1
|
Jashari B, Capitaine K, Bisha B, Stessl B, Blagoevska K, Cana A, Jankuloski D, Félix B. Molecular Characterization of Listeria monocytogenes in the Food Chain of the Republic of Kosovo from 2016 to 2022. Foods 2024; 13:2883. [PMID: 39335812 PMCID: PMC11431155 DOI: 10.3390/foods13182883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The present study describes the genetic characterization of L. monocytogenes strains found in the Republic of Kosovo's food chain. From 2016 to 2022, 995 samples were collected. Overall, 648 samples were from ready-to-eat (RTE) food products, 281 from food products consumed cooked (FPCC), 60 from raw materials, and 6 from environmental samples. Overall, 11.76% (117 out of 995) of the samples were contaminated by L. monocytogenes, comprising 6.33% (41 out of 648) from RTE products, 14.95% (42 out of 281) from FPCC, 55.00% (33 out of 60) from raw materials, and 16.66% (1 out of 6) from environmental samples. All isolates were subjected to molecular serotyping and clonal complex (CC) identification by using real-time PCR, as well as multilocus sequence typing. All isolates were grouped into four molecular serotypes, IIa (34.19%), IIb (3.48%), IIc (32.48%), and IVb (29.91%), as well as Lineage I (33.33%) and Lineage II (66.66%). In total, 14 CCs were identified from 41 RTE isolates; however, CC29 (7), CC2 (6), and CC6 (6) were the most dominant. By contrast, CC9 was by far the most represented CC in both FPCC (21) and RM (14). Moreover, 30 isolates expressed CC1, CC2, CC4, or CC6, which are particularly associated with severe human infections.
Collapse
Affiliation(s)
- Besart Jashari
- Food Microbiology, Food and Veterinary Laboratory, Food and Veterinary Agency of Kosovo, Lidhja e Pejës 241, 10000 Pristina, Kosovo
| | - Karine Capitaine
- Laboratory for Food Safety, Salmonella and Listeria Unit, ANSES, European Union Reference Laboratory for L. monocytogenes, University of Paris-Est, 94700 Maisons-Alfort, France
| | - Bledar Bisha
- Department of Animal Science, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Beatrix Stessl
- Unit of Food Microbiology, Centre for Food Science and Public Veterinary Health, Clinical Department for Farm Animals and Food Systems Safety, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-2110 Vienna, Austria
| | - Katerina Blagoevska
- Food Institute, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop-Trajkov 5-7, 1000 Skopje, North Macedonia
| | - Armend Cana
- Microbiology Laboratory, University for Business and Technology-Higher Education Institution, Kalabria, 10000 Pristina, Kosovo
| | - Dean Jankuloski
- Food Institute, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop-Trajkov 5-7, 1000 Skopje, North Macedonia
| | - Benjamin Félix
- Laboratory for Food Safety, Salmonella and Listeria Unit, ANSES, European Union Reference Laboratory for L. monocytogenes, University of Paris-Est, 94700 Maisons-Alfort, France
| |
Collapse
|
2
|
Hong H, Choi J, Kim HJ, Park SH. Stress resistance insights of 65 Listeria strains: Acidic, low temperature, and high salt environments. Microb Pathog 2024; 194:106793. [PMID: 39004154 DOI: 10.1016/j.micpath.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Genetically, Listeria monocytogenes is closely related to non-L. monocytogenes (L. innocua, L. welshimeri, L. grayi, L. aquatica, and L. fleischimannii). This bacterium is well known for its resistance to harsh conditions including acidity, low temperatures, and high salt concentrations. This study explored the responses of 65 Listeria strains to stress conditions and characterized the prevalence of stress-related genes. The 65 Listeria strains were isolated from different environments and their viability was assessed in four different tests: independent tests for pH 3, 1 °C, and 5 % salt concentration and multiple resistance tests that combined pH 3, 1 °C, 5 % salt. From the data, the 65 strains were categorized into stress-resistant (56) or stress-sensitive groups (9), with approximately 4 log CFU/mL differences. The PCR assay analyzed the prevalence of two virulence genes prfA and inlA, and eight stress-related genes: three acid (gadB, gadC, and atpD), two low temperature (betL and opuCA) and three salt resistance genes (flaA, cysS, and fbp). Two low temperature (bet and opuCA) and salt resistance (fbp) genes were more prevalent in the stress-resistant strains than in the stress-sensitive Listeria group.
Collapse
Affiliation(s)
- Hyunhee Hong
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Jungmin Choi
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Hyun Jung Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
3
|
Wu J, McAuliffe O, O'Byrne CP. Manganese uptake mediated by the NRAMP-type transporter MntH is required for acid tolerance in Listeria monocytogenes. Int J Food Microbiol 2023; 399:110238. [PMID: 37148667 DOI: 10.1016/j.ijfoodmicro.2023.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that is characterized by its ability to withstand mild stresses (i.e. cold, acid, salt) often encountered in food products or food processing environments. In the previous phenotypic and genotypic characterization of a collection of L. monocytogenes strains, we have identified one strain 1381, originally obtained from EURL-lm, as acid sensitive (reduced survival at pH 2.3) and extremely acid intolerant (no growth at pH 4.9, which supports the growth of most strains). In this study, we investigated the cause of acid intolerance in strain 1381 by isolating and sequencing reversion mutants that were capable of growth at low pH (pH 4.8) to a similar extent as another strain (1380) from the same MLST clonal complex (CC2). Whole genome sequencing showed that a truncation in mntH, which encodes a homologue of an NRAMP (Natural Resistance-Associated Macrophage Protein) type Mn2+ transporter, is responsible for the acid intolerance phenotype observed in strain 1381. However, the mntH truncation alone was not sufficient to explain the acid sensitivity of strain 1381 at lethal pH values as strain 1381R1 (a mntH+ revertant) exhibited similar acid survival to its parental strain at pH 2.3. Further growth experiments demonstrated that Mn2+ (but not Fe2+, Zn2+, Cu2+, Ca2+, or Mg2+) supplementation fully rescues the growth of strain 1381 under low pH conditions, suggesting that a Mn2+ limitation is the likely cause of growth arrest in the mntH- background. Consistent with the important role of Mn2+ in the acid stress response was the finding that mntH and mntB (both encoding Mn2+ transporters) had higher transcription levels following exposure to mild acid stress (pH 5). Taken together, these results provide evidence that MntH-mediated Mn2+ uptake is essential for the growth of L. monocytogenes under low pH conditions. Moreover, since strain 1381 was recommended for conducting food challenge studies by the European Union Reference Laboratory, the use of this strain in evaluating the growth of L. monocytogenes in low pH environments where Mn2+ is scarce should be reconsidered. Furthermore, since it is unknown when strain 1381 acquired the mntH frameshift mutation, the ability of the strains used for challenge studies to grow under food-related stresses needs to be routinely validated.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | | | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland..
| |
Collapse
|
4
|
Wiktorczyk-Kapischke N, Skowron K, Wałecka-Zacharska E, Grudlewska-Buda K, Wnuk K, Buszko K, Gospodarek-Komkowska E. Assessment of the influence of selected stress factors on the growth and survival of Listeria monocytogenes. BMC Microbiol 2023; 23:27. [PMID: 36690941 PMCID: PMC9872351 DOI: 10.1186/s12866-023-02766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Listeria monocytogenes are Gram-positive rods, which are the etiological factor of listeriosis. L. monocytogenes quickly adapts to changing environmental conditions. Since the main source of rods is food, its elimination from the production line is a priority. The study aimed to evaluate the influence of selected stress factors on the growth and survival of L. monocytogenes strains isolated from food products and clinical material. RESULTS We distinguished fifty genetically different strains of L. monocytogenes (PFGE method). Sixty-two percent of the tested strains represented 1/2a-3a serogroup. Sixty percent of the rods possessed ten examined virulence genes (fbpA, plcA, hlyA, plcB, inlB, actA, iap, inlA, mpl, prfA). Listeria Pathogenicity Island 1 (LIPI-1) was demonstrated among 38 (76.0%) strains. Majority (92.0%) of strains (46) were sensitive to all examined antibiotics. The most effective concentration of bacteriophage (inhibiting the growth of 22 strains; 44.0%) was 5 × 108 PFU. In turn, the concentration of 8% of NaCl was enough to inhibit the growth of 31 strains (62.0%). The clinical strain tolerated the broadest pH range (3 to 10). Five strains survived the 60-min exposure to 70˚C, whereas all were alive at each time stage of the cold stress experiment. During the stress of cyclic freezing-defrosting, an increase in the number of bacteria was shown after the first cycle, and a decrease was only observed after cycle 3. The least sensitive to low nutrients content were strains isolated from frozen food. The high BHI concentration promoted the growth of all groups. CONCLUSIONS Data on survival in stress conditions can form the basis for one of the hypotheses explaining the formation of persistent strains. Such studies are also helpful for planning appropriate hygiene strategies within the food industry.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Kacper Wnuk
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Ludwik Rydygier Collegium Medium in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Buszko
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Ludwik Rydygier Collegium Medium in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
5
|
Dogan OB, Stratton J, Arciniega A, Clarke J, Tamplin ML, Bianchini A, Wang B. Quantitative modeling of the survival of Listeria monocytogenes in soy sauce-based acidified food products. Int J Food Microbiol 2022; 370:109635. [DOI: 10.1016/j.ijfoodmicro.2022.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/08/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
|
6
|
Inhibitory Effect of Lactiplantibacillusplantarum and Lactococcus lactis Autochtonous Strains against Listeria monocytogenes in a Laboratory Cheese Model. Foods 2022; 11:foods11050715. [PMID: 35267348 PMCID: PMC8909851 DOI: 10.3390/foods11050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, six Lactococcus lactis and seven Lactiplantibacillus plantarum strains isolated from artisanal Sardinian dairy products were evaluated for their efficacy in controlling the growth of Listeria monocytogenes during the storage of miniature fresh cheese manufactured on a laboratory scale to exploit their possible use as biopreservatives. The strains were tested for antimicrobial activity and some technological characteristics before using them in miniature fresh cheese to evaluate their in situ antilisterial effect. Our results showed that five strains (L. lactis 16FS16-9/20234-11FS16 and Lpb. plantarum 1/14537-4A/20045) could be considered suitable candidates for use as protective cultures in fresh cheese manufacture since they significantly lowered the pathogen counts by 3–4 log units compared to the control; however, all strains tested were capable of decreasing L. monocytogenes numbers. Our results suggest that the single and combined action of the acidifying power and the production of bacteriocin of these strains was capable of controlling and/or reducing the growth of L. monocytogenes. Considering their technological characteristics, they might be used as starter/adjunct cultures to increase the safety of the products, perhaps in association with other antimicrobial hurdles.
