1
|
Yee YC, Nakamura A, Okada Y, Mori T, Katayama Y. Establishment of an in vitro evaluation method for immunomodulatory functions of yeast strains. ANAL SCI 2024; 40:2043-2051. [PMID: 39097563 DOI: 10.1007/s44211-024-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Saccharomyces cerevisiae, a widely studied yeast known for its industrial applications, is increasingly recognized for its potential in immunomodulation. This study aimed to systematically analyze and compare the immune-modulating properties of various S. cerevisiae strains under controlled experimental conditions. Three essential signals crucial for immune response activation were evaluated to elucidate the immunological responses elicited by these strains, i.e., dendritic cells (DC) cytokine secretion profiles, maturation status, and T cell polarization. Analysis of DC cytokine secretion profiles and maturation status revealed that all tested yeast strains induced DC activation, characterized by significant IL-6 secretion and modest IL-10 induction, as well as upregulation of MHC II molecules. Additionally, strain-specific effects were observed, particularly, strain AJM109 and Y1383 uniquely enhanced CD86 and PD-L1 expression, respectively, suggesting differential impacts on DC co-stimulatory signaling. Furthermore, strain Y1383 showed a unique capacity to support Treg-mediated immune suppression, demonstrating its potential in immune tolerance induction. These findings underscore the complexity of S. cerevisiae-based immune modulation and emphasize the importance of standardized evaluation methods to distinguish their specific immunological effects.
Collapse
Affiliation(s)
- Ying Chuin Yee
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akihiro Nakamura
- Research and Development Laboratory, Sanwa Shurui Co., Ltd., 2231-1 Yamamoto, Usa, Oita, 879-0495, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshiki Katayama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Centre for Advanced Medicine Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, Taoyüan, 32023, Taiwan, ROC.
| |
Collapse
|
2
|
Schönbacher L, Treichler C, Brandl W, Köfeler HC, Fluhr H, Jantscher‐Krenn E, van Poppel MNM. Prenatal Human Milk Oligosaccharides (HMOs) in the Context of BMI, Gestational Weight Gain, and Lipid Profile-An Association Study in Pregnant Women with Overweight or Obesity. Mol Nutr Food Res 2024; 68:e2300533. [PMID: 38085123 PMCID: PMC10909570 DOI: 10.1002/mnfr.202300533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are bioactive glycans first detected in human milk. Their presence in maternal blood during pregnancy suggests systemic functions. Dynamics and associations of the most abundant prenatal HMOs in relation to maternal BMI and serum lipids in a cohort of 87 pregnant women with either overweight or obesity are studied. METHODS Serum HMOs (2'FL, 3'SL, 3'SLN, LDFT), serum lipids (total cholesterol, HDL, LDL, triglycerides), and BMI are measured at 15, 24, and 32 weeks of gestation. RESULTS 2'FL and LDFT are negatively correlated to pre-pregnancy BMI and increase significantly slower between 15 and 24 weeks in highly obese women. Women without detectable increase of serum 2'FL (non-secretors) show a less pronounced gestational weight gain and lower BMI in the third trimester as compared to women phenotype as secretors. Higher early-pregnancy 2'FL is associated with high HDL and low triglycerides in pregnancy. On the other hand, higher 3'SL at 15 weeks is associated with higher triglycerides, LDL, and total cholesterol. CONCLUSIONS Higher early-pregnancy 2'FL is associated with a cardioprotective lipid profile, whereas higher 3'SL is associated with an atherogenic lipid profile. Serum trajectories of 2'FL and LDFT in obese women suggest an obesity mediated delay of α-1,2-fucosylation.
