxidation. RNA-seq was performed in Aspergillusfumigatus-infected and myriocin-treated CF patients’ derived monocytes and in a CF bronchial epithelial cell line. Fungal clearance was also evaluated in CF monocytes. Myriocin enhanced CF patients’ monocytes killing of A. fumigatus. CF patients’ monocytes and cell line responded to infection with a profound transcriptional change; myriocin regulates genes that are involved in inflammation, autophagy, lipid storage, and metabolism, including histones and heat shock proteins whose activity is related to the response to infection. We conclude that the regulation of sphingolipid synthesis induces a metabolism drift by promoting autophagy and lipid consumption. This process is driven by a transcriptional program that corrects part of the differences between CF and control samples, therefore ameliorating the infection response and pathogen clearance in the CF cell line and in CF peripheral blood monocytes.
Collapse
Affiliation(s)
- Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (A.M.); (R.G.)
| | - Emerenziana Ottaviano
- Laboratory of Clinical Microbiology, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (E.O.); (M.B.); (E.B.)
| | - Matteo Barcella
- Laboratory of Clinical Microbiology, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (E.O.); (M.B.); (E.B.)
| | - Ivan Merelli
- National Research Council of Italy, Institute for Biomedical Technologies, Via Fratelli Cervi 93, 20090 Milan, Italy;
| | - Lorenzo Rosso
- Health Sciences Department, University of Milan, Thoracic surgery and transplantation Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Natalia Cirilli
- Cystic Fibrosis Referral Care Center, Mother-Child Department, United Hospitals Le Torrette, 60126 Ancona, Italy;
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (A.M.); (R.G.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Elisa Borghi
- Laboratory of Clinical Microbiology, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (E.O.); (M.B.); (E.B.)
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (A.M.); (R.G.)
- Correspondence:
| |
Collapse
|
23
|
A protocol for rapid monocyte isolation and generation of singular human monocyte-derived dendritic cells. PLoS One 2020; 15:e0231132. [PMID: 32271804 PMCID: PMC7145147 DOI: 10.1371/journal.pone.0231132] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
The monocyte-derived dendritic cells (moDCs) are a subset of dendritic cells widely used in immunological studies as a convenient and easy approach after isolation of mononuclear cells directly from peripheral blood mononuclear cells (PBMC). Both the purification and cell culture of monocytes impact on the differentiation of monocytes into moDCs. The methodology to isolate and differentiate monocytes into moDCs is still controversial. We aimed to compare three different protocols for monocyte isolation from PBMC: 1) Cold-aggregation; 2) Percoll gradient; and 3) Magnetic beads cell-enrichment. Additionally we also compared four different monocyte differentiation and culture techniques: 1) Cell culture media; 2) Serum sources; 3) required GM-CSF and IL-4 concentrations; 4) Cell culture systems. We used flow cytometry analysis of light scattering and/or expression of pan surface markers, such as CD3, CD14 and CD209 to determine isolation/differentiation degree. Purified PBMC followed by two steps of cold aggregation, yielded cell viability around 95% with poor monocyte enrichment (monocytes increase vs. lymphocytes reduction was not statistically significant, p>0.05). Conversely, monocyte isolation from PBMC with discontinuous Percoll gradient generated around 50% cell viability. Albeit, we observed a significant reduction (p≤0.05) of lymphocytes contaminants. The magnetic beads cell-enrichment yield cell viability higher than 95%, as high as a significant lymphocyte depletion (p≤0.005) when compared to all other techniques employed. The moDCs showed better differentiation based on increased CD209 expression, but lower CD14 levels, when cells were cultured in RPMI medium plus 500IU/mL of both GM-CSF and IL-4 in a semi-adherent fashion. Serum sources showed no influence on the culture performance. In conclusion, the magnetic beads cell-enrichment showed superior cell viability, indicating that this approach is a better choice to isolate monocytes, and moDCs cultured afterwards in appropriate medium, serum, cytokines and culture system might influence the monocytes differentiation into moDC.
Collapse
|
24
|
Santos EDS, de Aragão-França LS, Meira CS, Cerqueira JV, Vasconcelos JF, Nonaka CKV, Pontes-de-Carvalho LC, Soares MBP. Tolerogenic Dendritic Cells Reduce Cardiac Inflammation and Fibrosis in Chronic Chagas Disease. Front Immunol 2020; 11:488. [PMID: 32318058 PMCID: PMC7154094 DOI: 10.3389/fimmu.2020.00488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic Chagas disease cardiomyopathy (CCC) is the most frequent and severe form of this parasitic disease. CCC is caused by a progressive inflammation in the heart, resulting in alterations that can culminate in heart failure and death. The use of dendritic cells (DCs) appears as an option for the development of treatments due to their important role in regulating immune responses. Here, we investigated whether tolerogenic cells (tDCs) could interfere with the progression of CCC in an experimental model of Chagas disease. The tDCs were generated and characterized as CD11b+ CD11c+ cells, low expression of MHC-II, CD86, CD80, and CD40, and increased expression of PD-L. These cells produced low levels of IL-6 and IL-12p70 and higher levels of IL-10, compared to mature DCs (mDCs). Interestingly, tDCs inhibited lymphoproliferation and markedly increased the population of FoxP3+ Treg cells in vitro, compared to mature DCs. In a mouse model of CCC, treatment with tDCs reduced heart inflammation and fibrosis. Furthermore, tDCs treatment reduced the gene expression of pro-inflammatory cytokines (Ifng and Il12) and of genes related to cardiac remodeling (Col1a2 and Lgals3), while increasing the gene expression of IL-10. Finally, administration of tDCs, increased the percentage of Treg cells in the hearts and spleens of chagasic mice. Ours results show that tolerogenic dendritic cells have therapeutic potential on CCC, inhibiting disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Carolina Kymie Vasques Nonaka
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | | | | |
Collapse
|
25
|
