1
|
Courault P, Bouvard S, Bouillot C, Bolbos R, Zeinyeh W, Iecker T, Liger F, Billard T, Zimmer L, Chauveau F, Lancelot S. Perspectives on obesity imaging: [ 18F]2FNQ1P a specific 5-HT 6 brain PET radiotracer. Int J Obes (Lond) 2024:10.1038/s41366-024-01644-x. [PMID: 39375529 DOI: 10.1038/s41366-024-01644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Estimates suggest that approximatively 25% of the world population will be overweight in 2025. Better understanding of the pathophysiology of obesity will help to develop future therapeutics. Serotonin subtype 6 receptors (5-HT6) have been shown to be critically involved in appetite reduction and weight loss. However, it is not known if the pathological cascade triggered by obesity modifies the density of 5-HT6 receptors in the brain. METHODS Influence of diet-induced obesity (DIO) in Wistar rats was explored using MRI (whole-body fat) and PET ([18F]2FNQ1P as a specific 5-HT6 radiotracer). The primary goal was to monitor the 5-HT6 receptor density before and after a 10-week diet (DIO group). The secondary goal was to compare 5-HT6 receptor densities between DIO group, Wistar control diet group, Zucker rats (with genetic obesity) and Zucker lean strain rats. RESULTS Wistar rats fed with high-fat diet showed higher body fat gain than Wistar control diet rats on MRI. [18F]2FNQ1P PET analysis highlighted significant clusters of voxels (located in hippocampus, striatum, cingulate, temporal cortex and brainstem) with increased binding after high-fat diet (p < 0.05, FWE corrected). CONCLUSION This study sheds a new light on the influence of high-fat diet on 5-HT6 receptors. This study also positions [18F]2FNQ1P PET as an innovative tool to explore neuronal consequences of obesity or eating disorder pathophysiology.
Collapse
Affiliation(s)
- Pierre Courault
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Université Lyon 1, Lyon, France.
- Hospices Civils de Lyon (HCL), Lyon, France.
- CERMEP-Imaging Platform, Groupement Hospitalier Est, Bron, France.
| | - Sandrine Bouvard
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Université Lyon 1, Lyon, France
| | | | - Radu Bolbos
- CERMEP-Imaging Platform, Groupement Hospitalier Est, Bron, France
| | - Waël Zeinyeh
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Université Lyon 1, Lyon, France
- Hospices Civils de Lyon (HCL), Lyon, France
- CERMEP-Imaging Platform, Groupement Hospitalier Est, Bron, France
| | - Thibaut Iecker
- CERMEP-Imaging Platform, Groupement Hospitalier Est, Bron, France
| | - François Liger
- CERMEP-Imaging Platform, Groupement Hospitalier Est, Bron, France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS), Université de Lyon, CNRS, Villeurbanne, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Université Lyon 1, Lyon, France
- Hospices Civils de Lyon (HCL), Lyon, France
- CERMEP-Imaging Platform, Groupement Hospitalier Est, Bron, France
- National Institute for Nuclear Science and Technology (INSTN), CEA, Saclay, France
| | - Fabien Chauveau
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Université Lyon 1, Lyon, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, Université Lyon 1, Lyon, France
- Hospices Civils de Lyon (HCL), Lyon, France
- CERMEP-Imaging Platform, Groupement Hospitalier Est, Bron, France
| |
Collapse
|
2
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
3
|
Alzaben AS, Aloudah AA, Almutairi FN, Alshardan MK, Alasmari SA, Alsihman SJ, Alshamri DF, Alshlwi SS, Mortada EM. The Association Between Appetite and Quality of Life in Adults with Obesity or Severe Obesity Post-Sleeve Gastrectomy Procedure: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2024; 17:1441-1454. [PMID: 38559616 PMCID: PMC10981378 DOI: 10.2147/dmso.s447743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Background Sleeve gastrectomy (SG) is considered as the most common bariatric procedure in Saudi Arabia. It is a non-reversible procedure defined as removal of a large portion of the stomach. Objective The objective of the current study is to compare the appetite and quality of life (QoL) between adults' post-sleeve gastrectomy and obese/morbidly obese adults (pre-SG). Methods A cross-sectional study design was conducted in adults (aged between 18 and 65 years), post-sleeve gastrectomy (n = 80, 41 Males and 39 Females) and obese group (n = 60, 28 Males and 32 Females). The study population was recruited from the bariatric surgery clinic of King Abdullah Bin Abdul-Aziz University Hospital. A self-reported questionnaire was collected that included a visual analogue scale (VAS) to assess the appetite level, and SF-36 QoL questionnaire. Results No significant differences were found in age and gender between the study groups (p > 0.05). The median score feeling of fullness was significantly higher in the SG group (77.5, IQR: 48 and 50, IQR: 40, respectively) than in the obese group (p < 0.001). The amount of food eaten was statistically lower in the SG group (30, IQR: 20) than the obese group (50, IQR: 60) (p = 0.005). Patients post SG had significantly higher QoL scores in all physical and mental scales, physical component summary and mental component summary (p < 0.003). Conclusion Patients post SG have improved appetite and QoL. Satiety, less prospective food consumption, BMI, age, gender and comorbidities are associated with QoL. Future studies are needed to compare the QoL in post-SG patients with the normative values of the QoL in Saudi Arabia.
Collapse
Affiliation(s)
- Abeer Salman Alzaben
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Asma Abdulaziz Aloudah
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Fatimah Naif Almutairi
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Maram Khalid Alshardan
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Salha Ali Alasmari
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Shatha Jubran Alsihman
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Dalal Fahad Alshamri
- Department of Nutrition, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Saeed S Alshlwi
- Department of Surgery, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Eman M Mortada
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| |
Collapse
|
4
|
Prone-Olazabal D, Davies I, González-Galarza FF. Metabolic Syndrome: An Overview on Its Genetic Associations and Gene-Diet Interactions. Metab Syndr Relat Disord 2023; 21:545-560. [PMID: 37816229 DOI: 10.1089/met.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors that includes central obesity, hyperglycemia, hypertension, and dyslipidemias and whose inter-related occurrence may increase the odds of developing type 2 diabetes and cardiovascular diseases. MetS has become one of the most studied conditions, nevertheless, due to its complex etiology, this has not been fully elucidated. Recent evidence describes that both genetic and environmental factors play an important role on its development. With the advent of genomic-wide association studies, single nucleotide polymorphisms (SNPs) have gained special importance. In this review, we present an update of the genetics surrounding MetS as a single entity as well as its corresponding risk factors, considering SNPs and gene-diet interactions related to cardiometabolic markers. In this study, we focus on the conceptual aspects, diagnostic criteria, as well as the role of genetics, particularly on SNPs and polygenic risk scores (PRS) for interindividual analysis. In addition, this review highlights future perspectives of personalized nutrition with regard to the approach of MetS and how individualized multiomics approaches could improve the current outlook.
Collapse
Affiliation(s)
- Denisse Prone-Olazabal
- Postgraduate Department, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Ian Davies
- Research Institute of Sport and Exercise Science, The Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| | | |
Collapse
|
5
|
Singh K, Bhushan B, Chanchal DK, Sharma SK, Rani K, Yadav MK, Porwal P, Kumar S, Sharma A, Virmani T, Kumar G, Noman AA. Emerging Therapeutic Potential of Cannabidiol (CBD) in Neurological Disorders: A Comprehensive Review. Behav Neurol 2023; 2023:8825358. [PMID: 37868743 PMCID: PMC10586905 DOI: 10.1155/2023/8825358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Cannabidiol (CBD), derived from Cannabis sativa, has gained remarkable attention for its potential therapeutic applications. This thorough analysis explores the increasing significance of CBD in treating neurological conditions including epilepsy, multiple sclerosis, Parkinson's disease, and Alzheimer's disease, which present major healthcare concerns on a worldwide scale. Despite the lack of available therapies, CBD has been shown to possess a variety of pharmacological effects in preclinical and clinical studies, making it an intriguing competitor. This review brings together the most recent findings on the endocannabinoid and neurotransmitter systems, as well as anti-inflammatory pathways, that underlie CBD's modes of action. Synthesized efficacy and safety assessments for a range of neurological illnesses are included, covering human trials, in vitro studies, and animal models. The investigation includes how CBD could protect neurons, control neuroinflammation, fend off oxidative stress, and manage neuronal excitability. This study emphasizes existing clinical studies and future possibilities in CBD research, addressing research issues such as regulatory complications and contradicting results, and advocates for further investigation of therapeutic efficacy and ideal dose methodologies. By emphasizing CBD's potential to improve patient well-being, this investigation presents a revised viewpoint on its suitability as a therapeutic intervention for neurological illnesses.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Dilip Kumar Chanchal
- Department of Pharmacognosy, Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Satish Kumar Sharma
- Department of Pharmacognosy, Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ketki Rani
- Department of Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Manoj Kumar Yadav
- Department of Pharmacology, Dr. Bhimrao Ambedkar University, Chhalesar Campus, Agra, Uttar Pradesh, India
| | - Prateek Porwal
- Department of Pharmacognosy, Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, 121105, Palwal, Haryana, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, 121105, Palwal, Haryana, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, 121105, Palwal, Haryana, India
| | | |
Collapse
|
6
|
Deer LK, Su C, Thwaites NA, Davis EP, Doom JR. A framework for testing pathways from prenatal stress-responsive hormones to cardiovascular disease risk. Front Endocrinol (Lausanne) 2023; 14:1111474. [PMID: 37223037 PMCID: PMC10200937 DOI: 10.3389/fendo.2023.1111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, with the prevalence projected to keep rising. Risk factors for adult CVD emerge at least as early as the prenatal period. Alterations in stress-responsive hormones in the prenatal period are hypothesized to contribute to CVD in adulthood, but little is known about relations between prenatal stress-responsive hormones and early precursors of CVD, such as cardiometabolic risk and health behaviors. The current review presents a theoretical model of the relation between prenatal stress-responsive hormones and adult CVD through cardiometabolic risk markers (e.g., rapid catch-up growth, high BMI/adiposity, high blood pressure, and altered blood glucose, lipids, and metabolic hormones) and health behaviors (e.g., substance use, poor sleep, poor diet and eating behaviors, and low physical activity levels). Emerging evidence in human and non-human animal literatures suggest that altered stress-responsive hormones during gestation predict higher cardiometabolic risk and poorer health behaviors in offspring. This review additionally highlights limitations of the current literature (e.g., lack of racial/ethnic diversity, lack of examination of sex differences), and discusses future directions for this promising area of research.