Collapse
Affiliation(s)
- Lukas Schönbacher
- Department of Obstetrics and GynecologyMedical University of GrazAuenbruggerplatz 14Graz8036Austria
| | - Carmen Treichler
- Department of Obstetrics and GynecologyMedical University of GrazAuenbruggerplatz 14Graz8036Austria
| | - Waltraud Brandl
- Department of Obstetrics and GynecologyMedical University of GrazAuenbruggerplatz 14Graz8036Austria
| | - Harald C. Köfeler
- BioTechMed‐GrazMozartgasse 12/IIGraz8010Austria
- Center for Medical ResearchMedical University of GrazStiftingtalstraße 24Graz8010Austria
| | - Herbert Fluhr
- Department of Obstetrics and GynecologyMedical University of GrazAuenbruggerplatz 14Graz8036Austria
| | - Evelyn Jantscher‐Krenn
- Department of Obstetrics and GynecologyMedical University of GrazAuenbruggerplatz 14Graz8036Austria
- BioTechMed‐GrazMozartgasse 12/IIGraz8010Austria
| | - Mireille N. M. van Poppel
- BioTechMed‐GrazMozartgasse 12/IIGraz8010Austria
- Institute of Human Movement ScienceSport and HealthUniversity of GrazMozartgasse 14/IGraz8010Austria
| |
Collapse
|
3
|
Kulkarni R, Kasani SK, Tsai CY, Tung SY, Yeh KH, Yu CHA, Chang W. FAM21 is critical for TLR2/CLEC4E-mediated dendritic cell function against Candida albicans. Life Sci Alliance 2023; 6:e202201414. [PMID: 36717248 PMCID: PMC9888482 DOI: 10.26508/lsa.202201414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
FAM21 (family with sequence similarity 21) is a component of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) protein complex that mediates actin polymerization at endosomal membranes to facilitate sorting of cargo-containing vesicles out of endosomes. To study the function of FAM21 in vivo, we generated conditional knockout (cKO) mice in the C57BL/6 background in which FAM21 was specifically knocked out of CD11c-positive dendritic cells. BMDCs from those mice displayed enlarged early endosomes, and altered cell migration and morphology relative to WT cells. FAM21-cKO cells were less competent in phagocytosis and protein antigen presentation in vitro, though peptide antigen presentation was not affected. More importantly, we identified the TLR2/CLEC4E signaling pathway as being down-regulated in FAM21-cKO BMDCs when challenged with its specific ligand Candida albicans Moreover, FAM21-cKO mice were more susceptible to C. albicans infection than WT mice. Reconstitution of WT BMDCs in FAM21-cKO mice rescued them from lethal C. albicans infection. Thus, our study highlights the importance of FAM21 in a host immune response against a significant pathogen.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Siti Khadijah Kasani
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Ramadhin J, Silva-Moraes V, Nagy T, Norberg T, Harn D. A Comparison of Two Structurally Related Human Milk Oligosaccharide Conjugates in a Model of Diet-Induced Obesity. Front Immunol 2021; 12:668217. [PMID: 34093565 PMCID: PMC8173488 DOI: 10.3389/fimmu.2021.668217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Obesity is the largest risk factor for the development of chronic diseases in industrialized countries. Excessive fat accumulation triggers a state of chronic low-grade inflammation to the detriment of numerous organs. To address this problem, our lab has been examining the anti-inflammatory mechanisms of two human milk oligosaccharides (HMOs), lacto-N-fucopentaose III (LNFPIII) and lacto-N-neotetraose (LNnT). LNFPIII and LNnT are HMOs that differ in structure via presence/absence of an α1,3-linked fucose. We utilize LNFPIII and LNnT in conjugate form, where 10-12 molecules of LNFPIII or LNnT are conjugated to a 40 kDa dextran carrier (P3DEX/NTDEX). Previous studies from our lab have shown that LNFPIII conjugates are anti-inflammatory, act on multiple cell types, and are therapeutic in a wide range of murine inflammatory disease models. The α1,3-linked fucose residue on LNFPIII makes it difficult and more expensive to synthesize. Therefore, we asked if LNnT conjugates induced similar therapeutic effects to LNFPIII. Herein, we compare the therapeutic effects of P3DEX and NTDEX in a model of diet-induced obesity (DIO). Male C57BL/6 mice were placed on a high-fat diet for six weeks and then injected twice per week for eight weeks with 25µg of 40 kDa dextran (DEX; vehicle control), P3DEX, or NTDEX. We found that treatment with P3DEX, but not NTDEX, led to reductions in body weight, adipose tissue (AT) weights, and fasting blood glucose levels. Mice treated with P3DEX also demonstrated improvements in glucose homeostasis and insulin tolerance. Treatment with P3DEX or NTDEX also induced different profiles of serum chemokines, cytokines, adipokines, and incretin hormones, with P3DEX notably reducing circulating levels of leptin and resistin. P3DEX also reduced WAT inflammation and hepatic lipid accumulation, whereas NTDEX seemed to worsen these parameters. These results suggest that the small structural difference between P3DEX and NTDEX has significant effects on the conjugates' therapeutic abilities. Future work will focus on identifying the receptors for these conjugates and delineating the mechanisms by which P3DEX and NTDEX exert their effects.
