1
|
Chia JE, Rousseau RP, Ozturk M, Poswayo SKL, Lucas R, Brombacher F, Parihar SP. The divergent outcome of IL-4Rα signalling on Foxp3 T regulatory cells in listeriosis and tuberculosis. Front Immunol 2024; 15:1427055. [PMID: 39483462 PMCID: PMC11524857 DOI: 10.3389/fimmu.2024.1427055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Forkhead box P3 (Foxp3) T regulatory cells are critical for maintaining self-tolerance, immune homeostasis, and regulating the immune system. Methods We investigated interleukin-4 receptor alpha (IL-4Rα) signalling on T regulatory cells (Tregs) during Listeria monocytogenes (L. monocytogenes) infection using a mouse model on a BALB/c background, specifically with IL-4Rα knockdown in Tregs (Foxp3creIL-4Rα-/lox). Results We showed an impairment of Treg responses, along with a decreased bacterial burden and diminished tissue pathology in the liver and spleen, which translated into better survival. Mechanistically, we observed an enhancement of the Th1 signature, characterised by increased expression of the T-bet transcription factor and a greater number of effector T cells producing IFN-γ, IL-2 following ex-vivo stimulation with heat-killed L. monocytogenes in Foxp3creIL-4Rα-/lox mice. Furthermore, CD8 T cells from Foxp3creIL-4Rα-/lox mice displayed increased cytotoxicity (Granzyme-B) with higher proliferation capacity (Ki-67), better survival (Bcl-2) with concomitant reduced apoptosis (activated caspase 3). In contrast to L. monocytogenes, Foxp3creIL-4Rα-/lox mice displayed similar bacterial burdens, lung pathology and survival during Mycobacterium tuberculosis (M. tuberculosis) infection, despite increased T cell numbers and IFN-γ, TNF and IL-17 production. Conclusion Our results demonstrated that the diminished IL-4Rα signalling on Foxp3+ T regulatory cells resulted in a loss of their functionality, leading to survival benefits in listeriosis but not in tuberculosis.
Collapse
Affiliation(s)
- Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert P. Rousseau
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sibongiseni K. L. Poswayo
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rodney Lucas
- Research Animal Facility (RAF), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
M Yusoff NNF, Ahmad S, Wan Abdul Rahman WF, Mohamud R, C Boer J, Plebanski M, Abdullah B, Chen X, Tengku Din TADAA. CD4+ Foxp3+ Regulatory T-cells in Modulating Inflammatory Microenvironment in Chronic Rhinosinusitis with Nasal Polyps: Progress and Future Prospect. Cytokine 2024; 178:156557. [PMID: 38452440 DOI: 10.1016/j.cyto.2024.156557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.
Collapse
Affiliation(s)
- Nur Najwa Farahin M Yusoff
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | | |
Collapse
|
3
|
Liu K, Liu X, Cao T, Cui X, Sun P, Zhang L, Wu X. Causal Relationship Between Endometriosis and Pelvic Inflammatory Diseases: Mendelian Randomization Study. Int J Womens Health 2024; 16:727-735. [PMID: 38699517 PMCID: PMC11063464 DOI: 10.2147/ijwh.s440110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Objective This study explores the causal relationship between endometriosis and pelvic inflammatory diseases (PID). Methods The study utilized genome-wide association study (GWAS) datasets for endometriosis ("finn-b-N14_ENDOMETRIOSIS") and PID ("finn-b-N14_OTHFEMPELINF"). Subsequently, two-sample Mendelian randomization (MR) analyses were conducted using inverse variance weighting (IVW), Egger regression (MR-Egger), and weighted median (WM) methods. Heterogeneity was evaluated using Cochran's Q test, and in case of detected outliers, they were removed for re-evaluation of MR causality. Results From the endometriosis GWAS dataset, 33 single nucleotide polymorphisms (SNPs) were selected as instrumental variables. All three methods, IVW (OR = 1.39, P < 1×10-8), MR-Egger (OR = 1.41, P = 0.003), and WM (OR = 1.37, P = 1.16×10-5) confirmed a causal relationship between endometriosis and PID. The association between endometriosis and pelvic inflammation remained unaffected by the exclusion of individual SNPs. Lastly, Cochran's Q test and funnel plots showed no evidence of SNP asymmetry. Conclusion The results of the MR analysis support a potential causal relationship between endometriosis and an increased risk of PID.
Collapse
Affiliation(s)
- Kang Liu
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
| | - Xiaochun Liu
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
| | - Tao Cao
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
| | - Xianmei Cui
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
| | - Pengyu Sun
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
| | - Liang Zhang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
| | - Xiaoqin Wu
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, People’s Republic of China
| |
Collapse
|
4
|
Taniguchi T. Hepatitis E virus infection-induced complete remission of primary membranous nephropathy through its higher propensity for inducing regulatory T cells. CEN Case Rep 2023; 12:423-424. [PMID: 37095422 PMCID: PMC10620356 DOI: 10.1007/s13730-023-00789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Affiliation(s)
- Tomoki Taniguchi
- Department of Nephrology, Kyoto City Hospital, Kyoto, Japan.
- Department of Rheumatology and Clinical Immunology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Bai X, Verma D, Garcia C, Musheyev A, Kim K, Fornis L, Griffith DE, Li L, Whittel N, Gadwa J, Ohanjanyan T, Eggleston MJ, Galvan M, Freed BM, Ordway D, Chan ED. Ex vivo and in vivo evidence that cigarette smoke-exposed T regulatory cells impair host immunity against Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 13:1216492. [PMID: 37965256 PMCID: PMC10641287 DOI: 10.3389/fcimb.2023.1216492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction A strong epidemiologic link exists between cigarette smoke (CS) exposure and susceptibility to tuberculosis (TB). Macrophage and murine studies showed that CS and nicotine impair host-protective immune cells against Mycobacterium tuberculosis (MTB) infection. While CS and nicotine may activate T regulatory cells (Tregs), little is known about how CS may affect these immunosuppressive cells with MTB infection. Methods We investigated whether CS-exposed Tregs could exacerbate MTB infection in co-culture with human macrophages and in recipient mice that underwent adoptive transfer of Tregs from donor CS-exposed mice. Results We found that exposure of primary human Tregs to CS extract impaired the ability of unexposed human macrophages to control an MTB infection by inhibiting phagosome-lysosome fusion and autophagosome formation. Neutralizing CTLA-4 on the CS extract-exposed Tregs abrogated the impaired control of MTB infection in the macrophage and Treg co-cultures. In Foxp3+GFP+DTR+ (Thy1.2) mice depleted of endogenous Tregs, adoptive transfer of Tregs from donor CS-exposed B6.PL(Thy1.1) mice with subsequent MTB infection of the Thy1.2 mice resulted in a greater burden of MTB in the lungs and spleens than those that received Tregs from air-exposed mice. Mice that received Tregs from donor CS-exposed mice and infected with MTB had modest but significantly reduced numbers of interleukin-12-positive dendritic cells and interferon-gamma-positive CD4+ T cells in the lungs, and an increased number of total programmed cell death protein-1 (PD-1) positive CD4+ T cells in both the lungs and spleens. Discussion Previous studies demonstrated that CS impairs macrophages and host-protective T effector cells in controlling MTB infection. We now show that CS-exposed Tregs can also impair control of MTB in co-culture with macrophages and in a murine model.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Cindy Garcia
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Ariel Musheyev
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Kevin Kim
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Lorelenn Fornis
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - David E. Griffith
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Li Li
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Nicholas Whittel
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jacob Gadwa
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Tamara Ohanjanyan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Matthew J. Eggleston
- Complement Laboratory, Advance Diagnostics, National Jewish Health, Denver, CO, United States
| | - Manuel Galvan
- Complement Laboratory, Advance Diagnostics, National Jewish Health, Denver, CO, United States
| | - Brian M. Freed
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
6
|
Amer AS, Othman AA, Dawood LM, El-Nouby KA, Gobert GN, Abou Rayia DM. The interaction of Schistosoma mansoni infection with diabetes mellitus and obesity in mice. Sci Rep 2023; 13:9417. [PMID: 37296126 PMCID: PMC10256771 DOI: 10.1038/s41598-023-36112-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Human schistosomiasis is one of the most prevalent parasitic diseases worldwide. Various host factors can affect the host-parasite interactions. Therefore, the aim of the present work was to determine the parasitological, histopathological, biochemical, and immunological status of Schistosoma mansoni-infected hosts with metabolic disorders to identify the underlying possible mechanisms of these comorbidities. The study animals were divided into four groups. Group I represented the control groups, namely, the normal control group, the S. mansoni-infected control group, and the noninfected type 1 diabetes (T1DM), type 2 diabetes (T2DM), and obesity groups. The mice of the other three groups underwent induction of T1DM (Group II), T2DM (Group III) and obesity (Group IV) before being infected with S. mansoni. All mice were subjected to body weight measurement, blood glucose and insulin assessment, parasitological evaluation of adult worm count, tissue egg count and intestinal oogram. Histopathological and immunohistochemical study using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells (HSCs) and image analysis of Masson's trichrome-stained liver sections using ImageJ (Fiji) software were carried out. Additionally, immunological analysis of tumour necrosis factor (TNF) beta, interleukin-5 (IL-5), IL-10, Forkhead box P3 (FOXP3) and pentraxin 3 (PTX3) levels besides biochemical study of total lipid profile were evaluated. The present study revealed a significant increase in the adult worm count and tissue egg output in the obesity group compared to the infected control group. The oogram of counted eggs showed prevalence of immature eggs in T1DM group, while T2DM and obese groups showed prevalence of mature eggs. The fibrosis area percentage showed significant increase in T2DM and obese groups while it was decreased in T1DM group in comparison to infected control group. Our data also showed significant increase in the levels of TNF-β, IL-5, PTX3 in T1DM, T2DM and obesity groups in comparison to infected control group, whilst the levels of FOXP3 and IL-10 were increased in the infected groups in comparison to their noninfected controls. Moreover, infected T1DM, T2DM and obesity groups showed higher blood glucose and lipid profile in comparison to the infected control group. However, these parameters were improved in comparison to their noninfected controls. In sum, induction of T2DM and obesity increased tissue egg counts, mature egg percentage, and fibrosis density, while schistosome infection induced changes in the lipid profile and blood glucose levels in infected diabetic and obese groups and impacted favorably insulin levels in obese mice. By better understanding the complexities of host-parasite interactions, efforts to reduce the burden of these debilitating diseases can be improved.
