1
|
Passaglia P, Kanashiro A, Batista Silva H, Carlos Carvalho Navegantes L, Lacchini R, Capellari Cárnio E, Branco LGS. Diminazene aceturate attenuates systemic inflammation via microbiota gut-5-HT brain-spleen sympathetic axis in male mice. Brain Behav Immun 2024; 119:105-119. [PMID: 38548186 DOI: 10.1016/j.bbi.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The sympathetic arm of the inflammatory reflex is the efferent pathway through which the central nervous system (CNS) can control peripheral immune responses. Diminazene aceturate (DIZE) is an antiparasitic drug that has been reported to exert protective effects on various experimental models of inflammation. However, the pathways by which DIZE promotes a protective immunomodulatory effects still need to be well established, and no studies demonstrate the capacity of DIZE to modulate a neural reflex to control inflammation. C57BL/6 male mice received intraperitoneal administration of DIZE (2 mg/Kg) followed by lipopolysaccharide (LPS, 5 mg/Kg, i.p.). Endotoxemic animals showed hyperresponsiveness to inflammatory signals, while those treated with DIZE promoted the activation of the inflammatory reflex to attenuate the inflammatory response during endotoxemia. The unilateral cervical vagotomy did not affect the anti-inflammatory effect of DIZE in the spleen and serum. At the same time, splenic denervation attenuated tumor necrosis factor (TNF) synthesis in the spleen and serum. Using broad-spectrum antibiotics for two weeks showed that LPS modulated the microbiota to induce a pro-inflammatory profile in the intestine and reduced the serum concentration of tryptophan and serotonin (5-HT), while DIZE restored serum tryptophan and increased the hypothalamic 5-HT levels. Furthermore, the treatment with 4-Chloro-DL-phenylalanine (pcpa, an inhibitor of 5-HT synthesis) abolished the anti-inflammatory effects of the DIZE in the spleen. Our results indicate that DIZE promotes microbiota modulation to increase central 5-HT levels and activates the efferent sympathetic arm of the inflammatory reflex to control splenic TNF production in endotoxemic mice.
Collapse
Affiliation(s)
- Patrícia Passaglia
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Alexandre Kanashiro
- Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Hadder Batista Silva
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin Capellari Cárnio
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Bremner JD, Piccinelli M, Garcia EV, Moncayo VM, Elon L, Nye JA, Cooke CD, Washington BP, Ortega RA, Desai SR, Okoh AK, Cheung B, Soyebo BO, Shallenberger LH, Raggi P, Shah AJ, Daaboul O, Jajeh MN, Ziegler C, Driggers EG, Murrah N, De Cecco CN, van Assen M, Krafty RT, Quyyumi AA, Vaccarino V. A Pilot Study of Neurobiological Mechanisms of Stress and Cardiovascular Risk. MEDICAL RESEARCH ARCHIVES 2023; 11:3787. [PMID: 37484871 PMCID: PMC10361343 DOI: 10.18103/mra.v11i4.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Objective Coronary heart disease is a leading cause of death and disability. Although psychological stress has been identified as an important potential contributor, mechanisms by which stress increases risk of heart disease and mortality are not fully understood. The purpose of this study was to assess mechanisms by which stress acts through the brain and heart to confer increased CHD risk. Methods Coronary Heart Disease patients (N=10) underwent cardiac imaging with [Tc-99m] sestamibi single photon emission tomography at rest and during a public speaking mental stress task. Patients returned for a second day and underwent positron emission tomography imaging of the brain, heart, bone marrow, aorta (indicating inflammation) and subcutaneous adipose tissue, after injection of [18F]2-fluoro-2-deoxyglucose for assessment of glucose uptake followed mental stress. Patients with (N=4) and without (N=6) mental stress-induced myocardial ischemia were compared for glucose uptake in brain, heart, adipose tissue and aorta with mental stress. Results Patients with mental stress-induced ischemia showed a pattern of increased uptake in the heart, medial prefrontal cortex, and adipose tissue with stress. In the heart disease group as a whole, activity increase with stress in the medial prefrontal brain and amygdala correlated with stress-induced increases in spleen (r=0.69, p=0.038; and r=0.69, p=0.04 respectfully). Stress-induced frontal lobe increased uptake correlated with stress-induced aorta uptake (r=0.71, p=0.016). Activity in insula and medial prefrontal cortex was correlated with post-stress activity in bone marrow and adipose tissue. Activity in other brain areas not implicated in stress did not show similar correlations. Increases in medial prefrontal activity with stress correlated with increased cardiac glucose uptake with stress, suggestive of myocardial ischemia (r=0.85, p=0.004). Conclusions These findings suggest a link between brain response to stress in key areas mediating emotion and peripheral organs involved in inflammation and hematopoietic activity, as well as myocardial ischemia, in Coronary Heart Disease patients.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Marina Piccinelli