Collapse
Affiliation(s)
- Jessica Ramadhin
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Vanessa Silva-Moraes
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Tamas Nagy
- Department of Pathology, University of Georgia, Athens, GA, United States
| | - Thomas Norberg
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Donald Harn
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Zheng B, Zhang J, Chen H, Nie H, Miller H, Gong Q, Liu C. T Lymphocyte-Mediated Liver Immunopathology of Schistosomiasis. Front Immunol 2020; 11:61. [PMID: 32132991 PMCID: PMC7040032 DOI: 10.3389/fimmu.2020.00061] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
The parasitic worms, Schistosoma mansoni and Schistosoma japonicum, reside in the mesenteric veins, where they release eggs that induce a dramatic granulomatous response in the liver and intestines. Subsequently, infection may further develop into significant fibrosis and portal hypertension. Over the past several years, uncovering the mechanism of immunopathology in schistosomiasis has become a major research objective. It is known that T lymphocytes, especially CD4+ T cells, are essential for immune responses against Schistosoma species. However, obtaining a clear understanding of how T lymphocytes regulate the pathological process is proving to be a daunting challenge. To date, CD4+ T cell subsets have been classified into several distinct T helper (Th) phenotypes including Th1, Th2, Th17, T follicular helper cells (Tfh), Th9, and regulatory T cells (Tregs). In the case of schistosomiasis, the granulomatous inflammation and the chronic liver pathology are critically regulated by the Th1/Th2 responses. Animal studies suggest that there is a moderate Th1 response to parasite antigens during the acute stage, but then, egg-derived antigens induce a sustained and dominant Th2 response that mediates granuloma formation and liver fibrosis. In addition, the newly discovered Th17 cells also play a critical role in the hepatic immunopathology of schistosomiasis. Within the liver, Tregs are recruited to hepatic granulomas and exert an immunosuppressive role to limit the granulomatous inflammation and fibrosis. Moreover, recent studies have shown that Tfh and Th9 cells might also promote liver granulomas and fibrogenesis in the murine schistosomiasis. Thus, during infection, T-cell subsets undergo complicated cross-talk with antigen presenting cells that then defines their various roles in the local microenvironment for regulating the pathological progression of schistosomiasis. This current review summarizes a vast body of literature to elucidate the contribution of T lymphocytes and their associated cytokines in the immunopathology of schistosomiasis.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
6
|
Jantscher-Krenn E, Treichler C, Brandl W, Schönbacher L, Köfeler H, van Poppel MNM. The association of human milk oligosaccharides with glucose metabolism in overweight and obese pregnant women. Am J Clin Nutr 2019; 110:1335-1343. [PMID: 31504099 DOI: 10.1093/ajcn/nqz202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) were recently found in serum of normal-weight pregnant women, with concentrations increasing from early to mid- and late pregnancy. Whether HMOs have effects on maternal metabolism is unknown. OBJECTIVES We aimed to study the presence and changes in HMOs throughout pregnancy and assess associations with maternal glucose metabolism throughout pregnancy. METHODS The study was a prospective longitudinal cohort study including 87 overweight or obese women. Blood samples were taken at 15, 24, and 32 wk of pregnancy. In serum, 4 HMOs [2'-fucosyllactose (2'FL), lactodifucotetraose (LDFT), 3'-sialyllactose (3'SL), and 3'-sialyllactosamine (3'SLN)] were measured. In linear regression models, the associations between HMOs and (changes in) maternal metabolic parameters were assessed. RESULTS All 4 HMOs showed a significant increase from 15 to 32 weeks of gestation. 3'SL and 3'SLN, but not 2'FL or LDFT, at 15 wk were positively associated with (changes in) fasting glucose at 24 and 32 wk. LDFT was positively associated with (changes in) insulin and HOMA-index at 24 but not 32 wk. A model to predict the development of gestational diabetes mellitus (GDM) that included fasting glucose, prepregnancy BMI, gestational weight gain, age, parity, smoking, and history of macrosomia resulted in an area under the curve (AUC) of 0.81 (95% CI: 0.70, 0.92). Adding 3'SL to this model increased the AUC to 0.91 (95% CI: 0.84, 0.97). CONCLUSIONS The sialylated HMOs 3'SL and 3'SLN were associated with fasting glucose; LDFT was associated with fasting insulin and HOMA-index. Furthermore, 3'SL was more predictive of future GDM diagnoses than was fasting glucose in early pregnancy. Causal relations are unclear and need further investigation.