Sasidharan Nair V, Saleh R, Toor SM, Taha RZ, Ahmed AA, Kurer MA, Murshed K, Alajez NM, Abu Nada M, Elkord E. Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer. Clin Epigenetics 2020; 12:13. [PMID: 31941522 PMCID: PMC6964037 DOI: 10.1186/s13148-020-0808-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Increased numbers of myeloid-derived suppressor cells (MDSCs) are positively correlated with poor prognosis and reduced survivals of cancer patients. They play central roles in tumor immune evasion and tumor metastasis. However, limited data are available on phenotypic/transcriptomic characteristics of the different MDSCs subsets in cancer. These cells include immature (I-MDSCs), monocytic (M-MDSCs), and polymorphonuclear/granulocytic (PMN-MDSCs). Methods Phenotypic characterization of myeloid subsets from 27 colorectal cancer (CRC) patients was assessed by flow cytometric analyses. RNA-sequencing of sorted I-MDSCs, PMN-MDSCs, and antigen-presenting cells (APCs) was also performed. Results We found that the levels of I-MDSCs and PMN-MDSCs were increased in tumor tissues (TT), compared with normal tissues (NT) in colorectal cancer. Our functional annotation analyses showed that genes associated with histone deacetylase (HDAC) activation- and DNA methylation-mediated transcriptional silencing were upregulated, and histone acetyl transferase (HAT)-related genes were downregulated in tumor-infiltrating I-MDSCs. Moreover, pathways implicated in cell trafficking and immune suppression, including Wnt, interleukin-6 (IL-6), and mitogen-activated protein kinase (MAPK) signaling, were upregulated in I-MDSCs. Notably, PMN-MDSCs showed downregulation in genes related to DNA methylation and HDAC binding. Using an ex vivo model, we found that inhibition of HDAC activation or neutralization of IL-6 in CRC tumor tissues downregulates the expression of genes associated with immunosuppression and myeloid cell chemotaxis, confirming the importance of HDAC activation and IL-6 signaling pathway in MDSC function and chemotaxis. Conclusions This study provides novel insights into the epigenetic regulations and other molecular pathways in different myeloid cell subsets within the CRC tumor microenvironment (TME), giving opportunities to potential targets for therapeutic benefits.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Ayman A Ahmed
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed A Kurer
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | | | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar. .,Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
26
|
Boudousquié C, Boand V, Lingre E, Dutoit L, Balint K, Danilo M, Harari A, Gannon PO, Kandalaft LE. Development and Optimization of a GMP-Compliant Manufacturing Process for a Personalized Tumor Lysate Dendritic Cell Vaccine. Vaccines (Basel) 2020; 8:vaccines8010025. [PMID: 31947581 PMCID: PMC7157441 DOI: 10.3390/vaccines8010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 12/29/2022] Open
Abstract
With the emergence of immune checkpoint inhibitors and adoptive T-cell therapies, there is a considerable interest in using personalized autologous dendritic cell (DC) vaccines in combination with T cell-targeting immunotherapies to potentially maximize the therapeutic impact of DC vaccines. Here, we describe the development and optimization of a Good Manufacturing Practice (GMP)-compliant manufacturing process based on tumor lysate as a tumor antigen source for the production of an oxidized tumor cell lysate loaded DC (OC-DC) vaccine. The manufacturing process required one day for lysate preparation and six days for OC-DC vaccine production. Tumor lysate production was standardized based on an optimal tumor digestion protocol and the immunogenicity was improved through oxidation using hypochloric acid prior to freeze-thaw cycles resulting in the oxidized tumor cell lysate (OC-L). Next, monocytes were selected using the CliniMACS prodigy closed system and were placed in culture in cell factories in the presence of IL-4 and GM-CSF. Immature DCs were loaded with OC-L and matured using MPLA-IFNγ. After assessing the functionality of the OC-DC cells (IL12p70 secretion and COSTIM assay), the OC-DC vaccine was cryopreserved in multiple doses for single use. Finally, the stability of the formulated doses was tested and validated. We believe this GMP-compliant DC vaccine manufacturing process will facilitate access of patients to personalized DC vaccines, and allow for multi-center clinical trials.
Collapse
Affiliation(s)
- Caroline Boudousquié
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; (V.B.); (E.L.); (L.D.); (K.B.); (A.H.); (P.O.G.)
- Correspondence: (C.B.); (L.E.K.)
| | - Valérie Boand
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; (V.B.); (E.L.); (L.D.); (K.B.); (A.H.); (P.O.G.)
| | - Emilie Lingre
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; (V.B.); (E.L.); (L.D.); (K.B.); (A.H.); (P.O.G.)
| | - Laeticia Dutoit
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; (V.B.); (E.L.); (L.D.); (K.B.); (A.H.); (P.O.G.)
| | - Klara Balint
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; (V.B.); (E.L.); (L.D.); (K.B.); (A.H.); (P.O.G.)
| | - Maxime Danilo
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Alexandre Harari
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; (V.B.); (E.L.); (L.D.); (K.B.); (A.H.); (P.O.G.)
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Philippe O. Gannon
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; (V.B.); (E.L.); (L.D.); (K.B.); (A.H.); (P.O.G.)
| | - Lana E. Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; (V.B.); (E.L.); (L.D.); (K.B.); (A.H.); (P.O.G.)
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland;
- Correspondence: (C.B.); (L.E.K.)
| |
Collapse
|
27
|
Nielsen MC, Andersen MN, Møller HJ. Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro. Immunology 2019; 159:63-74. [PMID: 31573680 DOI: 10.1111/imm.13125] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023] Open
Abstract
Monocyte-derived macrophages (MDMs) generated from peripheral blood monocytes are widely used to model human macrophages for in vitro studies. However, the possible impact of different isolation methods on the resulting MDM phenotype is poorly described. We aimed to investigate the effects of three commonly used monocyte isolation techniques on the resulting MDM phenotype. Plastic adhesion, negative selection, and CD14pos selection were compared. Monocyte-derived macrophages were generated by 5-day culture with macrophage and granulocyte-macrophage colony-stimulating factors. We investigated monocyte and MDM yields, purity, viability, and cell phenotype. CD14pos selection resulted in highest monocyte yield (19·8 × 106 cells, equivalent to 70% of total) and purity (98·7%), compared with negative selection (17·7 × 106 cells, 61% of total, 85·0% purity), and plastic adhesion (6·1 × 106 cells, 12·9% of total, 44·2% purity). Negatively selected monocytes were highly contaminated with platelets. Expression of CD163 and CD14 were significantly lower on CD14pos selection and plastic adhesion monocytes, compared with untouched peripheral blood mononuclear cells. After maturation, CD14pos selection also resulted in the highest MDM purity (98·2%) compared with negative selection (94·5%) and plastic adhesion (66·1%). Furthermore, MDMs from plastic adhesion were M1-skewed (CD80high HLA-DRhigh CD163low ), whereas negative selection MDMs were M2-skewed (CD80low HLA-DRlow CD163high ). Choice of monocyte isolation method not only significantly affects yield and purity, but also impacts resulting phenotype of cultured MDMs. These differences may partly be explained by the presence of contaminating cells when using plastic adherence or negative selection. Careful considerations of monocyte isolation methods are important for designing in vitro assays on MDMs.
