1
|
Stephens VR, Horner KB, Avila WM, Spicer SK, Chinni R, Bernabe EB, Hinton AO, Damo SM, Eastman AJ, McCallister MM, Osteen KG, Gaddy JA. The impact of persistent organic pollutants on fertility: exposure to the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin alters reproductive tract immune responses. Front Immunol 2024; 15:1497405. [PMID: 39720712 PMCID: PMC11666484 DOI: 10.3389/fimmu.2024.1497405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Exposure to environmental contaminants can result in profound effects on the host immune system. One class of environmental toxicants, known as dioxins, are persistent environmental contaminants termed "forever chemicals". The archetype toxicant from this group of chemicals is 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), an immunotoxicant that activates the aryl-hydrocarbon receptor pathway leading to a variety of changes in immune cell responses. Immune cell functions are crucial to the development and maintenance of healthy reproduction. Immune cells facilitate tolerance between at the maternal-fetal interface between the parent and the semi-allogenic fetus and help defend the gravid reproductive tract from infectious assault. Epidemiological studies reveal that exposure to environmental contaminants (such as TCDD) are linked to adverse reproductive health outcomes including endometriosis, placental inflammation, and preterm birth. However, little is known about the molecular mechanisms that underpin how environmental toxicant exposures impact immune functions at the maternal-fetal interface or within the reproductive tract in general. This review presents the most recent published work that studies interactions between dioxin or TCDD exposure, the host immune system, and reproduction.
Collapse
Affiliation(s)
- Victoria R. Stephens
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kensley B. Horner
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Walter M. Avila
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Sabrina K. Spicer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Riya Chinni
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, United States
| | - Emily B. Bernabe
- Tennessee Valley Health Systems, Department of Veterans Affairs, Nashville, TN, United States
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Steven M. Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Alison J. Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Monique M. McCallister
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Kevin G. Osteen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Tennessee Valley Health Systems, Department of Veterans Affairs, Nashville, TN, United States
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Obstetrics and Gynecology, Meharry Medical College, Nashville, TN, United States
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, United States
- Tennessee Valley Health Systems, Department of Veterans Affairs, Nashville, TN, United States
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
2
|
Curi TZ, Passoni MT, Lima Tolouei SE, de Araújo Ramos AT, França de Almeira SC, Scinskas ABAF, Romano RM, de Oliveira JM, Spercoski KM, Carvalho Dos Santos A, Dalsenter PR, Koch HM, Martino-Andrade AJ. Reproductive toxicity following in utero and lactational exposure to a human-relevant phthalate mixture in rats. Toxicol Sci 2023; 197:1-15. [PMID: 37788136 DOI: 10.1093/toxsci/kfad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
This rodent (Wistar rats) study examined reproductive effects of in utero/lactational exposure to a mixture of 6 antiandrogenic phthalates (PMix): diisobutyl phthalate, di-n-butyl phthalate, diisopentyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl phthalate, and diisononyl phthalate. The PMix was defined based on exposure data from pregnant women in Brazil. Experimental groups were established by extrapolating the estimated human dose to rats (0.1 mg/kg/day), followed by up to 3 additional doses corresponding to 5, 1000, and 5000 times the starting rat dose: 0 (control), 0.1, 0.5, 100, and 500 mg/kg/day. The fetal experiment assessed gestational exposure effects on fetal gonads, whereas the postnatal experiment evaluated reproductive parameters in males and females after in utero and lactational exposure. Prenatal exposure decreased fetal testicular testosterone production at 0.5 and 500 mg/kg/day. PMix 500 also reduced mRNA expression of steroidogenesis-related genes, upregulated transcript expression of the retinoic acid-degrading enzyme Cyp26b1, and increased multinucleated gonocytes incidence in fetal testes. Postnatal assessment revealed antiandrogenic effects at the highest dose, including reduced anogenital distance, nipple retention, and decreased weight of reproductive organs. Early puberty onset (preputial separation) was observed at the lowest dose in males. In contrast, females did not show significant changes in fetal and adult endpoints. Overall, the PMix recapitulated early and late male rat phthalate syndrome phenotypes at the highest dose, but also induced some subtle changes at lower doses, which warrant confirmation and mechanistic assessments. Our data support the use of epidemiologically defined mixtures for exposure risk assessments over traditional toxicological approaches.
Collapse
Affiliation(s)
- Tatiana Zauer Curi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Sara Emilia Lima Tolouei
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anderson Tadeu de Araújo Ramos
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Samara Christina França de Almeira
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anna Beatriz Abreu Ferraz Scinskas
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Renata Marino Romano
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | - Jeane Maria de Oliveira
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | | | - Ariany Carvalho Dos Santos
- Histopathology Laboratory, Department of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS 9804-970, Brazil
| | - Paulo Roberto Dalsenter
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Holger Martin Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bochum 44789, Germany
| | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| |
Collapse
|
3
|
Barnes M, Kasimanickam R, Kasimanickam V. Effect of subclinical endometritis and flunixin meglumine administration on pregnancy in embryo recipient beef cows. Theriogenology 2023; 201:76-82. [PMID: 36842264 DOI: 10.1016/j.theriogenology.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Fertility of recipient beef cows with subclinical endometritis (SCE) that did or did not receive flunixin meglumine (FM) treatment were compared following transfer of d 7 embryo. The study population comprised of 600 Angus cross cows that expressed estrus following Select-Synch + CIDR (Controlled Internal Drug Release) estrus synchronization protocol. At the time of embryo transfer, approximately 3 wk after sampling for subclinical endometritis, cows were randomly allocated either to receive FM treatment (500 mg of Banamine®; n = 300) or not (Control; n = 300). The effect of subclinical endometritis (at ≥ 1% PMN on endometrial cytology by cytobrush method) and FM treatment on pregnancy/embryo transfer (P/ET, %) were evaluated by mixed model. Of the 600 cows, 323 (53.8%) became pregnant; 55.0% (165/300) cows that received FM treatment vs. 52.7% (158/300) control cows (P > 0.1), and 55.9% (266/476) normal vs. 46.0% (57/124) subclinical endometritis cows (P < 0.05). There was a trend for treatment by subclinical endometritis for P/ET (P = 0.09). Pregnancy was recorded in 55.3% (134/242) of normal and 53.4% (31/58) of subclinical endometritis cows that received FM treatment, and in 56.4% (132/234) of normal and 39.4% (26/66) of subclinical endometritis cows that did not receive FM treatment (P = 0.09). In conclusion, subclinical endometritis in recipient beef cows resulted in lower P/ET. Though not significant in cows with subclinical endometritis, FM treatment resulted in 14.0% points more pregnancy compared with control.