Collapse
|
7
|
Peleg M. A New Look at Models of the Combined Effect of Temperature, pH, Water Activity, or Other Factors on Microbial Growth Rate. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09292-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Mattila M, Somervuo P, Korkeala H, Stephan R, Tasara T. Transcriptomic and Phenotypic Analyses of the Sigma B-Dependent Characteristics and the Synergism between Sigma B and Sigma L in Listeria monocytogenes EGD-e. Microorganisms 2020; 8:microorganisms8111644. [PMID: 33114171 PMCID: PMC7690807 DOI: 10.3390/microorganisms8111644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Numerous gene expression and stress adaptation responses in L. monocytogenes are regulated through alternative sigma factors σB and σL. Stress response phenotypes and transcriptomes were compared between L. monocytogenes EGD-e and its ΔsigB and ΔsigBL mutants. Targeted growth phenotypic analysis revealed that the ΔsigB and ΔsigBL mutants are impaired during growth under cold and organic-acid stress conditions. Phenotypic microarrays revealed increased sensitivity in both mutants to various antimicrobial compounds. Genes de-regulated in these two mutants were identified by genome-wide transcriptome analysis during exponential growth in BHI. The ΔsigB and ΔsigBL strains repressed 198 and 254 genes, respectively, compared to the parent EGD-e strain at 3 °C, whereas 86 and 139 genes, respectively, were repressed in these mutants during growth at 37 °C. Genes repressed in these mutants are involved in various cellular functions including transcription regulation, energy metabolism and nutrient transport functions, and viral-associated processes. Exposure to cold stress induced a significant increase in σB and σL co-dependent genes of L. monocytogenes EGD-e since most (62%) of the down-regulated genes uncovered at 3 °C were detected in the ΔsigBL double-deletion mutant but not in ΔsigB or ΔsigL single-deletion mutants. Overall, the current study provides an expanded insight into σB and σL phenotypic roles and functional interactions in L. monocytogenes. Besides previously known σB- and σL-dependent genes, the transcriptomes defined in ΔsigB and ΔsigBL mutants reveal several new genes that are positively regulated by σB alone, as well as those co-regulated through σB- and σL-dependent mechanisms during L. monocytogenes growth under optimal and cold-stress temperature conditions.
Collapse
Affiliation(s)
- Mirjami Mattila
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (M.M.); (P.S.); (H.K.)
| | - Panu Somervuo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (M.M.); (P.S.); (H.K.)
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (M.M.); (P.S.); (H.K.)
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland;
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, CH-8057 Zurich, Switzerland;
- Correspondence: ; Tel.: +41-44-635-8669
| |
Collapse
|
9
|
Differential Modulation of Listeria monocytogenes Fitness, In Vitro Virulence, and Transcription of Virulence-Associated Genes in Response to the Presence of Different Microorganisms. Appl Environ Microbiol 2020; 86:AEM.01165-20. [PMID: 32591377 DOI: 10.1128/aem.01165-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/20/2020] [Indexed: 02/03/2023] Open
Abstract
Interactions between Listeria monocytogenes and food-associated or environmental bacteria are critical not only for the growth but also for a number of key biological processes of the microorganism. In this regard, limited information exists on the impact of other microorganisms on the virulence of L. monocytogenes In this study, the growth of L. monocytogenes was evaluated in a single culture or in coculture with L. innocua, Bacillus subtilis, Lactobacillus plantarum, or Pseudomonas aeruginosa in tryptic soy broth (10°C/10 days and 37°C/24 h). Transcriptional levels of 9 key virulence genes (inlA, inlB, inlC, inlJ, sigB, prfA, hly, plcA, and plcB) and invasion efficiency and intracellular growth in Caco-2 cells were determined for L. monocytogenes following growth in mono- or coculture for 3 days at 10°C or 9 h at 37°C. The growth of L. monocytogenes was negatively affected by the presence of L. innocua and B. subtilis, while the effect of cell-to-cell contact on L. monocytogenes growth was dependent on the competing microorganism. Cocultivation affected the in vitro virulence properties of L. monocytogenes in a microorganism-specific manner, with L. innocua mainly enhancing and B. subtilis reducing the invasion of the pathogen in Caco-2 cells. Assessment of the mRNA levels of L. monocytogenes virulence genes in the presence of the four tested bacteria revealed a complex pattern in which the observed up- or downregulation was only partially correlated with growth or in vitro virulence and mainly suggested that L. monocytogenes may display a microorganism-specific transcriptional response.IMPORTANCE Listeria monocytogenes is the etiological agent of the severe foodborne disease listeriosis. Important insight regarding the physiology and the infection biology of this microorganism has been acquired in the past 20 years. However, despite the fact that L. monocytogenes coexists with various microorganisms throughout its life cycle and during transmission from the environment to foods and then to the host, there is still limited knowledge related to the impact of surrounding microorganisms on L. monocytogenes' biological functions. In this study, we showed that L. monocytogenes modulates specific biological activities (i.e., growth and virulence potential) as a response to coexisting microorganisms and differentially alters the expression of virulence-associated genes when confronted with different bacterial genera and species. Our work suggests that the interaction with different bacteria plays a key role in the survival strategies of L. monocytogenes and supports the need to incorporate biotic factors into the research conducted to identify mechanisms deployed by this organism for establishment in different environments.
Collapse
|
10
|
Guerreiro DN, Arcari T, O'Byrne CP. The σ B-Mediated General Stress Response of Listeria monocytogenes: Life and Death Decision Making in a Pathogen. Front Microbiol 2020; 11:1505. [PMID: 32733414 PMCID: PMC7358398 DOI: 10.3389/fmicb.2020.01505] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Sensing and responding to environmental cues is critical for the adaptability and success of the food-borne bacterial pathogen Listeria monocytogenes. A supramolecular multi-protein complex known as the stressosome, which acts as a stress sensing hub, is responsible for orchestrating the activation of a signal transduction pathway resulting in the activation of σB, the sigma factor that controls the general stress response (GSR). When σB is released from the anti-sigma factor RsbW, a rapid up-regulation of the large σB regulon, comprised of ≥ 300 genes, ensures that cells respond appropriately to the new environmental conditions. A diversity of stresses including low pH, high osmolarity, and blue light are known to be sensed by the stressosome, resulting in a generalized increase in stress resistance. Appropriate activation of the stressosome and deployment of σB are critical to fitness as there is a trade-off between growth and stress protection when the GSR is deployed. We review the recent developments in this field and describe an up-to-date model of how this sensory organelle might integrate environmental signals to produce an appropriate activation of the GSR. Some of the outstanding questions and challenges in this fascinating field are also discussed.