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Ernest V. Garcia
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Valeria M. Moncayo
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Lisa Elon
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Jonathon A. Nye
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - C. David Cooke
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Brianna P. Washington
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Rebeca Alvarado Ortega
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Shivang R. Desai
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Alexis K. Okoh
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Brian Cheung
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Britt O. Soyebo
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | | | - Paolo Raggi
- Mazankowski Alberta Heart Institute and the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Amit J. Shah
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Emory University, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Obada Daaboul
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | | | - Carrie Ziegler
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | | | - Nancy Murrah
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Carlo N. De Cecco
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Department Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
| | - Marly van Assen
- Department Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Robert T. Krafty
- Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Arshed A. Quyyumi
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Viola Vaccarino
- Department Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Richter K, Papke RL, Stokes C, Roy DC, Espinosa ES, Wolf PMK, Hecker A, Liese J, Singh VK, Padberg W, Schlüter KD, Rohde M, McIntosh JM, Morley BJ, Horenstein NA, Grau V, Simard AR. Comparison of the Anti-inflammatory Properties of Two Nicotinic Acetylcholine Receptor Ligands, Phosphocholine and pCF3-diEPP. Front Cell Neurosci 2022; 16:779081. [PMID: 35431807 PMCID: PMC9008208 DOI: 10.3389/fncel.2022.779081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Activation of nicotinic acetylcholine receptors (nAChRs) expressed by innate immune cells can attenuate pro-inflammatory responses. Silent nAChR agonists, which down-modulate inflammation but have little or no ionotropic activity, are of outstanding clinical interest for the prevention and therapy of numerous inflammatory diseases. Here, we compare two silent nAChR agonists, phosphocholine, which is known to interact with nAChR subunits α7, α9, and α10, and pCF3-N,N-diethyl-N′-phenyl-piperazine (pCF3-diEPP), a previously identified α7 nAChR silent agonist, regarding their anti-inflammatory properties and their effects on ionotropic nAChR functions. The lipopolysaccharide (LPS)-induced release of interleukin (IL)-6 by primary murine macrophages was inhibited by pCF3-diEPP, while phosphocholine was ineffective presumably because of instability. In human whole blood cultures pCF3-diEPP inhibited the LPS-induced secretion of IL-6, TNF-α and IL-1β. The ATP-mediated release of IL-1β by LPS-primed human peripheral blood mononuclear leukocytes, monocytic THP-1 cells and THP-1-derived M1-like macrophages was reduced by both phosphocholine and femtomolar concentrations of pCF3-diEPP. These effects were sensitive to mecamylamine and to conopeptides RgIA4 and [V11L; V16D]ArIB, suggesting the involvement of nAChR subunits α7, α9 and/or α10. In two-electrode voltage-clamp measurements pCF3-diEPP functioned as a partial agonist and a strong desensitizer of classical human α9 and α9α10 nAChRs. Interestingly, pCF3-diEPP was more effective as an ionotropic agonist at these nAChRs than at α7 nAChR. In conclusion, phosphocholine and pCF3-diEPP are potent agonists at unconventional nAChRs expressed by monocytic and macrophage-like cells. pCF3-diEPP inhibits the LPS-induced release of pro-inflammatory cytokines, while phosphocholine is ineffective. However, both agonists signal via nAChR subunits α7, α9 and/or α10 to efficiently down-modulate the ATP-induced release of IL-1β. Compared to phosphocholine, pCF3-diEPP is expected to have better pharmacological properties. Thus, low concentrations of pCF3-diEPP may be a therapeutic option for the treatment of inflammatory diseases including trauma-induced sterile inflammation.