Collapse
Affiliation(s)
- Marlene C Nielsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Morten N Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Morrell ED, Bhatraju PK, Mikacenic CR, Radella F, Manicone AM, Stapleton RD, Wurfel MM, Gharib SA. Alveolar Macrophage Transcriptional Programs Are Associated with Outcomes in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 200:732-741. [PMID: 30990758 PMCID: PMC6775881 DOI: 10.1164/rccm.201807-1381oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/16/2019] [Indexed: 11/16/2022] Open
Abstract
Rationale: Serial measurements of alveolar macrophage (AM) transcriptional changes in patients with acute respiratory distress syndrome (ARDS) could identify cell-specific biological programs that are associated with clinical outcomes.Objectives: To determine whether AM transcriptional programs are associated with prolonged mechanical ventilation and 28-day mortality in individuals with ARDS.Methods: We performed genome-wide transcriptional profiling of AMs purified from BAL fluid collected from 35 subjects with ARDS. Cells were obtained at baseline (Day 1), Day 4, and Day 8 after ARDS onset (N = 68 total samples). We identified biological pathways that were enriched at each time point in subjects alive and extubated within 28 days after ARDS onset (alive/extubatedDay28) versus those dead or persistently supported on mechanical ventilation at Day 28 (dead/intubatedDay28).Measurements and Main Results: "M1-like" (classically activated) and proinflammatory gene sets such as IL-6/JAK/STAT5 (Janus kinase/signal transducer and activator of transcription 5) signaling were significantly enriched in AMs isolated on Day 1 in alive/extubatedDay28 versus dead/intubatedDay28 subjects. In contrast, by Day 8, many of these same proinflammatory gene sets were enriched in AMs collected from dead/intubatedDay28 compared with alive/extubatedDay28 subjects. Serially sampled alive/extubatedDay28 subjects were characterized by an AM temporal expression pattern of Day 1 enrichment of innate immune programs followed by prompt downregulation on Days 4 and 8. Dead/intubatedDay28 subjects exhibited an opposite pattern, characterized by progressive upregulation of proinflammatory programs over the course of ARDS. The relationship between AM expression profiles and 28-day clinical status was distinct in subjects with direct (pulmonary) versus indirect (extrapulmonary) ARDS.Conclusions: Clinical outcomes in ARDS are associated with highly distinct AM transcriptional programs.
Collapse
Affiliation(s)
- Eric D. Morrell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, and
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, and
| | - Carmen R. Mikacenic
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, and
| | - Frank Radella
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, and
| | - Anne M. Manicone
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, and
- Center for Lung Biology, University of Washington, Seattle, Washington; and
| | | | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, and
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, and
- Center for Lung Biology, University of Washington, Seattle, Washington; and
| |
Collapse
|
29
|
Wouters E, de Wit NM, Vanmol J, van der Pol SMA, van het Hof B, Sommer D, Loix M, Geerts D, Gustafsson JA, Steffensen KR, Vanmierlo T, Bogie JFJ, Hendriks JJA, de Vries HE. Liver X Receptor Alpha Is Important in Maintaining Blood-Brain Barrier Function. Front Immunol 2019; 10:1811. [PMID: 31417573 PMCID: PMC6685401 DOI: 10.3389/fimmu.2019.01811] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) contributes significantly to the pathogenesis of several neuroinflammatory diseases, including multiple sclerosis (MS). Potential players that regulate BBB function are the liver X receptors (LXRs), which are ligand activated transcription factors comprising two isoforms, LXRα, and LXRβ. However, the role of LXRα and LXRβ in regulating BBB (dys)function during neuroinflammation remains unclear, as well as their individual involvement. Therefore, the goal of the present study is to unravel whether LXR isoforms have different roles in regulating BBB function under neuroinflammatory conditions. We demonstrate that LXRα, and not LXRβ, is essential to maintain barrier integrity in vitro. Specific knockout of LXRα in brain endothelial cells resulted in a more permeable barrier with reduced expression of tight junctions. Additionally, the observed dysfunction was accompanied by increased endothelial inflammation, as detected by enhanced expression of vascular cell adhesion molecule (VCAM-1) and increased transendothelial migration of monocytes toward inflammatory stimuli. To unravel the importance of LXRα in BBB function in vivo, we made use of the experimental autoimmune encephalomyelitis (EAE) MS mouse model. Induction of EAE in a constitutive LXRα knockout mouse and in an endothelial specific LXRα knockout mouse resulted in a more severe disease score in these animals. This was accompanied by higher numbers of infiltrating leukocytes, increased endothelial VCAM-1 expression, and decreased expression of the tight junction molecule claudin-5. Together, this study reveals that LXRα is indispensable for maintaining BBB integrity and its immune quiescence. Targeting the LXRα isoform may help in the development of novel therapeutic strategies to prevent BBB dysfunction, and thereby neuroinflammatory disorders.
Collapse
Affiliation(s)
- Elien Wouters
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nienke M. de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jasmine Vanmol
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Susanne M. A. van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bert van het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Daniela Sommer
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Melanie Loix
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Knut R. Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tim Vanmierlo
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Division Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jeroen F. J. Bogie
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jerome J. A. Hendriks
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
da Silva LT, da Silva WC, de Almeida A, da Silva Reis D, Santillo BT, Rigato PO, da Silva Duarte AJ, Oshiro TM. Characterization of monocyte-derived dendritic cells used in immunotherapy for HIV-1-infected individuals. Immunotherapy 2019; 10:871-885. [PMID: 30073900 DOI: 10.2217/imt-2017-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS A therapeutic vaccine based on monocyte-derived dendritic cells (MDDCs) has been shown to represent a promising strategy for the treatment of cancer and viral infections. Here, we characterized the MDDCs used as an immunogen in a clinical trial for an anti-HIV-1 therapeutic vaccine. PATIENTS & METHODS Monocytes obtained from 17 HIV-infected individuals were differentiated into MDDCs and, after loading with autologous HIV, the cells were characterized concerning surface molecule expression, migratory and phagocytosis capacity, cytokine production and the induction of an effective cell-mediated immune response. RESULTS The MDDCs were able to induce antigen-specific responses in autologous CD4+ and CD8+ T lymphocytes. CONCLUSIONS Despite a large interindividual variability, the results suggested that MDDCs present the potential to promote immune responses in vaccinated patients.
Collapse
Affiliation(s)
- Laís Teodoro da Silva
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Wanessa Cardoso da Silva
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Alexandre de Almeida
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Denise da Silva Reis
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Bruna Tereso Santillo
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | | | - Alberto José da Silva Duarte
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Telma Miyuki Oshiro
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| |
Collapse
|
31
|
CECHIM GIOVANA, CHIES JOSÉA. In vitro generation of human monocyte-derived dendritic cells methodological aspects in a comprehensive review. ACTA ACUST UNITED AC 2019. [DOI: 10.1590/0001-3765201920190310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
da Silva LT, Santillo BT, de Almeida A, Duarte AJDS, Oshiro TM. Using Dendritic Cell-Based Immunotherapy to Treat HIV: How Can This Strategy be Improved? Front Immunol 2018; 9:2993. [PMID: 30619346 PMCID: PMC6305438 DOI: 10.3389/fimmu.2018.02993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Harnessing dendritic cells (DC) to treat HIV infection is considered a key strategy to improve anti-HIV treatment and promote the discovery of functional or sterilizing cures. Although this strategy represents a promising approach, the results of currently published trials suggest that opportunities to optimize its performance still exist. In addition to the genetic and clinical characteristics of patients, the efficacy of DC-based immunotherapy depends on the quality of the vaccine product, which is composed of precursor-derived DC and an antigen for pulsing. Here, we focus on some factors that can interfere with vaccine production and should thus be considered to improve DC-based immunotherapy for HIV infection.