Collapse
Affiliation(s)
- LillyBelle K. Deer
- Department of Psychology, University of Denver, Denver, CO, United States
| | - Chen Su
- Department of Psychology, University of Denver, Denver, CO, United States
| | | | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, United States
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jenalee R. Doom
- Department of Psychology, University of Denver, Denver, CO, United States
| |
Collapse
|
7
|
Ye BJ. Association between Shift Work and Metabolic Syndrome: A 4-Year Retrospective Cohort Study. Healthcare (Basel) 2023; 11:healthcare11060802. [PMID: 36981459 PMCID: PMC10048347 DOI: 10.3390/healthcare11060802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
(1) Background: Previous studies on the association between shift work and metabolic syndrome have had inconsistent results. This may be due to the cross-sectional study design and non-objective data used in those studies. Hence, this study aimed to identify risk factors for Metabolic syndrome using objective information provided by the relevant companies and longitudinal data provided in health examinations. (2) Methods: In total, 1211 male workers of three manufacturing companies, including shift workers, were surveyed annually for 4 years. Data on age, smoking, drinking, physical activity, length of shift work, type of shift, past history, waist circumference, blood pressure, blood sugar, triglyceride, and high-density cholesterol (HDL) were collected and analyzed using generalized estimating equations (GEE) to identify the risk factors for Metabolic syndrome. (3) Results: In the multivariate analysis of Metabolic syndrome risk factors, age (OR = 1.078, 95% CI: 1.045–1.112), current smoking (OR = 1.428, 95% CI: 1.815–5.325), and BMI (OR = 1.498, 95% CI: 1.338–1.676) were statistically significant for day workers (n= 510). Additionally, for shift workers (N = 701), age (OR = 1.064, 95% CI: 1.008–1.174), current smoking (OR = 2.092, 95% CI: 1.854–8.439), BMI (OR = 1.471, 95% CI: 1.253–1.727) and length of shift work (OR = 1.115, 95% CI: 1.010-1.320) were statistically significant. Shift work was associated with a higher risk of Metabolic syndrome (OR = 1.093, 95% CI: 1.137–2.233) compared to day workers. For shift workers, shift work for more than 20 years was associated with Metabolic syndrome (OR = 2.080, 95% CI: 1.911–9.103), but the dose–response relationship was not statistically significant. (4) Conclusions: This study revealed that age, current smoking, BMI, and shift work are potential risk factors for Metabolic syndrome. In particular, the length of shift work (>20 years) is a potential risk factor for Metabolic syndrome in shift workers. To prevent metabolic syndrome in shift workers, health managers need to actively accommodate shift workers (especially those who have worked for more than 20 years), current smokers, and obese people. A long-term cohort study based on objective data is needed to identify the chronic health impact and the risk factors of shift work.
Collapse
Affiliation(s)
- Byeong-Jin Ye
- Department of Occupational and Environmental Medicine & Institute of Environmental and Occupational Medicine, Busan Paik Hospital, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
8
|
Fanni G, Kagios C, Roman E, Sundbom M, Wikström J, Haller S, Eriksson JW. Effects of gastric bypass surgery on brain connectivity responses to hypoglycemia. Endocrine 2023; 79:304-312. [PMID: 36459336 PMCID: PMC9892147 DOI: 10.1007/s12020-022-03253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) leads to beneficial effects on glucose homeostasis, and attenuated hormonal counterregulatory responses to hypoglycemia are likely to contribute. RYGB also induces alterations in neural activity of cortical and subcortical brain regions. We aimed to characterize RYGB-induced changes in resting-state connectivity of specific brain regions of interest for energy homeostasis and behavioral control during hypoglycemia. METHOD Ten patients with BMI > 35 kg/m2 were investigated with brain PET/MR imaging during a hyperinsulinemic normo- and hypoglycemic clamp, before and 4 months after RYGB. Hormonal levels were assessed throughout the clamp. Resting-state (RS) fMRI scans were acquired in the glucose-lowering phase of the clamp, and they were analyzed with a seed-to-voxel approach. RESULTS RS connectivity during initiation of hypoglycemia was significantly altered after RYGB between nucleus accumbens, thalamus, caudate, hypothalamus and their crosstalk with cortical and subcortical regions. Connectivity between the nucleus accumbens and the frontal pole was increased after RYGB, and this was associated with a reduction of ACTH (r = -0.639, p = 0.047) and cortisol (r = -0.635, p = 0.048) responses. Instead, connectivity between the caudate and the frontal pole after RYGB was reduced and this was associated with less attenuation of glucagon response during the hypoglycemic clamp (r = -0.728, p = 0.017), smaller reduction in fasting glucose (r = -0.798, p = 0.007) and less excess weight loss (r = 0.753, p = 0.012). No other significant associations were found between post-RYGB changes in ROI-to-voxel regional connectivity hormonal responses and metabolic or anthropometric outcomes. CONCLUSION RYGB alters brain connectivity during hypoglycemia of several neural pathways involved in reward, inhibitory control, and energy homeostasis. These changes are associated with altered hormonal responses to hypoglycemia and may be involved in the glucometabolic outcome of RYGB.
Collapse
Affiliation(s)
- Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Christakis Kagios
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Surgery, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
- CIMC-Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Rodrigues B, Portugal-Nunes C, Magalhães R, Schmidt L, Moreira PS, Soares JM, Castanho TC, Marques P, Sousa N, Santos NC. Larger dlPFC and vmPFC grey matter volumes are associated with high adherence to the Mediterranean diet: A cross-sectional study in older adults. AGING BRAIN 2023; 3:100064. [PMID: 36911265 PMCID: PMC9997170 DOI: 10.1016/j.nbas.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Dietary self-control is associated with inter-individual differences in neuroanatomy. Yet, whether such inter-individual differences are also associated with healthier dietary patterns is yet to be determined. In this cross-sectional study, a total of 100 northern Portuguese older community-dwellers were assessed with regards to i) the adherence to a healthy dietary eating pattern - the Mediterranean diet (MedDiet), and ii) grey matter density (GMD) of brain regions associated with valuation and dietary self-regulation, the ventromedial (vmPFC) and dorsolateral prefrontal cortex (dlPFC), through voxel-based morphometry. Healthy food choices were ascertained through the Mediterranean Diet Adherence Screener (MEDAS) where higher scores indicated greater adherence to the MedDiet. Voxel-based morphometry showed that greater grey matter density in the dlPFC and vmPFC associated with a higher adherence to the MedDiet. These results replicate previous links between dietary decision-making measured under laboratory conditions and the neuroanatomy of the brain's valuation and self-control system. Importantly, they shed new light on the potential relevance of inter-individual differences in the neuroanatomy of these two brain regions for adhering to healthier dietary patterns in everyday life.
Collapse
Affiliation(s)
- Belina Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Liane Schmidt
- Control-Interoception-Attention (CIA) Team, Paris Brain Institute, Inserm/CNRS/Sorbonne University, UMR 7225/U1127, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Teresa Costa Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal.,Association P5 Digital Medical Centre, School of Medicine, University of Minho, Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal.,Association P5 Digital Medical Centre, School of Medicine, University of Minho, Braga, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal.,Association P5 Digital Medical Centre, School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
10
|
Pathogenesis of Dementia. Int J Mol Sci 2022; 24:ijms24010543. [PMID: 36613988 PMCID: PMC9820433 DOI: 10.3390/ijms24010543] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
According to Alzheimer's Disease International, 55 million people worldwide are living with dementia. Dementia is a disorder that manifests as a set of related symptoms, which usually result from the brain being damaged by injury or disease. The symptoms involve progressive impairments in memory, thinking, and behavior, usually accompanied by emotional problems, difficulties with language, and decreased motivation. The most common variant of dementia is Alzheimer's disease with symptoms dominated by cognitive disorders, particularly memory loss, impaired personality, and judgmental disorders. So far, all attempts to treat dementias by removing their symptoms rather than their causes have failed. Therefore, in the presented narrative review, I will attempt to explain the etiology of dementia and Alzheimer's disease from the perspective of energy and cognitive metabolism dysfunction in an aging brain. I hope that this perspective, though perhaps too simplified, will bring us closer to the essence of aging-related neurodegenerative disorders and will soon allow us to develop new preventive/therapeutic strategies in our struggle with dementia, Alzheimer's disease, and Parkinson's disease.
Collapse
|
11
|
Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-Alcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota. Int J Mol Sci 2022; 23:ijms232113436. [PMID: 36362221 PMCID: PMC9658623 DOI: 10.3390/ijms232113436] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP-1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.