Collapse
Affiliation(s)
- Evelyn Jantscher-Krenn
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Carmen Treichler
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Waltraud Brandl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Lukas Schönbacher
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Harald Köfeler
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Mireille N M van Poppel
- BioTechMed-Graz, Graz, Austria.,Institute of Sport Science, University of Graz, Graz, Austria
| |
Collapse
|
7
|
Lacorcia M, Prazeres da Costa CU. Maternal Schistosomiasis: Immunomodulatory Effects With Lasting Impact on Allergy and Vaccine Responses. Front Immunol 2018; 9:2960. [PMID: 30619318 PMCID: PMC6305477 DOI: 10.3389/fimmu.2018.02960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Early exposure to immune stimuli, including maternal infection during the perinatal period, is increasingly recognized to affect immune predisposition during later life. This includes exposure to not only viral and bacterial infection but also parasitic helminths which remain widespread. Noted effects of helminth infection, including altered incidence of atopic inflammation and vaccine responsiveness, support further research into the impact these infections have for skewing immune responses. At the same time, despite a sea of recommendations, clear phenotypic and mechanistic understandings of how environmental perturbations in pregnancy and nursing modify immune predisposition and allergy in offspring remain unrefined. Schistosomes, as strong inducers of type 2 immunity embedded in a rich network of regulatory processes, possess strong abilities to shift inflammatory and allergic diseases in infected hosts, for example by generating feedback loops that impair T cell responses to heterologous antigens. Based on the current literature on schistosomiasis, we explore in this review how maternal schistosome infection could drive changes in immune system development of offspring and how this may lead to identifying factors involved in altering responses to vaccination as well as manifestations of immune disorders including allergy.
Collapse
Affiliation(s)
- Matthew Lacorcia
- Department of Medicine, Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Clarissa U Prazeres da Costa
- Department of Medicine, Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Marciani DJ. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity 2017; 50:393-402. [PMID: 28906131 DOI: 10.1080/08916934.2017.1373766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A promising treatment for T-cell-mediated autoimmune diseases is the induction of immune tolerance by modulating the immune response against self-antigens, an objective that may be achieved by vaccination. There are two main types of vaccines currently under development. The tolerogenic vaccines, composed of proteins formed by a cytokine fused to a self-antigen, which usually induce tolerance by eliminating the T-cells that are immune reactive against the self-antigen. The immunogenic vaccines, comprised of a self-antigen plus a sole Th2 adjuvant either free or conjugated, that alleviate autoimmunity by switching the immune response against the self-antigen, from a damaging pro-inflammatory Th1/Th17 to an anti-inflammatory Th2 immunity. Another type of vaccines is the DNA vaccines, where cells transiently express the self-antigen encoded by DNA, which induces a Th2 immunity. Actually, DNA vaccines can benefit from the presence of an adjuvant that elicits a systemic sole Th2 immunity to enhance the initially weak immune response characteristic of these vaccines. While in the tolerogenic vaccines, cytokines are the endogenous immunomodulators, in the immunogenic vaccines, the adjuvants are exogenous agents that elicit Th2 immunity with a production of anti-inflammatory cytokines and antibodies against the self-antigen. Because the commonly used Th2 adjuvant alum, fails to induce an effective immunity in the elderly population, it is unlikely that it would be widely used. Another Th2 adjuvant, the oil/water emulsions mixed with the antigen, while effective in vaccines against infectious agents, due to potential aldehydes in their formulation may be not suitable for autoimmune vaccines. A unique compound is glatiramer, which seems to be both a random polypeptide antigen and an immune modulator that biases the response to Th2 immunity. Its mechanism of action seems to implicate binding to MHC-II, which alters the outcome of T-cell signaling, leading to anergy. Glatiramer, while effective in the treatment of multiple sclerosis has not shown efficacy in other autoimmune diseases. An important new group of promising sole Th2 adjuvants are the fucosylated glycans, which by binding to DC-SIGN bias dendritic cells to Th2 immunity while inhibiting Th1/Th7 immunities. These glycans are similar to those produced by parasitic helminths to prevent inflammatory responses by mammalian hosts. A novel group of sole Th2 adjuvants are some plant-derived fucosylated triterpene glycosides, which share the immune modulatory properties from the fucosylated glycans. These glycosides have also an aldehyde group that delivers an alternative co-stimulatory signal to T-cells, averting the anergy associated with aging due to the loss of the CD28 receptor on T-cells. Hence, the development of vaccines to treat and/or prevent autoimmune conditions and some proteopathies, will significantly benefit from the availability of new sole Th2 adjuvants that while inducing an anti-inflammatory immunity, they do not abrogate pro-inflammatory Th1/Th17 immunities.