Collapse
Affiliation(s)
- Duarte N Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Talia Arcari
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
11
|
Settier-Ramírez L, López-Carballo G, Gavara R, Hernández-Muñoz P. PVOH/protein blend films embedded with lactic acid bacteria and their antilisterial activity in pasteurized milk. Int J Food Microbiol 2020; 322:108545. [DOI: 10.1016/j.ijfoodmicro.2020.108545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/02/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
|
12
|
Shah MK, Bergholz TM. Variation in growth and evaluation of cross-protection in Listeria monocytogenes under salt and bile stress. J Appl Microbiol 2020; 129:367-377. [PMID: 32027767 DOI: 10.1111/jam.14607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/09/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
AIMS Exposure of Listeria monocytogenes to osmotic stress can induce increased resistance to subsequent lethal exposure to cell envelope stressors, such as nisin and bile salts. We wanted to determine if similar cross-protection phenotypes could occur when L. monocytogenes strains were treated with osmotic stress and exposed to sublethal levels of the cell envelope stressor, bile. METHOD AND RESULTS Growth phenotypes were measured for six L. monocytogenes strains exposed to 6% NaCl, 0·3 and 1% bile in BHI. To evaluate cross-protection, cells were pre-exposed to 6% NaCl, followed by exposure to BHI+1% bile for 26 h and vice versa. Significant increases in λ (lag phase) and doubling time were observed under salt and bile stresses compared with BHI alone. Average λ and Nmax (maximum cell density) in 0·3 and 1% bile for all strains were significantly lower than that in 6% NaCl. Pre-exposure to 6% NaCl followed by exposure to 1% bile significantly increased λ (P < 0·05), whereas pre-exposure to 1% bile followed by exposure to 6% NaCl led to formation of filamentous cells, with no changes in cell density over 26 h. CONCLUSIONS Variation in growth characteristics was observed among strains exposed to bile. Exposure to osmotic stress did not lead to increased resistance to bile. Exposure to bile significantly impacted the ability of L. monocytogenes to adapt to grow under osmotic stress, where cells did not multiply but formed filamentous cells. SIGNIFICANCE AND IMPACT OF THE STUDY Pre-exposure to a cell envelope stress and subsequent exposure to an osmotic stress appears to pose a significant stress to L. monocytogenes cells.
Collapse
Affiliation(s)
- M K Shah
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - T M Bergholz
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
13
|
A novel role for the glutamate decarboxylase system in Listeria monocytogenes; protection against oxidative stress. Food Microbiol 2020; 85:103284. [DOI: 10.1016/j.fm.2019.103284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
|
14
|
Meng X, Zare I, Yan X, Fan K. Protein-protected metal nanoclusters: An emerging ultra-small nanozyme. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1602. [PMID: 31724330 DOI: 10.1002/wnan.1602] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Protein-protected metal nanoclusters (MNCs), typically consisting of several to a hundred metal atoms with a protein outer layer used for protecting clusters from aggregation, are excellent fluorescent labels for biomedical applications due to their extraordinary photoluminescence, facile synthesis and good biocompatibility. Interestingly, many protein-protected MNCs have also been reported to exhibit intrinsic enzyme-like activities, namely peroxidase, oxidase and catalase activities, and are consequently used for biological analysis and environmental treatment. These findings have extended the horizon of protein-protected MNCs' properties as well as their application in various fields. Furthermore, in the field of nanozymes, protein-protected MNCs have emerged as an outstanding new addition. Due to their ultra-small size (<2 nm), they usually have higher catalytic activity, more suitable size for in vivo application, better biocompatibility and photoluminescence in comparison with large size nanozymes. In this review, we will systematically introduce the significant advances in this field and critically discuss the challenges that lie ahead. Ultra-small nanozymes based on protein-protected MNCs are on the verge of attracting great interest across various disciplines and will stimulate research in the fields of nanotechnology and biology. This article is characterized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Xiangqin Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Iman Zare
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Xiyun Yan
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Hingston PA, Truelstrup Hansen L, Pombert JF, Wang S. Characterization of Listeria monocytogenes enhanced cold-tolerance variants isolated during prolonged cold storage. Int J Food Microbiol 2019; 306:108262. [PMID: 31362162 DOI: 10.1016/j.ijfoodmicro.2019.108262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/04/2019] [Accepted: 07/07/2019] [Indexed: 11/25/2022]
Abstract
In this study, we show that growth and prolonged storage of Listeria monocytogenes at 4 °C can promote the selection of variants with enhanced cold and heat tolerance. Enhanced cold-tolerance (ECT) variants (n = 12) were successfully isolated from a strain with impaired cold growth abilities following 84 days of storage at 4 °C in brain heart infusion broth (BHIB). Whole genome sequencing, membrane fatty acid analysis, and stress tolerance profiling were performed on the parent strain and two ECT variants: one displaying regular-sized colonies and the other displaying small colonies when grown at 37 °C on BHI agar. Under cold stress conditions, the parent strain exhibited an impaired ability to produce branched-chain fatty acids which are known to be important for cold adaptation in L.monocytogenes. The ECT variants were able to overcome this limitation, a finding which is hypothesized to be associated with the identification of two independent single-nucleotide polymorphisms in genes encoding subunits of acetyl-coA carboxylase, an enzyme critical for fatty acid biosynthesis. While the ECT phenotype was not found to be associated with improved salt (BHIB + 6% NaCl, 25 °C), acid (BHIB pH 5, 25 °C) or desiccation (33% RH, 20 °C) tolerance, the small-colony variant exhibited significantly (p < 0.05) enhanced heat tolerance at 52 °C in buffered peptone water compared to the parent strain and the other variant. The results from this study demonstrate that the continuous use of refrigeration along the food-supply chain has the potential to select for L.monocytogenes variants with enhanced cold and heat tolerance, highlighting the impact that microbial intervention strategies can have on the evolution of bacterial strains and likewise, food safety.
Collapse
Affiliation(s)
- Patricia A Hingston
- Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Siyun Wang
- Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Kim HJ, Sujiwo J, Kim HJ, Jang A. Effects of Dipping Chicken Breast Meat Inoculated with Listeria monocytogenes in Lyophilized Scallion, Garlic, and Kiwi Extracts on Its Physicochemical Quality. Food Sci Anim Resour 2019; 39:418-429. [PMID: 31304471 PMCID: PMC6612791 DOI: 10.5851/kosfa.2019.e37] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022] Open
Abstract
This study was conducted to evaluate the antioxidant and antimicrobial activities
of lyophilized extracts of scallions (Allium fistulosum L.,
SLE), garlic (Allium sativum, GLE), and gold kiwi
(Actinidia chinensis, GKE) and their effects on the quality
of chicken breast meat inoculated with L. monocytogenes during
storage for 9 days at 4°C. The lowest minimum inhibitory concentration
and minimum bactericidal concentration (25 and 100 mg/mL, respectively) against
L. monocytogenes were observed for SLE and GLE,
respectively. GKE had the lowest half-maximal inhibitory concentration
(IC50) for 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic
acid radical scavenging activity (5.06 mg/mL). The pH values of meat inoculated
with L. monocytogenes and dipped in 1% SLE (LSLE),
1% GLE (LGLE), or 1% GKE (LGKE) were lower than that of the
control on day 3 of storage (p<0.05). The initial population of
L. monocytogenes in meat was 4.95–5.01 Log CFU/g.
However, the population in the LSLE (5.73 Log CFU/g) was lower than that in the
control (6.23 Log CFU/g) on day 5 (p<0.05). The volatile basic nitrogen
value of the LSLE (19.90 mg/100 g) was lower than that of the control (24.38
mg/100 g) on day 7 (p<0.05). Moreover, treatment with SLE resulted in the
maintenance of meat quality and reduced the population of L.
monocytogenes on the meat. Thus, SLE may be used as an alternative
natural and environmentally friendly sanitizer for reducing L.
monocytogenes contamination in the chicken meat industry.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Joko Sujiwo
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Jin Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Aera Jang
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
17
|
Santos T, Viala D, Chambon C, Esbelin J, Hébraud M. Listeria monocytogenes Biofilm Adaptation to Different Temperatures Seen Through Shotgun Proteomics. Front Nutr 2019; 6:89. [PMID: 31259174 PMCID: PMC6587611 DOI: 10.3389/fnut.2019.00089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can cause invasive severe human illness (listeriosis) in susceptible patients. Most human listeriosis cases appear to be caused by consumption of refrigerated ready-to-eat foods. Although initial contamination levels in foods are usually low, the ability of these bacteria to survive and multiply at low temperatures allows it to reach levels high enough to cause disease. This study explores the set of proteins that might have an association with L. monocytogenes adaptation to different temperatures. Cultures were grown in biofilm, the most widespread mode of growth in natural and industrial realms. Protein extractions were performed from three different growth temperatures (10, 25, and 37°C) and two growth phases (early stage and mature biofilm). L. monocytogenes subproteomes were targeted using three extraction methods: trypsin-enzymatic shaving, biotin-labeling and cell fractionation. The different subproteomes obtained were separated and analyzed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-OrbiTrap LTQVelos, ThermoFisher Scientific). A total of 141 (biotinylation), 98 (shaving) and 910 (fractionation) proteins were identified. Throughout the 920 unique proteins identified, many are connected to basic cell functions, but some are linked with thermoregulation. We observed some noteworthy protein abundance shifts associated with the major adaptation to cold mechanisms present in L. monocytogenes, namely: the role of ribosomes and the stressosome with a higher abundance of the general stress protein Ctc (Rl25) and the general stress transcription factor sigma B (σB), changes in cell fluidity and motility seen by higher levels of foldase protein PrsA2 and flagellin (FlaA), the uptake of osmolytes with a higher abundance of glycine betaine (GbuB) and carnitine transporters (OpucA), and the relevance of the overexpression of chaperone proteins such as cold shock proteins (CspLA and Dps). As for 37°C, we observed a significantly higher percentage of proteins associated with transcriptional or translational activity present in higher abundance upon comparison with the colder settings. These contrasts of protein expression throughout several conditions will enrich databases and help to model the regulatory circuitry that drives adaptation of L. monocytogenes to environments.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
- INRA, Plateforme d'Exploration du Métabolisme, Composante Protéomique (PFEMcp), Saint-Genès-Champanelle, France
| |
Collapse
|
18
|
Kim C, Bushlaibi M, Alrefaei R, Ndegwa E, Kaseloo P, Wynn C. Influence of prior pH and thermal stresses on thermal tolerance of foodborne pathogens. Food Sci Nutr 2019; 7:2033-2042. [PMID: 31289651 PMCID: PMC6593373 DOI: 10.1002/fsn3.1034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022] Open
Abstract
Improper food processing is one of the major causes of foodborne illness. Accurate prediction of the thermal destruction rate of foodborne pathogens is therefore vital to ensure proper processing and food safety. When bacteria are subjected to pH and thermal stresses during growth, sublethal stresses can occur that may lead to differences in their subsequent tolerance to thermal treatment. As a preliminary study to test this concept, the current study evaluated the effect of prior pH and thermal stresses on thermal tolerance of Salmonella and Staphylococcus using a tryptic soy broth supplemented with yeast extract. Bacteria incubated at three pH values (6.0, 7.4, and 9.0) and four temperatures (15, 25, 35, and 45°C) for 24 hr were subjected to thermal treatments at 55, 60, and 65°C. At the end of each treatment time, bacterial suspensions were surface-plated on standard method agar for quantification of bacterial survival and further calculation of the thermal death decimal reduction time (D-value) and thermal destruction temperature (z-value). The effect of pH stress alone during the incubation on the thermal tolerance of both bacteria was generally insignificant. An increasing pattern of D-value was observed with the increment of thermal stress (incubation temperature). The bacteria incubated at 35°C required the highest z-value to reduce the 90% in D-values. Staphylococcus mostly displayed higher tolerance to thermal treatment than Salmonella. Although further research is needed to validate the current findings on food matrices, findings in this study clearly affirm that adaptation of bacteria to certain stresses may reduce the effectiveness of preservation procedures applied during later stage of food processing and storage.