Collapse
|
12
|
Prida E, Álvarez-Delgado S, Pérez-Lois R, Soto-Tielas M, Estany-Gestal A, Fernø J, Seoane LM, Quiñones M, Al-Massadi O. Liver Brain Interactions: Focus on FGF21 a Systematic Review. Int J Mol Sci 2022; 23:ijms232113318. [PMID: 36362103 PMCID: PMC9658462 DOI: 10.3390/ijms232113318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 21 is a pleiotropic hormone secreted mainly by the liver in response to metabolic and nutritional challenges. Physiologically, fibroblast growth factor 21 plays a key role in mediating the metabolic responses to fasting or starvation and acts as an important regulator of energy homeostasis, glucose and lipid metabolism, and insulin sensitivity, in part by its direct action on the central nervous system. Accordingly, pharmacological recombinant fibroblast growth factor 21 therapies have been shown to counteract obesity and its related metabolic disorders in both rodents and nonhuman primates. In this systematic review, we discuss how fibroblast growth factor 21 regulates metabolism and its interactions with the central nervous system. In addition, we also state our vision for possible therapeutic uses of this hepatic-brain axis.
Collapse
Affiliation(s)
- Eva Prida
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Sara Álvarez-Delgado
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Raquel Pérez-Lois
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Mateo Soto-Tielas
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Ana Estany-Gestal
- Unidad de Metodología de la Investigación, Fundación Instituto de Investigación de Santiago (FIDIS), 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201 Bergen, Norway
| | - Luisa María Seoane
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Mar Quiñones
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
- Correspondence: (M.Q.); (O.A.-M.); Tel.: +34-981955708 (M.Q.); +34-981955522 (O.A.-M.)
| | - Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
- Correspondence: (M.Q.); (O.A.-M.); Tel.: +34-981955708 (M.Q.); +34-981955522 (O.A.-M.)
| |
Collapse
|
13
|
Ni D, Smyth HE, Cozzolino D, Gidley MJ. Holistic approach to effects of foods, human physiology, and psychology on food intake and appetite (satiation & satiety). Crit Rev Food Sci Nutr 2022; 64:3702-3712. [PMID: 36259784 DOI: 10.1080/10408398.2022.2134840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Appetite (satiation and satiety) is an essential element for the control of eating behavior, and as a consequence human nutrition, body weight, and chronic disease risk. A better understanding of appetite mechanisms is necessary to modulate eating behavior and food intake, and also provide a practical approach for weight management. Although many researchers have investigated the relationships between satiation/satiety and specific factors including human physiology, psychology, and food characteristics, limited information on the interactions between factors or comparisons between the relative importance of factors in contributing to satiation/satiety have been reported. This article reviews progress and gaps in understanding individual attributes contributing to perceived satiation/satiety, the advantages of considering multiple factors together in appetite experiments, as well as the applications of nondestructive sensing in evaluating human factors contributing to relative appetite perception. The approaches proposed position characterization of appetite (satiation and satiety) for personalized and precision nutrition in relation to human status and healthy diets. In particular, it is recommended that future studies of appetite perception recognize the inter-dependence of food type and intake, appetite (satiation and satiety), and individual status.
Collapse
Affiliation(s)
- Dongdong Ni
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Heather E Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Wada T, Yamamoto Y, Takasugi Y, Ishii H, Uchiyama T, Saitoh K, Suzuki M, Uchiyama M, Yoshitane H, Fukada Y, Shimba S. Adiponectin regulates the circadian rhythm of glucose and lipid metabolism. J Endocrinol 2022; 254:121-133. [PMID: 35662074 PMCID: PMC9354065 DOI: 10.1530/joe-22-0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Adiponectin is a cytokine secreted from adipocytes and regulates metabolism. Although serum adiponectin levels show diurnal variations, it is not clear if the effects of adiponectin are time-dependent. Therefore, this study conducted locomotor activity analyses and various metabolic studies using the adiponectin knockout (APN (-/-)) and the APN (+/+) mice to understand whether adiponectin regulates the circadian rhythm of glucose and lipid metabolism. We observed that the adiponectin gene deficiency does not affect the rhythmicity of core circadian clock genes expression in several peripheral tissues. In contrast, the adiponectin gene deficiency alters the circadian rhythms of liver and serum lipid levels and results in the loss of the time dependency of very-low-density lipoprotein-triglyceride secretion from the liver. In addition, the whole-body glucose tolerance of the APN (-/-) mice was normal at CT10 but reduced at CT22, compared to the APN (+/+) mice. The decreased glucose tolerance at CT22 was associated with insulin hyposecretion in vivo. In contrast, the gluconeogenesis activity was higher in the APN (-/-) mice than in the APN (+/+) mice throughout the day. These results indicate that adiponectin regulates part of the circadian rhythm of metabolism in the liver.
Collapse
Affiliation(s)
- Taira Wada
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Yukiko Yamamoto
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Yukiko Takasugi
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Hirotake Ishii
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Taketo Uchiyama
- Laboratory of Organic Chemistry, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Kaori Saitoh
- Department of Psychiatry, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Masahiro Suzuki
- Department of Psychiatry, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Makoto Uchiyama
- Department of Psychiatry, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
- Tokyo Adachi Hospital, Adachi, Tokyo, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeki Shimba
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
- Correspondence should be addressed to S Shimba:
| |
Collapse
|
15
|
Häusl AS, Bajaj T, Brix LM, Pöhlmann ML, Hafner K, De Angelis M, Nagler J, Dethloff F, Balsevich G, Schramm KW, Giavalisco P, Chen A, Schmidt MV, Gassen NC. Mediobasal hypothalamic FKBP51 acts as a molecular switch linking autophagy to whole-body metabolism. SCIENCE ADVANCES 2022; 8:eabi4797. [PMID: 35263141 PMCID: PMC8906734 DOI: 10.1126/sciadv.abi4797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mediobasal hypothalamus (MBH) is the central region in the physiological response to metabolic stress. The FK506-binding protein 51 (FKBP51) is a major modulator of the stress response and has recently emerged as a scaffolder regulating metabolic and autophagy pathways. However, the detailed protein-protein interactions linking FKBP51 to autophagy upon metabolic challenges remain elusive. We performed mass spectrometry-based metabolomics of FKBP51 knockout (KO) cells revealing an increased amino acid and polyamine metabolism. We identified FKBP51 as a central nexus for the recruitment of the LKB1/AMPK complex to WIPI4 and TSC2 to WIPI3, thereby regulating the balance between autophagy and mTOR signaling in response to metabolic challenges. Furthermore, we demonstrated that MBH FKBP51 deletion strongly induces obesity, while its overexpression protects against high-fat diet (HFD)-induced obesity. Our study provides an important novel regulatory function of MBH FKBP51 within the stress-adapted autophagy response to metabolic challenges.
Collapse
Affiliation(s)
- Alexander S. Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Thomas Bajaj
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127 Bonn, Germany
| | - Lea M. Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Max L. Pöhlmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Meri De Angelis
- Helmholtz Center Munich Germany Research Center for Environmental Health, Molecular EXposomics, Neuherberg, Germany
| | - Joachim Nagler
- Helmholtz Center Munich Germany Research Center for Environmental Health, Molecular EXposomics, Neuherberg, Germany
| | | | - Georgia Balsevich
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Center Munich Germany Research Center for Environmental Health, Molecular EXposomics, Neuherberg, Germany
| | | | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mathias V. Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Corresponding author. (M.V.S.); (N.C.G.)
| | - Nils C. Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127 Bonn, Germany
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Corresponding author. (M.V.S.); (N.C.G.)
| |
Collapse
|
16
|
Metz L, Isacco L, Redman LM. Effect of oral contraceptives on energy balance in women: A review of current knowledge and potential cellular mechanisms. Metabolism 2022; 126:154919. [PMID: 34715118 DOI: 10.1016/j.metabol.2021.154919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
Body weight management is currently of major concern as the obesity epidemic is still a worldwide challenge. As women face more difficulties to lose weight than men, there is an urgent need to better understand the underlying reasons and mechanisms. Recent data have suggested that the use of oral contraceptive (OC) could be involved. The necessity of utilization and development of contraceptive strategies for birth regulation is undeniable and contraceptive pills appear as a quite easy approach. Moreover, OC also represent a strategy for the management of premenstrual symptoms, acne or bulimia nervosa. The exact impact of OC on body weight remains not clearly established. Thus, after exploring the potential underlying mechanisms by which OC could influence the two side of energy balance, we then provide an overview of the available evidence regarding the effects of OC on energy balance (i.e. energy expenditure and energy intake). Finally, we highlight the necessity for future research to clarify the cellular effects of OC and how the individualization of OC prescriptions can improve long-term weight loss management.