Collapse
Affiliation(s)
- Laís Teodoro da Silva
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Tereso Santillo
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre de Almeida
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alberto Jose da Silva Duarte
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Telma Miyuki Oshiro
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Huber A, Dammeijer F, Aerts JGJV, Vroman H. Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets? Front Immunol 2018; 9:2804. [PMID: 30559743 PMCID: PMC6287551 DOI: 10.3389/fimmu.2018.02804] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC) based cancer immunotherapy aims at the activation of the immune system, and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. DCs represent a heterogeneous cell population, including conventional DCs (cDCs), consisting of cDC1s, cDC2s, plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny and functional properties, such as the capacity to induce CD4+ and CD8+ T-cell activation. MoDCs are most frequently used for vaccination purposes, based on technical aspects such as availability and in vitro expansion. However, whether moDCs are superior over other DC subsets in inducing anti-tumor immune responses, is unknown, and likely depends on tumor type and composition of the tumor microenvironment. In this review, we discuss cellular aspects essential for DC vaccination efficacy, and the most recent findings on different DC subsets that could be used for DC-based cancer immunotherapy. This can prove valuable for the future design of more effective DC vaccines by choosing different DC subsets, and sheds light on the working mechanism of DC immunotherapy.
Collapse
Affiliation(s)
- Anne Huber
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joachim G. J. V. Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Videira PA, Silva M, Martin KC, Sackstein R. Ligation of the CD44 Glycoform HCELL on Culture-Expanded Human Monocyte-Derived Dendritic Cells Programs Transendothelial Migration. THE JOURNAL OF IMMUNOLOGY 2018; 201:1030-1043. [PMID: 29941663 DOI: 10.4049/jimmunol.1800188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
The success of dendritic cell (DC)-based immunotherapeutics critically hinges on the capacity of the vascularly administered cells to enter tissues. Transendothelial migration (TEM) is dictated by an ordered cascade of receptor/ligand interactions. In this study, we examined the key molecular effectors of TEM of human monocyte-derived DCs (mo-DCs) generated by clinically relevant methods: CD14 selection (CD14-S) and plastic adherence selection (PA-S). Without chemokine input, CD14-S cells undergo greater TEM than PA-S cells over TNF-α-stimulated HUVECs. TEM of CD14-S mo-DCs is E-selectin/very late Ag-4 (VLA-4) dependent, and engagement of E-selectin ligands activates VLA-4 on CD14-S mo-DCs but not on PA-S mo-DCs. E-selectin binding glycoforms of P-selectin glycoprotein ligand-1 (PSGL-1) (i.e., cutaneous lymphocyte Ag [CLA]) and CD44 (i.e., hematopoietic cell E-selectin/L-selectin ligand [HCELL]) are both expressed on CD14-S mo-DCs, but only CLA is expressed on PA-S mo-DCs. To elucidate the effect of CD44 or PSGL-1 engagement, mo-DCs were pretreated with their ligands. Ligation of CD44 on CD14-S mo-DCs triggers VLA-4 activation and TEM, whereas PSGL-1 ligation does not. HCELL expression on CD14-S mo-DC can be enforced by cell surface exofucosylation, yielding increased TEM in vitro and enhanced extravasation into bone marrow in vivo. These findings highlight structural and functional pleiotropism of CD44 in priming TEM of mo-DCs and suggest that strategies to enforce HCELL expression may boost TEM of systemically administered CD14-S mo-DCs.
Collapse
Affiliation(s)
- Paula A Videira
- Unidade de Ciências Biomoleculares Aplicadas, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.,Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-190 Lisbon, Portugal.,Congenital Disorders of Glycosylation and Allies-Professionals and Patient Associations International Network, 2829-516 Caparica, Portugal
| | - Mariana Silva
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-190 Lisbon, Portugal.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115; and
| | - Kyle C Martin
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115; and
| | - Robert Sackstein
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; .,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115; and.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
35
|
Marques GS, Silva Z, Videira PA. Antitumor Efficacy of Human Monocyte-Derived Dendritic Cells: Comparing Effects of two Monocyte Isolation Methods. Biol Proced Online 2018; 20:4. [PMID: 29434528 PMCID: PMC5796591 DOI: 10.1186/s12575-018-0069-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023] Open
Abstract
Background Dendritic cells (DCs), which can be used as anti-cancer vaccines, are generally obtained in vitro from isolated CD14+ monocytes (MoDCs). This generates high cell numbers and allows instructing DCs to guarantee effective antitumor responses. However, the impact of the monocyte isolation step in the antitumor effectiveness of the generated MoDCs is still unknown. Here, we compared the most used immunomagnetic technologies for monocyte isolation: magnetic activated cell sorting (MACS) from Miltenyi Biotec and EasySep from STEM CELL. Results MACS technology allowed a higher monocyte yield and purity and, by flow cytometry, monocytes displayed higher size and lower granularity. In the resting state, EasySep_MoDCs showed a higher basal expression of HLA-DR, and no significant response to stimulation by LPS and TNF-α. When stimulated with whole tumor cells lysates, both MoDCs expressed similar levels of maturation and co-stimulatory markers. However, when cultured with autologous T cells, MACS_MoDCs induced significantly higher IFN-γ secretion than EasySep_MoDCs, indicating a stronger induction of Th1 cell response profile. Concordantly, T cells induced by MACS_MoDCs also showed a higher release of cytotoxic granules when in contact with tumor cells. Conclusions Overall, both the MACS and the EasySep isolation immunomagnetic technologies provide monocytes that differentiate into viable and functional MoDCs. In our experimental settings, resting EasySep_MoDCs showed a higher basal level of maturation but show less responsivity to stimuli. On the other hand, MACS_MoDCs, when stimulated with tumor antigens, showed better ability to stimulate Th1 responses and to induce T cell cytotoxicity against tumor cells. Thus, monocyte isolation techniques crucially affect MoDCs’ function and, therefore, should be carefully selected to obtain the desired functionality.