Collapse
Affiliation(s)
- Chyer Kim
- Agricultural Research StationVirginia State UniversityPetersburgVirginia
| | - Mariam Bushlaibi
- Department of BiologyVirginia State UniversityPetersburgVirginia
| | - Rana Alrefaei
- Department of BiologyVirginia State UniversityPetersburgVirginia
| | - Eunice Ndegwa
- Agricultural Research StationVirginia State UniversityPetersburgVirginia
| | - Paul Kaseloo
- Department of BiologyVirginia State UniversityPetersburgVirginia
| | - Crystal Wynn
- Department of Family and Consumer SciencesVirginia State UniversityPetersburgVirginia
| |
Collapse
|
19
|
Tirloni E, Bernardi C, Rosshaug P, Stella S. Potential growth of Listeria monocytogenes in Italian mozzarella cheese as affected by microbiological and chemical-physical environment. J Dairy Sci 2019; 102:4913-4924. [DOI: 10.3168/jds.2018-15991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/06/2019] [Indexed: 11/19/2022]
|
20
|
Mokhtari A, Van Doren JM. An Agent-Based Model for Pathogen Persistence and Cross-Contamination Dynamics in a Food Facility. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:992-1021. [PMID: 30321463 PMCID: PMC7379630 DOI: 10.1111/risa.13215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We used an agent-based modeling (ABM) framework and developed a mathematical model to explain the complex dynamics of microbial persistence and spread within a food facility and to aid risk managers in identifying effective mitigation options. The model explicitly considered personal hygiene practices by food handlers as well as their activities and simulated a spatially explicit dynamic system representing complex interaction patterns among food handlers, facility environment, and foods. To demonstrate the utility of the model in a decision-making context, we created a hypothetical case study and used it to compare different risk mitigation strategies for reducing contamination and spread of Listeria monocytogenes in a food facility. Model results indicated that areas with no direct contact with foods (e.g., loading dock and restroom) can serve as contamination niches and recontaminate areas that have direct contact with food products. Furthermore, food handlers' behaviors, including, for example, hygiene and sanitation practices, can impact the persistence of microbial contamination in the facility environment and the spread of contamination to prepared foods. Using this case study, we also demonstrated benefits of an ABM framework for addressing food safety in a complex system in which emergent system-level responses are predicted using a bottom-up approach that observes individual agents (e.g., food handlers) and their behaviors. Our model can be applied to a wide variety of pathogens, food commodities, and activity patterns to evaluate efficacy of food-safety management practices and quantify contamination reductions associated with proposed mitigation strategies in food facilities.
Collapse
Affiliation(s)
- Amir Mokhtari
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Analytics and OutreachCollege ParkMDUSA
| | - Jane M. Van Doren
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Analytics and OutreachCollege ParkMDUSA
| |
Collapse
|
21
|
Kamiloğlu A, Kaban G, Kaya M. Effects of autochthonousLactobacillus plantarumstrains onListeria monocytogenesinsucuk during ripening. J Food Saf 2019. [DOI: 10.1111/jfs.12618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Aybike Kamiloğlu
- Faculty of Engineering, Food Engineering DepartmentBayburt University Bayburt Turkey
| | - Güzin Kaban
- Faculty of Agriculture, Food Engineering DepartmentAtatürk University Erzurum Turkey
| | - Mükerrem Kaya
- Faculty of Agriculture, Food Engineering DepartmentAtatürk University Erzurum Turkey
| |
Collapse
|
22
|
Haskaraca G, Juneja VK, Mukhopadhyay S, Kolsarici N. The effects of grapefruit seed extract on the thermal inactivation of Listeria monocytogenes in sous-vide processed döner kebabs. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Rivera D, Toledo V, Reyes-Jara A, Navarrete P, Tamplin M, Kimura B, Wiedmann M, Silva P, Moreno Switt AI. Approaches to empower the implementation of new tools to detect and prevent foodborne pathogens in food processing. Food Microbiol 2018; 75:126-132. [DOI: 10.1016/j.fm.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/13/2017] [Indexed: 11/15/2022]
|
24
|
Tack ILMM, Nimmegeers P, Akkermans S, Logist F, Van Impe JFM. A low-complexity metabolic network model for the respiratory and fermentative metabolism of Escherichia coli. PLoS One 2018; 13:e0202565. [PMID: 30157229 PMCID: PMC6114798 DOI: 10.1371/journal.pone.0202565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Over the last decades, predictive microbiology has made significant advances in the mathematical description of microbial spoiler and pathogen dynamics in or on food products. Recently, the focus of predictive microbiology has shifted from a (semi-)empirical population-level approach towards mechanistic models including information about the intracellular metabolism in order to increase model accuracy and genericness. However, incorporation of this subpopulation-level information increases model complexity and, consequently, the required run time to simulate microbial cell and population dynamics. In this paper, results of metabolic flux balance analyses (FBA) with a genome-scale model are used to calibrate a low-complexity linear model describing the microbial growth and metabolite secretion rates of Escherichia coli as a function of the nutrient and oxygen uptake rate. Hence, the required information about the cellular metabolism (i.e., biomass growth and secretion of cell products) is selected and included in the linear model without incorporating the complete intracellular reaction network. However, the applied FBAs are only representative for microbial dynamics under specific extracellular conditions, viz., a neutral medium without weak acids at a temperature of 37℃. Deviations from these reference conditions lead to metabolic shifts and adjustments of the cellular nutrient uptake or maintenance requirements. This metabolic dependency on extracellular conditions has been taken into account in our low-complex metabolic model. In this way, a novel approach is developed to take the synergistic effects of temperature, pH, and undissociated acids on the cell metabolism into account. Consequently, the developed model is deployable as a tool to describe, predict and control E. coli dynamics in and on food products under various combinations of environmental conditions. To emphasize this point,three specific scenarios are elaborated: (i) aerobic respiration without production of weak acid extracellular metabolites, (ii) anaerobic fermentation with secretion of mixed acid fermentation products into the food environment, and (iii) respiro-fermentative metabolic regimes in between the behaviors at aerobic and anaerobic conditions.