Collapse
Affiliation(s)
- Lore Metz
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France.
| | - Laurie Isacco
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
17
|
Borg ML, Massart J, De Castro Barbosa T, Archilla-Ortega A, Smith JAB, Lanner JT, Alsina-Fernandez J, Yaden B, Culver AE, Karlsson HKR, Brozinick JT, Zierath JR. Modified UCN2 peptide treatment improves skeletal muscle mass and function in mouse models of obesity-induced insulin resistance. J Cachexia Sarcopenia Muscle 2021; 12:1232-1248. [PMID: 34342159 PMCID: PMC8517345 DOI: 10.1002/jcsm.12746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 2 diabetes and obesity are often seen concurrently with skeletal muscle wasting, leading to further derangements in function and metabolism. Muscle wasting remains an unmet need for metabolic disease, and new approaches are warranted. The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin releasing factor receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance, glucose metabolism, and muscle mass. The aim of this study was to investigate the effects of modified UCN2 peptides as a pharmaceutical therapy to counteract the loss of skeletal muscle mass associated with obesity and casting immobilization. METHODS High-fat-fed mice (C57Bl/6J; 26 weeks old) and ob/ob mice (11 weeks old) were injected daily with a PEGylated (Compound A) and non-PEGylated (Compound B) modified human UCN2 at 0.3 mg/kg subcutaneously for 14 days. A separate group of chow-fed C57Bl/6J mice (12 weeks old) was subjected to hindlimb cast immobilization and, after 1 week, received daily injections with Compound A. In vivo functional tests were performed to measure protein synthesis rates and skeletal muscle function. Ex vivo functional and molecular tests were performed to measure contractile force and signal transduction of catabolic and anabolic pathways in skeletal muscle. RESULTS Skeletal muscles (extensor digitorum longus, soleus, and tibialis anterior) from high-fat-fed mice treated with Compound A were ~14% heavier than muscles from vehicle-treated mice. Chronic treatment with modified UCN2 peptides altered the expression of structural genes and transcription factors in skeletal muscle in high-fat diet-induced obesity including down-regulation of Trim63 and up-regulation of Nr4a2 and Igf1 (P < 0.05 vs. vehicle). Signal transduction via both catabolic and anabolic pathways was increased in tibialis anterior muscle, with increased phosphorylation of ribosomal protein S6 at Ser235/236 , FOXO1 at Ser256 , and ULK1 at Ser317 , suggesting that UCN2 treatment modulates protein synthesis and degradation pathways (P < 0.05 vs. vehicle). Acutely, a single injection of Compound A in drug-naïve mice had no effect on the rate of protein synthesis in skeletal muscle, as measured via the surface sensing of translation method, while the expression of Nr4a3 and Ppargc1a4 was increased (P < 0.05 vs. vehicle). Compound A treatment prevented the loss of force production from disuse due to casting. Compound B treatment increased time to fatigue during ex vivo contractions of fast-twitch extensor digitorum longus muscle. Compound A and B treatment increased lean mass and rates of skeletal muscle protein synthesis in ob/ob mice. CONCLUSIONS Modified human UCN2 is a pharmacological candidate for the prevention of the loss of skeletal muscle mass associated with obesity and immobilization.
Collapse
Affiliation(s)
- Melissa L Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Thais De Castro Barbosa
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Adrià Archilla-Ortega
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathon A B Smith
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Section for Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | | | - Benjamin Yaden
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Alexander E Culver
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Håkan K R Karlsson
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph T Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Hypothalamic Expression of Neuropeptide Y (NPY) and Pro-OpioMelanoCortin (POMC) in Adult Male Mice Is Affected by Chronic Exposure to Endocrine Disruptors. Metabolites 2021; 11:metabo11060368. [PMID: 34207679 PMCID: PMC8228876 DOI: 10.3390/metabo11060368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
In the arcuate nucleus, neuropeptide Y (NPY) neurons, increase food intake and decrease energy expenditure, and control the activity of pro-opiomelanocortin (POMC) neurons, that decrease food intake and increase energy expenditure. Both systems project to other hypothalamic nuclei such as the paraventricular and dorsomedial hypothalamic nuclei. Endocrine disrupting chemicals (EDCs) are environmental contaminants that alter the endocrine system causing adverse health effects in an intact organism or its progeny. We investigated the effects of long-term exposure to some EDCs on the hypothalamic NPY and POMC systems of adult male mice that had been previously demonstrated to be a target of some of these EDCs after short-term exposure. Animals were chronically fed for four months with a phytoestrogen-free diet containing two different concentrations of bisphenol A, diethylstilbestrol, tributyltin, or E2. At the end, brains were processed for NPY and POMC immunohistochemistry and quantitatively analyzed. In the arcuate and dorsomedial nuclei, both NPY and POMC immunoreactivity showed a statistically significant decrease. In the paraventricular nucleus, only the NPY system was affected, while the POMC system was not affected. Finally, in the VMH the NPY system was affected whereas no POMC immunoreactive material was observed. These results indicate that adult exposure to different EDCs may alter the hypothalamic circuits that control food intake and energy metabolism.
Collapse
|
19
|
Galmiche M, Achamrah N, Déchelotte P, Ribet D, Breton J. Role of microbiota-gut-brain axis dysfunctions induced by infections in the onset of anorexia nervosa. Nutr Rev 2021; 80:381-391. [PMID: 34010427 DOI: 10.1093/nutrit/nuab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by low food intake, severe body weight loss, intense fear of gaining weight, and dysmorphophobia. This chronic disease is associated with both psychiatric and somatic comorbidities. Over the years, clinical studies have accumulated evidence that viral or bacterial infections may promote the onset of eating disorders such as AN. This review aims to describe how infections and the subsequent immune responses affect food intake regulation in the short term and also how these processes may lead to long-term intestinal disorders, including gut barrier disruption and gut microbiota dysbiosis, even after the clearance of the pathogens. We discuss in particular how infection-mediated intestinal dysbiosis may promote the onset of several AN symptoms and comorbidities, including appetite dysregulation, functional gastrointestinal disorders, and mood disorders.
Collapse
Affiliation(s)
- Marie Galmiche
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Najate Achamrah
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Pierre Déchelotte
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - David Ribet
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Jonathan Breton
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| |
Collapse
|
20
|
Brooks SJ, Parks SM, Stamoulis C. Widespread Positive Direct and Indirect Effects of Regular Physical Activity on the Developing Functional Connectome in Early Adolescence. Cereb Cortex 2021; 31:4840-4852. [PMID: 33987673 DOI: 10.1093/cercor/bhab126] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Adolescence is a period of profound but incompletely understood changes in the brain's neural circuitry (the connectome), which is vulnerable to risk factors such as unhealthy weight, but may be protected by positive factors such as regular physical activity. In 5955 children (median age = 120 months; 50.86% females) from the Adolescent Brain Cognitive Development (ABCD) cohort, we investigated direct and indirect (through impact on body mass index [BMI]) effects of physical activity on resting-state networks, the backbone of the functional connectome that ubiquitously affects cognitive function. We estimated significant positive effects of regular physical activity on network connectivity, efficiency, robustness and stability (P ≤ 0.01), and on local topologies of attention, somatomotor, frontoparietal, limbic, and default-mode networks (P < 0.05), which support extensive processes, from memory and executive control to emotional processing. In contrast, we estimated widespread negative BMI effects in the same network properties and brain regions (P < 0.05). Additional mediation analyses suggested that physical activity could also modulate network topologies leading to better control of food intake, appetite and satiety, and ultimately lower BMI. Thus, regular physical activity may have extensive positive effects on the development of the functional connectome, and may be critical for improving the detrimental effects of unhealthy weight on cognitive health.
Collapse
Affiliation(s)
- Skylar J Brooks
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA 02115, USA
| | - Sean M Parks
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA 02115, USA
| | - Catherine Stamoulis
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Campos RDMM, Toscano AE, Gouveia HJCB, Lacerda DC, Pereira SDC, Paz IAADSG, Dantas Alves JS, Manhães-de-Castro R. Neonatal fluoxetine exposure delays reflex ontogeny, somatic development, and food intake similarly in male and female rats. Can J Physiol Pharmacol 2021; 99:490-498. [PMID: 32941740 DOI: 10.1139/cjpp-2020-0261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serotonin (5-HT) acts as a neuromodulator and plays a critical role in brain development. Changes in 5-HT signaling during the perinatal period can affect neural development and may result in behavioral changes in adulthood; however, further investigations are necessary including both sexes to study possible differences. Thus, the aim of this study was to investigate the impact of neonatal treatment with fluoxetine on the development of male and female offspring. The animals were divided into four groups according to sex and treatment. The experimental groups received fluoxetine at 10 mg·kg-1 (1 μL/g of body weight (bw)) and the animals of control group received saline solution 0.9% (1 μL/g of bw) from postnatal days 1-21. In the neonatal period, reflex ontogeny, somatic development, physical features, and food intake were recorded. In the postnatal period (until day 31) bw and post-weaning food intake were recorded. Chronic administration of fluoxetine in the neonatal period caused a delay in the reflex ontogeny and somatic development, as well as reduction of lactation, post-weaning bw, and post-weaning food intake in rats. No difference was found between the sexes. These changes reaffirm that serotonin plays an important role in regulating the plasticity of the brain during the early development period, but without sex differences.
Collapse
Affiliation(s)
| | - Ana Elisa Toscano
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| | | | - Diego Cabral Lacerda
- Post-Graduation Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Sabrina da Conceição Pereira
- Post-Graduation in Neuropsychiatry and Behavioral Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
22
|
Late-life intermittent fasting decreases aging-related frailty and increases renal hydrogen sulfide production in a sexually dimorphic manner. GeroScience 2021; 43:1527-1554. [PMID: 33675469 PMCID: PMC8492807 DOI: 10.1007/s11357-021-00330-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Global average life expectancy continues to rise. As aging increases the likelihood of frailty, which encompasses metabolic, musculoskeletal, and cognitive deficits, there is a need for effective anti-aging treatments. It is well established in model organisms that dietary restriction (DR), such as caloric restriction or protein restriction, enhances health and lifespan. However, DR is not widely implemented in the clinic due to patient compliance and its lack of mechanistic underpinnings. Thus, the present study tested the effects of a somewhat more clinically applicable and adoptable DR regimen, every-other-day (EOD) intermittent fasting, on frailty in 20-month-old male and female C57BL/6 mice. Frailty was determined by a series of metabolic, musculoskeletal, and cognitive tasks performed prior to and toward the end of the 2.5-month dietary intervention. Late-life EOD fasting attenuated overall energy intake, hypothalamic inflammatory gene expression, and frailty in males. However, it failed to reduce overall caloric intake and had a little positive effect in females. Given that the selected benefits of DR are dependent on augmented production of the gasotransmitter hydrogen sulfide (H2S) and that renal H2S production declines with age, we tested the effects of EOD fasting on renal H2S production capacity and its connection to frailty in males. EOD fasting boosted renal H2S production, which positively correlated with improvements in multiple components of frailty tasks. Therefore, late-life initiated EOD fasting is sufficient to reduce aging-related frailty, at least in males, and suggests that renal H2S production capacity may modulate the effects of late-life EOD fasting on frailty.