Collapse
|
9
|
Lowry CA, Smith DG, Siebler PH, Schmidt D, Stamper CE, Hassell JE, Yamashita PS, Fox JH, Reber SO, Brenner LA, Hoisington AJ, Postolache TT, Kinney KA, Marciani D, Hernandez M, Hemmings SMJ, Malan-Muller S, Wright KP, Knight R, Raison CL, Rook GAW. The Microbiota, Immunoregulation, and Mental Health: Implications for Public Health. Curr Environ Health Rep 2016; 3:270-86. [PMID: 27436048 PMCID: PMC5763918 DOI: 10.1007/s40572-016-0100-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hygiene or "Old Friends" hypothesis proposes that the epidemic of inflammatory disease in modern urban societies stems at least in part from reduced exposure to microbes that normally prime mammalian immunoregulatory circuits and suppress inappropriate inflammation. Such diseases include but are not limited to allergies and asthma; we and others have proposed that the markedly reduced exposure to these Old Friends in modern urban societies may also increase vulnerability to neurodevelopmental disorders and stress-related psychiatric disorders, such as anxiety and affective disorders, where data are emerging in support of inflammation as a risk factor. Here, we review recent advances in our understanding of the potential for Old Friends, including environmental microbial inputs, to modify risk for inflammatory disease, with a focus on neurodevelopmental and psychiatric conditions. We highlight potential mechanisms, involving bacterially derived metabolites, bacterial antigens, and helminthic antigens, through which these inputs promote immunoregulation. Though findings are encouraging, significant human subjects' research is required to evaluate the potential impact of Old Friends, including environmental microbial inputs, on biological signatures and clinically meaningful mental health prevention and intervention outcomes.
Collapse
Affiliation(s)
- Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA.
| | - David G Smith
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Philip H Siebler
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Dominic Schmidt
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James E Hassell
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Paula S Yamashita
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James H Fox
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, D-89081, Ulm, Germany
| | - Lisa A Brenner
- Departments of Psychiatry, Physical Medicine & Rehabilitation, University of Colorado, Anschutz School of Medicine, Aurora, CO, 80045, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Denver, CO, 80220, USA
| | - Andrew J Hoisington
- Department of Civil and Environmental Engineering, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Teodor T Postolache
- University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain MIRECC, Denver, CO, 80220, USA
- VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Kerry A Kinney
- Civil, Architectural and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | | | - Mark Hernandez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Stefanie Malan-Muller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Kenneth P Wright
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Charles L Raison
- School of Human Ecology and School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Graham A W Rook
- Center for Clinical Microbiology, UCL (University College London), WC1E 6BT, London, UK
| |
Collapse
|
10
|
Marciani DJ. Alzheimer's disease vaccine development: A new strategy focusing on immune modulation. J Neuroimmunol 2015; 287:54-63. [PMID: 26439962 DOI: 10.1016/j.jneuroim.2015.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
Abstract
Despite significant advances in the development of Alzheimer's disease (AD) vaccines effective in animal models, these prototypes have been clinically unsuccessful; apparently the result of using immunogens modified to prevent inflammation. Hence, a new paradigm is needed that uses entire AD-associated immunogens, a notion supported by recent successful passive immunotherapy results, with adjuvants that induce Th2-only while inhibiting without abrogating Th1 immunity. Here, we discuss the obstacles to AD vaccine development and Th2-adjuvants that by acting on dendritic and T cells, would elicit regardless of the antigen a safe and effective antibody response, while preventing damaging neuroinflammation and ameliorating immunosenescence.