Collapse
Affiliation(s)
- Katrin Richter
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
- *Correspondence: Katrin Richter,
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Danika C. Roy
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | | | - Philipp M. K. Wolf
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Andreas Hecker
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Juliane Liese
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Vijay K. Singh
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Winfried Padberg
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | | | - Marius Rohde
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - J. Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Barbara J. Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | | | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Alain R. Simard
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
4
|
Zhang W, Lin H, Zou M, Yuan Q, Huang Z, Pan X, Zhang W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front Immunol 2022; 13:826889. [PMID: 35251010 PMCID: PMC8895249 DOI: 10.3389/fimmu.2022.826889] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
As an anti-inflammatory alkaloid, nicotine plays dual roles in treating diseases. Here we reviewed the anti-inflammatory and pro-inflammatory effects of nicotine on inflammatory diseases, including inflammatory bowel disease, arthritis, multiple sclerosis, sepsis, endotoxemia, myocarditis, oral/skin/muscle inflammation, etc., mainly concerning the administration methods, different models, therapeutic concentration and duration, and relevant organs and tissues. According to the data analysis from recent studies in the past 20 years, nicotine exerts much more anti-inflammatory effects than pro-inflammatory ones, especially in ulcerative colitis, arthritis, sepsis, and endotoxemia. On the other hand, in oral inflammation, nicotine promotes and aggravates some diseases such as periodontitis and gingivitis, especially when there are harmful microorganisms in the oral cavity. We also carefully analyzed the nicotine dosage to determine its safe and effective range. Furthermore, we summarized the molecular mechanism of nicotine in these inflammatory diseases through regulating immune cells, immune factors, and the vagus and acetylcholinergic anti-inflammatory pathways. By balancing the “beneficial” and “harmful” effects of nicotine, it is meaningful to explore the effective medical value of nicotine and open up new horizons for remedying acute and chronic inflammation in humans.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingmin Zou
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| |
Collapse
|
5
|
Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology 2021; 29:975-986. [PMID: 34125373 DOI: 10.1007/s10787-021-00812-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Connective tissue diseases (CTDs) consist of an extensive range of heterogeneous medical conditions, which are caused by immune-mediated chronic inflammation and influences the various connective tissues of the body. They include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis, Sjögren's syndrome, Behcet's disease, and many other autoimmune CTDs. To date, several anti-inflammatory approaches have been developed to reduce the severity of inflammation or its subsequent organ manifestations. As a logical mechanism to harnesses the undesired inflammation, some studies investigated the role of the intrinsic cholinergic anti-inflammatory pathway (CAP) in the modulation of chronic inflammation. Many different experimental and clinical models have been developed to evaluate the therapeutic significance of the CAP in CTDs. On the other hand, an issue that is less emphasized in this regard is the presence of autonomic neuropathy in CTDs, which influences the efficiency of CAP in such clinical settings. This condition occurs during CTDs and is a well-known complication of patients suffering from them. The advantages and limitations of CAP in the control of inflammatory responses and its possible therapeutic benefits in the treatment of CTDs are the main subjects of the current study. Therefore, this narrative review article is provided based on the recent findings of the complicated role of CAP in CTDs which were retrieved by searching Science Direct, PubMed, Google Scholar, and Web of Science. It seems that delineating the complex influences of CAP would be of great interest in designing novel surgical or pharmacological therapeutic strategies for CTDs therapy.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Elham Adlravan
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran. .,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Hilderman M, Bruchfeld A. The cholinergic anti-inflammatory pathway in chronic kidney disease-review and vagus nerve stimulation clinical pilot study. Nephrol Dial Transplant 2021; 35:1840-1852. [PMID: 33151338 PMCID: PMC7643692 DOI: 10.1093/ndt/gfaa200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/17/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation and autonomic dysfunction are common findings in chronic and end-stage kidney disease and contribute to a markedly increased risk of mortality in this patient population. The cholinergic anti-inflammatory pathway (CAP) is a vagal neuro-immune circuit that upholds the homoeostatic balance of inflammatory activity in response to cell injury and pathogens. CAP models have been examined in preclinical studies to investigate its significance in a range of clinical inflammatory conditions and diseases. More recently, cervical vagus nerve stimulation (VNS) implants have been shown to be of potential benefit for patients with chronic autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease. We have previously shown that dialysis patients have a functional CAP ex vivo. Here we review the field and the potential role of the CAP in acute kidney injury and chronic kidney disease (CKD) as well as in hypertension. We also present a VNS pilot study in haemodialysis patients. Controlling inflammation by neuroimmune modulation may lead to new therapeutic modalities for improved treatment, outcome, prognosis and quality of life for patients with CKD.