Collapse
|
23
|
Tolle V, Ramoz N, Epelbaum J. Is there a hypothalamic basis for anorexia nervosa? HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:405-424. [PMID: 34238474 DOI: 10.1016/b978-0-12-820683-6.00030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothalamus has long been known to control food intake and energy metabolism through a complex network of primary and secondary neurons and glial cells. Anorexia nervosa being a complex disorder characterized by abnormal feeding behavior and food aversion, it is thus quite surprising that not much is known concerning potential hypothalamic modifications in this disorder. In this chapter, we review the recent advances in the fields of genetics, epigenetics, structural and functional imaging, and brain connectivity, as well as neuroendocrine findings and emerging animal models, which have begun to unravel the importance of hypothalamic adaptive processes to our understanding of the pathology of eating disorders.
Collapse
|
24
|
Hydroethanolic Extract from Bridelia atroviridis Müll. Arg. Bark Improves Haematological and Biochemical Parameters in Nicotinamide-/Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3160834. [PMID: 33293987 PMCID: PMC7714572 DOI: 10.1155/2020/3160834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022]
Abstract
Bridelia atroviridis Müll. Arg. (B. atroviridis) is a plant used in Cameroonian traditional medicine to manage diabetes. The effects of hydroethanolic barks extract from B. atroviridis were evaluated on diabetes disorders including hematology, inflammatory, and oxidative stress parameters. The in vitro antioxidant capacity of the hydroethanolic bark extract (70 : 30) was evaluated. Nicotinamide-/streptozotocin-induced diabetic rats were daily treated with the B. atroviridis extract for fifteen days. Glycemia were evaluated every 5 days, insulin sensibility test was performed, and haematological, inflammatory, and oxidative stress parameters were analysed. Histomorphometry of the pancreas was realized. The extract was able to scavenge free radicals in vitro and decrease significantly the blood glucose levels. The treatment resulted in a significant alleviation of insulin resistance, anemia, leukocytopenia, and thrombocytopenia observed in untreated diabetic rats. The extract significantly decreased proinflammatory cytokines TNF-α, IL-1β, and IL-10. The rate of reduced glutathione was increased in the pancreas, whereas the catalase activity and nitrite concentration were decreased. Diabetic control showed a reduced size of Langerhans islet, whereas the size of islets was large in treated groups. The hydroethanolic extract of B. atroviridis was able to improve glycemia and alleviate haematological and inflammatory parameters disorders observed in diabetic conditions, probably due to its antidiabetic, anti-inflammatory, and antioxidant capacities.
Collapse
|
25
|
Guo H, Hegab IM, Tan Y, Yao B, Wang C, Cai Z, Ji W, Su J. Exposure to eagle owl feces induces anti-predator behavior, physiology, and hypothalamic gene responses in a subterranean rodent, the plateau zokor (Eospalax baileyi). Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Abstract
Internally regulated eating style, the eating style that is driven by internal bodily sensations of hunger and satiation, is a concept that has received increasing attention in the literature and health practice over the last decades. The various attempts that have been made so far to conceptualise internally regulated eating have taken place independently of one another, and each sheds light on only parts of the total picture of what defines internally regulated eating. This has resulted in a literature that is rather fragmented. More importantly, it is not yet clear which are the characteristics that comprise this eating style. In this paper, we identify and describe the full spectrum of these characteristics, namely, sensitivity to internal hunger and satiation signals, self-efficacy in using internal hunger and satiation signals, self-trusting attitude for the regulation of eating, relaxed relationship with food and tendency to savour the food while eating. With this research, we introduce a common language to the field and we present a new theoretical framework that does justice not just to the full breadth of characteristics that are necessary for the internally regulated eating style but also to the associations between them and the potential mechanisms by which they contribute to this eating style.
Collapse
|
27
|
Christie S, O'Rielly R, Li H, Wittert GA, Page AJ. High fat diet induced obesity alters endocannabinoid and ghrelin mediated regulation of components of the endocannabinoid system in nodose ganglia. Peptides 2020; 131:170371. [PMID: 32659299 DOI: 10.1016/j.peptides.2020.170371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ghrelin and anandamide (AEA) can regulate the sensitivity of gastric vagal afferents to stretch, an effect mediated via the transient receptor potential vanilloid 1 (TPRV1) channel. High fat diet (HFD)-induced obesity alters the modulatory effects of ghrelin and AEA on gastric vagal afferent sensitivity. This may be a result of altered gastric levels of these hormones and subsequent changes in the expression of their receptors. Therefore, the current study aimed to determine the effects of ghrelin and AEA on vagal afferent cell body mRNA content of cannabinoid 1 receptor (CB1), ghrelin receptor (GHSR), TRPV1, and the enzyme responsible for the breakdown of AEA, fatty acid amide hydrolase (FAAH). METHODS Mice were fed a standard laboratory diet (SLD) or HFD for 12wks. Nodose ganglia were removed and cultured for 14 h in the absence or presence of ghrelin or methAEA (mAEA; stable analogue of AEA). Relative mRNA content of CB1, GHSR, TRPV1, and FAAH were measured. RESULTS In nodose cells from SLD-mice, mAEA increased TRPV1 and FAAH mRNA content, and decreased CB1 and GHSR mRNA content. Ghrelin decreased TRPV1, CB1, and GHSR mRNA content. In nodose cells from HFD-mice, mAEA had no effect on TRPV1 mRNA content, and increased CB1, GHSR, and FAAH mRNA content. Ghrelin decreased TRPV1 mRNA content and increased CB1 and GHSR mRNA content. CONCLUSIONS AEA and ghrelin modulate receptors and breakdown enzymes involved in the mAEA-vagal afferent satiety signalling pathways. This was disrupted in HFD-mice, which may contribute to the altered vagal afferent signalling in obesity.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca O'Rielly
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Gary A Wittert
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia.
| |
Collapse
|
28
|
Circadian regulation of appetite and time restricted feeding. Physiol Behav 2020; 220:112873. [PMID: 32194073 DOI: 10.1016/j.physbeh.2020.112873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
The circadian system plays an important role in the temporal regulation of metabolic processes as well as food intake to ensure energy efficiency. The 'master' clock is located within the superchiasmatic nucleus and receives input from the retina so that it can be entrained by the light:dark cycle. In turn, the master clock entrains other clocks in the central nervous system, including areas involved in energy homeostasis such as the arcuate nucleus, and the periphery (e.g. adipose tissue and the gastrointestinal tract). This master clock is reinforced by other zeitgebers such as the timing of food intake and activity. If these zeitgebers desynchronise, such as occurs in high fat diet-induced obesity or shift work conditions, it can lead to a misalignment of circadian clocks, disruption of metabolic processes and the development of metabolic disorders. The timing of food intake is a strong zeitgeber, particularly in the gastrointestinal tract, and therefore time restricted feeding offers potential for the treatment of diet and shift work induced metabolic disorders. This review will focus on the role of the circadian system in food intake regulation and the effect of environment factors, such as high fat diet feeding or shift work, on the temporal regulation of food intake along with the benefits of time restricted feeding.
Collapse
|
29
|
Jongman EC, Conley MJ, Borg S, Butler KL, Fisher AD. The effect of milk quantity and feeding frequency on calf growth and behaviour. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Calves left with their dam to suckle will consume ~7–12 L/day; however, the amount of milk provided to dairy young calves removed from their dams may often be as low as 4 L/day, or 10% of their bodyweight.
Aims
This study compared once and twice daily feeding, as well as feeding levels of 10 and 20% of bodyweight and studied the effect on behaviour and metabolic indicators indicative of hunger.
Methods
Forty-six male dairy calves were allocated to one of three treatments from 3 to 8 days of age: (i) 10% of bodyweight offered daily as one meal (1 × 10%, n = 16); (ii) 10% of bodyweight offered daily over two meals (2 × 5%, n = 15); or (iii) 20% of bodyweight offered over two meals (2 × 10%, n = 15). Behaviour during and after feeding was observed by video, and blood samples taken on selected days were analysed for glucose, nonesterified fatty acids (NEFA), cortisol and packed-cell volume.
Key results
Milk intake on Days 3 and 4 was lower in those calves fed once daily compared with calves fed twice daily. Calves fed at 20% bodyweight had higher milk intake compared with calves fed at 10% bodyweight on all days other than Day 3 and growth was higher in those calves. Non-nutritive sucking was mainly associated with feeding times and it was highest in calves fed 10% bodyweight over two meals, with a suckling pattern that suggested that feeding at 10% bodyweight satisfied feeding motivation less than feeding at 20% bodyweight. Play behaviour was reduced in calves fed once daily, suggesting hunger and reduced welfare. There were significant effects on physiological indicators of metabolic state. NEFA concentrations were significantly higher in calves fed once daily and calves fed 10% of bodyweight at certain time points, indicating a lower energy balance.