Collapse
Affiliation(s)
- Graça S Marques
- 1CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Zélia Silva
- 1CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,2UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paula A Videira
- 1CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,2UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal.,3CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Kooijman S, Brummelman J, van Els CACM, Marino F, Heck AJR, Mommen GPM, Metz B, Kersten GFA, Pennings JLA, Meiring HD. Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness. J Proteomics 2018; 175:144-155. [PMID: 29317357 DOI: 10.1016/j.jprot.2017.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022]
Abstract
Aluminum-based adjuvants are the most widely used adjuvants in human vaccines. A comprehensive understanding of the mechanism of action of aluminum adjuvants at the molecular level, however, is still elusive. Here, we unravel the effects of aluminum hydroxide Al(OH)3 by a systems-wide analysis of the Al(OH)3-induced monocyte response. Cell response analysis by cytokine release was combined with (targeted) transcriptome and full proteome analysis. Results from this comprehensive study revealed two novel pathways to become activated upon monocyte stimulation with Al(OH)3: the first pathway was IFNβ signaling possibly induced by DAMP sensing pathways like TLR or NOD1 activation, and second the HLA class I antigen processing and presentation pathway. Furthermore, known mechanisms of the adjuvant activity of Al(OH)3 were elucidated in more detail such as inflammasome and complement activation, homeostasis and HLA-class II upregulation, possibly related to increased IFNγ gene expression. Altogether, our study revealed which immunological pathways are activated upon stimulation of monocytes with Al(OH)3, refining our knowledge on the adjuvant effect of Al(OH)3 in primary monocytes. SIGNIFICANCE Aluminum salts are the most used adjuvants in human vaccines but a comprehensive understanding of the working mechanism of alum adjuvants at the molecular level is still elusive. Our Systems Vaccinology approach, combining complementary molecular biological, immunological and mass spectrometry-based techniques gave a detailed insight in the molecular mechanisms and pathways induced by Al(OH)3 in primary monocytes. Several novel immunological relevant cellular pathways were identified: type I interferon secretion potentially induced by TLR and/or NOD like signaling, the activation of the inflammasome and the HLA Class-I and Class-II antigen presenting pathways induced by IFNγ. This study highlights the mechanisms of the most commonly used adjuvant in human vaccines by combing proteomics, transcriptomics and cytokine analysis revealing new potential mechanisms of action for Al(OH)3.
Collapse
Affiliation(s)
- Sietske Kooijman
- Intravacc, Bilthoven, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, The Netherlands; Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | | | - Gideon F A Kersten
- Intravacc, Bilthoven, The Netherlands; Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
37
|
Puray-Chavez M, Tedbury PR, Huber AD, Ukah OB, Yapo V, Liu D, Ji J, Wolf JJ, Engelman AN, Sarafianos SG. Multiplex single-cell visualization of nucleic acids and protein during HIV infection. Nat Commun 2017; 8:1882. [PMID: 29192235 PMCID: PMC5709414 DOI: 10.1038/s41467-017-01693-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023] Open
Abstract
Technical limitations in simultaneous microscopic visualization of RNA, DNA, and proteins of HIV have curtailed progress in this field. To address this need we develop a microscopy approach, multiplex immunofluorescent cell-based detection of DNA, RNA and Protein (MICDDRP), which is based on branched DNA in situ hybridization technology. MICDDRP enables simultaneous single-cell visualization of HIV (a) spliced and unspliced RNA, (b) cytoplasmic and nuclear DNA, and (c) Gag. We use MICDDRP to visualize incoming capsid cores containing RNA and/or nascent DNA and follow reverse transcription kinetics. We also report transcriptional “bursts” of nascent RNA from integrated proviral DNA, and concomitant HIV-1, HIV-2 transcription in co-infected cells. MICDDRP can be used to simultaneously detect multiple viral nucleic acid intermediates, characterize the effects of host factors or drugs on steps of the HIV life cycle, or its reactivation from the latent state, thus facilitating the development of antivirals and latency reactivating agents. Technical limitations in simultaneous microscopic visualization of HIV transcription from individual integration sites have curtailed progress in the field. Here the authors report a branched DNA in situ hybridization method for direct single-cell visualization of HIV DNA, RNA, and protein.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Philip R Tedbury
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA.,Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Andrew D Huber
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Obiaara B Ukah
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Vincent Yapo
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Dandan Liu
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Juan Ji
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Jennifer J Wolf
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Stefan G Sarafianos
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA. .,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA. .,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, 65201, USA. .,Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA.
| |
Collapse
|
38
|
Bhattacharjee J, Das B, Mishra A, Sahay P, Upadhyay P. Monocytes isolated by positive and negative magnetic sorting techniques show different molecular characteristics and immunophenotypic behaviour. F1000Res 2017; 6:2045. [PMID: 29636897 DOI: 10.12688/f1000research.12802.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Magnetic sorting of cells, based on microbead conjugated antibodies (Abs), employs positive as well as negative immunomagnetic separation methods, for isolation of a specific cell population. These microbeads are suggested to be nontoxic, biodegradable carriers conjugated to various antibodies. Isolation of cells through positive selection involves the attachment of antibody conjugated microbeads to the cells of interest, followed by their isolation in the presence of a strong magnetic field to obtain higher purity. Negative selection involves attachment of microbead conjugated antibodies to all other cell populations except the cells of interest, which remain untagged. In the present study, we compared the two methods for their effect on functional and immunophenotypic behavior of isolated CD14+ monocytes. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from blood collected from healthy volunteers by density gradient centrifugation. Human blood derived monocytes were isolated through positive selection and negative selection, making use of the appropriate monocyte isolation kit. Monocytes were then stimulated with lipopolysaccharide (LPS) and their activation and proliferation capacity were examined. The degradation or dissociation of cell-bound microbeads was also investigated. Results: We observed an impaired LPS sensitivity as well as poor activation and proliferation capacity upon stimulation by LPS in positively sorted CD14+ monocytes as compared to negatively sorted CD14+ monocytes. The attached microbeads did not degrade and remained attached to the cells even after 6 days of culture. Conclusions: Our results suggest that positively sorted CD14+ cells exhibit hampered functionality and may result in inaccurate analysis and observations in downstream applications. However, these cells can be used for immediate analytical procedures.
Collapse
Affiliation(s)
- Jashdeep Bhattacharjee
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA.,National Institute of Immunology, New Delhi , India
| | - Barun Das
- National Institute of Immunology, New Delhi , India
| | | | - Preeti Sahay
- National Institute of Immunology, New Delhi , India
| | | |
Collapse
|
39
|
Bhattacharjee J, Das B, Mishra A, Sahay P, Upadhyay P. Monocytes isolated by positive and negative magnetic sorting techniques show different molecular characteristics and immunophenotypic behaviour. F1000Res 2017; 6:2045. [PMID: 29636897 PMCID: PMC5871943 DOI: 10.12688/f1000research.12802.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 01/13/2023] Open
Abstract
Background: Magnetic sorting of cells, based on microbead conjugated antibodies (Abs), employs positive as well as negative immunomagnetic separation methods, for isolation of a specific cell population. These microbeads are suggested to be nontoxic, biodegradable carriers conjugated to various antibodies. Isolation of cells through positive selection involves the attachment of antibody conjugated microbeads to the cells of interest, followed by their isolation in the presence of a strong magnetic field to obtain higher purity. Negative selection involves attachment of microbead conjugated antibodies to all other cell populations except the cells of interest, which remain untagged. In the present study, we compared the two methods for their effect on functional and immunophenotypic behavior of isolated CD14+ monocytes. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from blood collected from healthy volunteers by density gradient centrifugation. Human blood derived monocytes were isolated through positive selection and negative selection, making use of the appropriate monocyte isolation kit. Monocytes were then stimulated with lipopolysaccharide (LPS) and their activation and proliferation capacity were examined. The degradation or dissociation of cell-bound microbeads was also investigated. Results: We observed an impaired LPS sensitivity as well as poor activation and proliferation capacity upon stimulation by LPS in positively sorted CD14+ monocytes as compared to negatively sorted CD14+ monocytes. The attached microbeads did not degrade and remained attached to the cells even after 6 days of culture. Conclusions: Our results suggest that positively sorted CD14+ cells exhibit hampered functionality and may result in inaccurate analysis and observations in downstream applications. However, these cells can be used for immediate analytical procedures.