Collapse
Affiliation(s)
- Marie Hilderman
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021; 11:1373-1423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non-cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor-mediated effects on cardiac and extra-cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep-wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373-1423, 2021.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| | - Negmeldeen Mamoun
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Martin I Sigurdson
- Department of Anesthesiology and Critical Care Medicine, Landspitali, University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Ingegnoli F, Buoli M, Antonucci F, Coletto LA, Esposito CM, Caporali R. The Link Between Autonomic Nervous System and Rheumatoid Arthritis: From Bench to Bedside. Front Med (Lausanne) 2020; 7:589079. [PMID: 33365319 PMCID: PMC7750536 DOI: 10.3389/fmed.2020.589079] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
Neuronal stimulation is an emerging field of research focused on the management and treatment of various diseases through the reestablishment of physiological homeostasis. Electrical vagus nerve stimulation has recently been proposed as a revolutionary therapeutic option for rheumatoid arthritis (RA) in combination with or even as a replacement for conventional and biological drugs. In the past few years, disruption of the autonomic system has been linked to RA onset and activity. Novel research on the link between the autonomic nervous system and the immune system (immune-autonomics) has paved the way for the development of innovative RA management strategies. Clinical evidence supports this approach. Cardiovascular involvement, in terms of reduced baroreflex sensitivity and heart rate variability-derived indices, and mood disorders, common comorbidities in patients with RA, have been linked to autonomic nervous system dysfunction, which in turn is influenced by increased levels of circulating pro-inflammatory cytokines. This narrative review provides an overview of the autonomic nervous system and RA connection, discussing most of the common cardiac and mental health-related RA comorbidities and their potential relationships to systemic and joint inflammation.
Collapse
Affiliation(s)
- Francesca Ingegnoli
- Division of Clinical Rheumatology, Gaetano Pini Hospital, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Lavinia Agra Coletto
- Division of Clinical Rheumatology, Gaetano Pini Hospital, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Maria Esposito
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, Gaetano Pini Hospital, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Hilderman M, Qureshi AR, Abtahi F, Witt N, Jägren C, Olbers J, Delle M, Lindecrantz K, Bruchfeld A. The cholinergic anti-inflammatory pathway in resistant hypertension treated with renal denervation. Mol Med 2019; 25:39. [PMID: 31416428 PMCID: PMC6694612 DOI: 10.1186/s10020-019-0097-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022] Open
Abstract
Background Renal denervation (RDN) reduces sympathetic tone and may alter the sympathetic-parasympathetic balance. The autonomic nervous system is partly a regulator of innate immunity via the cholinergic anti-inflammatory pathway (CAP) which inhibits inflammation via the vagus nerve. Placental Growth Factor (PlGF) influences a neuro-immunological pathway in the spleen which may contribute to hypertension. The aim of this study was to investigate if modulation of renal sympathetic nerve activity affects CAP in terms of cytokine release as well as levels of PlGF. Methods Ten patients treated with RDN (Medtronic Inc), were analyzed for TNF, IL-1b and IL-10 and Lipopolysaccharide (LPS)-stimulated cytokine release before RDN, 1 day after and at 3- and 6-months follow-up. Four patients who underwent elective coronary angiography served as disease controls (DC). Results Baseline TNF was significantly lower 1 day after RDN (p = 0.03). LPS-stimulated (0, 10 and 100 ng/mL) TNF and IL-1b were significantly lower 1 day after RDN (TNF p = 0.0009, p = 0.0009 and p = 0.001, IL-1b; p = 0.0001, p = 0.002 and p = 0.005). IL-10 was significantly higher one day after RDN (p = ns, p = 0.02 and p = 0.01). These differences however declined during follow up. A more marked TNF reduction was achieved with a cholinergic analogue, GTS-21, in LPS-stimulated whole blood as compared with samples without GTS-21. Cytokine levels in controls did not differ before and 1 day after coronary angiography. PlGF was significantly higher in RDN patients and DC compared with healthy controls but did not change during follow-up. Conclusion RDN has an immediate effect on TNF in vivo and cytokine release ex vivo but seems to wane over time suggesting that current RDN techniques may not have long-lasting immunomodulatory effect. Repeated and extended stimulation of CAP in resistant hypertension by targeting neural circuits may be a potential therapeutic strategy for treatment of both hypertension and inflammation. Electronic supplementary material The online version of this article (10.1186/s10020-019-0097-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Hilderman
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Abdul Rashid Qureshi
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Farhad Abtahi
- Institute of Environmental Medicine, Division of Occupational Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nils Witt
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Insititutet, Södersjukhuset, Stockholm, Sweden
| | - Christina Jägren