Collapse
Affiliation(s)
- Alaa S Amer
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Lamees M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Kholoud A El-Nouby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Geoffrey N Gobert
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
7
|
Kobayashi H. Similarities in Pathogenetic Mechanisms Underlying the Bidirectional Relationship between Endometriosis and Pelvic Inflammatory Disease. Diagnostics (Basel) 2023; 13:diagnostics13050868. [PMID: 36900012 PMCID: PMC10000848 DOI: 10.3390/diagnostics13050868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Endometriosis is a common inflammatory disease characterized by the presence of endometrial cells outside of the uterine cavity. Endometriosis affects 10% of women of reproductive age and significantly reduces their quality of life as a result of chronic pelvic pain and infertility. Biologic mechanisms, including persistent inflammation, immune dysfunction, and epigenetic modifications, have been proposed as the pathogenesis of endometriosis. In addition, endometriosis can potentially be associated with an increased risk of pelvic inflammatory disease (PID). Changes in the vaginal microbiota associated with bacterial vaginosis (BV) result in PID or a severe form of abscess formation, tubo-ovarian abscess (TOA). This review aims to summarize the pathophysiology of endometriosis and PID and to discuss whether endometriosis may predispose to PID and vice versa. METHODS Papers published between 2000 and 2022 in the PubMed and Google Scholar databases were included. RESULTS Available evidence supports that women with endometriosis are at increased risk of comorbid PID and vice versa, supporting that endometriosis and PID are likely to coexist. There is a bidirectional relationship between endometriosis and PID that shares a similar pathophysiology, which includes the distorted anatomy favorable to bacteria proliferation, hemorrhage from endometriotic lesions, alterations to the reproductive tract microbiome, and impaired immune response modulated by aberrant epigenetic processes. However, whether endometriosis predisposes to PID or vice versa has not been identified. CONCLUSIONS This review summarizes our current understanding of the pathogenesis of endometriosis and PID and discusses the similarities between them.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara 634-0813, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
8
|
Japanese Kampo Medicine Juzentaihoto Improves Antiviral Cellular Immunity in Tumour-Bearing Hosts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6122955. [PMID: 35996405 PMCID: PMC9392631 DOI: 10.1155/2022/6122955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022]
Abstract
Global and antigen-independent immunosuppression by growing tumours can cause life-threating damage when concurrent with an infection in tumour-bearing hosts. In the present study, we investigated whether the oral administration of the Japanese traditional herbal (Kampo) medicine, juzentaihoto (JTT), plays a role in the improvement of antiviral cellular immunity in tumour-bearing hosts. Female BALB/c mice subcutaneously injected with murine colorectal cancer CT26 cells fed a control or JTT diet were inoculated with recombinant vaccinia virus expressing human immunodeficiency virus-1 glycoprotein 160 (vSC25). At 7 days postinfection, anti-vSC25 cellular immunity was evaluated by measuring the abundance of splenic virus-specific CD8+ T cells. JTT had no impact on CT26 tumour growth in vivo. Surprisingly, JTT augmented anti-vSC25 cellular immunity in CT26-bearing mice. Depletion of either CD25+ regulatory T (Treg) cells or myeloid-derived suppressor cells (MDSCs) also enhanced anti-vSC25 cellular immunity in tumour-bearing mice but had no therapeutic benefit against tumour growth. However, JTT had no impact on the abundance of these immunosuppressive cells. Overall, our data indicates that JTT contributes to the improvement of anti-vSC25 cellular immunity in tumour-bearing hosts possibly via a mechanism independent of CD25+ Treg cells and MDSCs, suggesting that this Kampo medicine can act as a promising antiviral adjuvant in an immunosuppressive state caused by tumours.
Collapse
|
9
|
Sun HL, Du XF, Tang YX, Li GQ, Yang SY, Wang LH, Li XW, Ma CJ, Jiang RM. Impact of immune checkpoint molecules on FoxP3 + Treg cells and related cytokines in patients with acute and chronic brucellosis. BMC Infect Dis 2021; 21:1025. [PMID: 34592958 PMCID: PMC8482665 DOI: 10.1186/s12879-021-06730-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background The immunoregulatory functions of regulatory T cells (Tregs) in the development and progression of some chronic infectious diseases are mediated by immune checkpoint molecules and immunosuppressive cytokines. However, little is known about the immunosuppressive functions of Tregs in human brucellosis, which is a major burden in low-income countries. In this study, expressions of immune checkpoint molecules and Treg-related cytokines in patients with acute and chronic Brucella infection were evaluated to explore their impact at different stages of infection. Methods Forty patients with acute brucellosis and 19 patients with chronic brucellosis admitted to the Third People’s Hospital of Linfen in Shanxi Province between August 2016 and November 2017 were enrolled. Serum and peripheral blood mononuclear cells were isolated from patients before antibiotic treatment and from 30 healthy subjects. The frequency of Tregs (CD4+ CD25+ FoxP3+ T cells) and expression of CTLA-4, GITR, and PD-1 on Treg cells were detected by flow cytometry. Levels of Treg-related cytokines, including IL-35, TGF-β1, and IL-10, were measured by customised multiplex cytokine assays using the Luminex platform. Results The frequency of Tregs was higher in chronic patients than in healthy controls (P = 0.026) and acute patients (P = 0.042); The frequency of CTLA-4+ Tregs in chronic patients was significantly higher than that in healthy controls (P = 0.011). The frequencies of GITR+ and PD-1+ Tregs were significantly higher in acute and chronic patients than in healthy controls (P < 0.05), with no significant difference between the acute and chronic groups (all P > 0.05). Serum TGF-β1 levels were higher in chronic patients (P = 0.029) and serum IL-10 levels were higher in acute patients (P = 0.033) than in healthy controls. We detected weak correlations between serum TGF-β1 levels and the frequencies of Tregs (R = 0.309, P = 0.031) and CTLA-4+ Tregs (R = 0.302, P = 0.035). Conclusions Treg cell immunity is involved in the chronicity of Brucella infection and indicates the implication of Tregs in the prognosis of brucellosis. CTLA-4 and TGF-β1 may contribute to Tregs-mediated immunosuppression in the chronic infection stage of a Brucella infection.
Collapse
Affiliation(s)
- Hua-Li Sun
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiu-Fang Du
- Department of Infectious Diseases, The Third People's Hospital of Linfen City, Linfen, Shanxi, China
| | - Yun-Xia Tang
- The Laboratory of Infectious Diseases Centre, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guo-Qiang Li
- Department of Laboratory Medicine, The Third People's Hospital of Linfen City, Linfen, Shanxi, China
| | - Si-Yuan Yang
- The Laboratory of Infectious Diseases Centre, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ling-Hang Wang
- The Laboratory of Infectious Diseases Centre, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xing-Wang Li
- Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Cheng-Jie Ma
- The Laboratory of Infectious Diseases Centre, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Rong-Meng Jiang
- Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Dolina JS, Lee J, Griswold RQ, Labarta-Bajo L, Kannan S, Greenbaum JA, Bahia El Idrissi N, Pont MJ, Croft M, Schoenberger SP. TLR9 Sensing of Self-DNA Controls Cell-Mediated Immunity to Listeria Infection via Rapid Conversion of Conventional CD4 + T Cells to T reg. Cell Rep 2021; 31:107249. [PMID: 32268093 PMCID: PMC8903023 DOI: 10.1016/j.celrep.2020.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T lymphocytes are crucial for controlling a range of innate and adaptive immune effectors. For CD8+ cytotoxic T lymphocyte (CTL) responses, CD4+ T cells can function as helpers (TH) to amplify magnitude and functionality or as regulatory cells (Treg) capable of profound inhibition. It is unclear what determines differentiation to these phenotypes and whether pathogens provoke alternate programs. We find that, depending on the size of initial dose, Listeria infection drives CD4+ T cells to act as TH or induces rapid polyclonal conversion to immunosuppressive Treg. Conversion to Treg depends on the TLR9 and IL-12 pathways elicited by CD8a+ dendritic cell (DC) sensing of danger-associated neutrophil self-DNA. These findings resolve long-standing questions regarding the conditional requirement for TH amongst pathogens and reveal a remarkable degree of plasticity in the function of CD4+ T cells, which can be quickly converted to Tregin vivo by infection-mediated immune modulation. Dolina et al. show that Listeria infectious dose drives conventional CD4+ T cells to act as TH or mediates conversion to Treg. Differentiation to Treg dominates heightened doses and is promoted by CD8α+ DC TLR9 engagement of neutrophil self-DNA and IL-12 production, revealing plasticity in the function of CD4+ T cells.
Collapse
Affiliation(s)
- Joseph S Dolina
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| | - Joey Lee
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ryan Q Griswold
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Lara Labarta-Bajo
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sumetha Kannan
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jason A Greenbaum
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nawal Bahia El Idrissi
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Neurogenetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Margot J Pont
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen P Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Nishikaku AS, Soldá MV, Ricci G, Ponzio V, Pagliari C, Medina-Pestana JO, de Franco MF, Colombo AL. Correlation between clinical outcome and tissue inflammatory response in kidney transplant recipients with cryptococcosis. Pathog Dis 2020; 78:5908379. [PMID: 32945853 DOI: 10.1093/femspd/ftaa054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcosis is the second most common invasive fungal infection reported in renal transplant recipients. Tissue granulomatous inflammation is necessary to contain Cryptococcus infection. This study aims to analyze the granuloma patterns and in situ expression of regulatory T (Treg) immune response in tissue samples from 12 renal transplant recipients with cryptococcosis. Fungal isolates were molecularly identified as Cryptococcus neoformans species complex. A detailed characterization of granulomas in tissue samples from 12 kidney transplant recipients with cryptococcosis was described by checking six lung and six skin biopsies by conventional histology and for immunohistochemical detection of CD4 and Treg markers: forkhead box P3 (FoxP3), interleukin (IL)-10 and transforming-growth factor (TGF)-β. Granulomas were classified as compact, loose or mixed. Patients with mixed (n = 4) and compact (n = 3) granulomatous inflammation patterns were associated with a better prognosis and presented a higher number of CD4+FoxP3+T cells compared to the group of patients with loose granulomas. In counterpart, three out of five patients with loose granulomas died with cryptococcosis. We suggest that Treg may have a protective role in the tissue response to Cryptococcus infection given its association with compact and mixed granulomas in patients with better clinical outcomes.
Collapse
Affiliation(s)
- Angela S Nishikaku
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcel V Soldá
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Giannina Ricci
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Ponzio
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Hospital do Rim, Fundação Oswaldo Ramos, Universidade Federal de São Paulo, SP, Brazil
| | - Carla Pagliari
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José O Medina-Pestana
- Hospital do Rim, Fundação Oswaldo Ramos, Universidade Federal de São Paulo, SP, Brazil
| | - Marcello F de Franco
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Arnaldo Lopes Colombo
- Laboratório Especial de Micologia, Disciplina de Infectologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Immune Checkpoints in Viral Infections. Viruses 2020; 12:v12091051. [PMID: 32967229 PMCID: PMC7551039 DOI: 10.3390/v12091051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
As evidence has mounted that virus-infected cells, such as cancer cells, negatively regulate the function of T-cells via immune checkpoints, it has become increasingly clear that viral infections similarly exploit immune checkpoints as an immune system escape mechanism. Although immune checkpoint therapy has been successfully used in cancer treatment, numerous studies have suggested that such therapy may also be highly relevant for treating viral infection, especially chronic viral infections. However, it has not yet been applied in this manner. Here, we reviewed recent findings regarding immune checkpoints in viral infections, including COVID-19, and discussed the role of immune checkpoints in different viral infections, as well as the potential for applying immune checkpoint blockades as antiviral therapy.