Collapse
Affiliation(s)
| | | | - Simen Akkermans
- BioTeC+, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Filip Logist
- BioTeC+, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | | |
Collapse
|
25
|
Santos T, Théron L, Chambon C, Viala D, Centeno D, Esbelin J, Hébraud M. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms. J Proteomics 2018; 187:152-160. [PMID: 30071319 DOI: 10.1016/j.jprot.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
MALDI-TOF Mass spectrometry Imaging (MSI) is a surface-sampling technology that can determine spatial information and relative abundance of analytes directly from biological samples. Human listeriosis cases are due to the ingestion of contaminated foods with the pathogenic bacteria Listeria monocytogenes. The reduction of water availability in food workshops by decreasing the air relative humidity (RH) is one strategy to improve the control of bacterial contamination. This study aims to develop and implement an MSI approach on L. monocytogenes biofilms and proof of concept using a dehumidified stress condition. MSI allowed examining the distribution of low molecular weight proteins within the biofilms subjected to a dehumidification environment, mimicking the one present in a food workshop (10 °C, 75% RH). Furthermore, a LC-MS/MS approach was made to link the dots between MSI and protein identification. Five identified proteins were assigned to registered MSI m/z, including two cold-shock proteins and a ligase involved in cell wall biogenesis. These data demonstrate how imaging can be used to dissect the proteome of an intact bacterial biofilm giving new insights into protein expression relating to a dehumidification stress adaptation. Data are available via ProteomeXchange with identifier PXD010444. BIOLOGICAL SIGNIFICANCE The ready-to-eat food processing industry has the daily challenge of controlling the contamination of surfaces and machines with spoilage and pathogenic microorganisms. In some cases, it is a lost cause due to these microorganisms' capacity to withstand the cleaning treatments, like desiccation procedures. Such a case is the ubiquitous Gram-positive Bacterium Listeria monocytogenes. Its surface proteins have particular importance for the interaction with its environment, being important factors contributing to adaptation to stress conditions. There are few reproducibly techniques to obtain the surface proteins of Gram-positive cells. Here, we developed a workflow that enables the use of MALDI imaging on Gram-positive bacterium biofilms to study the impact of dehumidification on sessile cells. It will be of the most interest to test this workflow with different environmental conditions and potentially apply it to other biofilm-forming bacteria.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Laëtitia Théron
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Delphine Centeno
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France; INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France.
| |
Collapse
|
26
|
Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Mikrochim Acta 2018; 185:360. [PMID: 29978265 DOI: 10.1007/s00604-018-2896-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023]
Abstract
The authors describe a rapid colorimetric assay for Listeria monocytogenes (L. monocytogenes) based on the o-phenylenediamine-mediated deaggregation of gold nanoparticles. Silver nanoclusters are used as an artificial enzyme that can oxidize o-phenylenediamine to form o-benzoquinone diamine. Aptamer and IgY antibodies were chosen to conjugate with magnetic beads and silver nanoclusters, respectively, which can recognize and bind L. monocytogenes at different specific binding sites. This results in the disassembly of colloidal gold nanoparticles which is accompanied by a color change from blue to red, with peaks at 730 and 525 nm, respectively. The method allows L. monocytogenes to be colorimetrically determined in the 10 to 106 cfu·mL-1 concentration range without pre-enrichment, and the limit of detection is as low as 10 cfu·mL-1. Recoveries ranging from 97.4 to 101.3% are found when analyzing spiked food samples. The assay is rapid, sensitive and specific. Graphical abstract Schematic illustration of a colorimetric method for detection of L. monocytogenes based on silver nanoclusters-catalyzed oxidation of OPD and de-aggregation of GNPs. A color change from blue to red can be observed and correlated to the concentration of L. monocytogenes.
Collapse
|
27
|
Fu Y, Mu D, Qiao W, Zhu D, Wang X, Liu F, Xu H, Saris P, Kuipers OP, Qiao M. Co-expression of Nisin Z and Leucocin C as a Basis for Effective Protection Against Listeria monocytogenes in Pasteurized Milk. Front Microbiol 2018; 9:547. [PMID: 29628920 PMCID: PMC5876312 DOI: 10.3389/fmicb.2018.00547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/09/2018] [Indexed: 11/17/2022] Open
Abstract
Nisin, an important bacteriocin from Lactococcus lactis subsp., is primarily active against various Gram-positive bacteria. Leucocin C, produced by Leuconostoc carnosum 4010, is a class IIa bacteriocin used to inhibit the growth of Listeria monocytogenes. Because two bacteriocins have different modes of action, the combined use of them could be a potential strategy for effective inhibition of foodborne pathogens. In this study, L. lactis N8-r-lecCI (N8 harboring lecCI gene) coexpressing nisin–leucocin C was constructed based on the food-grade carrier L. lactis N8. Production of both bacteriocins was stably maintained. Antimicrobial measurements showed that the recombinant strain is effectively against Listeria monocytogenes and Staphylococcus aureus and moderately against Salmonella enterica serovar Enteritidis and Escherichia coli because of its stronger antibacterial activity than the parental strain, this result first demonstrated that the co-expression of nisin and leucocin C results in highly efficient antimicrobial activity. The checkerboard assay showed that the antibacterial activity of L. lactis N8-r-lecCI supernatant was enhanced in the presence of low concentration of EDTA. Analysis of the scanning electron microscope image showed the biggest cellular morphology change in L. monocytogenes treated with a mixture of EDTA and L. lactis N8-r-lecCI supernatant. The practical effect was verified in pasteurized milk through time-kill assay. The L. lactis N8-r-lecCI strain expressing both nisin and leucocin C has a promising application prospect in pasteurized milk processing and preservation because of its strong antibacterial activity.
Collapse
Affiliation(s)
- Yuxin Fu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Dongdong Mu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Wanjin Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Duolong Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Xiangxiang Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Fulu Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Haijin Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Per Saris
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
28
|
NicAogáin K, Magill D, O'Donoghue B, Conneely A, Bennett C, O'Byrne CP. Solar irradiance limits the long-term survival of Listeria monocytogenes in seawater. Lett Appl Microbiol 2018; 66:169-174. [PMID: 29281856 DOI: 10.1111/lam.12831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 11/30/2022]
Abstract
Seafood has often been implicated in outbreaks of food-borne illness caused by Listeria monocytogenes but the source of contamination is usually not known. In this study we investigated the possibility that this pathogen could survive in seawater for an extended time period. Freshly collected seawater samples were inoculated with 1 × 108 CFU per ml of L. monocytogenes EGD-e and survival was monitored by plate counting for up to 25 days. When incubated in the dark, either at ambient temperatures (4-14°C) or at 16°C, >104 CFU per ml survivors were present after 25 days. However, when the seawater cell suspensions were exposed to ambient light (solar irradiation) and temperatures, L. monocytogenes lost viability rapidly and no survivors could be detected after the 80 h time point. Both UV-A and visible light in the blue region of the spectrum (470 nm) were found to contribute to this effect. The stress inducible sigma factor σB was found to play a role in survival of L. monocytogenes in seawater. Together these data demonstrate that solar irradiation is a critical determinant of L. monocytogenes survival in marine environments. The data further suggest the possibility of controlling this food-borne pathogen in food-processing environments using visible light. SIGNIFICANCE AND IMPACT OF THE STUDY Listeria monocytogenes is a food-borne bacterial pathogen capable of causing the life-threatening infection, listeriosis. In seafood the route of contamination from the environment is often not well understood as this pathogen is not generally thought to survive well in seawater. Here we provide evidence that L. monocytogenes is capable of surviving for long periods of time in seawater when light is excluded. Sunlight is demonstrated to have a significant effect on the survival of this pathogen in seawater, and both visible (470 nm) and UV-A light are shown to contribute to this effect.
Collapse
Affiliation(s)
- K NicAogáin
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - D Magill
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - B O'Donoghue
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - A Conneely
- National Centre for Laser Applications, School of Physics, NUI Galway, Galway, Ireland
| | - C Bennett
- National Centre for Laser Applications, School of Physics, NUI Galway, Galway, Ireland
| | - C P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
29
|
Nguyen XH, Trinh TL, Vu TBH, Le QH, To KA. Isolation of phage-display library-derived scFv antibody specific toListeria monocytogenesby a novel immobilized method. J Appl Microbiol 2018; 124:591-597. [DOI: 10.1111/jam.13648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022]
Affiliation(s)
- X.-H. Nguyen
- Centre de Physiopathologie Toulouse-Purpan; INSERM UMR1043; CNRS UMR5282; Toulouse III University; Toulouse France
- School of Biotechnology and Food technology; Hanoi University of Science and Technology; Hanoi Vietnam
| | - T.-L. Trinh
- Department of Immunology; Moffitt Cancer Center; Tampa FL USA
- School of Biotechnology and Food technology; Hanoi University of Science and Technology; Hanoi Vietnam
| | - T.-B.-H. Vu
- Department of Cytogenetics and Molecular Biology; National Institute of Hematology and Blood Transfusion; Hanoi Vietnam
| | - Q.-H. Le
- Institute of Biotechnology; Vietnamese Academy of Science and Technology; Hanoi Vietnam
| | - K.-A. To
- School of Biotechnology and Food technology; Hanoi University of Science and Technology; Hanoi Vietnam
| |
Collapse
|
30
|
Kozak SM, Margison KM, D'amico DJ. Synergistic Antimicrobial Combinations Inhibit and Inactivate Listeria monocytogenes in Neutral and Acidic Broth Systems. J Food Prot 2017; 80:1266-1272. [PMID: 28691884 DOI: 10.4315/0362-028x.jfp-17-035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of antimicrobial compounds can be an effective approach to control Listeria monocytogenes in ready-to-eat foods, but it can also be limited by cost, restrictions on concentrations in foods, and potential changes to organoleptic properties. Combinatorial approaches that produce additive or synergistic effects allow for reductions in individual antimicrobial concentrations while achieving the same level of control. The present study determined the MIC and MBC of an antimicrobial compound when used alone or in binary combinations against L. monocytogenes in growth media adjusted to pH values 7.4 and 5.5 and characterized interactions as synergistic, additive, or antagonistic. Inhibitory and bactericidal concentrations were defined as changes in L. monocytogenes counts of ≤1.0 or ≥3.0 log CFU/mL compared with the starting inoculum, respectively. Individually, lauric arginate (LAE), hydrogen peroxide (HP), and ε-polylysine (EPL) inhibited L. monocytogenes growth at the lowest concentrations when applied alone in broth adjusted to pH 7.4. Similarly, LAE, EPL, and HP had the lowest MBCs in broth adjusted to both pH levels. The inhibitory efficacy of both caprylic acid and sodium caprylate (SC) increased at the lower pH, with reductions in MICs of >98%. In total, 35 and 19 additive or synergistic inhibitory and bactericidal combinations were identified at pH values 7.4 and 5.5, respectively. Combinations of acidified calcium sulfate with lactic acid (ACSL) and SC were among the most synergistic inhibitory groupings at both pH levels, whereas EPL+LAE were the most effective bactericides at pH 7.4. Combinations of SC with EPL or ACSL were also among the most effective bactericides at pH 5.5. These data serve as a foundation for developing more effective antimicrobial approaches for the control of L. monocytogenes in foods with different pH levels.