Collapse
Affiliation(s)
- M Barnes
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - R Kasimanickam
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - V Kasimanickam
- College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Ijaz MU, Mustafa S, Ain QU, Hamza A, Ali S. Rhamnazin ameliorates 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-evoked testicular toxicity by restoring biochemical, spermatogenic and histological profile in male albino rats. Hum Exp Toxicol 2023; 42:9603271231205859. [PMID: 37807851 DOI: 10.1177/09603271231205859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a potential environmental toxin that has the ability to affect male reproductive tract. Rhamnazin is a naturally present flavone that displays multiple medicinal properties. Therefore, the current study was designed to determine the mitigative role of rhamnazin against TCDD induced reproductive damage. 48 adult male albino rats were randomly separated into four groups: control, TCDD (10 µgkg-1), TCDD + rhamnazin (10 µgkg-1 + 5 mgkg-1 respectively) and rhamnazin (5 mgkg-1). The trial was conducted for 56 days. TCDD intoxication notably affected superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR) and catalase (CAT) activities, besides reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations were augmented. TCDD administration also lowered sperm motility, viability, sperm number, while it augmented the sperm morphological (tail, neck/midpiece and head) anomalies. Moreover, it decreased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and plasma testosterone. Moreover, TCDD reduced steroidogenic enzymes i.e., 17-beta hydroxysteroid dehydrogenase (17β-HSD), steroidogenic acute regulatory protein (StAR) and 3-beta hydroxysteroid dehydrogenase (3β-HSD) as well as B-cell lymphoma 2 (Bcl-2) expressions, but increased the expressions of Bcl-2-associated X protein (Bax) and cysteine-aspartic acid protease (Caspase-3). Furthermore, TCDD exposure also induced histopathological anomalies in testicular tissues. However, the supplementation of rhamnazin recovered all the mentioned damages in the testicles. The outcomes revealed that rhamnazin can ameliorate TCDD induced reproductive toxicity due to its anti-oxidant, anti-apoptotic and androgenic nature.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
5
|
Montano L, Maugeri A, Volpe MG, Micali S, Mirone V, Mantovani A, Navarra M, Piscopo M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int J Mol Sci 2022; 23:ijms23031568. [PMID: 35163492 PMCID: PMC8836239 DOI: 10.3390/ijms23031568] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The role of environmental factors in influencing health status is well documented. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, dioxins, pesticides, ultrafine particles, produced by human activities put a strain on the body’s entire defense system. Therefore, together with public health measures, evidence-based individual resilience measures are necessary to mitigate cancer risk under environmental stress and to prevent reproductive dysfunction and non-communicable diseases; this is especially relevant for workers occupationally exposed to pollutants and/or populations residing in highly polluted areas. The Mediterranean diet is characterized by a high intake of fruits and vegetables rich in flavonoids, that can promote the elimination of pollutants in tissues and fluids and/or mitigate their effects through different mechanisms. In this review, we collected evidence from pre-clinical and clinical studies showing that the impairment of male fertility and gonadal development, as well as cancers of reproductive system, due to the exposure of organic and inorganic pollutants, may be counteracted by flavonoids.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL), 84124 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maria Grazia Volpe
- Institute of Food Sciences, National Research Council, CNR, 83100 Avellino, Italy;
| | - Salvatore Micali
- Urology Department, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Vincenzo Mirone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80126 Naples, Italy;
| | - Alberto Mantovani
- Department of Food, Safety, Nutrition and Veterinary public health, Italian National Health Institute, 00161 Roma, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence:
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|
6
|
The endocrine disrupting effects of sodium arsenite in the rat testis is not mediated through macrophage activation. Reprod Toxicol 2021; 102:1-9. [PMID: 33766721 DOI: 10.1016/j.reprotox.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022]
Abstract
Arsenic (As) is an endocrine disrupting chemical that can disturb the male reproductive system. In a previous study, it was suggested that testicular macrophages could display a role in endocrine disruption induced by As exposure. This work aimed to evaluate the effects of chronic As exposure in the testis function of Wistar rats and examine the participation of macrophage activation and inflammatory response in these processes. We examined gene expression of steroidogenic machinery and immunological markers by RT-QPCR, plasma testosterone concentrations, sperm count and morphology, and histomorphometrical parameters after 60-days exposure to 1 or 5 mg.kg-1.day-1 of sodium arsenite, combined or not with 50 μg.kg-1 of LPS administered one day before euthanasia. We have demonstrated that As exposure reduced the weight of androgen-dependent organs and induced changes in spermatogenesis, in particular at the highest dose. LPS and As co-exposure promoted a decrease in testosterone synthesis, but did not increase the overexpression of markers of macrophage activation seen in LPS-only rats. Our results suggest that As does not alter the testicular macrophage function, but under immunological challenges LPS and As can display a complex interaction, which could lead to endocrine disruption.