Collapse
|
13
|
Peron G, Oliveira J, Thomaz LDL, Bonfanti AP, Thomé R, Rapôso C, Cardoso Verinaud LM. Paracoccidioides brasiliensis infection increases regulatory T cell counts in female C57BL/6 mice infected via two distinct routes. Immunobiology 2020; 225:151963. [PMID: 32747019 DOI: 10.1016/j.imbio.2020.151963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 01/24/2023]
Abstract
Studies that show an overview of the peripheral immune response in a model of Paracoccidioides brasiliensis (Pb) infection in females are scarce in the literature. We sought to characterize the innate and adaptive immune responses in female C57BL/6 mice infected with Pb through two distinct routes of administration, intranasal and intravenous. In addition to the lung, P. brasiliensis yeast cells were observed in liver and brain tissues of females infected intravenously. To our knowledge, our study is the first to prove the presence of this pathogenic fungus in the cerebral cortex of female mice. During the initial stages of infection, augmented expression of both MHCII and CD86 was observed on the surface of CD11c+ pulmonary antigen-presenting cells (APCs) in intranasally and intravenously infected females. However, CD40 expression was downregulated in these cells. Concomitantly with increasing serum IL-10 levels, we noted that splenic dendritic cells (DCs) from both intravenously- and intranasally-infected female mice had acquired an immature phenotype. Further, increased T regulatory cell counts were observed in female mice infected via both routes, along with an increase in the infiltration of IL-10-producing CD8+ T cells into the lungs. Moreover, we noted that P. brasiliensis infection resulted in enhanced IL-10 production - by CD11c+ APCs in the lung tissue - and induction of Th17 polarization. Taken together, our results suggest that P. brasiliensis could modulates the immune response in female mice by influencing the balance between regulatory T cells (Tregs) and Th17 polarization.
Collapse
Affiliation(s)
- Gabriela Peron
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
| | - Janine Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Livia de Lima Thomaz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Rodolfo Thomé
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Liana M Cardoso Verinaud
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
14
|
Hirano T, Kadowaki Y, Matsunaga T, Yoshinaga K, Kawano T, Moriyama M, Suzuki M. Interaction Between Regulatory T Cells and Antibody-Producing B Cells for Immune Responses at the Upper Respiratory Mucosa Against Nontypeable Haemophilus influenzae: In Vitro Assay Model. Ann Otol Rhinol Laryngol 2019; 128:45S-51S. [PMID: 31092026 DOI: 10.1177/0003489419837994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the effect of regulatory T cells (Tregs) on B-cell immune responses against outer membrane protein (OMP) from nontypeable Haemophilus influenzae (NTHi) in vitro, to clarify its exact mechanism from an immunologic standpoint. METHODS Mice were vaccinated intranasally with OMP to induce OMP-specific immune responses in the nasal mucosa. Mononuclear cells (MNCs) were collected from the nasal mucosa, and Tregs and helper T (Th) cells were isolated separately from the spleens of those mice. Three different cell culture groups were allocated: MNCs cocultured with Tregs, MNCs cocultured with Th cells, and MNCs cultured alone. At 24 and 72 hours after cell culture, the concentrations of various cytokines and antibodies in culture supernatants were measured to assess the effects of Tregs and Th cells on B-cell responses. Cytokine levels and specific anti-OMP antibody levels in culture media were determined using enzyme-linked immunosorbent assay. CD69 or CD80 expression on B220-positive cells was detected using flow cytometric analysis. RESULTS Th1 and Th2 cytokine concentrations were significantly elevated in the 3 groups incubated with OMP from 24 to 72 hours. Additionally, interleukin-10 levels were significantly higher in the Treg and Th groups than in the control group. Levels of OMP-specific immunoglobulin A did not differ significantly among the groups. The ratios of CD69+B220+ B2 cells were nearly the same in the 3 groups; however, the ratio of CD80+B220+ B2 cells was higher in the control group than in the Treg and Th groups during incubation. CONCLUSIONS Tregs and Th cells did not affect OMP-specific immunoglobulin A production in this study. However, these cells may partially inhibit B-cell functions, such as T-cell activation. These inhibitory effects may be related to interleukin-10.
Collapse
Affiliation(s)
- Takashi Hirano
- 1 Department of Otolaryngology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshinori Kadowaki
- 1 Department of Otolaryngology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takayuki Matsunaga
- 1 Department of Otolaryngology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhiro Yoshinaga
- 1 Department of Otolaryngology, Faculty of Medicine, Oita University, Oita, Japan
| | - Toshiaki Kawano
- 1 Department of Otolaryngology, Faculty of Medicine, Oita University, Oita, Japan
| | - Munehito Moriyama
- 1 Department of Otolaryngology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masashi Suzuki
- 1 Department of Otolaryngology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
15
|
Ahmadi N, Ahmadi A, Kheirali E, Hossein Yadegari M, Bayat M, Shajiei A, Amini AA, Ashrafi S, Abolhassani M, Faezi S, Yazdanparast SA, Mahdavi M. Systemic infection with Candida albicans in breast tumor bearing mice: Cytokines dysregulation and induction of regulatory T cells. J Mycol Med 2019; 29:49-55. [DOI: 10.1016/j.mycmed.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023]
|
16
|
Wu YY, Hsieh CT, Tsay GJ, Kao JT, Chiu YM, Shieh DC, Lee YJ. Recruitment of CCR6 + Foxp3 + regulatory gastric infiltrating lymphocytes in Helicobacter pylori gastritis. Helicobacter 2019; 24:e12550. [PMID: 30412323 DOI: 10.1111/hel.12550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori (H. pylori) infection is associated with an inflammatory response in the gastric mucosa, leading to chronic gastritis, peptic ulcers, and gastric cancer. Increased T-cell infiltration is found at sites of H. pylori infection. The CCR6+ subset of CD4+ regulatory T cells (Tregs), a newly characterized subset of Tregs, has been reported to contribute to local immune inhibition. However, whether CCR6+ Tregs are present in H. pylori gastritis, and what their relationship is to disease prognosis, remains to be elucidated. In this study, gastric infiltrating lymphocytes were isolated from endoscopic biopsy specimens of H. pylori gastritis patients and analyzed. We found that in gastric infiltrating lymphocytes, CCR6+ CD4+ CD25high Tregs, which express high levels of CD45RO, are positively associated with more severe inflammation in gastric mucosa during H. pylori infection. Furthermore, the frequency of CCR6+ Tregs in gastric infiltrating lymphocytes, but not CCR6- Tregs, is significantly increased in inflamed gastric tissues, which is inversely correlated with significantly lower expression of IFN-γ+ CD8+ T cells. We also found that the frequency of CCR6+ Tregs is positively correlated with the frequency of CD4+ IFN-γ+ T cells. In addition, the frequency of CCR6+ Tregs, but not that of CCR6- Tregs, is significantly correlated with increased inflammation in H. pylori gastritis. This study demonstrates that immunosuppression in H. pylori gastritis might be related to the activity of CCR6+ Tregs, which could influence disease prognosis.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Tung Hsieh
- Department of Pediatrics, Lotung Poh-Ai Hospital, I-Lan, Taiwan
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Internal Medicine, School of Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jung-Ta Kao
- Department of Internal Medicine, School of Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Ying-Ming Chiu
- Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan.,Division of Allergy, Immunology & Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Dong-Chen Shieh
- Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan
| | - Yi-Ju Lee
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
17
|
Galdino NAL, Loures FV, de Araújo EF, da Costa TA, Preite NW, Calich VLG. Depletion of regulatory T cells in ongoing paracoccidioidomycosis rescues protective Th1/Th17 immunity and prevents fatal disease outcome. Sci Rep 2018; 8:16544. [PMID: 30410119 PMCID: PMC6224548 DOI: 10.1038/s41598-018-35037-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022] Open
Abstract
In human paracoccidioidomycosis (PCM), a primary fungal infection typically diagnosed when the disease is already established, regulatory T cells (Treg) cells are associated with disease severity. Experimental studies in pulmonary PCM confirmed the detrimental role of these cells, but in most studies, Tregs were depleted prior to or early during infection. These facts led us to study the effects of Treg cell depletion using a model of ongoing PCM. Therefore, Treg cell depletion was achieved by treatment of transgenic C57BL/6DTR/eGFP (DEREG) mice with diphtheria toxin (DT) after 3 weeks of intratracheal infection with 1 × 106 Paracoccidioides brasiliensis yeasts. At weeks 6 and 10 post-infection, DT-treated DEREG mice showed a reduced number of Treg cells associated with decreased fungal burdens in the lungs, liver and spleen, reduced tissue pathology and mortality. Additionally, an increased influx of activated CD4+ and CD8+ T cells into the lungs and elevated production of Th1/Th17 cytokines was observed in DT-treated mice. Altogether, our data demonstrate for the first time that Treg cell depletion in ongoing PCM rescues infected hosts from progressive and potentially fatal PCM; furthermore, our data indicate that controlling Treg cells could be explored as a novel immunotherapeutic procedure.
Collapse
Affiliation(s)
- Nayane A L Galdino
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávio V Loures
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Eliseu F de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tania A da Costa
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nycolas W Preite
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vera Lúcia G Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Sabbagh P, Karkhah A, Nouri HR, Javanian M, Ebrahimpour S. The significance role of regulatory T cells in the persistence of infections by intracellular bacteria. INFECTION GENETICS AND EVOLUTION 2018; 62:270-274. [PMID: 29751196 DOI: 10.1016/j.meegid.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Treg cells), are considered as effective immune cells playing a key role in immune response during cancers, autoimmune and infectious diseases. Regulatory T lymphocytes are divided into two main subgroups: natural Treg cells that generated during maturation in the thymus and have the suppressive activity that is critical for the establishment and maintenance of homeostasis in the body and induced Treg cells (iTreg) that are originated from naive T cells following the self-antigen recognition. In recent years, the roles of Treg in immune responses to microbial infections have received increased attention in researches. Several reports suggested the pivotal role of Treg cells in controlling responses to bacterial infections and demonstrated the impact of regulatory cells on one or more stages in the pathogenesis of bacterial infections. In this review, we describe the significance of regulatory T cells in the immunopathology of bacterial infections by focusing on specific bacterial infections including Mycobacteria, Listeria monocytogenes, and Bordetella pertussis. Moreover, suppressive mechanisms of regulatory T cells during bacterial infection including cell-cell contact, local secretion of inhibitory cytokines and local competition for growth factors will be discussed.
Collapse
Affiliation(s)
- Parisa Sabbagh
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Ahmad Karkhah
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran; Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.
| |
Collapse
|
19
|
Mansilla FC, Capozzo AV. Apicomplexan profilins in vaccine development applied to bovine neosporosis. Exp Parasitol 2017; 183:64-68. [PMID: 29080789 DOI: 10.1016/j.exppara.2017.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 02/02/2023]
Abstract
Neospora caninum, an intracellular protozoan parasite from the phylum Apicomplexa, is the etiologic agent of neosporosis, a disease considered as a major cause of reproductive loss in cattle and neuromuscular disease in dogs. Bovine neosporosis has a great economic impact in both meat and dairy industries, related to abortion, premature culling and reduced milk yields. Although many efforts have been made to restrain bovine neosporosis, there are still no efficacious control methods. Many vaccine-development studies focused in the apicomplexan proteins involved in the adhesion and invasion of the host cell. Among these proteins, profilins have recently emerged as potential vaccine antigens or even adjuvant candidates for several diseases caused by apicomplexan parasites. Profilins bind Toll-like receptors 11 and 12 initiating MyD88 signaling, that triggers IL-12 and IFN-γ production, which may promote protection against infection. Here we summarized the state-of-the-art of novel vaccine development based on apicomplexan profilins applied as antigens or adjuvants, and delved into recent advances on N. caninum vaccines using profilin in the mouse model and in cattle.
