1
|
Wang W, Li N, Guo X. The crosstalk between ILC3s and adaptive immunity in diseases. FEBS J 2024; 291:3965-3977. [PMID: 37994218 DOI: 10.1111/febs.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
RORγt+ group 3 innate lymphoid cells (ILC3s), the innate counterpart of Th17 cells, are enriched in the mucosal area and lymphoid tissues. ILC3s interact with a variety of cells through their effector molecules and play an important role in the host defense against a spectrum of infections. Recent studies suggest that the extensive crosstalk between ILC3s and adaptive immune cells, especially T cells, is essential for maintaining tissue homeostasis. Here we discuss recent advances in the crosstalk between ILC3s and adaptive immune responses in multiple tissues and diseases. Understanding how ILC3s engage with adaptive immune cells will enhance our comprehension of diseases and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Na Li
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 2019; 19:599-613. [PMID: 31350531 PMCID: PMC6982279 DOI: 10.1038/s41577-019-0194-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Innate lymphoid cells (ILCs) are enriched at barrier surfaces of the mammalian body where they rapidly respond to host, microbial or environmental stimuli to promote immunity or tissue homeostasis. Furthermore, ILCs are dysregulated in multiple human diseases. Over the past decade, substantial advances have been made in identifying the heterogeneity and functional diversity of ILCs, which have revealed striking similarities to T cell subsets. However, emerging evidence indicates that ILCs also have a complex role in directly influencing the adaptive immune response in the context of development, homeostasis, infection or inflammation. In turn, adaptive immunity reciprocally regulates ILCs, which indicates that these interactions are a crucial determinant of immune responses within tissues. Here, we summarize our current understanding of functional interactions between ILCs and the adaptive immune system, discuss limitations and future areas of investigation, and consider the potential for these interactions to be therapeutically harnessed to benefit human health.
Collapse
|
3
|
Ardain A, Porterfield JZ, Kløverpris HN, Leslie A. Type 3 ILCs in Lung Disease. Front Immunol 2019; 10:92. [PMID: 30761149 PMCID: PMC6361816 DOI: 10.3389/fimmu.2019.00092] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
The lungs represent a complex immune setting, balancing external environmental signals with a poised immune response that must protect from infection, mediate tissue repair, and maintain lung function. Innate lymphoid cells (ILCs) play a central role in tissue repair and homeostasis, and mediate protective immunity in a variety of mucosal tissues, including the lung. All three ILC subsets are present in the airways of both mice and humans; and ILC2s shown to have pivotal roles in asthma, airway hyper-responsiveness, and parasitic worm infection. The involvement of ILC3s in respiratory diseases is less well-defined, but they are known to be critical in homeostasis, infection and inflammation at other mucosal barriers, such as the gut. Moreover, they are important players in the IL17/IL22 axis, which is key to lung health. In this review, we discuss the emerging role of ILC3s in the context of infectious and inflammatory lung diseases, with a focus on data from human subjects.
Collapse
Affiliation(s)
- Amanda Ardain
- Africa Health Research Institute, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Zachary Porterfield
- Africa Health Research Institute, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infection and Immunity, University College London, London, United Kingdom
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
4
|
Robinette ML, Colonna M. Innate lymphoid cells and the MHC. HLA 2016; 87:5-11. [PMID: 26812060 DOI: 10.1111/tan.12723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 12/29/2022]
Abstract
Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible.
Collapse
Affiliation(s)
- M L Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - M Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
5
|
Withers DR. Innate lymphoid cell regulation of adaptive immunity. Immunology 2016; 149:123-30. [PMID: 27341319 PMCID: PMC5011676 DOI: 10.1111/imm.12639] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022] Open
Abstract
Innate lymphoid cells (ILCs) were identified principally as non-T-cell sources of key cytokines, able to provide rapid and early production of these molecules in the support of tissue homeostasis, repair and response to infection. As our understanding of these cells has developed, it has become evident that ILCs can impact on lymphocytes through a range of mechanisms. Hence, an exciting area of research has evolved in determining the extent to which ILCs may regulate adaptive immune responses. This review will focus initially on our current understanding of where ILC populations are located and what this means for potential cellular interactions. Mechanisms underpinning such interactions and how they may contribute to controlling adaptive immunity will then be considered.
Collapse
Affiliation(s)
- David R Withers
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Gronke K, Kofoed-Nielsen M, Diefenbach A. Innate lymphoid cells, precursors and plasticity. Immunol Lett 2016; 179:9-18. [PMID: 27394700 DOI: 10.1016/j.imlet.2016.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 12/30/2022]
Abstract
Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment.
Collapse
Affiliation(s)
- Konrad Gronke
- Research Centre Immunology, University Medical Centre of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany; Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, D79108 Freiburg, Germany
| | - Michael Kofoed-Nielsen
- Research Centre Immunology, University Medical Centre of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany; Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, D79108 Freiburg, Germany
| | - Andreas Diefenbach
- Research Centre Immunology, University Medical Centre of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany; Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
7
|
Feng Z, Jensen SM, Messenheimer DJ, Farhad M, Neuberger M, Bifulco CB, Fox BA. Multispectral Imaging of T and B Cells in Murine Spleen and Tumor. THE JOURNAL OF IMMUNOLOGY 2016; 196:3943-50. [PMID: 26994219 DOI: 10.4049/jimmunol.1502635] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/22/2016] [Indexed: 01/23/2023]
Abstract
Recent advances in multiplex immunohistochemistry techniques allow for quantitative, spatial identification of multiple immune parameters for enhanced diagnostic and prognostic insight. However, applying such techniques to murine fixed tissues, particularly sensitive epitopes, such as CD4, CD8α, and CD19, has been difficult. We compared different fixation protocols and Ag-retrieval techniques and validated the use of multiplex immunohistochemistry for detection of CD3(+)CD4(+) and CD3(+)CD8(+) T cell subsets in murine spleen and tumor. This allows for enumeration of these T cell subsets within immune environments, as well as the study of their spatial distribution.
Collapse
Affiliation(s)
- Zipei Feng
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, OR 97213; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Shawn M Jensen
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, OR 97213
| | - David J Messenheimer
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, OR 97213; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239; and
| | - Mohammad Farhad
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, OR 97213; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Michael Neuberger
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, OR 97213
| | - Carlo B Bifulco
- Department of Pathology, Providence Portland Medical Center, Portland, OR 97213
| | - Bernard A Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Providence Portland Medical Center, Portland, OR 97213; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239; and
| |
Collapse
|
8
|
Baerenwaldt A, von Burg N, Kreuzaler M, Sitte S, Horvath E, Peter A, Voehringer D, Rolink AG, Finke D. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:2561-71. [PMID: 26851220 DOI: 10.4049/jimmunol.1501380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022]
Abstract
Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life.