Collapse
|
7
|
Wikoff DS, Urban JD, Ring C, Britt J, Fitch S, Budinsky R, Haws LC. Development of a Range of Plausible Noncancer Toxicity Values for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Based on Effects on Sperm Count: Application of Systematic Review Methods and Quantitative Integration of Dose Response Using Meta-Regression. Toxicol Sci 2021; 179:162-182. [PMID: 33306106 DOI: 10.1093/toxsci/kfaa171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regulatory agencies have derived noncancer toxicity values for 2,3,7,8-tetrachlorodibenzo-p-dioxin based on reduced sperm counts relying on single studies from a large body of evidence. Techniques such as meta-regression allow for greater use of the available data while simultaneously providing important information regarding the uncertainty associated with the underlying evidence base when conducting risk assessments. The objective herein was to apply systematic review methods and meta-regression to characterize the dose-response relationship of gestational exposure and epididymal sperm count. Twenty-three publications (20 animal studies consisting of 29 separate rat experimental data sets, and 3 epidemiology studies) met inclusion criteria. Risk of bias evaluation was performed to critically appraise study validity. Low to very low confidence precluded use of available epidemiological data as candidate studies for dose-response due to inconsistencies across the evidence base, high risk of bias, and general lack of biological coherence, including lack of clinical relevance and dose-response concordance. Experimental animal studies, which were found to have higher confidence following the structured assessment of confidence (eg, controlled exposure, biological consistency), were used as the basis of a meta-regression. Multiple models were fit; points of departure were identified and converted to human equivalent doses. The resulting reference dose estimates ranged from approximately 4 to 70 pg/kg/day, depending on model, benchmark response level, and study validity integration approach. This range of reference doses can be used either qualitatively or quantitatively to enhance understanding of human health risk estimates for dioxin-like compounds.
Collapse
|
8
|
Vega N, Pinteur C, Buffelan G, Loizon E, Vidal H, Naville D, Le Magueresse-Battistoni B. Exposure to pollutants altered glucocorticoid signaling and clock gene expression in female mice. Evidence of tissue- and sex-specificity. CHEMOSPHERE 2021; 262:127841. [PMID: 32784060 DOI: 10.1016/j.chemosphere.2020.127841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollutants suspected of disrupting the endocrine system are considered etiologic factors in the epidemic of metabolic disorders. As regulation of energy metabolism relies on the integrated action of a large number of hormones, we hypothesized that certain chemicals could trigger changes in glucocorticoid signaling. To this end, we exposed C57Bl6/J female and male mice between 5 and 20 weeks of age to a mixture of 2,3,7,8- tetrachlorodibenzo-p-dioxin (20 pg/kg body weight/day [bw/d]), polychlorobiphenyl 153 (200 ng/kg bw/d), di-[2-ethylhexyl]-phthalate (500 μg/kg bw/d) and bisphenol A (40 μg/kg bw/d). In female mice fed a standard diet (ST), we observed a decrease in plasma levels of leptin as well as a reduced expression of corticoid receptors Nr3c1 and Nr3c2, of leptin and of various canonical genes related to the circadian clock machinery in visceral (VAT) but not subcutaneous (SAT) adipose tissue. However, Nr3c1 and Nr3c2 mRNA levels did not change in high-fat-fed females exposed to pollutants. In ST-fed males, pollutants caused the same decrease of Nr3c1 mRNA levels in VAT observed in ST-fed females but levels of Nr3c2 and other clock-related genes found to be down-regulated in female VAT were enhanced in male SAT and not affected in male VAT. The expression of corticoid receptors was not affected in the livers of both sexes in response to pollutants. In summary, exposure to a mixture of pollutants at doses lower than the no-observed adverse effect levels (NoAELs) resulted in sex-dependent glucocorticoid signaling disturbances and clock-related gene expression modifications in the adipose tissue of ST-fed mice.
Collapse
Affiliation(s)
- Nathalie Vega
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Claudie Pinteur
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Gaël Buffelan
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Danielle Naville
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | | |
Collapse
|
9
|
Le Magueresse-Battistoni B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249403. [PMID: 33333918 PMCID: PMC7765367 DOI: 10.3390/ijerph17249403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes. Moreover, the study also presents an overview of several mechanisms of action by which pollutants could cause adipose tissue dysfunction. Indeed, a better understanding of the mechanism by which environmental chemicals target adipose tissue and cause metabolic disturbances, and how these mechanisms interact and sex specificities are essential for developing mitigating and sex-specific strategies against metabolic diseases of chemical origin. In particular, considering that a scenario without pollutant exposure is not a realistic option in our current societies, attenuating the deleterious effects of exposure to pollutants by acting on the gut-adipose tissue axis may constitute a new direction of research.
Collapse
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; ; Tel.: +33-(0)-426235919; Fax: +33-(0)-426235916
- CarMeN Laboratory, INSERM U1060, Hopital Lyon-Sud, Bâtiment CENS ELI-2D, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|
10
|
Arabnezhad MR, Montazeri-Najafabady N, Chatrabnous N, Ghafarian Bahreman A, Mohammadi-Bardbori A. Anti-androgenic effect of 6-formylindolo[3,2-b]carbazole (FICZ) in LNCaP cells is mediated by the aryl hydrocarbon-androgen receptors cross-talk. Steroids 2020; 153:108508. [PMID: 31586605 DOI: 10.1016/j.steroids.2019.108508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
Abstract
The factual impact of endogenously activated AHR by 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous ligand of AHR on androgen receptor (AR) was aim of this study. In this study, LNCaP cells were exposed to FICZ, CH223191 and flutamide (Flu) alone or in combination in the presence and absence of testosterone. CYP1A1 enzyme activity, cell viability, cellular prostate-specific antigen (PSA) and dihydrotestosterone (DHT) production, mRNA levels of PSA, KLK2, TMPRSS2, and AR genes were measured as endpoints. A declining in the expression of androgen- responsive target genes was seen by either Flu or FICZ in the presence of testosterone. Furthermore, the forced decrease in the expression of AR target genes resulted in 41% and 31% decline in the DHT and PSA concentrations respectively. Taken together, endogenously activated AHR plays a regulatory role on AR. Therefore, FICZ might be an effective chemical in treating prostate cancer.