Collapse
Affiliation(s)
- Florencia C Mansilla
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, INTA Buenos Aires, Argentina.
| | - Alejandra V Capozzo
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, INTA Buenos Aires, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
20
|
Lewicki S, Skopińska-Różewska E, Lewicka A, Zdanowski R. Long-term supplementation of Rhodiola kirilowii extracts during pregnancy and lactation does not affect mother health status. J Matern Fetal Neonatal Med 2017; 32:838-844. [DOI: 10.1080/14767058.2017.1393069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Ewa Skopińska-Różewska
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Pathomorphology Department, Center for Biostructure Research, Warsaw Medical University, Warsaw, Poland
| | - Aneta Lewicka
- Independent Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
21
|
Mendes RP, Cavalcante RDS, Marques SA, Marques MEA, Venturini J, Sylvestre TF, Paniago AMM, Pereira AC, da Silva JDF, Fabro AT, Bosco SDMG, Bagagli E, Hahn RC, Levorato AD. Paracoccidioidomycosis: Current Perspectives from Brazil. Open Microbiol J 2017; 11:224-282. [PMID: 29204222 PMCID: PMC5695158 DOI: 10.2174/1874285801711010224] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This review article summarizes and updates the knowledge on paracoccidioidomycosis. P lutzii and the cryptic species of P. brasiliensis and their geographical distribution in Latin America, explaining the difficulties observed in the serological diagnosis. OBJECTIVES Emphasis has been placed on some genetic factors as predisposing condition for paracoccidioidomycosis. Veterinary aspects were focused, showing the wide distribution of infection among animals. The cell-mediated immunity was better characterized, incorporating the recent findings. METHODS Serological methods for diagnosis were also compared for their parameters of accuracy, including the analysis of relapse. RESULTS Clinical forms have been better classified in order to include the pictures less frequently observesiod. CONCLUSION Itraconazole and the trimethoprim-sulfamethoxazole combination was compared regarding efficacy, effectiveness and safety, demonstrating that azole should be the first choice in the treatment of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Rinaldo Poncio Mendes
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Ricardo de Souza Cavalcante
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sílvio Alencar Marques
- Department of Dermatology, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | | | - James Venturini
- Laboratory of Experimental Immunology, Department of Biological Science, Faculty of Science, São Paulo State University – UNESP, São Paulo, Brazil
| | - Tatiane Fernanda Sylvestre
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Anamaria Mello Miranda Paniago
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina – Federal University of Mato Grosso do Sul – UFMS, Brazil
| | | | - Julhiany de Fátima da Silva
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Alexandre Todorovic Fabro
- Unit of Experimental Research, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sandra de Moraes Gimenes Bosco
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Eduardo Bagagli
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Rosane Christine Hahn
- Laboratory of Investigation and Mycology, Federal University of Mato Grosso, Faculty of Medicine Cuiabá, Mato Grosso, Brazil
| | - Adriele Dandara Levorato
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
22
|
Abstract
Immunity against Mycobacterium tuberculosis requires a balance between adaptive immune responses to constrain bacterial replication and the prevention of potentially damaging immune activation. Regulatory T (Treg) cells express the transcription factor Foxp3+ and constitute an essential counterbalance of inflammatory Th1 responses and are required to maintain immune homeostasis. The first reports describing the presence of Foxp3-expressing CD4+ Treg cells in tuberculosis (TB) emerged in 2006. Different Treg cell subsets, most likely specialized for different tissues and microenvironments, have been shown to expand in both human TB and animal models of TB. Recently, additional functional roles for Treg cells have been demonstrated during different stages and spectrums of TB disease. Foxp3+ regulatory cells can quickly expand during early infection and impede the onset of cellular immunity and persist during chronic TB infection. Increased frequencies of Treg cells have been associated with a detrimental outcome of active TB, and may be dependent on the M. tuberculosis strain, animal model, local environment, and the stage of infection. Some investigations also suggest that Treg cells are required together with effector T cell responses to obtain reduced pathology and sterilizing immunity. In this review, we will first provide an overview of the regulatory cells and mechanisms that control immune homeostasis. Then, we will review what is known about the phenotype and function of Treg cells from studies in human TB and experimental animal models of TB. We will discuss the potential role of Treg cells in the progression of TB disease and the relevance of this knowledge for future efforts to prevent, modulate, and treat TB.
Collapse
|
23
|
de Wolf ACMT, van Aalst S, Ludwig IS, Bodinham CL, Lewis DJ, van der Zee R, van Eden W, Broere F. Regulatory T cell frequencies and phenotypes following anti-viral vaccination. PLoS One 2017; 12:e0179942. [PMID: 28658271 PMCID: PMC5489208 DOI: 10.1371/journal.pone.0179942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/31/2017] [Indexed: 12/27/2022] Open
Abstract
Regulatory T cells (Treg) function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity. In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg) and activated (aTreg) subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization. Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication. To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen. Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation of Treg frequencies and phenotypes following vaccination.
Collapse
Affiliation(s)
- A. Charlotte M. T. de Wolf
- Division of Immunology, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Susan van Aalst
- Division of Immunology, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Irene S. Ludwig
- Division of Immunology, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Caroline L. Bodinham
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - David J. Lewis
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Ruurd van der Zee
- Division of Immunology, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Willem van Eden
- Division of Immunology, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
| | - Femke Broere
- Division of Immunology, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
24
|
Chen Q, Zhu X, Chen R, Liu J, Liu P, Hu A, Wu L, Hua H, Yuan H. Early Pregnancy Factor Enhances the Generation and Function of CD4 +CD25 + Regulatory T Cells. TOHOKU J EXP MED 2017; 240:215-220. [PMID: 27840373 DOI: 10.1620/tjem.240.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanisms of fetal semi-allograft acceptance by the mother's immune system have been the target of many immunological studies. Early pregnancy factor (EPF) is a molecule present in the serum of pregnant mammals soon after conception that has been reported to have immunomodulatory effects. In the present study, we aimed to determine whether immune cells such as CD4+CD25+ regulatory T cells (Tregs) are involved in the suppressive mechanism of EPF. Accordingly, CD4+CD25- T cells were isolated from spleens of female C57BL/6 mice and stimulated with anti-CD3 antibody, anti-CD28 antibody and IL-2 in the presence or absence of EPF. Flow cytometry was used to analyze the differentiation of CD4+CD25- T cells to CD4+CD25+ Tregs. We thus found a remarkable rise in the Treg ratio in the EPF-treated cells. Higher mRNA and protein levels of fork head box P3 (Foxp3), a marker of the Treg lineage, were also observed in cells treated with EPF. Furthermore, the effect of EPF on Treg immunosuppressive capacity was evaluated. EPF treatment induced the expression of interleukin-10 and transforming growth factor β1 in Tregs. The suppressive capacity of Tregs was further measured by their capability to inhibit T cell receptor-mediated proliferation of CD4+CD25- T cells. We thus found that EPF exposure can enhance the immunosuppressive functions of Tregs. Overall, our data suggest that EPF induces the differentiation of Tregs and increases their immunosuppressive activities, which might be an important mechanism to inhibit immune responses during pregnancy.
Collapse
|
25
|
Bhaskaran N, Quigley C, Weinberg A, Huang A, Popkin D, Pandiyan P. Transforming growth factor-β1 sustains the survival of Foxp3(+) regulatory cells during late phase of oropharyngeal candidiasis infection. Mucosal Immunol 2016; 9:1015-26. [PMID: 26530137 PMCID: PMC4854793 DOI: 10.1038/mi.2015.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/21/2015] [Indexed: 02/04/2023]
Abstract
As CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play crucial immunomodulatory roles during infections, one key question is how these cells are controlled during antimicrobial immune responses. Mechanisms controlling their homeostasis are central to ensure efficient protection against pathogens, as well as to control infection-associated immunopathology. Here we studied how their viability is regulated in the context of mouse oropharyngeal candidiasis (OPC) infection, and found that these cells show increased protection from apoptosis during late phase of infection and reinfection. Tregs underwent reduced cell death because they are refractory to T cell receptor restimulation-induced cell death (RICD). We confirmed their resistance to RICD, using mouse and human Tregs in vitro, and by inducing α-CD3 antibody-mediated apoptosis in vivo. The enhanced viability is dependent on increased transforming growth factor-β1 (TGF-β1) signaling that results in upregulation of cFLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein) in Tregs. Protection from cell death is abrogated in the absence of TGF-β1 signaling in Tregs during OPC infection. Taken together, our data unravel the previously unrecognized role of TGF-β1 in promoting Treg viability, coinciding with the pronounced immunomodulatory role of these cells during later phase of OPC infection, and possibly other mucosal infections.
Collapse
Affiliation(s)
- N Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - C Quigley
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - A Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - A Huang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - D Popkin
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - P Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Functional Genetic Variants of FOXP3 and Risk of Multiple Sclerosis. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016. [DOI: 10.5812/ircmj.34597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Dietze KK, Schimmer S, Kretzmer F, Wang J, Lin Y, Huang X, Wu W, Wang B, Lu M, Dittmer U, Yang D, Liu J. Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model. PLoS One 2016; 11:e0151717. [PMID: 26986976 PMCID: PMC4795771 DOI: 10.1371/journal.pone.0151717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance.
Collapse
Affiliation(s)
- Kirsten K. Dietze
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Freya Kretzmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Lin
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xuan Huang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Weimin Wu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
28
|
Effects of Quorum Sensing Systems on Regulatory T Cells in Catheter-Related Pseudomonas aeruginosa Biofilm Infection Rat Models. Mediators Inflamm 2016; 2016:4012912. [PMID: 27069314 PMCID: PMC4812362 DOI: 10.1155/2016/4012912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/23/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Quorum sensing (QS) systems play an important role in modulating biofilm formation. Recent studies have found that the QS molecules had complex effects on the host immune systems. In addition, regulatory T cells (Tregs), known as important negative regulators in the immune system, have been found upregulated in multiple chronic infections. Therefore, the QS systems were hypothesized to be involved in modulating Tregs in biofilm-associated infections. Object. To explore the effects of QS systems on Tregs in catheter-related Pseudomonas aeruginosa biofilm infection rat models. METHOD Catheter-related Pseudomonas aeruginosa biofilm infection rat models were established; the bacterial clearance rates, total cell counts in bronchoalveolar lavage (BAL) fluid, pathological changes of lungs, and the levels of Foxp3, TGF-β1, and IL-10 in PAO1 strain group were examined and compared with the QS-mutant ΔlasRΔrhlR and ΔlasIΔrhlI groups. RESULTS In PAO1 group, the bacterial clearance rates were lower, total cell counts were higher, pathological changes were severer, and the levels of Foxp3, TGF-β1, and IL-10 were significantly higher compared with QS-mutant groups (p < 0.05). No significant difference was observed between the two QS-mutant groups (p > 0.05). CONCLUSION QS systems can trigger host immune system, accompanied with the upregulation of Tregs.