Collapse
Affiliation(s)
- Dante J Marciani
- Qantu Therapeutics, Inc., 612 E. Main Street, Lewisville, TX 75057, USA.
| |
Collapse
|
11
|
Wang YQ, Ma X, Lu L, Zhao L, Zhang X, Xu Q, Wang Y. Defective antiviral CD8 T-cell response and viral clearance in the absence of c-Jun N-terminal kinases. Immunology 2014; 142:603-13. [PMID: 24673683 DOI: 10.1111/imm.12270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 02/13/2014] [Indexed: 12/19/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) signalling pathway appears to act as a critical intermediate in the regulation of lymphocyte activation and proliferation. The majority of studies on the importance of JNK are focused on its role in T helper responses, with very few reports addressing the mechanisms of JNK in governing CD8 T-cell-mediated immunity. By using a well-defined mousepox model, we demonstrate that JNK is involved in CD8(+) T-cell-mediated antiviral responses. Deficiency of either JNK1 or JNK2 impaired viral clearance, subsequently resulting in an increased susceptibility to ectromelia virus in resistant mice. The impairment of CD8 responses in JNK-deficient mice was not directly due to an inhibition of effector T-cell expansion, as both JNK1 and JNK2 had limited effect on the activation-induced cell death of CD8(+) T cells, and only JNK2-deficient mice exhibited a significant change in CD8(+) T-cell proliferation after acute ectromelia virus infection. However, optimal activation of CD8(+) T cells and their effector functions require signals from both JNK1 and JNK2. Our results suggest that the JNK pathway acts as a critical intermediate in antiviral immunity through regulation of the activation and effector function of CD8(+) T cells rather than by altering their expansion.
Collapse
Affiliation(s)
- Yong-Qin Wang
- Department of Pathogen Biology, School of Medicine, Nankai University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Immunomodulatory glycan lacto-N-fucopentaose III requires clathrin-mediated endocytosis to induce alternative activation of antigen-presenting cells. Infect Immun 2014; 82:1891-903. [PMID: 24566617 DOI: 10.1128/iai.01293-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of alternative activation of antigen-presenting cells (APCs) is largely unknown. Lacto-N-fucopentaose III (LNFPIII) is a biologically conserved pentasaccharide that contains the Lewis(x) trisaccharide. LNFPIII conjugates and schistosome egg antigens, which contain the Lewis(x) trisaccharide, drive alternative activation of APCs and induce anti-inflammatory responses in vivo, preventing inflammation-based diseases, including psoriasis, transplant organ rejection, and metabolic disease. In this study, we show that LNFPIII conjugates and schistosome egg antigens interact with APCs via a receptor-mediated process, requiring internalization of these molecules through a clathrin/dynamin-dependent but caveolus-independent endocytic pathway. Using inhibitors/small interfering RNA (siRNA) against dynamin and clathrin, we show for the first time that endocytosis of Lewis(x)-containing glycans is required to drive alternative maturation of antigen-presenting cells and Th2 immune responses. We identified mouse SIGNR-1 as a cell surface receptor for LNFPIII conjugates. Elimination of SIGNR-1 showed no effect on uptake of LNFPIII conjugates, suggesting that other receptors bind to and facilitate uptake of LNFPIII conjugates. We demonstrate that disruption of actin filaments partially prevented the entry of LNFPIII conjugates into APCs and that LNFPIII colocalizes with both early and late endosomal markers and follows the classical endosomal pathway leading to lysosome maturation. The results of this study show that the ability of LNFPIII to induce alternative activation utilizes a receptor-mediated process that requires a dynamin-dependent endocytosis. Thus, key steps have been defined in the previously unknown mechanism of alternative activation that ultimately leads to induction of anti-inflammatory responses.