Collapse
Affiliation(s)
- Mohammad-Reza Arabnezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghafarian Bahreman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Curi TZ, Neubert da Silva G, Passoni MT, Lima Tolouei SE, Meldola H, Romano RM, Grechi N, Dalsenter PR, Martino-Andrade AJ. In utero and lactational exposure to diisopentyl phthalate (DiPeP) induces fetal toxicity and antiandrogenic effects in rats. Toxicol Sci 2019; 171:347-358. [PMID: 31368500 DOI: 10.1093/toxsci/kfz159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
A previous study has demonstrated exposure of Brazilian pregnant women to Diisopentyl phthalate (DiPeP), which reduces fetal rat testosterone production in a dose-responsive manner. In this study we examined gene expression of steroidogenic proteins in rat fetal testes and investigated the effects of in utero and lactational DiPeP exposure on male rat reproductive development and function. For the prenatal experiment, we orally exposed pregnant Wistar rats to DiPeP or Di-n-butyl phthalate (reference phthalate) at 0, 125, 250, and 500 mg/kg/day from gestation day 14-18 and the fetal testis was evaluated for transcript expression of Star, Cyp11a1, Cyp17a1, Cyp19a1, Insl3, Ar, Esr1, Esr2 and Gper1 by RT-q PCR. DiPeP lowered mRNA levels of key steroidogenic proteins, lending support to the previously reported reductions in fetal testosterone production. DiPeP also lowered fetal testis transcript levels of Insl3 and changed gene expression of some steroid hormones receptors. Signs of fetal toxicity were observed at the highest dose. For the postnatal experiment pregnant rats were exposed orally to vehicle (canola oil) and four DiPeP doses (1, 10, 100 and 300 mg/kg/day) between gestation day 10 and post-natal day 21. DiPeP induced a range of reproductive and antiandrogenic effects that are typical of the rat phthalate syndrome, including reduced anogenital distance at the highest dose, reduced weight of seminal vesicles at 10 mg/kg/day and above, and testicular morphological and functional changes. Together, our results indicate that DiPeP, a compound relevant to the human exposure scenario, is one of the most active antiandrogenic phthalates.
Collapse
Affiliation(s)
- Tatiana Zauer Curi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Gabriela Neubert da Silva
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Sara Emilia Lima Tolouei
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Heloísa Meldola
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-080, Brazil
| | - Nicole Grechi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Paulo Roberto Dalsenter
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-980, Brazil
| |
Collapse
|
12
|
Fagundes NS, Rezende AL, Alvarenga PB, Magalhães LQ, Santos RM, Headley SA, Silva MJB, Beletti ME, Saut JPE. Short communication: Proinflammatory gene expression relative to the collection technique of endometrial samples from cows with and without subclinical endometritis. J Dairy Sci 2019; 102:5511-5517. [PMID: 30981492 DOI: 10.3168/jds.2018-15212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/18/2019] [Indexed: 12/27/2022]
Abstract
Uterine inflammation negatively affects reproductive performance and is an important cause of infertility and subfertility in dairy cows. Several studies have investigated the use of gene expression in endometrial samples collected by biopsy or cytology to evaluate the inflammatory response of the cow uterus. This study aimed to compare the expression of the CCL5, CXCL8, IL6, and IL1B genes in the bovine endometrium according to the site of sample collection [caruncular (C) or intercaruncular (IC)], the collection method (biopsy or cytology), and the category of inflammation based on endometrial cytology (zero, medium, or high) in subclinical endometritis. The reproductive tracts of dairy cows were collected from a slaughterhouse, and punch-biopsy samples of endometrial tissues were obtained from both regions (C and IC). Endometrial cells from these regions were collected with the cytobrush technique and then used for the analysis of mRNA expression by quantitative PCR. After counting polymorphonuclear cells (PMN) by endometrial cytology, 20 uteri with an ovary at stage I (d 1-4 of estrous cycle) were categorized into 3 groups. Uteri with 0% PMN (n = 10) were assigned to group zero, uteri with 5 to 15% PMN (n = 5) to group medium (12.2 ± 1.6% PMN), and uteri with >15% PMN (n = 5) to group high (53.8 ± 32.9% PMN). All data were analyzed with 2-way ANOVA with Bonferroni multiple comparison post test. The results from gene transcripts demonstrated that the region (C or IC) of the endometrial biopsy had no influence on any of the degrees of inflammatory reaction observed. However, gene expression was more elevated in the endometrium of cows with greater inflammation compared with those without inflammation (CCL5, CXCL8, IL6, IL1B) and those with medium inflammation (CCL5, IL6). Expression of the genes evaluated did not differ between the endometrium without inflammation and with medium inflammation. However, in the high inflammation group, all genes were comparatively more expressed in samples collected by cytology relative to those derived from biopsies for both anatomical regions. In conclusion, gene expression did not differ between the C and IC tissue. Samples collected from animals with greater inflammation had greater gene expression than those with zero or medium inflammation. In addition, cytology samples had greater gene expression than biopsy samples in the high inflammation group.