Collapse
Affiliation(s)
- Anne Baerenwaldt
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Nicole von Burg
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Matthias Kreuzaler
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland; and
| | - Selina Sitte
- Department of Infection Biology, University Clinic of Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Edit Horvath
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Annick Peter
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - David Voehringer
- Department of Infection Biology, University Clinic of Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Antonius G Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland; and
| | - Daniela Finke
- University of Basel Children's Hospital, 4056 Basel, Switzerland; Developmental Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland;
| |
Collapse
|
9
|
Kim CH, Hashimoto-Hill S, Kim M. Migration and Tissue Tropism of Innate Lymphoid Cells. Trends Immunol 2015; 37:68-79. [PMID: 26708278 DOI: 10.1016/j.it.2015.11.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/08/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research.
Collapse
Affiliation(s)
- Chang H Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Seika Hashimoto-Hill
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Myunghoo Kim
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
The Role of TOX in the Development of Innate Lymphoid Cells. Mediators Inflamm 2015; 2015:243868. [PMID: 26556952 PMCID: PMC4628649 DOI: 10.1155/2015/243868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/27/2015] [Indexed: 11/18/2022] Open
Abstract
TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4(+) T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.
Collapse
|
11
|
Seehus CR, Aliahmad P, de la Torre B, Iliev ID, Spurka L, Funari VA, Kaye J. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol 2015; 16:599-608. [PMID: 25915732 PMCID: PMC4439271 DOI: 10.1038/ni.3168] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/30/2015] [Indexed: 12/14/2022]
Abstract
Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.
Collapse
Affiliation(s)
- Corey R Seehus
- Research Division of Immunology, Departments of Biomedical Sciences and Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Parinaz Aliahmad
- Research Division of Immunology, Departments of Biomedical Sciences and Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Brian de la Torre
- Research Division of Immunology, Departments of Biomedical Sciences and Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Iliyan D Iliev
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lindsay Spurka
- Genomics Core Facility, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vincent A Funari
- Genomics Core Facility, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jonathan Kaye
- 1] Research Division of Immunology, Departments of Biomedical Sciences and Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA. [2] Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
12
|
Allan DSJ, Kirkham CL, Aguilar OA, Qu LC, Chen P, Fine JH, Serra P, Awong G, Gommerman JL, Zúñiga-Pflücker JC, Carlyle JR. An in vitro model of innate lymphoid cell function and differentiation. Mucosal Immunol 2015; 8:340-51. [PMID: 25138665 DOI: 10.1038/mi.2014.71] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/28/2014] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells (ILC) are RAG-independent lymphocytes with important roles in innate immunity, and include group-1 (natural killer (NK) cell, ILC1), group-2 (ILC2), and group-3 (lymphoid tissue inducer (LTi), NCR(+) ILC3) subsets. Group-3 ILC express Rorγt, produce interleukin (IL)-22, and are critically important in the normal function of mucosal tissues. Here, we describe a novel model cell line for the study of ILC function and differentiation. The parental MNK cell line, derived from NKR-P1B(+) fetal thymocytes, shows a capacity to differentiate in γc cytokines. One IL-7-responsive subline, designated MNK-3, expresses Rorγt and produces high levels of IL-22 in response to IL-23 and IL-1β stimulation. MNK-3 cells display surface markers and transcript expression characteristic of group-3 ILC, including IL-7Rα (CD127), c-kit (CD117), CCR6, Thy1 (CD90), RANK, RANKL, and lymphotoxin (LTα1β2). Using an in vitro assay of LTi cell activity, MNK-3 cells induce ICAM-1 and VCAM-1 expression on stromal cells in a manner dependent upon LTα1β2 expression. A second IL-2-responsive subline, MNK-1, expresses several NK cell receptors, perforin and granzymes, and shows some cytotoxic activity. Thus, MNK-1 cells serve as a model of ILC1/NK development and differentiation, whereas MNK-3 cells provide an attractive in vitro system to study the function of ILC3/LTi cells.
Collapse
Affiliation(s)
- D S J Allan
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - C L Kirkham
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - O A Aguilar
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - L C Qu
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - P Chen
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - J H Fine
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - P Serra
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - G Awong
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - J L Gommerman
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - J C Zúñiga-Pflücker
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - J R Carlyle
- 1] Department of Immunology, University of Toronto, Toronto, Ontario, Canada [2] Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
14
|
CCR7-dependent trafficking of RORγ⁺ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun 2015; 6:5862. [PMID: 25575242 PMCID: PMC4354100 DOI: 10.1038/ncomms6862] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/14/2014] [Indexed: 12/17/2022] Open
Abstract
Presentation of peptide:MHCII by RORγ-expressing group 3 innate lymphoid cells (ILC3s), which are enriched within gut tissue, is required for control of CD4 T-cell responses to commensal bacteria. It is not known whether ILC populations migrate from their mucosal and peripheral sites to local draining secondary lymphoid tissues. Here we demonstrate that ILC3s reside within the interfollicular areas of mucosal draining lymph nodes, forming a distinct microenvironment not observed in peripheral lymph nodes. By photoconverting intestinal cells in Kaede mice we reveal constitutive trafficking of ILCs from the intestine to the draining mesenteric lymph nodes, which specifically for the LTi-like ILC3s was CCR7-dependent. Thus, ILC populations traffic to draining lymph nodes using different mechanisms. Innate lymphoid cells have an important role in mucosal immunity and present peptide:MHCII to CD4 T cells. Here the authors show that innate lymphoid cell subsets migrate from the gut mucosa to the draining lymph nodes via different mechanisms, where they form distinct microenvironments.
Collapse
|
15
|
Regulation of the adaptive immune system by innate lymphoid cells. Curr Opin Immunol 2014; 27:75-82. [PMID: 24594491 DOI: 10.1016/j.coi.2014.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid tissues and epithelial cells at barrier surfaces. In this review we summarize the current understanding of how ILCs modulate the magnitude and quality of adaptive immune cell responses, and in particular focus on recent evidence suggesting that ILCs can also directly regulate CD4(+) T cells. Further, we discuss the implications that these pathways may have on human health and disease.