Collapse
|
29
|
Najar M, Raicevic G, Fayyad-Kazan H, De Bruyn C, Bron D, Toungouz M, Lagneaux L. Bone Marrow Mesenchymal Stromal Cells Induce Proliferative, Cytokinic and Molecular Changes During the T Cell Response: The Importance of the IL-10/CD210 Axis. Stem Cell Rev Rep 2016; 11:442-52. [PMID: 25326368 DOI: 10.1007/s12015-014-9567-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bone marrow mesenchymal stromal cells (BM-MSCs) display immunomodulatory features, representing a promising tool for cell-based therapies. However, the mechanisms used by MSCs to regulate T cell fate remain unclear. AIMS We investigated the potential of BM-MSCs to modulate T cell activation, proliferation, cytokine secretion and immunophenotype. MATERIALS AND METHODS T cells were co-cultured with BM-MSCs to assess their immunomodulatory impact. T cell characterization was performed using cell tracing, ELISA, intracellular and surface staining, flow cytometry analysis and qPCR. RESULTS The activation and proliferation of T cells were downregulated during coculture with BM-MSCs. We also observed that BM-MSCs upregulated IL-10 secretion as well as the expression of its receptor CD210 on T cells, thus creating a loop favoring the expansion of IL-10-producing T cells. IL-10 neutralization restored T cell proliferation, demonstrating that IL-10 is functionally relevant during immunomodulation. Moreover, BM-MSCs differently modulated CD4 and CD8 T-cell immunophenotype by inducing broad changes in their molecular pattern. CONCLUSIONS We provide a comprehensive functional and molecular characterization of T cells that are immunomodulated by BM-MSCs. Indeed, a better understanding of the immunological interplay between T cells and MSCs will facilitate the development of new efficient approaches to improve cell-based immune therapies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institute Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070, Brussels, Belgium,
| | | | | | | | | | | | | |
Collapse
|
30
|
Retinoic acid decreases the severity of Salmonella enterica serovar Typhimurium mediated gastroenteritis in a mouse model. Immunobiology 2016; 221:839-44. [PMID: 26858186 DOI: 10.1016/j.imbio.2016.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 01/01/2023]
Abstract
Gastroenteritis is a global burden; it's the major cause of morbidity and mortality both in adults and children of developing countries. Salmonella is one of the leading causes of bacteria-mediated gastroenteritis and due to its increasing multidrug antibiotic resistance; Salmonella-mediated gastroenteritis is difficult to control. Retinoic acid, the biologically active agent of vitamin A has an anti-inflammatory effect on experimental colitis. In this study we have shown All trans retinoic acid (ATRA) treatment down regulates Salmonella-mediated colitis in a murine model. Macroscopic signs of inflammation such as decrease in body weight and cecum weight, shorter length of proximal colon and pathological score of colitis were observed less in ATRA treated mice than in a vehicle control group. ATRA treatment not only reduced pro-inflammatory cytokine responses, such as TNF-α, IL-6, IL-1β, IFN-γ and IL-17 production but also increased IL-10 response in the supernatant of intestinal tissue. Results also suggested that ATRA treatment enhances the number of FoxP3-expressing T regulatory cells in MLN and also decreases bacterial load in systemic organs. We concluded that ATRA treatment indeed reduces Salmonella Typhimurium-mediated gastroenteritis in mice, suggesting it could be an important part of an alternative therapeutic approach to combat the disease.
Collapse
|
31
|
Wiesner DL, Smith KD, Kotov DI, Nielsen JN, Bohjanen PR, Nielsen K. Regulatory T Cell Induction and Retention in the Lungs Drives Suppression of Detrimental Type 2 Th Cells During Pulmonary Cryptococcal Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:365-74. [PMID: 26590316 PMCID: PMC4685009 DOI: 10.4049/jimmunol.1501871] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022]
Abstract
Lethal disease caused by the fungus Cryptococcus neoformans is a consequence of the combined failure to control pulmonary fungal replication and immunopathology caused by induced type 2 Th2 cell responses in animal models. In order to gain insights into immune regulatory networks, we examined the role of regulatory T (Treg) cells in suppression of Th2 cells using a mouse model of experimental cryptococcosis. Upon pulmonary infection with Cryptococcus, Treg cells accumulated in the lung parenchyma independently of priming in the draining lymph node. Using peptide-MHC class II molecules to identify Cryptococcus-specific Treg cells combined with genetic fate-mapping, we noted that a majority of the Treg cells found in the lungs were induced during the infection. Additionally, we found that Treg cells used the transcription factor, IFN regulatory factor 4, to dampen harmful Th2 cell responses, as well as mediate chemokine retention of Treg cells in the lungs. Taken together, induction and IFN regulatory factor 4-dependent localization of Treg cells in the lungs allow Treg cells to suppress the deleterious effects of Th2 cells during cryptococcal infection.
Collapse
Affiliation(s)
- Darin L Wiesner
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Kyle D Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Dmitri I Kotov
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455; Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Judith N Nielsen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599; and
| | - Paul R Bohjanen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455; Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Center for Infectious Diseases and Translational Research, University of Minnesota, Minneapolis, MN 55455
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455; Center for Infectious Diseases and Translational Research, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
32
|
Mansilla FC, Quintana ME, Langellotti C, Wilda M, Martinez A, Fonzo A, Moore DP, Cardoso N, Capozzo AV. Immunization with Neospora caninum profilin induces limited protection and a regulatory T-cell response in mice. Exp Parasitol 2015; 160:1-10. [PMID: 26551412 DOI: 10.1016/j.exppara.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/23/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
Profilins are actin-binding proteins that regulate the polymerization of actin filaments. In apicomplexan parasites, they are essential for invasion. Profilins also trigger the immune response of the host by activating TLRs on dendritic cells (DCs), inducing the production of pro-inflammatory cytokines. In this study we characterized for the first time the immune response and protection elicited by a vaccine based on Neospora caninum profilin in mice. Groups of eight BALB/c mice received either two doses of a recombinant N. caninum profilin expressed in Escherichia coli. (rNcPRO) or PBS, both formulated with an aqueous soy-based adjuvant enriched in TLR-agonists. Specific anti-profilin antibodies were detected in rNcPRO-vaccinated animals, mainly IgM and IgG3, which were consumed after infection. Splenocytes from rNcPRO-immunized animals proliferated after an in vitro stimulation with rNcPRO before and after challenge. An impairment of the cellular response was observed in NcPRO vaccinated and infected mice following an in vitro stimulation with native antigens of N. caninum, related to an increase in the percentage of CD4+CD25+FoxP3+. Two out of five rNcPRO-vaccinated challenged mice were protected; they were negative for parasite DNA in the brain and showed no histopathological lesions, which were found in all PBS-vaccinated animals. As a whole, our results provide evidence of a regulatory response elicited by immunization with rNcPRO, and suggest a role of profilin in the modulation and/or evasion of immune responses against N. caninum.
Collapse
Affiliation(s)
- Florencia Celeste Mansilla
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - María Eugenia Quintana
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Cecilia Langellotti
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Maximiliano Wilda
- Tecnovax S.A, Luis Viale 2835, 1416 Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Martinez
- Instituto de Ciencia y Tecnología Dr. César Milstein, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Fonzo
- Instituto de Ciencia y Tecnología Dr. César Milstein, Ciudad Autónoma de Buenos Aires, Argentina
| | - Dadín Prando Moore
- Estación Experimental Agropecuaria, INTA Balcarce, Buenos Aires, Argentina
| | - Nancy Cardoso
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.
| |
Collapse
|
33
|
Accumulation of Regulatory T Cells and Chronic Inflammation in the Middle Ear in a Mouse Model of Chronic Otitis Media with Effusion Induced by Combined Eustachian Tube Blockage and Nontypeable Haemophilus influenzae Infection. Infect Immun 2015; 84:356-64. [PMID: 26553466 DOI: 10.1128/iai.01128-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is associated with chronic otitis media (COM). In this study, we generated a murine model of COM by using eustachian tube (ET) obstruction and NTHi (10(7) CFU) inoculation into the tympanic bulla, and we investigated the relationship between regulatory T cells (Treg) and chronic inflammation in the middle ear. Middle ear effusions (MEEs) and middle ear mucosae (MEM) were collected at days 3 and 14 and at 1 and 2 months after inoculation. Untreated mice served as controls. MEEs were used for bacterial counts and to measure the concentrations of cytokines. MEM were collected for histological evaluation and flow cytometric analysis. Inflammation of the MEM was prolonged throughout this study, and the incidence of NTHi culture-positive MEE was 38% at 2 months after inoculation. The levels of interleukin-1β (IL-β), tumor necrosis factor alpha, IL-10, and transforming growth factor β were increased in the middle ear for up to 2 months after inoculation. CD4(+) CD25(+) FoxP3(+) Treg accumulated in the middle ear, and the percentage of Treg in the MEM increased for up to 2 months after inoculation. Treg depletion induced a 99.9% reduction of bacterial counts in MEEs and also significantly reduced the ratio of NTHi culture-positive MEE. The levels of these cytokines were also reduced in MEEs. In summary, we developed a murine model of COM, and our findings indicate that Treg confer infectious tolerance to NTHi in the middle ear.
Collapse
|
34
|
Bazan SB, Costa TA, de Araújo EF, Feriotti C, Loures FV, Pretel FD, Calich VLG. Loss- and Gain-of-Function Approaches Indicate a Dual Role Exerted by Regulatory T Cells in Pulmonary Paracoccidioidomycosis. PLoS Negl Trop Dis 2015; 9:e0004189. [PMID: 26512987 PMCID: PMC4626087 DOI: 10.1371/journal.pntd.0004189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/02/2015] [Indexed: 11/21/2022] Open
Abstract
Paracoccidioidomycosis (PCM), is a pulmonary fungal disease whose severity depends on the adequate development of T cell immunity. Although regulatory T (Treg) cells were shown to control immunity against PCM, deleterious or protective effects were described in different experimental settings. To clarify the function of Treg cells in pulmonary PCM, loss-and gain-of-function approaches were performed with Foxp3GFP knock-in mice and immunodeficient Rag1-/- mice, respectively, which were intratracheally infected with 106 yeast cells. The activity of Foxp3-expressing Treg cells in pulmonary PCM was determined in Foxp3GFP transgenic mice. First, it was verified that natural Treg cells migrate to the lungs of infected mice, where they become activated. Depletion of Treg cells led to reduced fungal load, diminished pathogen dissemination and increased Th1/Th2/Th17 immunity. Further, adoptive transfer of diverse T cell subsets to Rag1-/- mice subsequently infected by the pulmonary route demonstrated that isolated CD4+Foxp3+ Treg cells were able to confer some degree of immunoprotection and that CD4+Foxp3- T cells alone reduced fungal growth and enhanced T cell immunity, but induced vigorous inflammatory reactions in the lungs. Nevertheless, transfer of Treg cells combined with CD4+Foxp3- T cells generated more efficient and balanced immune Th1/Th2/Th17 responses able to limit pathogen growth and excessive tissue inflammation, leading to regressive disease and increased survival rates. Altogether, these loss- and gain-of-function approaches allow us to clearly demonstrate the dual role of Treg cells in pulmonary PCM, their deleterious effects by impairing T cell immunity and pathogen eradication, and their protective role by suppressing exacerbated tissue inflammation. Paracoccidioidomycosis (PCM), the most relevant deep mycosis in Latin America, is caused by the fungus Paracoccidioides brasiliensis. The involvement of regulatory T (Treg) cells in the immunity against PCM has been previously demonstrated, however its underlying mechanisms are still to be elucidated. Using Foxp3GFP transgenic mice, we found that natural Tregs migrate to the lungs of infected mice, where they become activated. Depletion of Treg cells led to reduced fungal load, diminished pathogen dissemination and increased Th1/Th2/Th17 immunity. Further, after performing adoptive transfer experiments using immunodeficient Rag1-/- mice, we demonstrated that isolated CD4+Foxp3+ Treg cells were able to confer some degree of immunoprotection and that CD4+Foxp3- T cells alone contributed to fungal elimination and enhanced T cell immunity, but induced vigorous inflammatory reactions in the lungs. Nevertheless, transfer of Tregs combined with CD4+Foxp3- T cells generated more efficient and balanced immune responses able to limit pathogen growth and excessive tissue inflammation, leading to regressive disease and higher survival rates. Altogether, these loss- and gain-of-function approaches allow us to propose a dual role for Treg cells in pulmonary PCM, their deleterious effects by impairing T cell immunity and pathogen eradication, and their protective role by suppressing exacerbated tissue inflammation.