Collapse
Affiliation(s)
- Jashdeep Bhattacharjee
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA.,National Institute of Immunology, New Delhi , India
| | - Barun Das
- National Institute of Immunology, New Delhi , India
| | | | - Preeti Sahay
- National Institute of Immunology, New Delhi , India
| | | |
Collapse
|
40
|
Bhattacharjee J, Das B, Mishra A, Sahay P, Upadhyay P. Monocytes isolated by positive and negative magnetic sorting techniques show different molecular characteristics and immunophenotypic behaviour. F1000Res 2017; 6:2045. [PMID: 29636897 PMCID: PMC5871943 DOI: 10.12688/f1000research.12802.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 08/19/2023] Open
Abstract
Background: Magnetic sorting of cells, based on microbead conjugated antibodies (Abs), employs positive as well as negative immunomagnetic separation methods, for isolation of a specific cell population. These microbeads are suggested to be nontoxic, biodegradable carriers conjugated to various antibodies. Isolation of cells through positive selection involves the attachment of antibody conjugated microbeads to the cells of interest, followed by their isolation in the presence of a strong magnetic field to obtain higher purity. Negative selection involves attachment of microbead conjugated antibodies to all other cell populations except the cells of interest, which remain untagged. In the present study, we compared the two methods for their effect on functional and immunophenotypic behavior of isolated CD14+ monocytes. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from blood collected from healthy volunteers by density gradient centrifugation. Human blood derived monocytes were isolated through positive selection and negative selection, making use of the appropriate monocyte isolation kit. Monocytes were then stimulated with lipopolysaccharide (LPS) and their activation and proliferation capacity were examined. The degradation or dissociation of cell-bound microbeads was also investigated. Results: We observed an impaired LPS sensitivity as well as poor activation and proliferation capacity upon stimulation by LPS in positively sorted CD14+ monocytes as compared to negatively sorted CD14+ monocytes. The attached microbeads did not degrade and remained attached to the cells even after 6 days of culture. Conclusions: Our results suggest that positively sorted CD14+ cells exhibit hampered functionality and may result in inaccurate analysis and observations in downstream applications. However, these cells can be used for immediate analytical procedures.
Collapse
Affiliation(s)
- Jashdeep Bhattacharjee
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
- National Institute of Immunology, New Delhi , India
| | - Barun Das
- National Institute of Immunology, New Delhi , India
| | | | - Preeti Sahay
- National Institute of Immunology, New Delhi , India
| | | |
Collapse
|
41
|
Kho DT, Johnson R, Robilliard L, du Mez E, McIntosh J, O’Carroll SJ, Angel CE, Graham ES. ECIS technology reveals that monocytes isolated by CD14+ve selection mediate greater loss of BBB integrity than untouched monocytes, which occurs to a greater extent with IL-1β activated endothelium in comparison to TNFα. PLoS One 2017; 12:e0180267. [PMID: 28732059 PMCID: PMC5521748 DOI: 10.1371/journal.pone.0180267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Background We have previously shown that TNFα and IL-1β differentially regulate the inflammatory phenotype of human brain endothelial cells (hCMVECs). In this regard, IL-1β treatment was considerably more potent than TNFα at increasing expression of inflammatory chemokines and leukocyte adhesion molecules. We therefore hypothesised that interaction of the hCMVECs with human monocytes would also be dependent on the activation status of the endothelium. Therefore, the primary aim of this study was to assess whether brain endothelial cells activated by IL-1β or TNFα differed in their interaction with monocytes. Methods Monocyte interaction was measured using the real time, label-free impedance based ECIS technology, to evaluate endothelial barrier integrity during monocyte attachment and transendothelial migration. Results ECIS technology revealed that there was a greater loss of barrier integrity with IL-1β activation and this loss lasted for longer. This was expected and consistent with our hypothesis. However, more striking and concerning was the observation that the method of monocyte enrichment greatly influenced the extent of endothelial barrier compromise. Importantly, we observed that positively isolated monocytes (CD14+ve) caused greater reduction in barrier resistance, than the negatively selected monocytes (untouched). Analysis of the isolated monocyte populations revealed that the CD14+ve isolation consistently yields highly pure monocytes (>92%), whereas the untouched isolation was much more variable, yielding ~70% enrichment on average. These two enrichment methods were compared as it was thought that the presence of non-classical CD16hi monocytes in the untouched enrichment may mediate greater compromise than the classical CD14hi monocytes. This however, was not the case and these observations raise a number of important considerations pertaining to the enrichment strategy, which are essential for generating reliable and consistent data. Conclusions We conclude that IL-1β and TNFα differentially influence monocyte interaction with brain endothelial cells and moreover, the enrichment method also influences the monocyte response as revealed using ECIS technology.