Collapse
|
16
|
Kumar V. Innate lymphoid cells: New paradigm in immunology of inflammation. Immunol Lett 2014; 157:23-37. [DOI: 10.1016/j.imlet.2013.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/20/2013] [Accepted: 11/04/2013] [Indexed: 12/27/2022]
|
17
|
Koo J, Kim S, Jung WJ, Lee YE, Song GG, Kim KS, Kim MY. Increased Lymphocyte Infiltration in Rheumatoid Arthritis Is Correlated with an Increase in LTi-like Cells in Synovial Fluid. Immune Netw 2013; 13:240-8. [PMID: 24385942 PMCID: PMC3875782 DOI: 10.4110/in.2013.13.6.240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 01/06/2023] Open
Abstract
In this study, we compared the immune cell populations in rheumatoid arthritis (RA) synovial fluid, which shows lymphoid tissue-like structure, with those in tonsils, which are normal secondary lymphoid tissues. Firstly, we found that CD4-CD11b+ macrophages were the major population in RA synovial fluid and that B cells were the major population in tonsils. In addition, synovial fluid from patients with osteoarthritis, which is a degenerative joint disease, contained CD4+CD11b+ monocytes as the major immune cell population. Secondly, we categorized three groups based on the proportion of macrophages found in RA synovial fluid: (1) the macrophage-high group, which contained more than 80% macrophages; (2) the macrophage-intermediate group, which contained between 40% and 80% macrophages; and (3) the macrophage-low group, which contained less than 40% macrophages. In the macrophage-low group, more lymphoid tissue inducer (LTi)-like cells were detected, and the expression of OX40L and TRANCE in these cells was higher than that in the other groups. In addition, in this group, the suppressive function of regulatory T cells was downregulated. Finally, CXCL13 expression was higher in RA synovial fluid than in tonsils, but CCL21 expression was comparable in synovial fluid from all groups and in tonsils. These data demonstrate that increased lymphocyte infiltration in RA synovial fluid is correlated with an increase in LTi-like cells and the elevation of the chemokine expression.
Collapse
Affiliation(s)
- Jihye Koo
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Woong Jae Jung
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Ye Eun Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | - Gwan Gyu Song
- Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul 152-703, Korea
| | - Kyung-Su Kim
- Department of Otorhinolaryngology, Human Barrier Research Institute, Yonsei University College of Medicine, Seoul 135-720, Korea
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
18
|
Bekiaris V, Šedy JR, Rossetti M, Spreafico R, Sharma S, Rhode-Kurnow A, Ware BC, Huang N, Macauley MG, Norris PS, Albani S, Ware CF. Human CD4+CD3- innate-like T cells provide a source of TNF and lymphotoxin-αβ and are elevated in rheumatoid arthritis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4611-8. [PMID: 24078690 DOI: 10.4049/jimmunol.1301672] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Innate lymphoid cells encompass a diverse array of lymphocyte subsets with unique phenotype that initiate inflammation and provide host defenses in specific microenvironments. In this study, we identify a rare human CD4(+)CD3(-) innate-like lymphoid population with high TNF expression that is enriched in blood from patients with rheumatoid arthritis. These CD4(+)CD3(-) cells belong to the T cell lineage, but the lack of AgR at the cell surface renders them nonresponsive to TCR-directed stimuli. By developing a culture system that sustains survival, we show that CD4(+)CD3(-) innate-like T cells display IL-7-dependent induction of surface lymphotoxin-αβ, demonstrating their potential to modify tissue microenvironments. Furthermore, expression of CCR6 on the CD4(+)CD3(-) population defines a CD127(high) subset that is highly responsive to IL-7. This CD4(+)CD3(-) population is enriched in the peripheral blood from rheumatoid arthritis patients, suggesting a link to their involvement in chronic inflammatory disease.
Collapse
Affiliation(s)
- Vasileios Bekiaris
- Infectious and Inflammatory Disease Center, Sanford
- Burnham Medical Research Institute, La Jolla, CA 92037
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rankin L, Groom J, Mielke LA, Seillet C, Belz GT. Diversity, function, and transcriptional regulation of gut innate lymphocytes. Front Immunol 2013; 4:22. [PMID: 23508190 PMCID: PMC3600536 DOI: 10.3389/fimmu.2013.00022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/16/2013] [Indexed: 12/19/2022] Open
Abstract
The innate immune system plays a critical early role in host defense against viruses, bacteria, and tumor cells. Until recently, natural killer (NK) cells and lymphoid tissue inducer (LTi) cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.
Collapse
Affiliation(s)
- Lucille Rankin
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Joanna Groom
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Lisa A. Mielke
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Cyril Seillet
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Gabrielle T. Belz
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
20
|
Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D, Schwarz P, Armulik A, Browning JL, Tallquist M, Buch T, Oliveira-Martins JB, Zhu C, Hermann M, Wagner U, Brink R, Heikenwalder M, Aguzzi A. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 2012; 150:194-206. [PMID: 22770220 DOI: 10.1016/j.cell.2012.05.032] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/16/2012] [Accepted: 05/11/2012] [Indexed: 12/25/2022]
Abstract
The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ(+)-derived cells abolished FDC, indicating that FDC originate from PDGFRβ(+) cells. Lymphotoxin-α-overexpressing prion protein (PrP)(+) kidneys developed PrP(+) FDC after transplantation into PrP(-) mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRβ(+) stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin β receptor (LTβR)(-) kidney capsules, differentiated into Mfge8(+)CD21/35(+)FcγRIIβ(+)PrP(+) FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRβ(+) FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation.
Collapse
Affiliation(s)
- Nike Julia Krautler
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Nonhematopoietic stromal cells of secondary lymphoid organs form important scaffold and fluid transport structures, such as lymph node (LN) trabeculae, lymph vessels, and conduits. Furthermore, through the production of chemokines and cytokines, these cells generate a particular microenvironment that determines lymphocyte positioning and supports lymphocyte homeostasis. IL-7 is an important stromal cell-derived cytokine that has been considered to be derived mainly from T-cell zone fibroblastic reticular cells. We show here that lymphatic endothelial cells (LECs) are a prominent source of IL-7 both in human and murine LNs. Using bacterial artificial chromosome transgenic IL-7-Cre mice, we found that fibroblastic reticular cells and LECs strongly up-regulated IL-7 expression during LN remodeling after viral infection and LN reconstruction after avascular transplantation. Furthermore, IL-7-producing stromal cells contributed to de novo formation of LyveI-positive lymphatic structures connecting reconstructed LNs with the surrounding tissue. Importantly, diphtheria toxin-mediated depletion of IL-7-producing stromal cells completely abolished LN reconstruction. Taken together, this study identifies LN LECs as a major source of IL-7 and shows that IL-7-producing stromal cells are critical for reconstruction and remodeling of the distinct LN microenvironment.