Conclusions
Feeding twice daily offers benefits to calves up to Day 4 of life whereas feeding 20% of bodyweight was beneficial after Day 4 to increase satisfaction of feeding motivation and nutrition for growth. Although metabolic variables were within normal physiological range for all treatments, the effects on feed intake, growth and non-nutrient sucking suggest marked effects on hunger when calves are fed the lower milk allowance.
Implications
The fairly common practice of feeding dairy calves 10% of bodyweight, in one or two daily meals may leave calves hungry, and an increase in milk allowance should be considered.
Collapse
|
30
|
Rossi HL, Raj NR, Marquez de Prado B, Kuburas A, Luu AKS, Barr GA, Recober A. Trigeminal Pain Responses in Obese ob/ob Mice Are Modality-Specific. Neuroscience 2019; 415:121-134. [PMID: 31295530 DOI: 10.1016/j.neuroscience.2019.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022]
Abstract
How obesity exacerbates migraine and other pain disorders remains unknown. Trigeminal nociceptive processing, crucial in migraine pathophysiology, is abnormal in mice with diet induced obesity. However, it is not known if this is also true in genetic models of obesity. We hypothesized that obese mice, regardless of the model, have trigeminal hyperalgesia. To test this, we first evaluated trigeminal thermal nociception in leptin deficient (ob/ob) and control mice using an operant thermal assay. Unexpectedly, we found significant hypoalgesia in ob/ob mice. Because thermal hypoalgesia also occurs in mice lacking the transient receptor potential vanilloid 1 channel (TRPV1), we tested capsaicin-evoked trigeminal nociception. Ob/ob and control mice had similar capsaicin-evoked nocifensive behaviors, but ob/ob mice were significantly less active after a facial injection of capsaicin than were diet-induced obese mice or lean controls. Conditioned place aversion in response to trigeminal stimulation with capsaicin was similar in both genotypes, indicating normal negative affect and pain avoidance. Supporting this, we found no difference in TRPV1 expression in the trigeminal ganglia of ob/ob and control mice. Finally, we assessed the possible contribution of hyperphagia, a hallmark of leptin deficiency, to the behavior observed in the operant assay. Ob/ob and lean control mice had similar reduction of intake when quinine or capsaicin was added to the sweetened milk, excluding a significant contribution of hyperphagia. In summary, ob/ob mice, unlike mice with diet-induced obesity, have trigeminal thermal hypoalgesia but normal responses to capsaicin, suggesting specificity in the mechanisms by which leptin acts in pain processing.
Collapse
Affiliation(s)
- Heather L Rossi
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Nichelle R Raj
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca Marquez de Prado
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Adisa Kuburas
- Department of Neurology, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Anthony K S Luu
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Recober
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
31
|
Borg ML, Massart J, Schönke M, De Castro Barbosa T, Guo L, Wade M, Alsina-Fernandez J, Miles R, Ryan A, Bauer S, Coskun T, O'Farrell E, Niemeier EM, Chibalin AV, Krook A, Karlsson HK, Brozinick JT, Zierath JR. Modified UCN2 Peptide Acts as an Insulin Sensitizer in Skeletal Muscle of Obese Mice. Diabetes 2019; 68:1403-1414. [PMID: 31010957 DOI: 10.2337/db18-1237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/08/2019] [Indexed: 11/13/2022]
Abstract
The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin-releasing hormone receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance and glucose metabolism. We investigated a modified UCN2 peptide as a potential therapeutic agent for the treatment of obesity and insulin resistance, with a specific focus on skeletal muscle. High-fat-fed mice (C57BL/6J) were injected daily with a PEGylated UCN2 peptide (compound A) at 0.3 mg/kg subcutaneously for 14 days. Compound A reduced body weight, food intake, whole-body fat mass, and intramuscular triglycerides compared with vehicle-treated controls. Furthermore, whole-body glucose tolerance was improved by compound A treatment, with increased insulin-stimulated Akt phosphorylation at Ser473 and Thr308 in skeletal muscle, concomitant with increased glucose transport into extensor digitorum longus and gastrocnemius muscle. Mechanistically, this is linked to a direct effect on skeletal muscle because ex vivo exposure of soleus muscle from chow-fed lean mice to compound A increased glucose transport and insulin signaling. Moreover, exposure of GLUT4-Myc-labeled L6 myoblasts to compound A increased GLUT4 trafficking. Our results demonstrate that modified UCN2 peptides may be efficacious in the treatment of type 2 diabetes by acting as an insulin sensitizer in skeletal muscle.
Collapse
Affiliation(s)
- Melissa L Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Milena Schönke
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Thais De Castro Barbosa
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lili Guo
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Mark Wade
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | | | - Rebecca Miles
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Andrew Ryan
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Steve Bauer
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Tamer Coskun
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Elizabeth O'Farrell
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Evan M Niemeier
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan K Karlsson
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph T Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
33
|
Cerebrospinal Fluid-Contacting Neurons Sense pH Changes and Motion in the Hypothalamus. J Neurosci 2018; 38:7713-7724. [PMID: 30037834 DOI: 10.1523/jneurosci.3359-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 01/20/2023] Open
Abstract
CSF-contacting (CSF-c) cells are present in the walls of the brain ventricles and the central canal of the spinal cord and found throughout the vertebrate phylum. We recently identified ciliated somatostatin-/GABA-expressing CSF-c neurons in the lamprey spinal cord that act as pH sensors as well as mechanoreceptors. In the same neuron, acidic and alkaline responses are mediated through ASIC3-like and PKD2L1 channels, respectively. Here, we investigate the functional properties of the ciliated somatostatin-/GABA-positive CSF-c neurons in the hypothalamus by performing whole-cell recordings in hypothalamic slices. Depolarizing current pulses readily evoked action potentials, but hypothalamic CSF-c neurons had no or a very low level of spontaneous activity at pH 7.4. They responded, however, with membrane potential depolarization and trains of action potentials to small deviations in pH in both the acidic and alkaline direction. Like in spinal CSF-c neurons, the acidic response in hypothalamic cells is mediated via ASIC3-like channels. In contrast, the alkaline response appears to depend on connexin hemichannels, not on PKD2L1 channels. We also show that hypothalamic CSF-c neurons respond to mechanical stimulation induced by fluid movements along the wall of the third ventricle, a response mediated via ASIC3-like channels. The hypothalamic CSF-c neurons extend their processes dorsally, ventrally, and laterally, but as yet, the effects exerted on hypothalamic circuits are unknown. With similar neurons being present in rodents, the pH- and mechanosensing ability of hypothalamic CSF-c neurons is most likely conserved throughout vertebrate phylogeny.SIGNIFICANCE STATEMENT CSF-contacting neurons are present in all vertebrates and are located mainly in the hypothalamic area and the spinal cord. Here, we report that the somatostatin-/GABA-expressing CSF-c neurons in the lamprey hypothalamus sense bidirectional deviations in the extracellular pH and do so via different molecular mechanisms. They also serve as mechanoreceptors. The hypothalamic CSF-c neurons have extensive axonal ramifications and may decrease the level of motor activity via release of somatostatin. In conclusion, hypothalamic somatostatin-/GABA-expressing CSF-c neurons, as well as their spinal counterpart, represent a novel homeostatic mechanism designed to sense any deviation from physiological pH and thus constitute a feedback regulatory system intrinsic to the CNS, possibly serving a protective role from damage caused by changes in pH.
Collapse
|
34
|
Martelli C, Pech U, Kobbenbring S, Pauls D, Bahl B, Sommer MV, Pooryasin A, Barth J, Arias CWP, Vassiliou C, Luna AJF, Poppinga H, Richter FG, Wegener C, Fiala A, Riemensperger T. SIFamide Translates Hunger Signals into Appetitive and Feeding Behavior in Drosophila. Cell Rep 2018; 20:464-478. [PMID: 28700946 DOI: 10.1016/j.celrep.2017.06.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/08/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022] Open
Abstract
Animal behavior is, on the one hand, controlled by neuronal circuits that integrate external sensory stimuli and induce appropriate motor responses. On the other hand, stimulus-evoked or internally generated behavior can be influenced by motivational conditions, e.g., the metabolic state. Motivational states are determined by physiological parameters whose homeostatic imbalances are signaled to and processed within the brain, often mediated by modulatory peptides. Here, we investigate the regulation of appetitive and feeding behavior in the fruit fly, Drosophila melanogaster. We report that four neurons in the fly brain that release SIFamide are integral elements of a complex neuropeptide network that regulates feeding. We show that SIFamidergic cells integrate feeding stimulating (orexigenic) and feeding suppressant (anorexigenic) signals to appropriately sensitize sensory circuits, promote appetitive behavior, and enhance food intake. Our study advances the cellular dissection of evolutionarily conserved signaling pathways that convert peripheral metabolic signals into feeding-related behavior.