Collapse
Affiliation(s)
- Sarah M Kozak
- 1 Department of Animal Science, 302B Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, University of Connecticut, Storrs, Connecticut 06269; and
| | - Kyle M Margison
- 2 School of Pharmacy, 69 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Dennis J D'amico
- 1 Department of Animal Science, 302B Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, University of Connecticut, Storrs, Connecticut 06269; and
| |
Collapse
|
31
|
Casey A, Jordan K, Coffey A, Fox EM, McAuliffe O. Comparative Genomic Analysis of Two Serotype 1/2b Listeria monocytogenes Isolates from Analogous Environmental Niches Demonstrates the Influence of Hypervariable Hotspots in Defining Pathogenesis. Front Nutr 2016; 3:54. [PMID: 28066772 PMCID: PMC5174086 DOI: 10.3389/fnut.2016.00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022] Open
Abstract
The vast majority of clinical human listeriosis cases are caused by serotype 1/2a, 1/2b, 1/2c, and 4b isolates of Listeria monocytogenes. The ability of L. monocytogenes to establish a systemic listeriosis infection within a host organism relies on a combination of genes that are involved in cell recognition, internalization, evasion of host defenses, and in vitro survival and growth. Recently, whole genome sequencing and comparative genomic analysis have proven to be powerful tools for the identification of these virulence-associated genes in L. monocytogenes. In this study, two serotype 1/2b strains of L. monocytogenes with analogous isolation sources, but differing infection abilities, were subjected to comparative genomic analysis. The results from this comparison highlight the importance of accessory genes (genes that are not part of the conserved core genome) in L. monocytogenes pathogenesis. In addition, a number of factors, which may account for the perceived inability of one of the strains to establish a systemic infection within its host, have been identified. These factors include the notable absence of the Listeria pathogenicity island 3 and the stress survival islet, of which the latter has been demonstrated to enhance the survival ability of L. monocytogenes during its passage through the host intestinal tract, leading to a higher infection rate. The findings from this research demonstrate the influence of hypervariable hotspots in defining the physiological characteristics of a L. monocytogenes strain and indicate that the emergence of a non-pathogenic isolate of L. monocytogenes may result from a cumulative loss of functionality rather than by a single isolated genetic event.
Collapse
Affiliation(s)
- Aidan Casey
- Teagasc Food Research Centre, Fermoy, Ireland; Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland
| | | | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology , Bishopstown , Ireland
| | - Edward M Fox
- CSIRO Agriculture and Food , Werribee, VIC , Australia
| | | |
Collapse
|
32
|
NicAogáin K, O’Byrne CP. The Role of Stress and Stress Adaptations in Determining the Fate of the Bacterial Pathogen Listeria monocytogenes in the Food Chain. Front Microbiol 2016; 7:1865. [PMID: 27933042 PMCID: PMC5120093 DOI: 10.3389/fmicb.2016.01865] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is a highly adaptable organism that can persist in a wide range of environmental and food-related niches. The consumption of contaminated ready-to-eat foods can cause infections, termed listeriosis, in vulnerable humans, particularly those with weakened immune systems. Although these infections are comparatively rare they are associated with high mortality rates and therefore this pathogen has a significant impact on food safety. L. monocytogenes can adapt to and survive a wide range of stress conditions including low pH, low water activity, and low temperature, which makes it problematic for food producers who rely on these stresses for preservation. Stress tolerance in L. monocytogenes can be explained partially by the presence of the general stress response (GSR), a transcriptional response under the control of the alternative sigma factor sigma B (σB) that reconfigures gene transcription to provide homeostatic and protective functions to cope with the stress. Within the host σB also plays a key role in surviving the harsh conditions found in the gastrointestinal tract. As the infection progresses beyond the GI tract L. monocytogenes uses an intracellular infectious cycle to propagate, spread and remain protected from the host's humoral immunity. Many of the virulence genes that facilitate this infectious cycle are under the control of a master transcriptional regulator called PrfA. In this review we consider the environmental reservoirs that enable L. monocytogenes to gain access to the food chain and discuss the stresses that the pathogen must overcome to survive and grow in these environments. The overlap that exists between stress tolerance and virulence is described. We review the principal measures that are used to control the pathogen and point to exciting new approaches that might provide improved means of control in the future.
Collapse
Affiliation(s)
| | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, College of Science, National University of IrelandGalway, Ireland
| |
Collapse
|
33
|
VAN Stelten A, Roberts AR, Manuel CS, Nightingale KK. Listeria monocytogenes Isolates Carrying Virulence-Attenuating Mutations in Internalin A Are Commonly Isolated from Ready-to-Eat Food Processing Plant and Retail Environments. J Food Prot 2016; 79:1733-1740. [PMID: 28221857 DOI: 10.4315/0362-028x.jfp-16-145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is a human foodborne pathogen that may cause an invasive disease known as listeriosis in susceptible individuals. Internalin A (InlA; encoded by inlA) is a virulence factor that facilitates crossing of host cell barriers by L. monocytogenes . At least 19 single nucleotide polymorphisms (SNPs) in inlA that result in a premature stop codon (PMSC) have been described worldwide. SNPs leading to a PMSC in inlA have been shown to be causally associated with attenuated virulence. L. monocytogenes pathogens carrying virulence-attenuating (VA) mutations in inlA have been commonly isolated from ready-to-eat (RTE) foods but rarely have been associated with human disease. This study was conducted to determine the prevalence of VA SNPs in inlA among L. monocytogenes from environments associated with RTE food production and handling. More than 700 L. monocytogenes isolates from RTE food processing plant (n = 409) and retail (n = 319) environments were screened for the presence of VA SNPs in inlA. Overall, 26.4% of isolates from RTE food processing plant and 32.6% of isolates from retail environments carried a VA mutation in inlA. Food contact surfaces sampled at retail establishments were significantly (P < 0.0001) more likely to be contaminated by a L. monocytogenes isolate carrying a VA mutation in inlA (56% of 55 isolates) compared with nonfood contact surfaces (28% of 264 isolates). Overall, a significant proportion of L. monocytogenes isolated from RTE food production and handling environments have reduced virulence. These data will be useful in the revision of current and the development of future risk assessments that incorporate strain-specific virulence parameters.
Collapse
Affiliation(s)
- A VAN Stelten
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas 79409
| | - A R Roberts
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,Department of Biological and Physical Sciences, Montana State University, Billings, Montana 59101
| | - C S Manuel
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - K K Nightingale
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
34
|
Lee J, Ha J, Kim S, Lee S, Lee H, Yoon Y, Choi KH. The Correlation between NaCl Adaptation and Heat Sensitivity of Listeria monocytogenes, a Foodborne Pathogen through Fresh and Processed Meat. Korean J Food Sci Anim Resour 2016; 36:469-75. [PMID: 27621687 PMCID: PMC5018506 DOI: 10.5851/kosfa.2016.36.4.469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022] Open
Abstract
This study examined the relationship between NaCl sensitivity and stress response of Listeria monocytogenes. Nine strains of L. monocytogenes (NCCP10805, NCCP10806, NCCP10807, NCCP10808, NCCP10809, NCCP10810, NCCP10811, NCCP10920 and NCCP 10943) were exposed to 0%, 1%, 2% and 4% NaCl, and then incubated at 60℃ for 60 min to select strains that were heat-sensitized (HS) and non-sensitized (NS) by NaCl exposure. After heat challenge, L. monocytogenes strains were categorized as HS (NCCP 10805, NCCP10806, NCCP10807, NCCP10810, NCCP10811 and NCCP10920) or NS (NCCP10808, NCCP10809 and NCCP10943). Total mRNA was extracted from a HS strain (NCCP10811) and two NS strains (NCCP10808 and NCCP10809), and then cDNA was prepared to analyze the expression of genes (inlA, inlB, opuC, betL, gbuB, osmC and ctc) that may be altered in response to NaCl stress, by qRT-PCR. The expression levels of two invasion-related genes (inlA and inlB) and two stress response genes (opuC and ctc) were increased (p<0.05) in NS strains after NaCl exposure in an NaCl concentration-dependent manner. However, only betL expression was increased (p<0.05) in the HS strains. These results indicate that the effect of NaCl on heat sensitization of L. monocytogenes is strain dependent and that opuC and ctc may prevent NS L. monocytogenes strains from being heat sensitized by NaCl. Moreover, NaCl also increases the expression of invasion-related genes (inlA and inlB).