Collapse
Affiliation(s)
- Nadia S Fagundes
- Large Animal Health Laboratory, Federal University of Uberlândia, Uberlândia-Minas Gerais, 38400-902, Brazil; Laboratory of Biology of Reproduction, Instituto de Ciências Biomédicas, Federal University of Uberlândia, Uberlândia-Minas Gerais, 38400-902, Brazil
| | - Amanda L Rezende
- Large Animal Health Laboratory, Federal University of Uberlândia, Uberlândia-Minas Gerais, 38400-902, Brazil
| | - Paula B Alvarenga
- Large Animal Health Laboratory, Federal University of Uberlândia, Uberlândia-Minas Gerais, 38400-902, Brazil
| | - Layane Q Magalhães
- Large Animal Health Laboratory, Federal University of Uberlândia, Uberlândia-Minas Gerais, 38400-902, Brazil
| | - Ricarda M Santos
- Large Animal Health Laboratory, Federal University of Uberlândia, Uberlândia-Minas Gerais, 38400-902, Brazil
| | - Selwyn A Headley
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Paraná, 86057-970, Brazil
| | - Marcelo J B Silva
- Laboratory of Biology of Reproduction, Instituto de Ciências Biomédicas, Federal University of Uberlândia, Uberlândia-Minas Gerais, 38400-902, Brazil
| | - Marcelo E Beletti
- Laboratory of Biology of Reproduction, Instituto de Ciências Biomédicas, Federal University of Uberlândia, Uberlândia-Minas Gerais, 38400-902, Brazil
| | - João P E Saut
- Large Animal Health Laboratory, Federal University of Uberlândia, Uberlândia-Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
13
|
Naville D, Gaillard G, Julien B, Vega N, Pinteur C, Chanon S, Vidal H, Le Magueresse-Battistoni B. Chronic exposure to a pollutant mixture at low doses led to tissue-specific metabolic alterations in male mice fed standard and high-fat high-sucrose diet. CHEMOSPHERE 2019; 220:1187-1199. [PMID: 30722647 DOI: 10.1016/j.chemosphere.2018.12.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/26/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Excessive consumption of industrialized food and beverages is a major etiologic factor in the epidemics of obesity and associated metabolic diseases because these products are rich in fat and sugar. In addition, they contain food contact materials and environmental pollutants identified as metabolism disrupting chemicals. To evaluate the metabolic impact of these dietary threats (individually or combined), we used a male mouse model of chronic exposure to a mixture of low-dose archetypal food-contaminating chemicals that was added in standard or high-fat, high-sucrose (HFHS) diet. Specifically, the mixture contained bisphenol A, diethylhexylphthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxine and polychlorinated biphenyl 153. Exposure lasted from 5 to 20 weeks of age. Metabolic exploration was conducted setting the basis of candidate gene expression mRNA analyses in liver, jejunum and adipose tissue depots from 20 week-old mice. Strong metabolic deleterious effects of the HFHS diet were demonstrated in line with obesity-associated metabolic features and insulin resistance. Pollutant exposure resulted in significant changes on plasma triglyceride levels and on the expression levels of genes mainly encoding xenobiotic processing in jejunum; estrogen receptors, regulators of lipoprotein lipase and inflammatory markers in jejunum and adipose tissues as well as adipogenesis markers. Importantly, the impact of pollutants was principally evidenced under standard diet. In addition, depending on nutritional conditions and on the metabolic tissue considered, the impact of pollutants could mimic or oppose the HFHS effects. Collectively, the present study extends the cocktail effect concept of a low-dosed pollutant mixture and originally points to tissue-specificity responsiveness especially in jejunum and adipose tissues.
Collapse
Affiliation(s)
- Danielle Naville
- Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, INSA Lyon, Université Claude Bernard Lyon1, 69600, Oullins, France
| | - Guillain Gaillard
- Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, INSA Lyon, Université Claude Bernard Lyon1, 69600, Oullins, France
| | - Benoit Julien
- Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, INSA Lyon, Université Claude Bernard Lyon1, 69600, Oullins, France
| | - Nathalie Vega
- Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, INSA Lyon, Université Claude Bernard Lyon1, 69600, Oullins, France
| | - Claudie Pinteur
- Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, INSA Lyon, Université Claude Bernard Lyon1, 69600, Oullins, France
| | - Stéphanie Chanon
- Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, INSA Lyon, Université Claude Bernard Lyon1, 69600, Oullins, France
| | - Hubert Vidal
- Univ Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, INSA Lyon, Université Claude Bernard Lyon1, 69600, Oullins, France
| | | |
Collapse
|
14
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
15
|
Erthal RP, Siervo GEML, Silveira LTR, Scarano WR, Fernandes GSA. Can resveratrol attenuate testicular damage in neonatal and adult rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin during gestation? Reprod Fertil Dev 2018; 30:442-450. [DOI: 10.1071/rd17180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is considered one of the most toxic dioxins. The effects of TCDD are exerted via binding to the aryl hydrocarbon receptor (AhR). The aim of the present study was to evaluate the possible protective effects of resveratrol, an AhR antagonist, against testicular damage caused by TCDD exposure during pregnancy. Pregnant female Sprague-Dawley rats were divided into four groups: a control group; a group treated with 1 µg kg−1, p.o., TCDD on Gestational Day (GD) 15; a group treated with 20 µg kg−1, p.o., resveratrol on GD10–21; and a group treated with both TCDD and resveratrol. Rats were weighed and killed, and neonatal testes were collected for histopathological analysis on Postnatal Day (PND) 1. At PND90, adult male rats were killed and the testes collected for histopathological analysis and determination of sperm count. Resveratrol had a protective effect against the effects of TCDD on Sertoli cell number in adult and neonate testes, as well as against the effects of TCDD on abnormal seminiferous tubules in adults. Combined administration of TCDD and resveratrol altered the kinetics of spermatogenesis and the proportion of neonatal testicular compartments compared with the control group In addition, combined TCDD and resveratrol treatment decreased seminiferous tubule diameter in adult male rats compared with the control group. In conclusion, resveratrol may protect against some TCDD-induced testicular damage, but, based on the parameters assessed, the administration of resveratrol and TCDD in combination may result in more severe toxicity than administration of either drug alone.