Collapse
|
22
|
Ehlers M, Papewalis C, Stenzel W, Jacobs B, Meyer KL, Deenen R, Willenberg HS, Schinner S, Thiel A, Scherbaum WA, Ullrich E, Zitvogel L, Schott M. Immunoregulatory natural killer cells suppress autoimmunity by down-regulating antigen-specific CD8+ T cells in mice. Endocrinology 2012; 153:4367-79. [PMID: 22733969 DOI: 10.1210/en.2012-1247] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural killer (NK) cells belong to the innate immune system. Besides their role in antitumor immunity, NK cells also regulate the activity of other cells of the immune system, including dendritic cells, macrophages, and T cells, and may, therefore, be involved in autoimmune processes. The aim of the present study was to clarify the role of NK cells within this context. Using two mouse models for type 1 diabetes mellitus, a new subset of NK cells with regulatory function was identified. These cells were generated from conventional NK cells by incubation with IL-18 and are characterized by the expression of the surface markers CD117 (also known as c-Kit, stem cell factor receptor) and programmed death (PD)-ligand 1. In vitro analyses demonstrated a direct lysis activity of IL-18-stimulated NK cells against activated insulin-specific CD8(+) T cells in a PD-1/PD-ligand 1-dependent manner. Flow cytometry analyses revealed a large increase of splenic and lymphatic NK1.1(+)/c-Kit(+) NK cells in nonobese diabetic mice at 8 wk of age, the time point of acceleration of adaptive cytotoxic immunity. Adoptive transfer of unstimulated and IL-18-stimulated NK cells into streptozotocin-treated mice led to a delayed diabetes development and partial disease prevention in the group treated with IL-18-stimulated NK cells. Consistent with these data, mild diabetes was associated with increased numbers of NK1.1(+)/c-Kit(+) NK cells within the islets. Our results demonstrate a direct link between innate and adaptive immunity in autoimmunity with newly identified immunoregulatory NK cells displaying a potential role as immunosuppressors.
Collapse
Affiliation(s)
- Margret Ehlers
- Division of Endocrinology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Withers DR, Gaspal FM, Bekiaris V, McConnell FM, Kim M, Anderson G, Lane PJL. OX40 and CD30 signals in CD4(+) T-cell effector and memory function: a distinct role for lymphoid tissue inducer cells in maintaining CD4(+) T-cell memory but not effector function. Immunol Rev 2012; 244:134-48. [PMID: 22017436 DOI: 10.1111/j.1600-065x.2011.01057.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CD4(+) effector and memory T cells play a pivotal role in the development of both normal and pathogenic immune responses. This review focuses on the molecular and cellular mechanisms that regulate their development, with particular focus on the tumor necrosis factor superfamily members OX40 (TNFRSF4) and CD30 (TNFRSF8). We discuss the evidence that in mice, these molecular signaling pathways act synergistically to regulate the development of both effector and memory CD4(+) T cells but that the cells that regulate memory versus effector function are distinct, effectively allowing the independent regulation of the memory and effector CD4(+) T-cell pools.
Collapse
Affiliation(s)
- David R Withers
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Lee JS, Cella M, Colonna M. AHR and the Transcriptional Regulation of Type-17/22 ILC. Front Immunol 2012; 3:10. [PMID: 22566896 PMCID: PMC3342302 DOI: 10.3389/fimmu.2012.00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/16/2012] [Indexed: 12/30/2022] Open
Abstract
Mucosal innate lymphoid cells (ILCs) are an emerging population of diverse and heterogeneous immune cells, all with the unique ability to mount a rapid response against invading pathogens. They are further divided into subsets based on their differing cell surface markers as well as in their functional specialization. In this review, we summarize recent reports describing the importance of the transcription factor aryl hydrocarbon receptor (AHR) in regulating the development of one of these subsets, the Type-17/22 ILCs, as well as in the organization of postnatal lymphoid structures. We discuss the mechanisms behind the AHR dependence for development in Type-17/22 ILCs as well as reviewing the proposed physiological ligands that are mediating this effect.
Collapse
Affiliation(s)
- Jacob S Lee
- Department of Pathology and Immunology, Washington University School of Medicine St. Louis, MO, USA
| | | | | |
Collapse
|
25
|
Lane PJL, Gaspal FM, McConnell FM, Kim MY, Anderson G, Withers DR. Lymphoid tissue inducer cells: innate cells critical for CD4+ T cell memory responses? Ann N Y Acad Sci 2012; 1247:1-15. [PMID: 22260374 DOI: 10.1111/j.1749-6632.2011.06284.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Lymphoid tissue inducer cells (LTi) are a relatively new arrival on the immunological cellular landscape, having first been characterized properly only 15 years ago. They are members of an emerging family of innate lymphoid cells (ILCs). Elucidation of their function reveals links not only with the ancient innate immune system, but also with adaptive immune responses, in particular the development of lymph nodes and CD4(+) T cell memory immune responses, which on one hand underpin the success of vaccination strategies, and on the other hand drive many human immunologically mediated diseases. This perspective article is not an exhaustive account of the role of LTi in the development of lymphoid tissues, as there have been many excellent reviews published already. Instead, we combine current knowledge of genetic phylogeny and comparative immunology, together with classical mouse genetics, to suggest how LTi might have evolved from a primitive lymphocytic innate cell in the ancestral 500-million-year-old vertebrate immune system into a cell critical for adaptive CD4(+) T cell immune responses in mammals.
Collapse
Affiliation(s)
- Peter J L Lane
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Mortha A, Diefenbach A. Natural killer cell receptor-expressing innate lymphocytes: more than just NK cells. Cell Mol Life Sci 2011; 68:3541-55. [PMID: 21904914 PMCID: PMC11114688 DOI: 10.1007/s00018-011-0803-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/17/2022]
Abstract
Recently, additional subsets that extend the family of innate lymphocytes have been discovered. Among these newly identified innate lymphoid cells is a subset sharing phenotypic characteristics of natural killer cells and lymphoid tissue inducer cells. These cells co-express the transcription factor RORγt and activating NK cell receptors (NKR), but their lineage and functional qualities remain poorly defined. Here, we discuss recent proposals to place these NKR(+)RORγt(+) innate lymphocytes on hematopoietic lineage maps. An overview of the transcriptional circuitry determining fate decisions of innate lymphocytes and a summary of current concepts concerning plasticity and stability of innate lymphocyte effector fates are provided. We will conclude by discussing the function of RORγt-expressing innate lymphocytes during inflammatory bowel diseases and in the immune response to tumors.