Collapse
Affiliation(s)
- Carlotta Martelli
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Ulrike Pech
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Simon Kobbenbring
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Britta Bahl
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Mirjam Vanessa Sommer
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Atefeh Pooryasin
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Jonas Barth
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Carmina Warth Perez Arias
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Chrystalleni Vassiliou
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Abud Jose Farca Luna
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Haiko Poppinga
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Florian Gerhard Richter
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - André Fiala
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Thomas Riemensperger
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany.
| |
Collapse
|
35
|
Christie S, Wittert GA, Li H, Page AJ. Involvement of TRPV1 Channels in Energy Homeostasis. Front Endocrinol (Lausanne) 2018; 9:420. [PMID: 30108548 PMCID: PMC6079260 DOI: 10.3389/fendo.2018.00420] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
The ion channel TRPV1 is involved in a wide range of processes including nociception, thermosensation and, more recently discovered, energy homeostasis. Tightly controlling energy homeostasis is important to maintain a healthy body weight, or to aid in weight loss by expending more energy than energy intake. TRPV1 may be involved in energy homeostasis, both in the control of food intake and energy expenditure. In the periphery, it is possible that TRPV1 can impact on appetite through control of appetite hormone levels or via modulation of gastrointestinal vagal afferent signaling. Further, TRPV1 may increase energy expenditure via heat production. Dietary supplementation with TRPV1 agonists, such as capsaicin, has yielded conflicting results with some studies indicating a reduction in food intake and increase in energy expenditure, and other studies indicating the converse. Nonetheless, it is increasingly apparent that TRPV1 may be dysregulated in obesity and contributing to the development of this disease. The mechanisms behind this dysregulation are currently unknown but interactions with other systems, such as the endocannabinoid systems, could be altered and therefore play a role in this dysregulation. Further, TRPV1 channels appear to be involved in pancreatic insulin secretion. Therefore, given its plausible involvement in regulation of energy and glucose homeostasis and its dysregulation in obesity, TRPV1 may be a target for weight loss therapy and diabetes. However, further research is required too fully elucidate TRPV1s role in these processes. The review provides an overview of current knowledge in this field and potential areas for development.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Gary A. Wittert
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Hui Li
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J. Page
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Amanda J. Page
| |
Collapse
|
36
|
Itani O, Kaneita Y, Tokiya M, Jike M, Murata A, Nakagome S, Otsuka Y, Ohida T. Short sleep duration, shift work, and actual days taken off work are predictive life-style risk factors for new-onset metabolic syndrome: a seven-year cohort study of 40,000 male workers. Sleep Med 2017; 39:87-94. [PMID: 29157594 DOI: 10.1016/j.sleep.2017.07.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND This longitudinal study investigated the effects of various lifestyle-related factors - including sleep duration, shift work, and actual days taken off work - on new-onset metabolic syndrome (MetS). METHODS AND RESULTS A total of 39,182 male employees (mean age 42.4 ± 9.8 years) of a local government organization in Japan were followed up for a maximum of seven years, between 1999 and 2006. Multivariate analysis (Cox proportional hazard method) identified seven high-risk lifestyle factors that were significantly associated with new-onset MetS or a range of metabolic factors (obesity, hypertension, hyperglycemia, dyslipidemia): (1) short sleep duration (<5 h/day), (2) shift work, (3) insufficient number of days off work, (4) always eating until satiety, (5) not trying to take every opportunity to walk, (6) alcohol intake ≥60 g/day, and (7) smoking. In addition, a higher number of these high-risk lifestyle factors significantly promoted the onset of MetS. The hazard ratio for MetS associated with 0-1 high-risk lifestyle parameters per subject at the baseline was set at 1.00. Hazard ratios associated with the following numbers of high-risk lifestyle parameters were: 1.22 (95% CI 1.15-1.29) for 2-3 of these parameters; and 1.43 (1.33-1.54) for 4-7. CONCLUSION An increase in the number of high-risk lifestyle factors - such as short sleep duration, shift work, and an insufficient number of days off work - increased the risk of MetS onset. Comprehensive strategies to improve a range of lifestyle factors for workers, such as sleep duration and days off work, could reduce the risk of MetS onset.
Collapse
Affiliation(s)
- Osamu Itani
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshitaka Kaneita
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Mikiko Tokiya
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Maki Jike
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Atsushi Murata
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Sachi Nakagome
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yuichiro Otsuka
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Ohida
- Division of Public Health, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Vera F, Zenuto R, Antenucci CD. Expanding the actions of cortisol and corticosterone in wild vertebrates: A necessary step to overcome the emerging challenges. Gen Comp Endocrinol 2017; 246:337-353. [PMID: 28109824 DOI: 10.1016/j.ygcen.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/14/2016] [Accepted: 01/02/2017] [Indexed: 11/25/2022]
Abstract
We conducted a review of scientific articles published between 2000 and 2014 and evaluated how frequently various aspects of cortisol and corticosterone (CORT) actions have been considered in studies on wild vertebrates. Results show that (1) the notion that CORT are stress-responsive hormones is central in our theoretical frameworks and it is reflected by the fact that several articles refer to CORT as "stress hormones". (2) The large majority of studies do not contemplate the possibility of decrease and no change in CORT levels in response to chronic stressors. (3) Our ideas about CORT actions on energy balance are slanted towards the mobilization of energy, though there are several studies considering -and empirically addressing- CORT's orexigenic actions, particularly in birds. (4) The roles of CORT in mineral-water balance, though widely documented in the biomedical area, are virtually ignored in the literature about wild vertebrates, with the exception of studies in fish. (5) Adrenocorticotropic hormone (ACTH) independent regulation of CORT secretion is also very scarcely considered. (6) The preparative, permissive, suppressive and stimulatory actions of CORT, as described by Sapolsky et al. (2000), are not currently considered by the large majority of authors. We include an extension of the Preparative Hypothesis, proposing that the priming effects of baseline and stress-induced CORT levels increase the threshold of severity necessary for subsequent stimuli to become stressors. Studies on animal ecology and conservation require integration with novel aspects of CORT actions and perspectives developed in other research areas.
Collapse
Affiliation(s)
- Federico Vera
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| | - Roxana Zenuto
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| | - C Daniel Antenucci
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Rodgers R. Bench to bedside in appetite research: Lost in translation? Neurosci Biobehav Rev 2017; 76:163-173. [DOI: 10.1016/j.neubiorev.2016.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
|
39
|
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68:3-33. [PMID: 27760374 PMCID: PMC5365353 DOI: 10.1016/j.reprotox.2016.10.001] [Citation(s) in RCA: 646] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Collapse
Affiliation(s)
- Jerrold J Heindel
- National Institute of Environmental Health Sciences, Division of Extramural Research and Training Research Triangle Park, NC, USA.
| | - Bruce Blumberg
- University of California, Department of Developmental and Cell Biology, Irvine CA, USA
| | - Mathew Cave
- University of Louisville, Division of Gastroenterology, Hepatology and Nutrition, Louisville KY, USA
| | | | | | - Michelle A Mendez
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill NC, USA
| | - Angel Nadal
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Paola Palanza
- University of Parma, Department of Neurosciences, Parma, Italy
| | - Giancarlo Panzica
- University of Turin, Department of Neuroscience and Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Robert Sargis
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine Chicago, IL, USA
| | - Laura N Vandenberg
- University of Massachusetts, Department of Environmental Health Sciences, School of Public Health & Health Sciences, Amherst, MA, USA
| | - Frederick Vom Saal
- University of Missouri, Department of Biological Sciences, Columbia, MO, USA
| |
Collapse
|
40
|
Saetang J, Sangkhathat S. Diets link metabolic syndrome and colorectal cancer development (Review). Oncol Rep 2017; 37:1312-1320. [PMID: 28098913 DOI: 10.3892/or.2017.5385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023] Open
Abstract
Diets have been believed to be an important factor in the development of metabolic syndrome and colorectal cancer (CRC). In recent years, many studies have shown an intimate relationship between mucosal immunity, metabolism and diets, which has led to a greater understanding of the pathophysiology of metabolic syndrome and CRC development. Although the precise effects of diets on oncogenesis have not been compl-etely elucidated, microbiota changes and inflammation are believed to be important factors that influence the development of CRC. Moreover, increased release of pro-inflammatory cytokines and alteration of adipokine levels have been observed in patients with colorectal adenoma and/or CRC, and these all have been considered as the important mechanisms that link diets to the development of metabolic syndrome and CRC. Importantly, a high-fat, low-fiber diet is associated with dysbiosis, and as the gut signature becomes more important in metabolic syndrome and CRC, an increased understanding of diets on bacterial activity in the pathogenesis of metabolic syndrome and CRC will lead to new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jirakrit Saetang
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surasak Sangkhathat
- Tumor Biology Research Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
41
|
Fetissov SO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 2017; 13:11-25. [PMID: 27616451 DOI: 10.1038/nrendo.2016.150] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The life of all animals is dominated by alternating feelings of hunger and satiety - the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut-brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria-host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Nutrition, Gut &Brain Laboratory, Inserm UMR 1073, University of Rouen Normandy, 22 Boulevard Gambetta, 76183 Rouen, France
| |
Collapse
|
42
|
Sánchez-Hernández D, Anderson GH, Poon AN, Pannia E, Cho CE, Huot PS, Kubant R. Maternal fat-soluble vitamins, brain development, and regulation of feeding behavior: an overview of research. Nutr Res 2016; 36:1045-1054. [DOI: 10.1016/j.nutres.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|
43
|
Blanco AM, Sánchez-Bretaño A, Delgado MJ, Valenciano AI. Brain Mapping of Ghrelin O-Acyltransferase in Goldfish (Carassius Auratus): Novel Roles for the Ghrelinergic System in Fish? Anat Rec (Hoboken) 2016; 299:748-58. [PMID: 27064922 DOI: 10.1002/ar.23346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Ghrelin O-acyltransferase (GOAT) is the enzyme responsible for acylation of ghrelin, a gut-brain hormone with important roles in many physiological functions in vertebrates. Many aspects of GOAT remain to be elucidated, especially in fish, and particularly its anatomical distribution within the different brain areas has never been reported to date. The present study aimed to characterize the brain mapping of GOAT using RT-qPCR and immunohistochemistry in a teleost, the goldfish (Carassius auratus). Results show that goat transcripts are expressed in different brain areas of the goldfish, with the highest levels in the vagal lobe. Using immunohistochemistry, we also report the presence of GOAT immunoreactive cells in different encephalic areas, including the telencephalon, some hypothalamic nuclei, pineal gland, optic tectum and cerebellum, although they are especially abundant in the hindbrain. Particularly, an important signal is observed in the vagal lobe and some fiber tracts of the brainstem, such as the medial longitudinal fasciculus, Mauthneri fasciculus, secondary gustatory tract and spinothalamic tract. Most of the forebrain areas where GOAT is detected, particularly the hypothalamic nuclei, also express the ghs-r1a ghrelin receptor and other appetite-regulating hormones (e.g., orexin and NPY), supporting the role of ghrelin as a modulator of food intake and energy balance in fish. Present results are the first report on the presence of GOAT in the brain using imaging techniques. The high presence of GOAT in the hindbrain is a novelty, and point to possible new functions for the ghrelinergic system in fish. Anat Rec, 299:748-758, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | - Aída Sánchez-Bretaño
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | - María J Delgado
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | - Ana I Valenciano
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| |
Collapse
|
44
|
Vasconcelos LHC, Souza ILL, Pinheiro LS, Silva BA. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets. Front Pharmacol 2016; 7:58. [PMID: 27065858 PMCID: PMC4811910 DOI: 10.3389/fphar.2016.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/29/2016] [Indexed: 01/29/2023] Open
Abstract
Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.