Collapse
|
16
|
Le Magueresse-Battistoni B, Labaronne E, Vidal H, Naville D. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem 2017; 8:108-119. [PMID: 28588754 PMCID: PMC5439162 DOI: 10.4331/wjbc.v8.i2.108] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandemic proportions. Interestingly, convincing data have shown that environmental pollutants, specifically those endowed with endocrine disrupting activities, could contribute to the etiology of these multifactorial metabolic disorders. Within this review, we will recapitulate characteristics of endocrine disruption. We will demonstrate that metabolic disorders could originate from endocrine disruption with a particular focus on convincing data from the literature. Eventually, we will present how handling an original mouse model of chronic exposition to a mixture of pollutants allowed demonstrating that a mixture of pollutants each at doses beyond their active dose could induce substantial deleterious effects on several metabolic end-points. This proof-of-concept study, as well as other studies on mixtures of pollutants, stresses the needs for revisiting the current threshold model used in risk assessment which does not take into account potential effects of mixtures containing pollutants at environmental doses, e.g., the real life exposure. Certainly, more studies are necessary to better determine the nature of the chemicals to which humans are exposed and at which level, and their health impact. As well, research studies on substitute products are essential to identify harmless molecules.
Collapse
|
17
|
THE USE OF PLASMAPHERESIS IN TREATMENT OF PATIENTS WITH INFERTILITY, PERITONEAL ENDOMETRIOSIS AND NAT2 GENE POLYMORPHISM. EUREKA: HEALTH SCIENCES 2016. [DOI: 10.21303/2504-5679.2016.00087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is known that 30–40 % of patients with peritoneal endometriosis suffer from infertility. Half of the patients with endometriosis are identified point mutation in NAT2 – gene, which plays an important role in the acetylation of aromatic and heterocyclic amines, in the accumulation of endotoxins, activation of free radical oxidation, impaired microcirculation. These factors involve the use of methods of gemapheresis which have detoxification, the blood rheology corrective and immune corrective effects.
The purpose of this study was to evaluate the efficacy of therapeutic plasma exchange in treatment of patients with peritoneal form of endometriosis, infertility and point mutations in the gene NAT2.
The study included 140 patients with infertility, peritoneal form of endometriosis and point mutations in the gene NAT2. All patients are performed laparoscopy, coagulation foci of endometriosis. In the following 93 (66.4 %) patients were treated with a the course of therapeutic plasmapheresis using the apparatus «PCS-2» with the removal of 20–25 % the volume of circulating plasma with replacement plasma of crystalloid and colloid solutions. Before treatment were shown the signs of endotoxemia, activation of oxidative stress. After treatment with the use of plasmapheresis was revealed the significant reduction of endogenous intoxication parameters and oxidative stress. Also is noted the increase in the pregnancy rate, both independently and in IVF programs, especially during the first 3 months after treatment. The findings suggest that the efficiency of the proposed comprehensive treatment techniques (laparoscopy and subsequent course of therapeutic plasmapheresis) of patients with peritoneal endometriosis and infertility and with point mutations in the gene NAT2. The use of plasmapheresis is pathogenetically justified in patients of the studied group.
Collapse
|
18
|
Naville D, Labaronne E, Vega N, Pinteur C, Canet-Soulas E, Vidal H, Le Magueresse-Battistoni B. Metabolic outcome of female mice exposed to a mixture of low-dose pollutants in a diet-induced obesity model. PLoS One 2015; 10:e0124015. [PMID: 25909471 PMCID: PMC4409066 DOI: 10.1371/journal.pone.0124015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
Abstract
Pollutants are suspected to contribute to the etiology of obesity and related metabolic disorders. Apart from occupational exposure which concerns a subset of chemicals, humans are mostly exposed to a large variety of chemicals, all life-long and at low doses. Food ingestion is a major route of exposure and it is suggested that pollutants have a worsened impact when combined with a high-fat diet. In the experimental studies described herein, we aimed to add further evidence on the metabolic impact of food pollutants using a recently set up model in which mice are life-long fed a high-fat/high-sucrose diet (HFSD) with/without common food pollutants shown to exhibit metabolic disrupting activities. Specifically, this mixture comprised bisphenol A, dioxin, polychlorobiphenyl PCB153, and phthalate and was added in HFSD at doses resulting in mice exposure at the Tolerable Daily Intake dose range for each pollutant. We herein focused on the 7-week-old females which exhibited early signs of obesity upon HFSD feeding. We observed no signs of toxicity and no additional weight gain following exposure to the mixture but alleviated HFSD-induced glucose intolerance in the absence of alteration of gluconeogenesis and steatosis. It suggested that the observed metabolic improvement was more likely due to effects on muscle and/or adipose tissues rather than on the liver. Consistently, female mice exhibited enhanced lean/fat mass ratio and skeletal muscle insulin sensitivity. Moreover, expression levels of inflammatory markers were reduced in adipose tissue at 7 but enhanced at 12 weeks of age in agreement with the inverse alterations of glucose tolerance observed at these ages upon pollutant exposure in the HFSD-fed females. Collectively, these data suggest apparent biphasic effects of pollutants upon HFSD feeding along with obesity development. These effects were not observed in males and may depend on interactions between diet and pollutants.
Collapse
Affiliation(s)
- Danielle Naville
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA UMR1397, INSA-Lyon, Oullins, France
| | - Emmanuel Labaronne
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA UMR1397, INSA-Lyon, Oullins, France
| | - Nathalie Vega
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA UMR1397, INSA-Lyon, Oullins, France
| | - Claudie Pinteur
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA UMR1397, INSA-Lyon, Oullins, France
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA UMR1397, INSA-Lyon, Oullins, France
| | - Hubert Vidal
- CarMeN Laboratory, INSERM U1060, Lyon-1 University, INRA UMR1397, INSA-Lyon, Oullins, France
| | | |
Collapse
|
19
|
Jaguin M, Fardel O, Lecureur V. Exposure to diesel exhaust particle extracts (DEPe) impairs some polarization markers and functions of human macrophages through activation of AhR and Nrf2. PLoS One 2015; 10:e0116560. [PMID: 25710172 PMCID: PMC4339390 DOI: 10.1371/journal.pone.0116560] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP.