Collapse
Affiliation(s)
- Silvia B. Bazan
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tania A. Costa
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Eliseu Frank de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia Feriotti
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flávio V. Loures
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando D. Pretel
- Centro de Facilidades de Apoio à Pesquisa (CEFAP), Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Vera L. G. Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
35
|
Noriega V, Martínez-Laperche C, Buces E, Pion M, Sánchez-Hernández N, Martín-Antonio B, Guillem V, Bosch-Vizcaya A, Bento L, González-Rivera M, Balsalobre P, Kwon M, Serrano D, Gayoso J, de la Cámara R, Brunet S, Rojas-Contreras R, Nieto JB, Martínez C, Gónzalez M, Espigado I, Vallejo JC, Sampol A, Jiménez-Velasco A, Urbano-Ispizua A, Solano C, Gallardo D, Díez-Martín JL, Buño I. The Genotype of the Donor for the (GT)n Polymorphism in the Promoter/Enhancer of FOXP3 Is Associated with the Development of Severe Acute GVHD but Does Not Affect the GVL Effect after Myeloablative HLA-Identical Allogeneic Stem Cell Transplantation. PLoS One 2015; 10:e0140454. [PMID: 26473355 PMCID: PMC4608671 DOI: 10.1371/journal.pone.0140454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/25/2015] [Indexed: 11/18/2022] Open
Abstract
The FOXP3 gene encodes for a protein (Foxp3) involved in the development and functional activity of regulatory T cells (CD4+/CD25+/Foxp3+), which exert regulatory and suppressive roles over the immune system. After allogeneic stem cell transplantation, regulatory T cells are known to mitigate graft versus host disease while probably maintaining a graft versus leukemia effect. Short alleles (≤(GT)15) for the (GT)n polymorphism in the promoter/enhancer of FOXP3 are associated with a higher expression of FOXP3, and hypothetically with an increase of regulatory T cell activity. This polymorphism has been related to the development of auto- or alloimmune conditions including type 1 diabetes or graft rejection in renal transplant recipients. However, its impact in the allo-transplant setting has not been analyzed. In the present study, which includes 252 myeloablative HLA-identical allo-transplants, multivariate analysis revealed a lower incidence of grade III-IV acute graft versus host disease (GVHD) in patients transplanted from donors harboring short alleles (OR = 0.26, CI 0.08-0.82, p = 0.021); without affecting chronic GVHD or graft versus leukemia effect, since cumulative incidence of relapse, event free survival and overall survival rates are similar in both groups of patients.
Collapse
Affiliation(s)
- Víctor Noriega
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Elena Buces
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Inmunology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, University of Barcelona, IDIBAPS, Instituto de Investigación Josep Carreras (IJC), Barcelona, Spain
| | - Vicent Guillem
- Department of Hematology and Medical Oncology, Hospital Clínico Universitario de Valencia, Universitat de Valencia, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Anna Bosch-Vizcaya
- Department of Hematology, ICO Girona, Hospital Josep Trueta, IDIBGI Foundation, Girona, Spain
| | - Leyre Bento
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Milagros González-Rivera
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- DNA Sequencing Core Facility, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Pascual Balsalobre
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - David Serrano
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jorge Gayoso
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Salut Brunet
- Department of Clinical Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - José B. Nieto
- Department of Hematology, Hospital Morales Meseguer, Murcia, Spain
| | | | - Marcos Gónzalez
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Ildefonso Espigado
- Department of Hematology and Hemotherapy, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Juan C. Vallejo
- Department of Hematology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Antonia Sampol
- Department of Hematology, Hospital Universitario Son Espases, Palma de Mallorca, Islas Baleares, Spain
| | | | - Alvaro Urbano-Ispizua
- Department of Hematology, Hospital Clinic, University of Barcelona, IDIBAPS, Instituto de Investigación Josep Carreras (IJC), Barcelona, Spain
| | - Carlos Solano
- Department of Hematology and Medical Oncology, Hospital Clínico Universitario de Valencia, Universitat de Valencia, Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - David Gallardo
- Department of Hematology, ICO Girona, Hospital Josep Trueta, IDIBGI Foundation, Girona, Spain
| | - José L. Díez-Martín
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ismael Buño
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | |
Collapse
|
36
|
Lin SJ, Lu CH, Yan DC, Lee PT, Hsiao HS, Kuo ML. Expansion of regulatory T cells from umbilical cord blood and adult peripheral blood CD4(+)CD25 (+) T cells. Immunol Res 2015; 60:105-11. [PMID: 24515612 DOI: 10.1007/s12026-014-8488-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+)CD25(+) regulatory T cells (Treg), if properly expanded from umbilical cord blood (UCB), may provide a promising immunotherapeutic tool. Our previous data demonstrated that UCB CD4(+)CD25(+) T cells with 4-day stimulation have comparable phenotypes and suppressive function to that of adult peripheral blood (APB) CD4(+)CD25(+) T cells. We further examined whether 2-week culture would achieve higher expansion levels of Tregs. UCB CD4(+)CD25(+) T cells and their APB counterparts were stimulated with anti-CD3/anti-CD28 in the presence of IL-2 or IL-15 for 2 weeks. The cell proliferation and forkhead box P3 (FoxP3) expression were examined. The function of the expanded cells was then investigated by suppressive assay. IL-21 was applied to study whether it counteracts the function of UCB and APB CD4(+)CD25(+) T cells. The results indicate that UCB CD4(+)CD25(+) T cells expanded much better than their APB counterparts. IL-2 was superior to expand UCB and APB Tregs for 2 weeks than IL-15. FoxP3 expression which peaked on Day 10-14 was comparable. Most importantly, expanded UCB Tregs showed greater suppressive function in allogeneic mixed lymphocyte reaction. The addition of IL-21, however, counteracted the suppressive function of expanded UCB and APB Tregs. The results support using UCB as a source of Treg cells.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Schmidt AM, Lu W, Sindhava VJ, Huang Y, Burkhardt JK, Yang E, Riese MJ, Maltzman JS, Jordan MS, Kambayashi T. Regulatory T cells require TCR signaling for their suppressive function. THE JOURNAL OF IMMUNOLOGY 2015; 194:4362-70. [PMID: 25821220 DOI: 10.4049/jimmunol.1402384] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/02/2015] [Indexed: 01/23/2023]
Abstract
Regulatory T cells (Tregs) are a subset of CD4(+) T cells that maintain immune tolerance in part by their ability to inhibit the proliferation of conventional CD4(+) T cells (Tconvs). The role of the TCR and the downstream signaling pathways required for this suppressive function of Tregs are not fully understood. To yield insight into how TCR-mediated signals influence Treg suppressive function, we assessed the ability of Tregs with altered TCR-mediated signaling capacity to inhibit Tconv proliferation. Mature Tregs deficient in Src homology 2 domain containing leukocyte protein of 76 kDa (SLP-76), an adaptor protein that nucleates the proximal signaling complex downstream of the TCR, were unable to inhibit Tconv proliferation, suggesting that TCR signaling is required for Treg suppressive function. Moreover, Tregs with defective phospholipase C γ (PLCγ) activation due to a Y145F mutation of SLP-76 were also defective in their suppressive function. Conversely, enhancement of diacylglycerol-mediated signaling downstream of PLCγ by genetic ablation of a negative regulator of diacylglycerol kinase ζ increased the suppressive ability of Tregs. Because SLP-76 is also important for integrin activation and signaling, we tested the role of integrin activation in Treg-mediated suppression. Tregs lacking the adaptor proteins adhesion and degranulation promoting adapter protein or CT10 regulator of kinase/CT10 regulator of kinase-like, which are required for TCR-mediated integrin activation, inhibited Tconv proliferation to a similar extent as wild-type Tregs. Together, these data suggest that TCR-mediated PLCγ activation, but not integrin activation, is required for Tregs to inhibit Tconv proliferation.
Collapse
Affiliation(s)
- Amanda M Schmidt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Wen Lu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Vishal J Sindhava
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Enjun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew J Riese
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jonathan S Maltzman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
38
|
Khedkar SA, Sun X, Rigby AC, Feinberg MW. Discovery of small molecule inhibitors to Krüppel-like factor 10 (KLF10): implications for modulation of T regulatory cell differentiation. J Med Chem 2015; 58:1466-78. [PMID: 25581017 DOI: 10.1021/jm5018187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Krüppel-like family of transcription factors (KLFs) constitute a subfamily of C2H2-type zinc finger proteins with distinct cell-type expression patterns and regulate functional aspects of cell growth and differentiation, activation, or development. KLF10 has been previously shown to critically regulate the acquisition of CD4+CD25+ T regulatory cell differentiation and function, an effect important to the maintenance of self-tolerance, immune suppression, and tumor immunosurveillance. To date, there are no selective pharmacological inhibitors to KLF10. Herein, we report on the discovery of first-in-class small molecule compounds that inhibit the KLF10-DNA interaction interface using computer-aided drug design (CADD) screens of chemical libraries. Interrogation of a "druggable" pocket in the second zinc finger of KLF10 revealed three small molecules, #48, #48-15, and #15-09, with similar scaffolds and binding patterns. Each of these small molecules inhibited KLF10-DNA binding and transcriptional activity, conversion of CD4+CD25- T cells to CD4+CD25+ T regulatory cells, and KLF10 target gene expression. Taken together, these findings support the feasibility of using CADD with functional assays to identify small molecules that target members of the KLF subfamily of transcription factors to regulate biological functions in health and disease. We hope these novel compounds will serve as useful mechanistic probes for KLF10-mediated effects and T regulatory cell biology.