Collapse
Affiliation(s)
- Arthur Mortha
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, 79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, 79104 Freiburg, Germany
| | - Andreas Diefenbach
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, 79104 Freiburg, Germany
- Research Training Group (GRK1104) of Organogenesis, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Link A, Hardie DL, Favre S, Britschgi MR, Adams DH, Sixt M, Cyster JG, Buckley CD, Luther SA. Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1662-75. [PMID: 21435450 PMCID: PMC3070229 DOI: 10.1016/j.ajpath.2010.12.039] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 12/06/2010] [Accepted: 12/17/2010] [Indexed: 01/08/2023]
Abstract
Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node-like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin(+) T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell-rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter-CXCL13-transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell-rich zone.
Collapse
Affiliation(s)
- Alexander Link
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Interaction between different types of hematopoietic cells is essential for proper functioning of the immune system. For instance, the cytokines produced by antigen-presenting dendritic cells will determine the type of T cell response that is induced. However, hematopoietic cells are also strongly influenced by the surrounding nonhematopoietic cells. The cells that form these microenvironments are collectively called stromal cells. Here, we focus on the stromal cells present within secondary lymphoid organs and discuss their importance for various aspects of the immune system.
Collapse
Affiliation(s)
- Ramon Roozendaal
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
29
|
Kim S, Han S, Withers DR, Gaspal F, Bae J, Baik S, Shin HC, Kim KS, Bekiaris V, Anderson G, Lane P, Kim MY. CD117⁺ CD3⁻ CD56⁻ OX40Lhigh cells express IL-22 and display an LTi phenotype in human secondary lymphoid tissues. Eur J Immunol 2011; 41:1563-72. [PMID: 21469096 DOI: 10.1002/eji.201040915] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 03/04/2011] [Accepted: 03/21/2011] [Indexed: 12/29/2022]
Abstract
Here, we identify cells within human adult secondary lymphoid tissues that are comparable in phenotype and location to the lymphoid tissue inducer (LTi) cells that persist in the adult mouse. Identified as CD117(+) CD3(-) CD56(-) cells, like murine LTi cells, they lack expression of many common lineage markers and express CD127, OX40L and TRANCE. These cells were detected at the interface between the B- and T- zones, as well as at the subcapsular sinus in LNs, the location where LTi cells reside in murine spleen and LNs. Furthermore, like murine LTi cells, these cells expressed high levels of IL-22 and upregulated IL-22 expression upon IL-23 stimulation. Importantly, these cells were not an NK cell subset since they showed no expression of IFN-γ and perforin. Interestingly, a subset of the CD117(+) CD3(-) CD56(-) OX40L(+) population expressed NKp46, again similar to recent findings in mice. Finally, these cells supported memory CD4(+) T-cell survival in an OX40L-dependent manner. Combined, these data indicate that the CD117(+) CD3(-) CD56(-) OX40L(+) cells in human secondary lymphoid tissues are comparable in phenotype, location and function to the LTi cells that persist within adult murine secondary lymphoid tissues.
Collapse
Affiliation(s)
- Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sanos SL, Vonarbourg C, Mortha A, Diefenbach A. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells. Immunology 2011; 132:453-65. [PMID: 21391996 PMCID: PMC3075499 DOI: 10.1111/j.1365-2567.2011.03410.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 12/30/2022] Open
Abstract
It is rapidly emerging that the defence system of innate lymphocytes is more diverse than previously recognized. In addition to natural killer (NK) cells, lymphoid tissue inducer (LTi) cells, and natural helper cells have now been identified. LTi cells are developmentally dependent on the orphan transcription factor RORγt and instruct lymph node development during embryogenesis. More recently, it has become evident, that in addition to their role for lymph organ development, LTi cells are also potent producers of cytokines such as interleukin-22 (IL-22) and IL-17 in adult mice. In addition to LTi cells, another RORγt-dependent innate lymphocyte subset co-expressing RORγt and NK cell receptors (NKRs) has been identified. These NKR(+) RORγt(+) cells are also potent producers of IL-22 but it is unclear whether they are part of the NK cell or LTi cell lineage. This review will highlight recent progress in understanding development and function of innate IL-22-producing lymphocyte subsets.
Collapse
|
31
|
Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2011; 34:122-34. [PMID: 21194981 PMCID: PMC3035987 DOI: 10.1016/j.immuni.2010.12.009] [Citation(s) in RCA: 477] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/04/2010] [Accepted: 11/02/2010] [Indexed: 12/21/2022]
Abstract
Fetal CD4(+) lymphoid tissue inducer (LTi) cells play a critical role in the development of lymphoid tissues. Recent studies identified that LTi cells persist in adults and are related to a heterogeneous population of innate lymphoid cells that have been implicated in inflammatory responses. However, whether LTi cells contribute to protective immunity remains poorly defined. We demonstrate that after infection with Citrobacter rodentium, CD4(+) LTi cells were a dominant source of interleukin-22 (IL-22) early during infection. Infection-induced CD4(+) LTi cell responses were IL-23 dependent, and ablation of IL-23 impaired innate immunity. Further, depletion of CD4(+) LTi cells abrogated infection-induced expression of IL-22 and antimicrobial peptides, resulting in exacerbated host mortality. LTi cells were also found to be essential for host protective immunity in lymphocyte-replete hosts. Collectively these data demonstrate that adult CD4(+) LTi cells are a critical source of IL-22 and identify a previously unrecognized function for CD4(+) LTi cells in promoting innate immunity in the intestine.