Collapse
Affiliation(s)
- Marie Jaguin
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
| | - Olivier Fardel
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Valérie Lecureur
- UMR INSERM U1085, Institut de Recherche sur la Santé, l’Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Pr Léon Bernard, 35043, Rennes, France
- * E-mail:
| |
Collapse
|
20
|
Reis MMS, Moreira AC, Sousa M, Mathur PP, Oliveira PF, Alves MG. Sertoli cell as a model in male reproductive toxicology: Advantages and disadvantages. J Appl Toxicol 2015; 35:870-83. [DOI: 10.1002/jat.3122] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/21/2014] [Accepted: 12/26/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Mariana M. S. Reis
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Ana C. Moreira
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Premendu P. Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences; Pondicherry University, Pondicherry, India & KIIT University; Bhubaneswar India
| | - Pedro F. Oliveira
- CICS - UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - Marco G. Alves
- CICS - UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| |
Collapse
|
21
|
Vaiserman A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis 2014; 5:419-29. [PMID: 25489493 DOI: 10.14336/ad.2014.0500419] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/11/2022] Open
Abstract
A growing body of evidence demonstrates that adverse events early in development, and particularly during intrauterine life, may program risks for diseases in adult life. Increasing evidence has been accumulated indicating the important role of epigenetic regulation including DNA methylation, histone modifications and miRNAs in developmental programming. Among the environmental factors which play an important role in programming of chronic pathologies, the endocrine-disrupting chemicals (EDCs) that have estrogenic, anti-estrogenic, and anti-androgenic activity are of specific concern because the developing organism is extremely sensitive to perturbation by substances with hormone-like activity. Among EDCs, there are many substances that are constantly present in the modern human environment or are in widespread use, including dioxin and dioxin-like compounds, phthalates, agricultural pesticides, polychlorinated biphenyls, industrial solvents, pharmaceuticals, and heavy metals. Apart from their common endocrine active properties, several EDCs have been shown to disrupt developmental epigenomic programming. The purpose of this review is to provide a summary of recent research findings which indicate that exposure to EDCs during in-utero and/or neonatal development can cause long-term health outcomes via mechanisms of epigenetic memory.
Collapse
|
22
|
Abstract
Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Public Health, Division of Environmental Health Sciences, University of Massachusetts - Amherst, Amherst, Massachusetts, USA.
| |
Collapse
|
23
|
Morino-Koga S, Uchi H, Tsuji G, Takahara M, Kajiwara J, Hirata T, Furue M. Reduction of CC-chemokine ligand 5 by aryl hydrocarbon receptor ligands. J Dermatol Sci 2013; 72:9-15. [PMID: 23810773 DOI: 10.1016/j.jdermsci.2013.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/09/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that recognizes a large number of xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), dioxins, and some endogenous ligands. Despite numerous investigations targeting AhR ligands, the precise physiological role of AhR remains unknown. OBJECTIVE We explored novel AhR target genes, especially focused on inflammatory chemokine. METHODS We treated (1) HaCaT, a human keratinocyte cell line, (2) normal human epidermal keratinocytes (NHEKs), and (3) mouse primary keratinocytes with AhR ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ; endogenous ligand) and benzo[a]pyrene (BaP; exogenous ligand). Then, we detected mRNA and protein of chemokine using quantitative RT-PCR and ELISA. We next clarified the relationship between AhR and chemokine expression using AhR siRNA. In addition, we measured serum chemokine levels in patients with Yusho disease (oil disease), who were accidentally exposed to dioxins in the past. RESULTS We identified CC-chemokine ligand 5 (CCL5), a key mediator in the development of inflammatory responses, as the AhR target gene. AhR ligands (FICZ and BaP) significantly reduced CCL5 mRNA and protein expression in HaCaT cells. These effects were observed in NHEKs and mouse primary keratinocytes. AhR knockdown with siRNA restored CCL5 inhibition by AhR ligands. In addition, AhR ligands exhibited a dose-dependent suppression of CCL5 production induced by Th1-derived cytokines. Finally, serum levels of CCL5 in patients with Yusho disease, were significantly lower than in controls. CONCLUSION Our findings indicate that CCL5 is a target gene for AhR, and might be associated with the pathology of dioxin exposure.
Collapse
Affiliation(s)
- Saori Morino-Koga
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Magre S, Rebourcet D, Ishaq M, Wargnier R, Debard C, Meugnier E, Vidal H, Cohen-Tannoudji J, Le Magueresse-Battistoni B. Gender differences in transcriptional signature of developing rat testes and ovaries following embryonic exposure to 2,3,7,8-TCDD. PLoS One 2012; 7:e40306. [PMID: 22808131 PMCID: PMC3392256 DOI: 10.1371/journal.pone.0040306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/07/2012] [Indexed: 11/25/2022] Open
Abstract
Dioxins are persistent organic pollutants interfering with endocrine systems and causing reproductive and developmental disorders. The objective of our project was to determine the impact of an in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on reproductive function of male and female offspring in the rat with a special emphasis on the immature period. We used a low dose of TCDD (unique exposure by oral gavage of 200 ng/kg at 15.5 days of gestation) in order to mirror a response to an environmental dose of TCDD not altering fertility of the progeny. We choose a global gene expression approach using Affymetrix microarray analysis, and testes of 5 days and ovaries of 14 days of age. Less than 1% of the expressed genes in gonads were altered following embryonic TCDD exposure; specifically, 113 genes in ovaries and 56 in testes with 7 genes common to both sex gonads. It included the repressor of the aryl hydrocarbon receptor (Ahrr), the chemokines Ccl5 and Cxcl4 previously shown to be regulated by dioxin in testis, Pgds2/Hpgds and 3 others uncharacterized. To validate and extend the microarray data we realized real-time PCR on gonads at various developmental periods of interest (from 3 to 25 days for ovaries, from 5 to the adult age for testes). Overall, our results evidenced that both sex gonads responded differently to TCDD exposure. For example, we observed induction of the canonic battery of TCDD-induced genes coding enzymes of the detoxifying machinery in ovaries aged of 3–14 days of age (except Cyp1a1 induced at 3–10 days) but not in testes of 5 days (except Ahrr). We also illustrated that inflammatory pathway is one pathway activated by TCDD in gonads. Finally, we identified several new genes targeted by TCDD including Fgf13 in testis and one gene, Ptgds2/Hpgds regulated in the two sex gonads.