Collapse
Affiliation(s)
- Santosh A Khedkar
- Department of Medicine, Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center , 99 Brookline Avenue, RN-227, Boston, Massachusetts 02215, United States
| | | | | | | |
Collapse
|
39
|
Johnstone J, Parsons R, Botelho F, Millar J, McNeil S, Fulop T, McElhaney J, Andrew MK, Walter SD, Devereaux PJ, Malekesmaeili M, Brinkman RR, Mahony J, Bramson J, Loeb M. Immune biomarkers predictive of respiratory viral infection in elderly nursing home residents. PLoS One 2014; 9:e108481. [PMID: 25275464 PMCID: PMC4183538 DOI: 10.1371/journal.pone.0108481] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/12/2014] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To determine if immune phenotypes associated with immunosenescence predict risk of respiratory viral infection in elderly nursing home residents. METHODS Residents ≥ 65 years from 32 nursing homes in 4 Canadian cities were enrolled in Fall 2009, 2010 and 2011, and followed for one influenza season. Following influenza vaccination, peripheral blood mononuclear cells (PBMCs) were obtained and analysed by flow cytometry for T-regs, CD4+ and CD8+ T-cell subsets (CCR7+CD45RA+, CCR7-CD45RA+ and CD28-CD57+) and CMV-reactive CD4+ and CD8+ T-cells. Nasopharyngeal swabs were obtained and tested for viruses in symptomatic residents. A Cox proportional hazards model adjusted for age, sex and frailty, determined the relationship between immune phenotypes and time to viral infection. RESULTS 1072 residents were enrolled; median age 86 years and 72% female. 269 swabs were obtained, 87 were positive for virus: influenza (24%), RSV (14%), coronavirus (32%), rhinovirus (17%), human metapneumovirus (9%) and parainfluenza (5%). In multivariable analysis, high T-reg% (HR 0.41, 95% CI 0.20-0.81) and high CMV-reactive CD4+ T-cell% (HR 1.69, 95% CI 1.03-2.78) were predictive of respiratory viral infection. CONCLUSIONS In elderly nursing home residents, high CMV-reactive CD4+ T-cells were associated with an increased risk and high T-regs were associated with a reduced risk of respiratory viral infection.
Collapse
Affiliation(s)
- Jennie Johnstone
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Robin Parsons
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Fernando Botelho
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Jamie Millar
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Shelly McNeil
- Canadian Center for Vaccinology, IWK Health Centre and Capital Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tamas Fulop
- Department of Medicine, Geriatrics Division, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Janet McElhaney
- Department of Medicine, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Melissa K. Andrew
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen D. Walter
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - P. J. Devereaux
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Ryan R. Brinkman
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - James Mahony
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Bramson
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mark Loeb
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
40
|
Donini M, Buti S, Lazzarelli S, Bozzetti R, Rivoltini L, Camisaschi C, Castelli C, Bearz A, Simonelli C, Lo Re G, Mattioli R, Caminiti C, Passalacqua R. Dose-finding/phase II trial: bevacizumab, immunotherapy, and chemotherapy (BIC) in metastatic renal cell cancer (mRCC). Antitumor effects and variations of circulating T regulatory cells (Treg). Target Oncol 2014; 10:277-86. [PMID: 25230695 DOI: 10.1007/s11523-014-0337-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/29/2014] [Indexed: 02/07/2023]
Abstract
The aim of this study was to explore the efficacy and toxicities of a combined regimen of bevacizumab plus immunotherapy and chemotherapy (BIC) and the circulating T regulatory cells (Treg) in metastatic renal cell cancer (mRCC). Nephrectomized mRCC patients were enrolled into a multicenter single-arm dose-finding study with five escalated dose levels of chemotherapy with intravenous gemcitabine and 5-fluorouracil associated with fixed intravenous doses of bevacizumab, subcutaneous low doses of interleukin-2, and interferon-α-2a. An expanded cohort (phase II study) was treated at the recommended dose for additional safety and efficacy information according to minimax Simon two-stage design. Blood samples for Treg were collected and evaluated by fluorescence-activated cell sorting (FACS) analysis on cycle 1. Fifty-one patients were entered to receive one of five dose levels. Median age was 58 years (male 67 %, pretreated 49 %): 15 patients were low risk according to Memorial Sloan-Kettering Cancer Center (MSKCC) criteria, while 27 and nine were respectively intermediate- and high-risk patients. More frequent grade 3 and 4 toxicities included nonfebrile neutropenia, thrombocytopenia, and fever. Among patients evaluable for response (49), 29.5 % had partial response and 37 % stable disease. Overall median time to progression and median overall survival were 8.8 and 22.67 months, respectively. We observed a rapid increase in the percentage of Treg after immunotherapy and a reduction after bevacizumab only in patient who obtained a partial response or stable disease. The BIC was feasible, well tolerated, and shown interesting activity. Further studies are needed to explore if Treg could have a role in clinical response in mRCC treated with bevacizumab.
Collapse
Affiliation(s)
- M Donini
- Oncology Division, Azienda Istituti Ospitalieri di Cremona, Viale Concordia 1, 26100, Cremona, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Berthelot JM, Le Goff B, Martin J, Maugars Y, Josien R. Essential role for CD103+ cells in the pathogenesis of spondyloarthritides. Joint Bone Spine 2014; 82:8-12. [PMID: 25241337 DOI: 10.1016/j.jbspin.2014.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
The clinical features of spondyloarthritides include extraarticular manifestations involving the skin, eyes, and gastrointestinal tract. At these sites, a membrane integrin can be acquired by virtue of the presence of CD4+ T cells and specific dendritic cells and correlates with a regulatory behavior of these cells. This membrane integrin conjugates the beta7 subunit and the alphaE subunit, also known as CD103. CD103 expression requires high levels of TGF-beta and retinoic acid; in addition, expression of CD103 by T cells requires antigen recognition. Whether CD103 is found in the entheses has not yet been investigated. CD103 is expressed at high levels in the skin, eyes, and bowel but it is found in only very low levels in the bloodstream. CD8+ CD103+ T cells differ markedly from other CD103+ cells in that they are resident cells with no tendency to migrate and usually exert predominantly cytotoxic functions as opposed to regulatory functions. Several bacteria, such as Salmonella, can become dormant within the mucous membranes and/or their lymph nodes, where they use CD103+ dendritic cells and CD4+ CD103+ regulatory T cells (Tregs) to evade the immune response. This phenomenon could be studied in other tissues targeted by spondyloarthritides, where dormant microorganisms can migrate by using M2 macrophages as Trojan horses, since M2 macrophages express the CD103 ligand E-cadherin. Microorganism peptide recognition by CD8+ CD103+ T cells (which are overrepresented in psoriasis and joint fluid in some forms of spondyloarthritis) induces an inflammatory response that may be sufficient to transiently reverse the regulatory function of the CD103+ dendritic cells and CD4+ CD103+ T cells during disease flares. The sensitivity of these diseases to retinoids further supports a pathogenic role for transient CD103+ cell failure.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, 44093 Nantes cedex 01, France.
| | - Benoît Le Goff
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, 44093 Nantes cedex 01, France
| | | | - Yves Maugars
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, 44093 Nantes cedex 01, France
| | | |
Collapse
|
42
|
Han YW, Choi JY, Uyangaa E, Kim SB, Kim JH, Kim BS, Kim K, Eo SK. Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways. PLoS Pathog 2014; 10:e1004319. [PMID: 25188232 PMCID: PMC4154777 DOI: 10.1371/journal.ppat.1004319] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 07/09/2014] [Indexed: 12/22/2022] Open
Abstract
Japanese encephalitis (JE) is major emerging neurologic disease caused by JE virus. To date, the impact of TLR molecules on JE progression has not been addressed. Here, we determined whether each TLR modulates JE, using several TLR-deficient mouse strains (TLR2, TLR3, TLR4, TLR7, TLR9). Surprisingly, among the tested TLR-deficient mice there were contrasting results in TLR3(-/-) and TLR4(-/-) mice, i.e. TLR3(-/-) mice were highly susceptible to JE, whereas TLR4(-/-) mice showed enhanced resistance to JE. TLR3 ablation induced severe CNS inflammation characterized by early infiltration of inflammatory CD11b(+)Ly-6Chigh monocytes along with profoundly increased viral burden, proinflammatory cytokine/chemokine expression as well as BBB permeability. In contrast, TLR4(-/-) mice showed mild CNS inflammation manifested by reduced viral burden, leukocyte infiltration and proinflammatory cytokine expression. Interestingly, TLR4 ablation provided potent in vivo systemic type I IFN innate response, as well as ex vivo type I IFN production associated with strong induction of antiviral PRRs (RIG-I, MDA5), transcription factors (IRF-3, IRF-7), and IFN-dependent (PKR, Oas1, Mx) and independent ISGs (ISG49, ISG54, ISG56) by alternative activation of IRF3 and NF-κB in myeloid-derived DCs and macrophages, as compared to TLR3(-/-) myeloid-derived cells which were more permissive to viral replication through impaired type I IFN innate response. TLR4 ablation also appeared to mount an enhanced type I IFN innate and humoral, CD4(+) and CD8(+) T cell responses, which were mediated by altered immune cell populations (increased number of plasmacytoid DCs and NK cells, reduced CD11b(+)Ly-6C(high) monocytes) and CD4(+)Foxp3(+) Treg number in lymphoid tissue. Thus, potent type I IFN innate and adaptive immune responses in the absence of TLR4 were closely coupled with reduced JE lethality. Collectively, these results suggest that a balanced triggering of TLR signal array by viral components during JE progression could be responsible for determining disease outcome through regulating negative and positive factors.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Brain/immunology
- Brain/metabolism
- Brain/virology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Encephalitis Virus, Japanese/pathogenicity
- Encephalitis, Japanese/complications
- Encephalitis, Japanese/virology
- Enzyme-Linked Immunosorbent Assay
- Immunity, Innate
- Inflammation/etiology
- Inflammation/metabolism
- Inflammation/pathology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/virology
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Myeloid Cells/virology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Toll-Like Receptor 3/physiology
- Toll-Like Receptor 4/physiology
Collapse
Affiliation(s)
- Young Woo Han
- College of Veterinary Medicine and Bio-Safety Research Institute, College of Natural Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, College of Natural Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, College of Natural Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, College of Natural Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Jin Hyoung Kim
- Department of Biology, College of Natural Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Bum Seok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, College of Natural Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, College of Natural Science, Chonbuk National University, Jeonju, Republic of Korea
- * E-mail:
| |
Collapse
|
43
|
Esin S, Batoni G. Natural killer cells: a coherent model for their functional role in Mycobacterium tuberculosis infection. J Innate Immun 2014; 7:11-24. [PMID: 25196698 DOI: 10.1159/000363321] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/30/2014] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis is still a leading cause of bacterial infection worldwide, with an estimate of over two billion people latently infected with Mycobacterium tuberculosis (MTB). A delicate interplay between MTB and the host's innate and acquired immune system can influence the outcome of the infection, which ranges from pathogen elimination to the establishment of a latent infection or a progressive disease. Although the host cell-mediated adaptive immune response is of vital importance in the control of MTB infection, growing evidence indicates that innate immune cells may greatly influence the outcome of the interaction between the bacterium and the host. Among the cell populations likely to play a role in the host immune response to MTB, natural killer (NK) cells have recently attracted considerable interest. This review is dedicated to dissecting the role of NK cells in immunity to tuberculosis, reporting the most relevant findings and providing a working model of the possible contribution of NK cells in early and late events associated with MTB infection.