Collapse
Affiliation(s)
- Dan Ting Kho
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rebecca Johnson
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Laverne Robilliard
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Elyce du Mez
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckalnd, New Zealand
| | - Julie McIntosh
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckalnd, New Zealand
| | - Simon J. O’Carroll
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Catherine E. Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckalnd, New Zealand
| | - E. Scott Graham
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
42
|
Mufarrege EF, Giorgetti S, Etcheverrigaray M, Terry F, Martin W, De Groot AS. De-immunized and Functional Therapeutic (DeFT) versions of a long lasting recombinant alpha interferon for antiviral therapy. Clin Immunol 2017; 176:31-41. [PMID: 28089609 DOI: 10.1016/j.clim.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 11/18/2022]
Abstract
Interferon α (IFN-α) exerts potent antiviral, immunomodulatory, and antiproliferative activity and have proven clinical utility in chronic hepatitis B and C virus infections. However, repeated IFN-α administration induces neutralizing antibodies (NAb) against the therapeutic in a significant number of patients. Associations between IFN-α immunogenicity and loss of efficacy have been described. So as to improve the in vivo biological efficacy of IFN-α, a long lasting hyperglycosylated protein (4N-IFN) derived from IFN-α2b wild type (WT-IFN) was developed. However, in silico analysis performed using established in silico methods revealed that 4N-IFN had more T cell epitopes than WT-IFN. In order to develop a safer and more efficient IFN therapy, we applied the DeFT (De-immunization of Functional Therapeutics) approach to producing functional, de-immunized versions of 4N-IFN. Using the OptiMatrix in silico tool in ISPRI, the 4N-IFN sequence was modified to reduce HLA binding potential of specific T cell epitopes. Following verification of predictions by HLA binding assays, eight modifications were selected and integrated in three variants: 4N-IFN(VAR1), (VAR2) and (VAR3). Two of the three variants (VAR1 and VAR3) retained anti-viral function and demonstrated reduced T-cell immunogenicity in terms of T-cell proliferation and Th1 and Th2 cytokine levels, when compared to controls (commercial NG-IFN (non-glycosylated), PEG-IFN, WT-IFN and 4N-IFN). It was previously demonstrated that N-glycosylation improved IFN-α pharmacokinetic properties. Here, we further reduce immunogenicity as measured in vitro using T cell assays and cytokine profiling by modifying the T cell epitope content of a protein (de-immunizing). Taking into consideration the present results and previously reported immunogenicity data for commercial IFN-α2b variants, 4N-IFN(VAR1) and 4N-IFN-4N(VAR3) appear to be promising candidates for improved IFN-α therapy of HCV and HBV.
Collapse
Affiliation(s)
- Eduardo F Mufarrege
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Cultivos Celulares, FBCB, UNL, Santa Fe, Argentina.
| | - Sofía Giorgetti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Cultivos Celulares, FBCB, UNL, Santa Fe, Argentina
| | - Marina Etcheverrigaray
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Cultivos Celulares, FBCB, UNL, Santa Fe, Argentina
| | | | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA; Institute for Immunology and Informatics, University of Rhode Island, RI, USA
| |
Collapse
|
43
|
Nimura F, Zhang LF, Okuma K, Tanaka R, Sunakawa H, Yamamoto N, Tanaka Y. Cross-Linking Cell Surface Chemokine Receptors Leads to Isolation, Activation, and Differentiation of Monocytes into Potent Dendritic Cells. Exp Biol Med (Maywood) 2016; 231:431-43. [PMID: 16565439 DOI: 10.1177/153537020623100409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Monocytes express on the cell surface several kinds of chemokine receptors that facilitate chemotaxis followed by differentiation in target tissues. In the present study, we found that a large number of monocytes from peripheral blood mononuclear cells (PBMCs) tightly adhered to plastic cell culture plates precoated with a monoclonal antibody (mAb, clone T312) specific for human CCR5 but not an isotype control after overnight incubation. Soluble T312 did not induce such adhesion, indicating that cross-linking of CCR5 is required for the enhanced adhesion of monocytes. The adhesion was blocked by a PI3-K inhibitor and an anti-CD18 blocking mAb. Following the cross-linking of CCR5, monocytes synthesized high levels of M-CSF, RANTES, MIP-1α, and MIP-1β associated with a readily detectable downmodulation of CD14, CD4, CCR5, and CXCR4 expression. The T312-enriched monocytes differentiated into dendritic cells (DCs) in the presence of interleukin-4 alone. After maturation with β-interferon, the T312-induced DCs stimulated proliferation of allogeneic naïve CD4+ T cells accompanied by the synthesis of high levels of γ-interferon in vitro. Furthermore, the T312-induced DCs were capable of stimulating antigen-specific human T- and B-cell immune responses in our hu-PBL-SCID mouse system. Finally, screening of other anti-chemokine receptor mAbs showed that select clones of mAbs against CXCR4 and CCR3 were also capable of facilitating enrichment of monocytes similar to T312. These results show that cross-linking of chemokine receptors on monocytes by appropriate mAbs leads to activation and differentiation of monocytes and that the method described herein provides an alternate simple strategy for adherence-based isolation of monocytes and generation of functional DCs.
Collapse
Affiliation(s)
- Fumikazu Nimura
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Van Damme E, Thys K, Tuefferd M, Van Hove C, Aerssens J, Van Loock M. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types. PLoS One 2016; 11:e0164843. [PMID: 27760232 PMCID: PMC5070835 DOI: 10.1371/journal.pone.0164843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/01/2016] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential of HCMV to adapt to or influence different cellular environments to promote its own survival.
Collapse
Affiliation(s)
- Ellen Van Damme
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kim Thys
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Carl Van Hove
- Discovery Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marnix Van Loock
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
- * E-mail:
| |
Collapse
|
45
|
High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat Biotechnol 2016; 34:1052-1059. [PMID: 27598230 PMCID: PMC5064867 DOI: 10.1038/nbt.3666] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
Methods to rapidly assess cell growth would be useful for many applications, including drug susceptibility testing, but current technologies have limited sensitivity or throughput. Here we present an approach to precisely and rapidly measure growth rates of many individual cells simultaneously. We flow cells in suspension through a microfluidic channel with 10–12 resonant mass sensors distributed along its length, weighing each cell repeatedly over the 4–20 min it spends in the channel. Because multiple cells traverse the channel at the same time, we obtain growth rates for >60 cells/h with a resolution of 0.2 pg/h for mammalian cells and 0.02 pg/h for bacteria. We measure the growth of single lymphocytic cells, mouse and human T cells, primary human leukemia cells, yeast, Escherichia coli and Enterococcus faecalis. Our system reveals subpopulations of cells with divergent growth kinetics and enables assessment of cellular responses to antibiotics and antimicrobial peptides within minutes.
Collapse
|
46
|
Hou HW, Petchakup C, Tay HM, Tam ZY, Dalan R, Chew DEK, Li KHH, Boehm BO. Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus. Sci Rep 2016; 6:29410. [PMID: 27381673 PMCID: PMC4933935 DOI: 10.1038/srep29410] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/16/2016] [Indexed: 01/13/2023] Open
Abstract
Advanced management of dysmetabolic syndromes such as diabetes will benefit from a timely mechanistic insight enabling personalized medicine approaches. Herein, we present a rapid microfluidic neutrophil sorting and functional phenotyping strategy for type 2 diabetes mellitus (T2DM) patients using small blood volumes (fingerprick ~100 μL). The developed inertial microfluidics technology enables single-step neutrophil isolation (>90% purity) without immuno-labeling and sorted neutrophils are used to characterize their rolling behavior on E-selectin, a critical step in leukocyte recruitment during inflammation. The integrated microfluidics testing methodology facilitates high throughput single-cell quantification of neutrophil rolling to detect subtle differences in speed distribution. Higher rolling speed was observed in T2DM patients (P < 0.01) which strongly correlated with neutrophil activation, rolling ligand P-selectin glycoprotein ligand 1 (PSGL-1) expression, as well as established cardiovascular risk factors (cholesterol, high-sensitive C-reactive protein (CRP) and HbA1c). Rolling phenotype can be modulated by common disease risk modifiers (metformin and pravastatin). Receiver operating characteristics (ROC) and principal component analysis (PCA) revealed neutrophil rolling as an important functional phenotype in T2DM diagnostics. These results suggest a new point-of-care testing methodology, and neutrophil rolling speed as a functional biomarker for rapid profiling of dysmetabolic subjects in clinical and patient-oriented settings.