Collapse
Affiliation(s)
- Solange Magre
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Diane Rebourcet
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Muhammad Ishaq
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Richard Wargnier
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Cyrille Debard
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Emmanuelle Meugnier
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Hubert Vidal
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Brigitte Le Magueresse-Battistoni
- Université Lyon 1, INSERM U1060, INRA U1235, CarMeN, Laboratoire Lyonnais de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Oullins, France
- * E-mail:
| |
Collapse
|
25
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2038] [Impact Index Per Article: 156.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Virtanen HE, Koskenniemi JJ, Sundqvist E, Main KM, Kiviranta H, Tuomisto JT, Tuomisto J, Viluksela M, Vartiainen T, Skakkebaek NE, Toppari J. Associations between congenital cryptorchidism in newborn boys and levels of dioxins and PCBs in placenta. ACTA ACUST UNITED AC 2011; 35:283-93. [PMID: 22150420 PMCID: PMC3417377 DOI: 10.1111/j.1365-2605.2011.01233.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In animal studies, exposure to dioxins has been associated with disrupted development of the male reproductive system, including testicular maldescent. Some polychlorinated biphenyls (PCBs) have also dioxin-like effects. In addition, one previous case-control study has reported an association between congenital cryptorchidism and colostrum PCB levels. We performed a case-control study to evaluate whether congenital cryptorchidism in boys was associated with increased levels of dioxins or PCBs in placenta reflecting foetal exposure. In addition, associations between placenta levels of these chemicals and reproductive hormone levels in boys at 3 months were studied. Placentas were collected in a Danish-Finnish joint prospective cohort study on cryptorchidism (1997-2001). The boys were examined for cryptorchidism at birth and at 3 months. Altogether, 280 placentas [112 Finnish (56 cases, 56 controls) and 168 Danish (39 cases, 129 controls)] were analysed for 17 toxic polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and 37 PCBs (including 12 dioxin-like PCBs). Infant serum samples taken at 3 months were analysed for reproductive hormones. No significant differences between cases and controls were observed in either country in dioxin WHO-TEq levels (median 9.78 vs. 8.47 pg/g fat, respectively, in Finland, and 11.75 vs. 10.88 pg/g fat in Denmark) or PCB WHO-TEq levels (median 2.12 vs. 2.15 pg/g fat in Finland, 2.34 vs. 2.10 pg/g fat in Denmark) or total-TEq levels (median 11.66 vs. 10.58 pg/g fat in Finland, 13.94 vs. 13.00 pg/g fat in Denmark). Placenta WHO-TEq levels of dioxins were not associated with infant reproductive hormone levels at 3 months. In Finland, PCB WHO-TEq levels in placenta associated positively with infant LH levels. WHO-TEq levels of dioxins and PCBs and total-TEq levels were higher in Danish than Finnish samples. In conclusion, no association between placenta levels of dioxins or PCBs and congenital cryptorchidism was found. Significant country differences in chemical levels were observed.
Collapse
Affiliation(s)
- H E Virtanen
- Departments of Physiology and Paediatrics, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Naville D, Rebourcet D, Chauvin MA, Vega N, Jalabert A, Vigier M, Loizon E, Bégeot M, Le Magueresse-Battistoni B. Direct and indirect impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on adult mouse Leydig cells: An in vitro study. Toxicol Lett 2011; 207:251-7. [DOI: 10.1016/j.toxlet.2011.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/29/2022]
|
28
|
Aly HAA, Khafagy RM. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cytotoxicity accompanied by oxidative stress in rat Sertoli cells: Possible role of mitochondrial fractions of Sertoli cells. Toxicol Appl Pharmacol 2011; 252:273-80. [PMID: 21382395 DOI: 10.1016/j.taap.2011.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
TCDD, as an endocrine disruptor, is known to impair testicular functions and fertility. To elucidate the mechanism(s) underlying the testicular effects of TCDD, the potential toxicity of TCDD on Sertoli cells was investigated. Furthermore, the study aims to delineate whether mitochondrial fractions of Sertoli cells are involved in mediating the testicular effects of TCDD. Adult rat Sertoli cells were incubated with (5, 10 or 15nM) of TCDD for 6, 12 or 24h. Cell viability, lactate and LDH leakage into media along with lipid peroxidation, ROS generation, SOD, CAT, GPx, GR, γ-GT and β-glucuronidase activities, GSH content and Δψ(m) were measured. Superoxide anion production, COX and cardiolipin content were measured in mitochondrial fractions. Cell viability was significantly decreased while lactate and LDH leakage into media were increased. ROS generation along with lipid peroxidation was also increased. SOD, CAT, GPx, GR activities and GSH content were significantly decreased. γ-GT and β-glucuronidase activities were also decreased. Superoxide anion production was increased while COX activity and cardiolipin content were decreased in mitochondrial fractions. Moreover, the Δψ(m) was significantly decreased as measured in Sertoli cells. In conclusion, TCDD impairs Sertoli cell functions and this effect is, at least in part, attributed to oxidative stress. We have also found that TCDD increases mitochondrial superoxide anion production and decreases Δψ(m), COX activity and mitochondrial cardiolipin content. Our findings suggest that mitochondria may play an important role in ROS production, leading to the TCDD-induced oxidative stress response and resulting toxicological consequences in rat Sertoli cells.
Collapse
Affiliation(s)
- Hamdy A A Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | |
Collapse
|