Collapse
Affiliation(s)
| | | | | | | | | | - Yohan Yoon
- Corresponding author: Yohan Yoon, Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea. Tel: +82-2-2077-7585, E-mail: Kyoung-Hee Choi, Department of Oral Mcirobiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea. Tel: +82-63-850-6911, E-mail:
| | - Kyoung-Hee Choi
- Department of Oral Mcirobiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea
| |
Collapse
|
35
|
Production of Antilisterial Bacteriocins from Lactic Acid Bacteria in Dairy-Based Media: A Comparative Study. Probiotics Antimicrob Proteins 2016; 7:259-74. [PMID: 26341641 DOI: 10.1007/s12602-015-9200-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
One hundred and eight strains of lactic acid bacteria (LAB) were screened for bacteriocin production by the modified deferred antagonism and agar well diffusion methods. When the modified deferred antagonism method was employed, 82 LAB strains showed inhibitory action against Listeria monocytogenes v7 ½a, whereas 26 LAB strains expressed no inhibition. Only 12 LAB strains exhibited inhibitory activity when the agar well diffusion method was used, 11 of which had been previously recognized as bacteriocin production positive (Bac(+)). Lactobacillus viridescens NRRL B-1951 was determined, for the first time, to produce an inhibitory compound with a proteinaceous nature. The inhibitory activity was observed in the presence of lipase, α-chymotrypsin, and trypsin, but no inhibition zone could be detected in the presence of proteinase K, indicating the proteinaceous nature of the inhibitory compound. The inhibitory compound was active against Lact. sake ATCC 15521 and Lact. plantarum NCDO 995. Bacteriocin production by the Bac(+) LAB strains was assessed in Lactobacillus MRS Broth as well as in dairy-based media such as nonfat milk, demineralized whey powder, and cheddar cheese whey supplemented with complex nutrient sources that are rich in nitrogen. Lact. sake ATCC 15521 and L. monocytogenes CWD 1002, CWD 1092, CWD 1157, CWD 1198, and v7 ½a were used as indicators. The inhibitory activities of the bacteriocins varied depending on the indicator strains and the growth media used. The LAB indicator strains were found to be more sensitive to inhibition by bacteriocins when compared to the listerial indicator strains. Among the listerial indicators, L. monocytogenes CWD 1002 and CWD 1198 were the most sensitive strains to the bacteriocins investigated in this study. Media composition had a significant influence on bacteriocin production and activity. When compared to demineralized whey powder medium and cheddar cheese whey medium supplemented with whey protein concentrate, cheddar cheese whey medium supplemented with complex nutrient sources such as yeast extract, polypeptone, proteose peptone nr. 3, or soytone appeared to be more supportive of bacteriocin production.
Collapse
|
36
|
Growth potential of Listeria monocytogenes in probiotic cottage cheese formulations with reduced sodium content. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Everard CD, Kim MS, Lee H. Assessment of a handheld fluorescence imaging device as an aid for detection of food residues on processing surfaces. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
To Modulate Survival under Secondary Stress Conditions, Listeria monocytogenes 10403S Employs RsbX To Downregulate σB Activity in the Poststress Recovery Stage or Stationary Phase. Appl Environ Microbiol 2015; 82:1126-1135. [PMID: 26637594 DOI: 10.1128/aem.03218-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/27/2015] [Indexed: 01/12/2023] Open
Abstract
Listeria monocytogenes is a saprophytic bacterium that thrives in diverse environments and causes listeriosis via ingestion of contaminated food. RsbX, a putative sigma B (σ(B)) regulator, is thought to maintain the ready state in the absence of stress and reset the bacterium to the initial state in the poststress stage in Bacillus subtilis. We wondered whether RsbX is functional in L. monocytogenes under different stress scenarios. Genetic deletion and complementation of the rsbX gene were combined with survival tests and transcriptional and translational analyses of σ(B) expression in response to stresses. We found that deletion of rsbX increased survival under secondary stress following recovery of growth after primary stress or following stationary-phase culturing. The ΔrsbX mutant had higher expression of σ(B) than its parent strain in the recovery stage following primary sodium stress and in stationary-phase cultures. Apparently, increased σ(B) expression had contributed to improved survival in the absence of RsbX. There were no significant differences in survival rates or σ(B) expression levels in response to primary stresses between the rsbX mutant and its parent strain during the exponential phase. Therefore, we provide clear evidence that RsbX is a negative regulator of L. monocytogenes σ(B) during the recovery period after a primary stress or in the stationary phase, thus affecting its survival under secondary stress.
Collapse
|
39
|
A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosens Bioelectron 2015; 74:504-11. [DOI: 10.1016/j.bios.2015.06.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/27/2015] [Accepted: 06/03/2015] [Indexed: 01/07/2023]
|
40
|
Aryani D, den Besten H, Hazeleger W, Zwietering M. Quantifying strain variability in modeling growth of Listeria monocytogenes. Int J Food Microbiol 2015; 208:19-29. [DOI: 10.1016/j.ijfoodmicro.2015.05.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/13/2015] [Accepted: 05/10/2015] [Indexed: 11/30/2022]
|
41
|
Differential gene expression profiling of Listeria monocytogenes in Cacciatore and Felino salami to reveal potential stress resistance biomarkers. Food Microbiol 2015; 46:408-417. [DOI: 10.1016/j.fm.2014.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 01/20/2023]
|
42
|
Characterization of polar lipids of Listeria monocytogenes by HCD and low-energy CAD linear ion-trap mass spectrometry with electrospray ionization. Anal Bioanal Chem 2015; 407:2519-28. [PMID: 25656850 DOI: 10.1007/s00216-015-8480-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/14/2014] [Accepted: 01/09/2015] [Indexed: 12/31/2022]
Abstract
Listeria monocytogenes (L. monocytogenes) is a facultative, Gram-positive, food-borne bacterium, which causes serious infections. Although it is known that lipids play important roles in the survival of Listeria, the detailed structures of these lipids have not been established. In this contribution, we described linear ion-trap multiple-stage mass spectrometric approaches with high-resolution mass spectrometry toward complete structural analysis including the identities of the fatty acid substituents and their position on the glycerol backbone of the polar lipids, mainly phosphatidylglycerol, cardiolipin (CL), and lysyl-CL from L. monocytogenes. The location of the methyl side group along the fatty acid chain in each lipid family was characterized by a charge-switch strategy. This is achieved by first alkaline hydrolysis to release the fatty acid substituents, followed by tandem mass spectrometry on their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives as the M+ ions. Several findings in this study are unique: (1) we confirm the presence of a plasmalogen PG family that has not been previous reported; (2) an ion arising from a rare internal loss of lysylglycerol residue was observed in the MS(2) spectrum of lysyl-CL, permitting its distinction from other CL subfamilies.
Collapse
|
43
|
Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry. J Microbiol Methods 2015; 110:54-60. [PMID: 25578509 DOI: 10.1016/j.mimet.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 12/13/2022]
Abstract
Extracts of surface proteins, with minimal artifacts from contaminating cytosolic components, are highly desirable for investigating surface factors involved in the attachment and formation of biofilms by bacteria that are problematic in commercial food processing facilities. In this study, we compared the protein profiles of the food pathogen, Listeria monocytogenes, recovered after applying different surface protein extraction methods compiled from the literature: trypsin-enzymatic shaving with BICAM/sucrose or Tris/sucrose buffers (Tryp B+S, Tryp T+S), Tris-buffered urea (UB), lithium chloride (LiCl) and Tris-buffered urea applied with hypotonic-stressed cells (UB-Ghost), and subjected them to liquid chromatography tandem mass spectrometry and protein identification. The data indicate that the UB-Ghost extraction method provides a cleaner extract of surface proteins including the predicted (this study and the literature) or validated members (literature) from L. monocytogenes. This was determined by an accumulative lower unique peptide number exhibited by mass spectrometry for total cytoplasmic proteins among different surface extracts, with a majority of proteins demonstrating hydrophilic properties. The extracted proteins were from different functional categories and have associations with the cell surface, intermediary metabolism, information pathways, or functionally unknown proteins as suggested by in silico analyses performed by other groups (Leger and ListiList). The utilization of an optimized method for surface protein extraction should greatly facilitate identification by LC-MS/MS that could be useful to anyone working on molecular proteomics of bacterial surfaces.
Collapse
|
44
|
Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in Listeria monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance. PLoS One 2014; 9:e112649. [PMID: 25386947 PMCID: PMC4227838 DOI: 10.1371/journal.pone.0112649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/11/2014] [Indexed: 11/29/2022] Open
Abstract
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.