Collapse
|
13
|
Saha S, Hossain DMS, Mukherjee S, Mohanty S, Mazumdar M, Mukherjee S, Ghosh UK, Nayek C, Raveendar C, Khurana A, Chakrabarty R, Sa G, Das T. Calcarea carbonica induces apoptosis in cancer cells in p53-dependent manner via an immuno-modulatory circuit. Altern Ther Health Med 2013; 13:230. [PMID: 24053127 PMCID: PMC3856502 DOI: 10.1186/1472-6882-13-230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 09/12/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Complementary medicines, including homeopathy, are used by many patients with cancer, usually alongside with conventional treatment. However, the molecular mechanisms underneath the anti-cancer effect, if any, of these medicines have still remained unexplored. To this end we attempted to evaluate the efficacy of calcarea carbonica, a homeopathic medicine, as an anti-cancer agent and to delineate the detail molecular mechanism(s) underlying calcerea carbonica-induced tumor regression. METHODS To investigate and delineate the underlying mechanisms of calcarea carbonica-induced tumor regression, Trypan blue dye-exclusion test, flow cytometric, Western blot and reverse transcriptase-PCR techniques were employed. Further, siRNA transfections and inhibitor studies were used to validate the involvement of p53 pathway in calcarea carbonica-induced apoptosis in cancer cells. RESULTS Interestingly, although calcarea carbonica administration to Ehrlich's ascites carcinoma (EAC)- and Sarcoma-180 (S-180)-bearing Swiss albino mice resulted in 30-35% tumor cell apoptosis, it failed to induce any significant cell death in ex vivo conditions. These results prompted us to examine whether calcarea carbonica employs the immuno-modulatory circuit in asserting its anti-tumor effects. Calcarea carbonica prevented tumor-induced loss of effector T cell repertoire, reversed type-2 cytokine bias and attenuated tumor-induced inhibition of T cell proliferation in tumor-bearing host. To confirm the role of immune system in calcarea carbonica-induced cancer cell death, a battery of cancer cells were co-cultured with calcarea carbonica-primed T cells. Our results indicated a "two-step" mechanism of the induction of apoptosis in tumor cells by calcarea carbonica i.e., (1) activation of the immune system of the host; and (2) induction of cancer cell apoptosis via immuno-modulatory circuit in p53-dependent manner by down-regulating Bcl-2:Bax ratio. Bax up-regulation resulted in mitochondrial transmembrane potential loss and cytochrome c release followed by activation of caspase cascade. Knocking out of p53 by RNA-interference inhibited calcarea carbonica-induced apoptosis thereby confirming the contribution of p53. CONCLUSION These observations delineate the significance of immuno-modulatory circuit during calcarea carbonica-mediated tumor apoptosis. The molecular mechanism identified may serve as a platform for involving calcarea carbonica into immunotherapeutic strategies for effective tumor regression.
Collapse
|
14
|
Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol 2013; 4:39. [PMID: 23429492 PMCID: PMC3576626 DOI: 10.3389/fimmu.2013.00039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways.
Collapse
Affiliation(s)
- Steven K Lundy
- Graduate Training Program in Immunology, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Internal Medicine-Rheumatology, University of Michigan Medical School Ann Arbor, MI, USA
| | | |
Collapse
|
15
|
Goto M, Takano-Ishikawa Y, Nishimoto M, Kitaoka M. Effect of Lacto-N-biose I on the Antigen-specific Immune Responses of Splenocytes. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2012; 31:47-50. [PMID: 24936348 PMCID: PMC4034288 DOI: 10.12938/bmfh.31.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/15/2011] [Indexed: 11/05/2022]
Abstract
We examined the effect of lacto-N-biose I (LNB) on Antigen (Ag)-specific responses of immune cells. LNB exposure in vitro suppressed Ag-specific Interleukin (IL)-4 secretion of mouse splenocytes significantly. However, IL-4 secretion from CD4(+) T cells stimulated with anti-CD3ε did not changed significantly with LNB exposure. Additionally, Ag-specific Th1 cytokines did not change. Therefore LNB might suppress Ag-specific IL-4 through modification of Ag-presenting cells (APCs) in a manner independent of Th1-type immune development.
Collapse
Affiliation(s)
- Masao Goto
- National Agriculture and Food Research Organization National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Yuko Takano-Ishikawa
- National Agriculture and Food Research Organization National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Mamoru Nishimoto
- National Agriculture and Food Research Organization National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Motomitsu Kitaoka
- National Agriculture and Food Research Organization National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
16
|
Current World Literature. Curr Opin Neurol 2011; 24:300-7. [DOI: 10.1097/wco.0b013e328347b40e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|