Collapse
Affiliation(s)
- Gregory F. Sonnenberg
- Department of Microbiology and Institute for Immunology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurel A. Monticelli
- Department of Microbiology and Institute for Immunology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Merle Elloso
- Discovery Research Immunology, Centocor Research and Development, Inc., Radnor, PA 19087, USA
| | - Lynette A. Fouser
- Inflammation and Immunology – Pfizer Biotherapeutics’ Research and Development, Cambridge, MA 02140, USA
| | - David Artis
- Department of Microbiology and Institute for Immunology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Milićević NM, Klaperski K, Nohroudi K, Milićević Ž, Bieber K, Baraniec B, Blessenohl M, Kalies K, Ware CF, Westermann J. TNF receptor-1 is required for the formation of splenic compartments during adult, but not embryonic life. THE JOURNAL OF IMMUNOLOGY 2010; 186:1486-94. [PMID: 21187446 DOI: 10.4049/jimmunol.1000740] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lymphotoxin β-receptor (LTβR) and TNF receptor-1 (TNFR1) are important for the development of secondary lymphoid organs during embryonic life. The significance of LTβR and TNFR1 for the formation of lymphoid tissue during adult life is not well understood. Immunohistochemistry, morphometry, flow cytometry, and laser microdissection were used to compare wild-type, LTβR(-/-), TNFR1(-/-) spleens with splenic tissue that has been newly formed 8 wk after avascular implantation into adult mice. During ontogeny, LTβR is sufficient to induce formation of the marginal zone, similar-sized T and B cell zones, and a mixed T/B cell zone that completely surrounded the T cell zone. Strikingly, in adult mice, the formation of splenic compartments required both LTβR and TNFR1 expression, demonstrating that the molecular requirements for lymphoid tissue formation are different during embryonic and adult life. Thus, interfering with the TNFR1 pathway offers the possibility to selectively block the formation of ectopic lymphoid tissue and at the same time to spare secondary lymphoid organs such as spleen and lymph nodes. This opens a new perspective for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Novica M Milićević
- Institute of Histology and Embryology, Faculty of Medicine, University of Beograd, 11000 Beograd, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Noxa mediates p18INK4c cell-cycle control of homeostasis in B cells and plasma cell precursors. Blood 2010; 117:2179-88. [PMID: 21163929 DOI: 10.1182/blood-2010-06-288027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inhibition of Cdk4/Cdk6 by p18(INK4c) (p18) is pivotal for generation of noncycling immunoglobulin (Ig)-secreting plasma cells (PCs). In the absence of p18, CD138(+) plasmacytoid cells continue to cycle and turnover rapidly, suggesting that p18 controls PC homeostasis. We now show that p18 selectively acts in a rare population of rapidly cycling CD138(hi)/B220(hi) intermediate PCs (iPCs). While retaining certain B-cell signatures, iPCs are poised to differentiate to end-stage PCs although the majority undergo apoptosis. p18 is dispensable for the development of the PC transcriptional circuitry, and Blimp-1 and Bcl-6 are expressed fully and mutually exclusively in individual iPCs. However, a minor proportion of iPCs express both, and they are preferentially protected by p18 or Bcl-xL overexpression, consistent with expansion of the iPC pool by Bcl-xL overexpression, or loss of proapoptotic Bim or Noxa. Expression of Noxa is induced during B-cell activation, peaks in iPCs, and selectively repressed by p18. It is required to promote apoptosis of cycling B cells, especially in the absence of p18. These findings define the first physiologic function for Noxa and suggest that by repressing Noxa, induction of G₁ arrest by p18 bypasses a homeostatic cell-cycle checkpoint in iPCs for PC differentiation.
Collapse
|
34
|
Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Hölscher C, Hönig M, Pannicke U, Schwarz K, Ware CF, Finke D, Diefenbach A. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes. Immunity 2010; 33:736-51. [PMID: 21093318 PMCID: PMC3042726 DOI: 10.1016/j.immuni.2010.10.017] [Citation(s) in RCA: 569] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/16/2010] [Accepted: 09/28/2010] [Indexed: 02/06/2023]
Abstract
Whether the recently identified innate lymphocyte population coexpressing natural killer cell receptors (NKRs) and the nuclear receptor RORγt is part of the NK or lymphoid tissue inducer (LTi) cell lineage remains unclear. By using adoptive transfer of genetically tagged LTi-like cells, we demonstrate that NKR⁻RORγt(+) innate lymphocytes but not NK cells were direct progenitors to NKR(+)RORγt(+) cells in vivo. Genetic lineage tracing revealed that the differentiation of LTi-like cells was characterized by the stable upregulation of NKRs and a progressive loss of RORγt expression. Whereas interleukin-7 (IL-7) and intestinal microbiota stabilized RORγt expression within such NKR-LTi cells, IL-12 and IL-15 accelerated RORγt loss. RORγt(+) NKR-LTi cells produced IL-22, whereas RORγt⁻ NKR-LTi cells released IFN-γ and were potent inducers of colitis. Thus, the RORγt gradient in NKR-LTi cells serves as a tunable rheostat for their functional program. Our data also define a previously unappreciated role of RORγt⁻ NKR-LTi cells for the onset or maintenance of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Cedric Vonarbourg
- IMMH, Institute of Medical Microbiology & Hygiene, University of Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lane PJL, McConnell FM, Withers D, Gaspal F, Saini M, Anderson G. Lymphoid tissue inducer cells and the evolution of CD4 dependent high-affinity antibody responses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:159-74. [PMID: 20800820 DOI: 10.1016/s1877-1173(10)92007-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Phylogeny indicates that in mammals memory CD4-dependent antibody responses evolved after monotremes split from the common ancestor of marsupial and eutherian mammals. This was strongly associated with the development of segregated B and T cell areas and the development of a linked lymph node network. The evolution of the lymphotoxin beta receptor in these higher mammals was key to the development of these new functions. Here, we argue that lymphoid tissue inducer cells played a pivotal role not only in the development of organized lymphoid structures but also in the subsequent genesis of the CD4-dependent class-switched memory antibody responses that depend on an organized infrastructure to work. In this review, we concentrate on the role of this cell type in the making of a tolerant CD4 T cell repertoire and in the sustenance of CD4 T cell responses for protective immunity.
Collapse
Affiliation(s)
- Peter J L Lane
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Birmingha Medical School, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
36
|
Aliahmad P, de la Torre B, Kaye J. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol 2010; 11:945-52. [PMID: 20818394 PMCID: PMC2943551 DOI: 10.1038/ni.1930] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/03/2010] [Indexed: 12/14/2022]
Abstract
TOX is a DNA-binding factor required for development of CD4(+) T cells, natural killer T cells and regulatory T cells. Here we document that both natural killer (NK) cell development and lymphoid tissue organogenesis were also inhibited in the absence of TOX. We found that the development of lymphoid tissue-inducer cells, a rare subset of specialized cells that has an integral role in lymphoid tissue organogenesis, required TOX. Tox was upregulated considerably in immature NK cells in the bone marrow, consistent with the loss of mature NK cells in the absence of this nuclear protein. Thus, many cell lineages of the immune system share a TOX-dependent step for development.