Collapse
Affiliation(s)
- Han Wei Hou
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Chayakorn Petchakup
- Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Hui Min Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Zhi Yang Tam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Endocrine and Diabetes, Tan Tock Seng Hospital, Singapore
| | - Daniel Ek Kwang Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Endocrine and Diabetes, Tan Tock Seng Hospital, Singapore
| | - King Ho Holden Li
- Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Endocrine and Diabetes, Tan Tock Seng Hospital, Singapore.,Imperial College London, UK
| |
Collapse
|
47
|
Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation. Stem Cells Int 2016; 2016:8468549. [PMID: 27127520 PMCID: PMC4834412 DOI: 10.1155/2016/8468549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022] Open
Abstract
Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.
Collapse
|
48
|
Fesnak A, Lin C, Siegel DL, Maus MV. CAR-T Cell Therapies From the Transfusion Medicine Perspective. Transfus Med Rev 2016; 30:139-45. [PMID: 27067907 DOI: 10.1016/j.tmrv.2016.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
The use of chimeric antigen receptor (CAR)-T cell therapy for the treatment of hematologic malignancies has generated significant excitement over the last several years. From a transfusion medicine perspective, the implementation of CAR-T therapy as a potential mainstay treatment for not only hematologic but also solid-organ malignancies represents a significant opportunity for growth and expansion. In this review, we will describe the rationale for the development of genetically redirected T cells as a cancer therapeutic, the different elements that are required to engineer these cells, as well as an overview of the process by which patient cells are harvested and processed to create and subsequently validate CAR-T cells. Finally, we will briefly describe some of the toxicities and clinical efficacy of CAR-T cells in the setting of patients with advanced malignancy.
Collapse
Affiliation(s)
- Andrew Fesnak
- Division of Transfusion Medicine & Therapeutic Pathology, Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - ChieYu Lin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Don L Siegel
- Division of Transfusion Medicine & Therapeutic Pathology, Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
49
|
Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer 2015; 15:1009. [PMID: 26704308 PMCID: PMC4690241 DOI: 10.1186/s12885-015-2025-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tumor immune-escape has been related to the ability of cancer cells to inhibit T cell activation and dendritic cell (DC) differentiation. We previously identified a tumor initiating population, expressing the mesenchymal marker CD105, which fulfills the criteria for definition as cancer stem cells (CD105(+) CSCs) able to release extracellular vesicles (EVs) that favor tumor progression and metastases. The aim of the present study was to compare the ability of renal CSCs and derived EVs to modulate the behavior of monocyte-derived DCs with a non-tumor initiating renal cancer cell population (CD105(-) TCs) and their EVs. METHODS Maturation of monocyte-derived DCs was studied in presence of CD105(+) CSCs and CD105(-) TCs and their derived EVs. DC differentiation experiments were evaluated by cytofluorimetric analysis. T cell proliferation and ELISA assays were performed. Monocytes and T cells were purified from peripheral blood mononuclear cells obtained from healthy donors. RESULTS The results obtained demonstrate that both CD105(+) CSCs and CD105(-) TCs impaired the differentiation process of DCs from monocytes. However, the immune-modulatory effect of CD105(+) CSCs was significantly greater than that of CD105(-) TCs. EVs derived from CD105(+) CSCs and in less extent, those derived from CD105(-) TCs retained the ability to impair monocyte maturation and T cell activation. The mechanism has been mainly related to the expression of HLA-G by tumor cells and to its release in a form associated to EVs. HLA-G blockade significantly reduced the inhibitory effect of EVs on DC differentiation. CONCLUSIONS In conclusion, the results of the present study indicate that renal cancer cells and in particular CSCs and derived EVs impair maturation of DCs and T cell immune response by a mechanism involving HLA-G.
Collapse
|
50
|
Ponte C, Peres L, Marinho S, Lima J, Siqueira M, Pedro T, De Luca P, Cascabulho C, Castello-Branco LR, Antas PRZ. In vitro T-cell profile induced by BCG Moreau in healthy Brazilian volunteers. Hum Vaccin Immunother 2015; 11:450-7. [PMID: 25483636 DOI: 10.4161/21645515.2014.970954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) remains the world's leading cause of morbidity and mortality. Although Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only vaccine currently in use, its efficacy is highly variable. It has been suggested that early antigenic presentation is a pivotal event leading to a better immune response in TB vaccine models. To investigate this further, we compared in vitro cell-mediated immune responses in the context of early sensitization with TB (i.e. healthy adults vaccinated with BCG when they were young, HD; n = 25) to those in its absence (i.e., newborns with naïve immunity to TB, UV; n = 10) by challenging mononuclear cells with BCG Moreau. After 48 hours, CD4+ and CD8+ T cells were harvested from both groups and stained for PD-1/CD25/ FOXP3. In addition, supernatants were assayed for a broad range of cytokines using an array system. The HD group showed robust reactivity to Protein Purified Derivative and BCG while the naïve, UV group did not. Similarly, in terms of PD-1 expression and Treg cells (CD4+/CD25high(+)/FOXP3+), only the HD group showed higher levels in CD4 lymphocytes. Otherwise, only the UV group showed expression of CD25dim+ as an activation marker dependent on BCG infection. In terms of cytokines, the HD group showed higher levels of Th1 (IL-2/TNF-α/IFN-γ) and regulatory (IL-10) profiles, with monocytes, but not Tr1 cells, acting as the main source of IL-10. Taken together, our results highlight critical roles of early sensitization with TB in mounting cell-mediated immune responses.
Collapse
Key Words
- BCG vaccine
- BCG, bacillus calmette-guérin
- CBA, cytometric beads array kit
- CBMC, cord blood mononuclear cells
- ELISA, enzyme-linked immunosorbent assay
- ELISPOT, enzyme linked immunospot
- FACS, fluorescence activating cell sorting
- HD, healthy donor
- HIV, human immunodeficiency virus
- HLA, human leukocyte antigen
- PBMC, peripheral blood mononuclear cells
- PHA, phytohaemaglutinin
- PPD, protein purified derivative
- TB, tuberculosis
- UV, umbilical vein
- cytokine
- iNKT, invariant natural killer T cells
- lymphocyte
- phenotyping
- tuberculosis
Collapse
Affiliation(s)
- C Ponte
- a Laboratório de Imunologia Clínica; Instituto Oswaldo Cruz ; Fiocruz , Rio de Janeiro , Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|