Collapse
Affiliation(s)
- Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | |
Collapse
|
44
|
Lindenberg M, Solmaz G, Puttur F, Sparwasser T. Mouse cytomegalovirus infection overrules T regulatory cell suppression on natural killer cells. Virol J 2014; 11:145. [PMID: 25108672 PMCID: PMC4254395 DOI: 10.1186/1743-422x-11-145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/24/2014] [Indexed: 12/25/2022] Open
Abstract
Background Cytomegalovirus establishes lifelong persistency in the host and leads to life threatening situations in immunocompromised patients. FoxP3+ T regulatory cells (Tregs) critically control and suppress innate and adaptive immune responses. However, their specific role during MCMV infection, especially pertaining to their interaction with NK cells, remains incompletely defined. Methods To understand the contribution of Tregs on NK cell function during acute MCMV infection, we infected Treg depleted and undepleted DEREG mice with WT MCMV and examined Treg and NK cell frequency, number, activation and effector function in vivo. Results Our results reveal an increased frequency of activated Tregs within the CD4+ T cell population shortly after MCMV infection. Specific depletion of Tregs in DEREG mice under homeostatic conditions leads to an increase in NK cell number as well as to a higher activation status of these cells as compared with non-depleted controls. Interestingly, upon infection this effect on NK cells is completely neutralized in terms of cell frequency, CD69 expression and functionality with respect to IFN-γ production. Furthermore, composition of the NK cell population with regard to Ly49H expression remains unchanged. In contrast, absence of Tregs still boosts the general T cell response upon infection to a level comparable to the enhanced activation seen in uninfected mice. CD4+ T cells especially benefit from Treg depletion exhibiting a two-fold increase of CD69+ cells 40 h and IFN-γ+ cells 7 days p.i. while, MCMV infection per se induces robust CD8+ T cell activation which is also further augmented in Treg-depleted mice. Nevertheless, the viral burden in the liver and spleen remain unaltered upon Treg ablation during the course of infection. Conclusions Thus, MCMV infection abolishes Treg suppressing effects on NK cells whereas T cells benefit from their absence during acute infection. This study provides novel information in understanding the collaborative interaction between NK cells and Tregs during a viral infection and provides further knowledge that could be adopted in therapeutic setups to improve current treatment of organ transplant patients where modulation of Tregs is envisioned as a strategy to overcome transplant rejection. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-145) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Franz Puttur
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625 Hannover, Germany.
| | | |
Collapse
|
45
|
Ehrlich A, Castilho TM, Goldsmith-Pestana K, Chae WJ, Bothwell ALM, Sparwasser T, McMahon-Pratt D. The immunotherapeutic role of regulatory T cells in Leishmania (Viannia) panamensis infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:2961-70. [PMID: 25098291 DOI: 10.4049/jimmunol.1400728] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leishmania (Viannia) parasites are etiological agents of cutaneous leishmaniasis in the New World. Infection is characterized by a mixed Th1/Th2 inflammatory response, which contributes to disease pathology. However, the role of regulatory T cells (Tregs) in Leishmania (Viannia) disease pathogenesis is unclear. Using the mouse model of chronic L. (V.) panamensis infection, we examined the hypothesis that Treg functionality contributes to control of pathogenesis. Upon infection, Tregs (CD4(+)Foxp3(+)) presented with a dysregulated phenotype, in that they produced IFN-γ, expressed Tbet, and had a reduced ability to suppress T cell proliferation in vitro. Targeted ablation of Tregs resulted in enlarged lesions, increased parasite load, and enhanced production of IL-17 and IFN-γ, with no change in IL-10 and IL-13 levels. This indicated that an increased inflammatory response was commensurate with disease exacerbation and that the remaining impaired Tregs were important in regulation of disease pathology. Conversely, adoptive transfer of Tregs from naive mice halted disease progression, lowered parasite burden, and reduced cytokine production (IL-10, IL-13, IL-17, IFN-γ). Because Tregs appeared to be important for controlling infection, we hypothesized that their expansion could be used as an immunotherapeutic treatment approach. As a proof of principle, chronically infected mice were treated with rIL-2/anti-IL-2 Ab complex to expand Tregs. Treatment transitorily increased the numbers and percentage of Tregs (draining lymph node, spleen), which resulted in reduced cytokine responses, ameliorated lesions, and reduced parasite load (10(5)-fold). Thus, immunotherapy targeting Tregs could provide an alternate treatment strategy for leishmaniasis caused by Leishmania (Viannia) parasites.
Collapse
Affiliation(s)
- Allison Ehrlich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Tiago Moreno Castilho
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Karen Goldsmith-Pestana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Wook-Jin Chae
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520; and
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520; and
| | - Tim Sparwasser
- Institute of Infection Immunology, Centre for Experimental and Clinical Infection Research, TWINCORE, 30625 Hanover, Germany
| | - Diane McMahon-Pratt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520;
| |
Collapse
|
46
|
Jiang TT, Chaturvedi V, Ertelt JM, Kinder JM, Clark DR, Valent AM, Xin L, Way SS. Regulatory T cells: new keys for further unlocking the enigma of fetal tolerance and pregnancy complications. THE JOURNAL OF IMMUNOLOGY 2014; 192:4949-56. [PMID: 24837152 DOI: 10.4049/jimmunol.1400498] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunological alterations required for successful pregnancy in eutherian placental mammals have remained a scientific enigma since the discovery of MHC haplotype diversity and unique immune signatures among individuals. Within the past 10 years, accumulating data suggest that immune-suppressive regulatory T cells (Tregs) confer essential protective benefits in sustaining tolerance to the semiallogeneic fetus during pregnancy, along with their more established roles in maintaining tolerance to self and "extended self" commensal Ags that averts autoimmunity. Reciprocally, many human pregnancy complications stemming from inadequacies in fetal tolerance have been associated with defects in maternal Tregs. Thus, further elucidating the immunological shifts during pregnancy not only have direct translational implications for improving perinatal health, they have enormous potential for unveiling new clues about how Tregs work in other biological contexts. In this article, epidemiological data in human pregnancy and complementary animal studies implicating a pivotal protective role for maternal Tregs are summarized.
Collapse
Affiliation(s)
- Tony T Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - Vandana Chaturvedi
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - James M Ertelt
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jeremy M Kinder
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Dayna R Clark
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Amy M Valent
- Department of Obstetrics and Gynecology, University of Cincinnati, Cincinnati, OH 45229
| | - Lijun Xin
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sing Sing Way
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229;
| |
Collapse
|
47
|
Affiliation(s)
- Laura M. Zimmerman
- School of Biological Sciences; Julian Hall 210, Campus Box 4120, Illinois State University; Normal Illinois 61790-4120 USA
| | - Rachel M. Bowden
- School of Biological Sciences; Julian Hall 210, Campus Box 4120, Illinois State University; Normal Illinois 61790-4120 USA
| | - Laura A. Vogel
- School of Biological Sciences; Julian Hall 210, Campus Box 4120, Illinois State University; Normal Illinois 61790-4120 USA
| |
Collapse
|
48
|
Abstract
OBJECTIVE The aim of the study was to examine the dose effects of Lactobacillus acidophilus (LA) NCFM strain on rotavirus-specific antibody and B-cell responses in gnotobiotic pigs vaccinated with an oral attenuated human rotavirus (AttHRV). METHODS Pigs were inoculated with AttHRV vaccine in conjunction with high-dose LA (14 doses, total 2.2 × 10(6) colony-forming units [CFU]), intermediate-dose LA (MidLA) (9 doses, total 3.2 × 10(9) CFU), low-dose LA (LoLA) (5 doses, total 2.1 × 10(6) CFU), or without LA feeding. Protection against rotavirus shedding and diarrhea was assessed upon challenge with a virulent HRV. Rotavirus-specific immunoglobulin A (IgA) and IgG antibodies in serum and rotavirus-specific IgA and IgG antibody-secreting cells (ASCs) and memory B cells in ileum, spleen, and blood of the pigs were measured and compared among treatment groups. RESULTS The MidLA, but not high-dose LA or LoLA, significantly reduced rotavirus diarrhea (MidLA-only group) and significantly improved the protection conferred by AttHRV vaccine (MidLA + AttHRV group). Associated with the increased protection, MidLA significantly enhanced rotavirus-specific antibody, ASCs, and memory B-cell responses to AttHRV vaccine. High-dose LA or LoLA did not enhance virus-specific antibody and ASC responses, and hence did not improve the vaccine efficacy. CONCLUSIONS These findings highlight the importance of dose selection and indicate that certain specific lactobacilli strains at the appropriate dose have the dual function of reducing rotavirus diarrhea and enhancing the immunogenicity and protective efficacy of rotavirus vaccines.
Collapse
|
49
|
Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, McColl SR. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog 2014; 10:e1003905. [PMID: 24586147 PMCID: PMC3930558 DOI: 10.1371/journal.ppat.1003905] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.
Collapse
Affiliation(s)
- Ervin E. Kara
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Iain Comerford
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kevin A. Fenix
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cameron R. Bastow
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carly E. Gregor
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Duncan R. McKenzie
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R. McColl
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
50
|
Saini C, Ramesh V, Nath I. Increase in TGF-β secreting CD4⁺CD25⁺ FOXP3⁺ T regulatory cells in anergic lepromatous leprosy patients. PLoS Negl Trop Dis 2014; 8:e2639. [PMID: 24454972 PMCID: PMC3894184 DOI: 10.1371/journal.pntd.0002639] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/01/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Lepromatous leprosy caused by Mycobacterium leprae is associated with antigen specific T cell unresponsiveness/anergy whose underlying mechanisms are not fully defined. We investigated the role of CD25(+)FOXP3(+) regulatory T cells in both skin lesions and M.leprae stimulated PBMC cultures of 28 each of freshly diagnosed patients with borderline tuberculoid (BT) and lepromatous leprosy (LL) as well as 7 healthy household contacts of leprosy patients and 4 normal skin samples. METHODOLOGY/PRINCIPLE FINDINGS Quantitative reverse transcribed PCR (qPCR), immuno-histochemistry/flowcytometry and ELISA were used respectively for gene expression, phenotype characterization and cytokine levels in PBMC culture supernatants. Both skin lesions as well as in vitro antigen stimulated PBMC showed increased percentage/mean fluorescence intensity of cells and higher gene expression for FOXP3(+), TGF-β in lepromatous (p<0.01) as compared to tuberculoid leprosy patients. CD4(+)CD25(+)FOXP3(+) T cells (Tregs) were increased in unstimulated basal cultures (p<0.0003) and showed further increase in in vitro antigen but not mitogen (phytohemaglutinin) stimulated PBMC (iTreg) in lepromatous as compared to tuberculoid leprosy patients (p<0.002). iTregs of lepromatous patients showed intracellular TGF-β which was further confirmed by increase in TGF-β in culture supernatants (p<0.003). Furthermore, TGF-β in iTreg cells was associated with phosphorylation of STAT5A. TGF-β was seen in CD25(+) cells of the CD4(+) but not that of CD8(+) T cell lineage in leprosy patients. iTregs did not show intracellular IFN-γ or IL-17 in lepromatous leprosy patients. CONCLUSIONS/SIGNIFICANCE Our results indicate that FOXP3(+) iTregs with TGF-β may down regulate T cell responses leading to the antigen specific anergy associated with lepromatous leprosy.
Collapse
Affiliation(s)
- Chaman Saini
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Venkatesh Ramesh
- Department of Dermatology, Safdarjung Hospital, New Delhi, India
| | - Indira Nath
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
- * E-mail:
| |
Collapse
|