Collapse
Affiliation(s)
- Parinaz Aliahmad
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | |
Collapse
|
37
|
Kim S, Han S, Kim MY. Heterogeneity of IL-22-producing Lymphoid Tissue Inducer-like Cells in Human and Mouse. Immune Netw 2010; 10:115-9. [PMID: 20844735 PMCID: PMC2939355 DOI: 10.4110/in.2010.10.4.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 01/05/2023] Open
Abstract
Lymphoid tissue inducer (LTi) cells have been characterized in mouse as a key cell when secondary lymphoid tissues are organized during development and memory T cells are formed after birth. In addition to their involvement in adaptive immune responses, recent studies show that they contribute to innate immune responses by producing large amount of interleukin (IL)-22 against microbial attack. Here, we compare IL-22-producing LTi and LTi-like cells in human and mouse and discuss their heterogeneity in different tissues.
Collapse
Affiliation(s)
- Soochan Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | | | | |
Collapse
|
38
|
Astorri E, Bombardieri M, Gabba S, Peakman M, Pozzilli P, Pitzalis C. Evolution of Ectopic Lymphoid Neogenesis and In Situ Autoantibody Production in Autoimmune Nonobese Diabetic Mice: Cellular and Molecular Characterization of Tertiary Lymphoid Structures in Pancreatic Islets. THE JOURNAL OF IMMUNOLOGY 2010; 185:3359-68. [DOI: 10.4049/jimmunol.1001836] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Hou TZ, Mustafa MZ, Flavell SJ, Barrington F, Jenkinson EJ, Anderson G, Lane PJL, Withers DR, Buckley CD. Splenic stromal cells mediate IL-7 independent adult lymphoid tissue inducer cell survival. Eur J Immunol 2010; 40:359-65. [DOI: 10.1002/eji.200939776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
|
41
|
Lymphoid tissue inducer cells: bridges between the ancient innate and the modern adaptive immune systems. Mucosal Immunol 2009; 2:472-7. [PMID: 19741599 DOI: 10.1038/mi.2009.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phylogeny indicates that adaptive immunity evolved first in diffusely distributed lymphoid tissues found in the lamina propria (LP) of the gut. B follicular structures appeared later, probably initially in isolated lymphoid follicles in the LP and then in organized lymphoid tissues such as lymph nodes and Peyer's patches. The development of these new lymphoid structures was enabled by gene duplication and evolution of new tumor necrosis family members. Here, we argue that lymphoid tissue inducer cells (LTis) had a pivotal role, not only in the development of organized lymphoid structures, but also in the subsequent genesis of the CD4-dependent class-switched memory antibody responses. In this review, we concentrate on the latter function: the sustenance by LTis of CD4 T-cell responses for protective immunity.
Collapse
|
42
|
Finke D. Induction of intestinal lymphoid tissue formation by intrinsic and extrinsic signals. Semin Immunopathol 2009; 31:151-69. [PMID: 19506873 DOI: 10.1007/s00281-009-0163-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/20/2009] [Indexed: 12/20/2022]
Abstract
Since the discovery of inducer cells as a separate lineage for organogenesis of Peyer's patches in the small intestine of fetal mice, a lot of progress has been made in understanding the molecular pathways involved in the generation of lymphoid tissue and the maintenance of the lymphoid architecture. The findings that inducer cells also exist in adult mice and in humans, have a lineage relationship to natural killer cells, and can be stimulated during infections highlight their possible role in establishing innate and adaptive immune responses. Novel concepts in the development of intestinal lymphoid tissues have been made in the past few years suggesting that lymphoid organs are more plastic as previously thought and depend on antigenic stimulation. In addition, the generation of novel lymphoid organs in the gut under inflammatory conditions indicates a function in chronic diseases. The present review summarizes current knowledge on the basic framework of signals required for developing lymphoid tissue under normal and inflammatory conditions.
Collapse
Affiliation(s)
- Daniela Finke
- Department of Biomedicine, Developmental Immunology, University of Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Tomasello E, Reynders A, Vivier E. A novel mucosal RORγtNKp46 cell subset is a source of interleukin-22. F1000 BIOLOGY REPORTS 2009; 1:28. [PMID: 20948658 PMCID: PMC2924696 DOI: 10.3410/b1-28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lymphoid tissue-inducer cells are hematopoietic cells essential for the organogenesis of several lymphoid structures during both fetal and adult life, whereas natural killer cells are key effector lymphocytes of the innate immune system. A series of recent reports has identified RORγt+NKp46+ interleukin-22-producing cells in gut and tonsils that share features with both lymphoid tissue-inducer cells and natural killer cells and that may be involved in mucosal immunity and homeostasis.
Collapse
Affiliation(s)
- Elena Tomasello
- Centre d Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM U631, CNRS UMR 6102, 163 Avenue du Luminy, Case 906, 13288 Marseille CEDEX 09, France
| | | | | |
Collapse
|
44
|
Vivier E, Spits H, Cupedo T. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nat Rev Immunol 2009; 9:229-34. [PMID: 19319141 DOI: 10.1038/nri2522] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues, lying at the interface with the external environment, are constantly challenged by microbial, physical and chemical assaults. To provide the necessary immune defence to such challenges, lymph nodes and Peyer's patches are formed in utero in response to inductive signals from lymphoid-tissue inducer (LTi) cells. As discussed in this Progress article, a series of recent reports has identified a population of interleukin-22-producing mucosal cells in the gut and tonsils that share features with both LTi cells (by expressing RORgammat) and natural killer cells (by expressing NKp46) and that might be involved in immunity and homeostasis in mucosal tissues.
Collapse
Affiliation(s)
- Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, INSERM, U631, France
| | | | | |
Collapse
|
45
|
Kim MY, Kim KS, McConnell F, Lane P. Lymphoid tissue inducer cells: architects of CD4 immune responses in mice and men. Clin Exp Immunol 2009; 157:20-6. [PMID: 19659766 DOI: 10.1111/j.1365-2249.2009.03932.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this review, we summarize the current understanding of the multiple functions of the mouse lymphoid tissue inducer (LTi) cells in: (i) the development of organized lymphoid tissue, (ii) the generation and maintenance of CD4-dependent immunity in adult lymphoid tissues; and (iii) the regulation of central tolerance in thymus. By contrast with mouse LTi cells, which have been well described, the human equivalent is only just beginning to be characterized. Human LTi-like cells expressing interleukin (IL)-22 have been identified recently and found to differentiate into natural killer (NK) cells. The relationship of LTi cells to NK cells is discussed in the light of several studies reporting a close relationship in the mouse between LTi cells and transcription factor retinoid-related orphan receptor gammat-dependent IL-22 producing NK cells in the gut. We also outline our data suggesting that these cells are present in adult human lymphoid tissues.