Collapse
|
45
|
Juneja VK, Garcia-Dávila J, Lopez-Romero JC, Pena-Ramos EA, Camou JP, Valenzuela-Melendres M. Modeling the effects of temperature, sodium chloride, and green tea and their interactions on the thermal inactivation of Listeria monocytogenes in turkey. J Food Prot 2014; 77:1696-702. [PMID: 25285486 DOI: 10.4315/0362-028x.jfp-14-124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interactive effects of heating temperature (55 to 65°C), sodium chloride (NaCl; 0 to 2%), and green tea 60% polyphenol extract (GTPE; 0 to 3%) on the heat resistance of a five-strain mixture of Listeria monocytogenes in ground turkey were determined. Thermal death times were quantified in bags that were submerged in a circulating water bath set at 55, 57, 60, 63, and 65°C. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values were analyzed by second-order response surface regression for temperature, NaCl, and GTPE. The data indicated that all three factors interacted to affect the inactivation of the pathogen. The D-values for turkey with no NaCl or GTPE at 55, 57, 60, 63, and 65°C were 36.3, 20.8, 13.2, 4.1, and 2.9 min, respectively. Although NaCl exhibited a concentration-dependent protective effect against heat lethality on L. monocytogenes in turkey, addition of GTPE rendered the pathogen more sensitive to the lethal effect of heat. GTPE levels up to 1.5% interacted with NaCl and reduced the protective effect of NaCl on heat resistance of the pathogen. Food processors can use the predictive model to design an appropriate heat treatment that would inactivate L. monocytogenes in cooked turkey products without adversely affecting the quality of the product.
Collapse
Affiliation(s)
- Vijay K Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19308, USA.
| | - Jimena Garcia-Dávila
- Research Center for Food and Development, CIAD, A.C., Hermosillo, Sonora, 83000, Mexico
| | | | - Etna Aida Pena-Ramos
- Research Center for Food and Development, CIAD, A.C., Hermosillo, Sonora, 83000, Mexico
| | - Juan Pedro Camou
- Research Center for Food and Development, CIAD, A.C., Hermosillo, Sonora, 83000, Mexico
| | | |
Collapse
|
46
|
Lee YJ, Jung BS, Yoon HJ, Kim KT, Paik HD, Lee JY. Predictive model for the growth kinetics of Listeria monocytogenes in raw pork meat as a function of temperature. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Bae D, Mezal EH, Smiley RD, Cheng CM, Khan AA. The sub-species characterization and antimicrobial resistance of Listeria monocytogenes isolated from domestic and imported food products from 2004 to 2011. Food Res Int 2014; 64:656-663. [DOI: 10.1016/j.foodres.2014.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/16/2014] [Accepted: 07/28/2014] [Indexed: 01/29/2023]
|
48
|
Lee JJ, Lee G, Shin JH. σ(B) affects biofilm formation under the dual stress conditions imposed by adding salt and low temperature in Listeria monocytogenes. J Microbiol 2014; 52:849-55. [PMID: 25269605 DOI: 10.1007/s12275-014-4369-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 12/01/2022]
Abstract
The food-borne pathogenic bacteria Listeria monocytogenes can form biofilms on various surfaces including food-processing equipment. Biofilms offer survival benefits to the organisms entrapped against environmental insults. Moreover, the σ(B) transcription factor of L. monocytogenes plays an important role in its survival under various stress conditions. In this study, we evaluated whether σ(B) contributes to biofilm formation when L. monocytogenes is grown under various temperatures and media. When the wild-type strain was grown under static biofilm culture below ambient temperature (15°C) for 72 h, the difference in viable cell number (in both planktonic and biofilm cells) between the wild-type and ΔsigB mutant increased by adding NaCl to BHI broth (9% salt BHI > 6% salt BHI > BHI, w/v), and the specific activity of β-galactosidase was highly induced in the wild-type strain grown in 6% salt containing BHI broth. Furthermore, we measured surface-adhered biofilm forming ability using the crystal violet staining method. The wild-type strain formed a four times larger biofilm than that of the ΔsigB mutant in 6% salt-BHI medium at 15°C over a 72 h incubation and also showed the highest level of β-galactosidase specific activity. However, both the wild-type and ΔsigB mutant L. monocytogenes were defective for forming a biofilm in 9% salt-BHI medium at 15°C. Our results suggest that σ(B) plays an enhanced role in surface-adhered biofilm formation when L. monocytogenes encounters dual stress conditions, such as 6% NaCl and low temperature.
Collapse
Affiliation(s)
- Jin-Ju Lee
- Institute of Science and Technology, College of Science and Technology, Korea University, Sejong, 339-700, Republic of Korea
| | | | | |
Collapse
|
49
|
Ribeiro VB, Destro MT. Listeria monocytogenes serotype 1/2b and 4b isolates from human clinical cases and foods show differences in tolerance to refrigeration and salt stress. J Food Prot 2014; 77:1519-26. [PMID: 25198843 DOI: 10.4315/0362-028x.jfp-13-548] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Control of Listeria monocytogenes in food processing facilities is a difficult issue because of the ability of this microorganism to form biofilms and adapt to adverse environmental conditions. Survival at high concentrations of sodium chloride and growth at refrigeration temperatures are two other important characteristics of L. monocytogenes isolates. The aim of this study was to compare the growth characteristics under stress conditions at different temperatures of L. monocytogenes serotypes responsible for the majority of clinical cases from different sources. Twenty-two L. monocytogenes isolates, 12 from clinical cases (8 serotype 4b and 4 serotype 1/2a) and 10 from food (6 serotype 4b and 4 serotype 1/2a), and an L. monocytogenes Scott A (serotype 4b) reference strain were analyzed for the ability to grow in brain heart infusion broth plus 1.9 M NaCl (11%) at 4, 10, and 25°C for 73, 42, and 15 days, respectively. The majority of L. monocytogenes strains was viable or even grew at 4°C and under the high osmotic conditions usually used to control pathogens in the food industry. At 10°C, most strains could adapt and grow; however, no significant difference (P > 0.05) was found for lag-phase duration, maximum growth rate, and maximum cell density. At 25°C, all strains were able to grow, and populations increased by up 5 log CFU/ml. Clinical strains had a significantly longer lag phase and lower maximum cell density (P < 0.05) than did food strains. Regarding virulence potential, no significant differences in hemolytic activity were found among serotypes; however, serotype 4b strains were more invasive in Caco-2 cells than were serotype 1/2a strains (P < 0.05). The global tendency of decreasing NaCl concentrations in processed foods for health reasons may facilitate L. monocytogenes survival and growth in these products. Therefore, food companies must consider additional microbial growth barriers to assure product safety.
Collapse
Affiliation(s)
- V B Ribeiro
- Department of Food and Experimental Nutrition, University of São Paulo, São Paulo 05508000, Brazil.
| | - M T Destro
- Department of Food and Experimental Nutrition, University of São Paulo, São Paulo 05508000, Brazil
| |
Collapse
|
50
|
Oh SR, Park SY, Ha SD. Combined effects of chlorine and thiamine dilauryl sulfate on reduction of Listeria monocytogenes in chicken breast and development of predictive growth models. Poult Sci 2014; 93:1503-10. [PMID: 24879700 DOI: 10.3382/ps.2013-03427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibitory effect of chlorine (50, 100, and 200 mL/kg) and thiamine dilauryl sulfate (TDS: 100, 500, and 1,000 mg/kg) on Listeria monocytogenes in chicken breast was investigated. Also, predictive growth models as a function of chlorine and TDS concentration, and storage temperature (4, 10, and 15°C) were developed using a polynomial model. Listeria monocytogenes counts were significantly (P < 0.05) different in samples treated with sterile distilled water and combinations of chlorine and TDS. The maximum reduction effect was 0.5 log cfu/g by combined treatment of 200 mL/kg chlorine and 1,000 mg/kg TDS. The largest synergistic effect was 0.38 log cfu/g by combined treatment of 100 mL/kg chlorine and 1,000 mg/kg TDS. The primary models that were developed to obtain the specific growth rates (SGR) and lag time (LT) had good fitness (R(2) > 0.91) determined by the reparameterized Gompertz equation. The secondary polynomial models were calculated by nonlinear regression analysis. In the validation of the developed models, the bias factor (Bf) and accuracy factor (Af) for SGR were 0.54 and 1.84, respectively, whereas those for LT were 0.97 and 1.04, respectively. In quality analysis, chlorine and TDS did not change the color or texture of chicken breast meat during storage at 4°C for 7 d. Thus, our findings indicate that a combined treatment of 100 mL/kg chlorine and 1,000 mg/kg TDS appears to an effective method into reduce L. monocytogenes in broiler carcasses with no negative effects on color and textural quality. The predictive models were in good agreement with the validation and may be used to predict L. monocytogenes growth in chicken breast.
Collapse
Affiliation(s)
- Se-Ra Oh
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Daeduk-myun, Ansung, Gyunggido 456-756, Republic of Korea
| | - Shin Young Park
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Daeduk-myun, Ansung, Gyunggido 456-756, Republic of Korea
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Daeduk-myun, Ansung, Gyunggido 456-756, Republic of Korea
| |
Collapse
|