Collapse
Affiliation(s)
- Luiz H C Vasconcelos
- Laboratório de Farmacologia Funcional Prof. George Thomas, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Iara L L Souza
- Laboratório de Farmacologia Funcional Prof. George Thomas, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Lílian S Pinheiro
- Laboratório de Farmacologia Funcional Prof. George Thomas, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Bagnólia A Silva
- Laboratório de Farmacologia Funcional Prof. George Thomas, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoão Pessoa, Brazil; Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da ParaíbaJoão Pessoa, Brazil
| |
Collapse
|
45
|
Utoyama M, Akieda-Asai S, Koda S, Nunoi H, Date Y. Role of the neural pathway from hindbrain to hypothalamus in the regulation of energy homeostasis in rats. Neurosci Lett 2016; 614:83-8. [PMID: 26773865 DOI: 10.1016/j.neulet.2016.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 01/22/2023]
Abstract
Recent evidence suggests that neural pathways from the hindbrain to the hypothalamus are important for informing the hypothalamus of the body's condition with regard to energy metabolism. Here we examined energy metabolism in rats with transections of the midbrain that severed the neural pathway from the hindbrain to the hypothalamus, and then investigated the levels of various molecules associated with control of energy metabolism in these rats. Food intake and body weight were higher in the midbrain-transected rats than in sham-operated rats. In addition, the midbrain-transected rats showed insulin resistance and hyperleptinemia. Furthermore, the hypothalamic mRNA levels of anorectic proopiomelanocortin and cocaine- and amphetamine-related transcript were significantly lower in midbrain-transected rats than in sham-operated rats. Our findings elucidate the mechanisms of food intake and energy balance from the perspective of multifactorial regulatory systems that underlie functions such as neurohormonal integration.
Collapse
Affiliation(s)
- Maiko Utoyama
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan; Department of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Sayaka Akieda-Asai
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shuichi Koda
- Psychiartric & Neurological Disease Field, Asubio Pharma, Kobe 650-0047, Japan
| | - Hiroyuki Nunoi
- Department of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yukari Date
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan.
| |
Collapse
|
46
|
Pastor A, Fernández-Aranda F, Fitó M, Jiménez-Murcia S, Botella C, Fernández-Real JM, Frühbeck G, Tinahones FJ, Fagundo AB, Rodriguez J, Agüera Z, Langohr K, Casanueva FF, de la Torre R. A Lower Olfactory Capacity Is Related to Higher Circulating Concentrations of Endocannabinoid 2-Arachidonoylglycerol and Higher Body Mass Index in Women. PLoS One 2016; 11:e0148734. [PMID: 26849214 PMCID: PMC4746072 DOI: 10.1371/journal.pone.0148734] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/22/2016] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid (eCB) system can promote food intake by increasing odor detection in mice. The eCB system is over-active in human obesity. Our aim is to measure circulating eCB concentrations and olfactory capacity in a human sample that includes people with obesity and explore the possible interaction between olfaction, obesity and the eCB system. The study sample was made up of 161 females with five groups of body mass index sub-categories ranging from under-weight to morbidly obese. We assessed olfactory capacity with the "Sniffin´Sticks" test, which measures olfactory threshold-discrimination-identification (TDI) capacity. We measured plasma concentrations of the eCBs 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine or anandamide (AEA), and several eCB-related compounds, 2-acylglycerols and N-acylethanolamines. 2-AG and other 2-acylglycerols fasting plasma circulating plasma concentrations were higher in obese and morbidly obese subjects. AEA and other N-acylethanolamine circulating concentrations were lower in under-weight subjects. Olfactory TDI scores were lower in obese and morbidly obese subjects. Lower TDI scores were independently associated with higher 2-AG fasting plasma circulating concentrations, higher %body fat, and higher body mass index, after controlling for age, smoking, menstruation, and use of contraceptives. Our results show that obese subjects have a lower olfactory capacity than non-obese ones and that elevated fasting plasma circulating 2-AG concentrations in obesity are linked to a lower olfactory capacity. In agreement with previous studies we show that eCBs AEA and 2-AG, and their respective congeners have a distinct profile in relation to body mass index. The present report is the first study in humans in which olfactory capacity and circulating eCB concentrations have been measured in the same subjects.
Collapse
Affiliation(s)
- Antoni Pastor
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Program, IMIM (Hospital de Mar Medical Research Institute), Barcelona, Spain
- Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Inflammatory and Cardiovascular Disorders Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Cristina Botella
- Department of Basic Psychology, Clinic and Psychobiology, University Jaume I, Castelló, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Jose M. Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi), Hospital Dr Josep Trueta, Girona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Pamplona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Francisco J. Tinahones
- Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Ana B. Fagundo
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
| | - Joan Rodriguez
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Program, IMIM (Hospital de Mar Medical Research Institute), Barcelona, Spain
| | - Zaida Agüera
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Program, IMIM (Hospital de Mar Medical Research Institute), Barcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Felipe F. Casanueva
- Endocrine Division, Complejo Hospitalario U. de Santiago, Santiago de Compostela University, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Program, IMIM (Hospital de Mar Medical Research Institute), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
47
|
da Silva AI, Braz GRF, Pedroza AA, Nascimento L, Freitas CM, Ferreira DJS, Manhães de Castro R, Lagranha CJ. Fluoxetine induces lean phenotype in rat by increasing the brown/white adipose tissue ratio and UCP1 expression. J Bioenerg Biomembr 2015; 47:309-18. [DOI: 10.1007/s10863-015-9617-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022]
|
48
|
Neuroendocrine control of appetite in Atlantic halibut (Hippoglossus hippoglossus): Changes during metamorphosis and effects of feeding. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:116-25. [DOI: 10.1016/j.cbpa.2015.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 12/14/2022]
|
49
|
Tulloch AJ, Murray S, Vaicekonyte R, Avena NM. Neural responses to macronutrients: hedonic and homeostatic mechanisms. Gastroenterology 2015; 148:1205-18. [PMID: 25644095 DOI: 10.1053/j.gastro.2014.12.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023]
Abstract
The brain responds to macronutrients via intricate mechanisms. We review how the brain's neural systems implicated in homeostatic control of feeding and hedonic responses are influenced by the ingestion of specific types of food. We discuss how these neural systems are dysregulated in preclinical models of obesity. Findings from these studies can increase our understanding of overeating and, perhaps in some cases, the development of obesity. In addition, a greater understanding of the neural circuits affected by the consumption of specific macronutrients, and by obesity, might lead to new treatments and strategies for preventing unhealthy weight gain.
Collapse
Affiliation(s)
- Alastair J Tulloch
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Susan Murray
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Regina Vaicekonyte
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Nicole M Avena
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York.
| |
Collapse
|
50
|
Morgan JA, Corrigan F, Baune BT. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations. J Mol Psychiatry 2015; 3:3. [PMID: 26064521 PMCID: PMC4461979 DOI: 10.1186/s40303-015-0010-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer's disease, depression, and Parkinson's disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important CNS functions have yet to be clarified. Here we review murine evidence about the effects of exercise on discrete brain regions involved in important CNS functions. Exercise effects on circadian rhythm, central metabolism, cardiovascular function, stress responses in the brain stem and hypothalamic pituitary axis, and movement are examined. The databases Pubmed, Web of Science, and Embase were searched for articles investigating regional brain adaptations to exercise. Brain regions examined included the brain stem, hypothalamus, and basal ganglia. We found evidence of multiple regional adaptations to both forced and voluntary exercise. Exercise can induce molecular adaptations in neuronal function in many instances. Taken together, these findings suggest that the regional physiological adaptations that occur with exercise could constitute a promising field for elucidating molecular and cellular mechanisms of recovery in psychiatric and neurological health conditions.
Collapse
Affiliation(s)
- Julie A Morgan
- />University of Adelaide, School of Medicine, Discipline of Psychiatry, Psychiatric Neuroscience Laboratory, Adelaide, South Australia Australia
| | - Frances Corrigan
- />University of Adelaide, Discipline of Anatomy and Pathology, School of Medical Sciences, Adelaide, South Australia Australia
| | - Bernhard T Baune
- />University of Adelaide, School of Medicine, Discipline of Psychiatry, Psychiatric Neuroscience Laboratory, Adelaide, South Australia Australia
| |
Collapse
|