Collapse
Affiliation(s)
- M-Y Kim
- Department of Bioinformatics and Life Science, The College of Natural Science, Soongsil University, Seoul, Korea.
| | | | | | | |
Collapse
|
46
|
Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR, O'Shea JJ. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 2009; 206:35-41. [PMID: 19114665 PMCID: PMC2626689 DOI: 10.1084/jem.20072713] [Citation(s) in RCA: 596] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 12/02/2008] [Indexed: 02/06/2023] Open
Abstract
The interleukin (IL) 17 family of cytokines has emerged to be critical for host defense as well as the pathogenesis of autoimmune and autoinflammatory disorders, and serves to link adaptive and innate responses. Recent studies have identified a new subset of T cells that selectively produce IL-17 (Th17 cells; Bettelli, E., T. Korn, and V.K. Kuchroo. 2007. Curr. Opin. Immunol. 19:652-657; Kolls, J.K., and A. Linden. 2004. Immunity. 21:467-476), but the regulation of IL-17 production by innate immune cells is less well understood. We report that in vitro stimulation with IL-23 induced IL-17 production by recombination activating gene (Rag) 2(-/-) splenocytes but not Rag2(-/-) common gamma chain(-/-) splenocytes. We found that a major source of IL-17 was CD4(+)CD3(-)NK1.1(-)CD11b(-)Gr1(-)CD11c(-)B220(-) cells, a phenotype that corresponds to lymphoid tissue inducer-like cells (LTi-like cells), which constitutively expressed the IL-23 receptor, aryl hydrocarbon receptor, and CCR6. In vivo challenge with the yeast cell wall product zymosan rapidly induced IL-17 production in these cells. Genetic deletion of signal transducer and activator of transcription 3 reduced but did not abrogate IL-17 production in LTi-like cells. Thus, it appears that splenic LTi-like cells are a rapid source of IL-17 and IL-22, which might contribute to dynamic organization of secondary lymphoid organ structure or host defense.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- CD4 Antigens/analysis
- Cells, Cultured
- DNA-Binding Proteins/genetics
- Flow Cytometry
- Gene Expression/drug effects
- Immune System/cytology
- Immune System/metabolism
- Immunity, Innate/immunology
- Interleukin Receptor Common gamma Subunit/genetics
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-23/pharmacology
- Interleukins/genetics
- Interleukins/immunology
- Interleukins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, CCR6/genetics
- Receptors, Interleukin/genetics
- Receptors, Retinoic Acid/genetics
- Receptors, Thyroid Hormone/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/genetics
- Spleen/cytology
- Spleen/metabolism
- Zymosan/pharmacology
- Interleukin-22
Collapse
Affiliation(s)
- Hiroaki Takatori
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Luci C, Reynders A, Ivanov II, Cognet C, Chiche L, Chasson L, Hardwigsen J, Anguiano E, Banchereau J, Chaussabel D, Dalod M, Littman DR, Vivier E, Tomasello E. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol 2009; 10:75-82. [PMID: 19029904 DOI: 10.1038/ni.1681] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/24/2008] [Indexed: 12/14/2022]
Abstract
NKp46+CD3- natural killer lymphocytes isolated from blood, lymphoid organs, lung, liver and uterus can produce granule-dependent cytotoxicity and interferon-gamma. Here we identify in dermis, gut lamina propria and cryptopatches distinct populations of NKp46+CD3- cells with a diminished capacity to degranulate and produce interferon-gamma. In the gut, expression of the transcription factor RORgammat, which is involved in the development of lymphoid tissue-inducer cells, defined a previously unknown subset of NKp46+CD3- lymphocytes. Unlike RORgammat- lamina propria and dermis natural killer cells, gut RORgammat+NKp46+ cells produced interleukin 22. Our data show that lymphoid tissue-inducer cells and natural killer cells shared unanticipated similarities and emphasize the heterogeneity of NKp46+CD3- cells in innate immunity, lymphoid organization and local tissue repair.
Collapse
Affiliation(s)
- Carmelo Luci
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, U631, 13288 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Doherty TA, Soroosh P, Broide DH, Croft M. CD4+ cells are required for chronic eosinophilic lung inflammation but not airway remodeling. Am J Physiol Lung Cell Mol Physiol 2008; 296:L229-35. [PMID: 19060225 DOI: 10.1152/ajplung.90543.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The contribution of CD4 T cells and other CD4+ cells to lung inflammation and airway remodeling remains unclear during bouts of chronic exposure to airborne allergen. Previously, murine models have shown that CD4 T cells are required for initiation of acute inflammation and the remodeling process. However, it is unknown whether CD4 T cells or other CD4+ cells continue to be required for remodeling during ongoing allergen challenges after the development of acute eosinophilic lung inflammation. To test this, mice were sensitized and challenged with ovalbumin (OVA). After acute airway inflammation was established, a CD4 depleting antibody was administered for 4 wk during a period of chronic exposure to intranasal OVA, resulting in effective depletion of CD4+ cells from all organs, including the lung, lung-draining lymph nodes, and spleen. In these mice, levels of peribronchial inflammation, bronchoalveolar (BAL) eosinophils, and lung CD11c+, CD8+, and Siglec-F+CD11c- cells were significantly reduced. However, mucus metaplasia, peribronchial subepithelial fibrosis, and smooth muscle mass were not affected. Additionally, depletion of CD4+ cells before the last week of chronic allergen challenges also led to significant reductions in BAL eosinophils, peribronchial inflammation, and lung CD11c+, CD8+, and Siglec-F+CD11c- cells. These results show that CD4 T cells, and other CD4+ cells including subsets of dendritic cells, iNKT cells, and LTi cells, play a role in ongoing eosinophilic lung inflammation during periods of chronic allergen challenge, but are not required for progressive airway remodeling that develops after initial acute inflammation.
Collapse
Affiliation(s)
- Taylor A Doherty
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|