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Insititutet, Södersjukhuset, Stockholm, Sweden
| | - Joakim Olbers
- Department of Clinical Science and Education, Division of Cardiology, Karolinska Insititutet, Södersjukhuset, Stockholm, Sweden
| | - Martin Delle
- Department of Radiology, Interventional Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kaj Lindecrantz
- Institute of Environmental Medicine, Division of Occupational Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Role of miR-9-5p in preventing peripheral neuropathy in patients with rheumatoid arthritis by targeting REST/miR-132 pathway. In Vitro Cell Dev Biol Anim 2018; 55:52-61. [PMID: 30456455 DOI: 10.1007/s11626-018-0310-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) are found to play a key role in neural cell differentiation, peripheral nerve injury, and rheumatoid arthritis (RA). However, no study has yet been conducted highlighting their role in RA-induced peripheral neuropathy. Here, we investigated the role of miRNAs in RA-induced peripheral neuropathy. Levels of six miRNAs were detected in serum collected from 15 patients with RA and peripheral neuropathy and 16 patients with RA. In vitro, Schwann cells were treated with 0.1 ng/mL IL-6 and 20 ng/mL TNF-α. The expression level of miR-9-5p and its association with the repressor element-1 silencing transcription factor (REST) were investigated. The roles of miR-9-5p and REST in Schwann cell injury were examined after transfection of miR-9-5p mimics or REST siRNA. In patients with RA and peripheral neuropathy, serum miR-9-5p was significantly downregulated when compared with RA. In IL-6- and TNF-α-stimulated Schwann cells, apoptosis was induced, while the cell viability and level of miR-9-5p were inhibited. A significantly negative correlation was observed between miR-9-5p and REST. Transfection of miR-9-5p mimics and REST siRNA significantly reversed the inhibition of cell viability and induction of apoptosis caused by IL-6 and TNF-α. In addition, overexpression of miR-9-5p upregulated the expression of miR-132, miRNA targeting E1A binding protein EP300 (EEP300), phosphatase and tensin homolog (PTEN) and forkhead box O3 (FOXO3). These results showed that Schwann cells were protected by miR-9-5p from inflammatory damage by targeting REST/miR-132 pathway, which could provide new targets for treatment of RA-induced peripheral neuropathy.
Collapse
|
11
|
Increased Active OMI/HTRA2 Serine Protease Displays a Positive Correlation with Cholinergic Alterations in the Alzheimer's Disease Brain. Mol Neurobiol 2018; 56:4601-4619. [PMID: 30361890 PMCID: PMC6657433 DOI: 10.1007/s12035-018-1383-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
OMI/HTRA2 (high-temperature requirement serine protease A2) is a mitochondrial serine protease involved in several cellular processes, including autophagy, chaperone activity, and apoptosis. Few studies on the role of OMI/HTRA2 in Alzheimer's disease (AD) are available, but none on its relationship with the cholinergic system and neurotrophic factors as well as other AD-related proteins. In this study, immunohistochemical analyses revealed that AD patients had a higher cytosolic distribution of OMI/HTRA2 protein compared to controls. Quantitative analyses on brain extracts indicated a significant increase in the active form of OMI/HTRA2 in the AD brain. Activated OMI/HTRA2 protein positively correlated with stress-associated read-through acetylcholinesterase activity. In addition, α7 nicotinic acetylcholine receptor gene expression, a receptor also known to be localized on the outer membrane of mitochondria, showed a strong correlation with OMI/HTRA2 gene expression in three different brain regions. Interestingly, the activated OMI/HTRA2 levels also correlated with the activity of the acetylcholine-biosynthesizing enzyme, choline acetyltransferase (ChAT); with levels of the neurotrophic factors, NGF and BDNF; with levels of the soluble fragments of amyloid precursor protein (APP); and with gene expression of the microtubule-associated protein tau in the examined brain regions. Overall, the results demonstrate increased levels of the mitochondrial serine protease OMI/HTRA2, and a coherent pattern of association between the activated form of OMI/HTRA2 and several key proteins involved in AD pathology. In this paper, we propose a new hypothetical model to highlight the importance and needs of further investigation on the role of OMI/HTRA2 in the mitochondrial function and AD.
Collapse
|
12
|
Kanashiro A, Shimizu Bassi G, de Queiróz Cunha F, Ulloa L. From neuroimunomodulation to bioelectronic treatment of rheumatoid arthritis. ACTA ACUST UNITED AC 2018; 1:151-165. [PMID: 30740246 DOI: 10.2217/bem-2018-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal stimulation is an emerging field in modern medicine to control organ function and reestablish physiological homeostasis during illness. The nervous system innervates most of the peripheral organs and provides a fine tune to control the immune system. Most of these studies have focused on vagus nerve stimulation and the physiological, cellular and molecular mechanisms regulating the immune system. Here, we review the new results revealing afferent vagal signaling pathways, immunomodulatory brain structures, spinal cord-dependent circuits, neural and non-neural cholinergic/catecholaminergic signals and their respective receptors contributing to neuromodulation of inflammation in rheumatoid arthritis. These new neuromodulatory networks and structures will allow the design of innovative bioelectronic or pharmacological approaches for safer and low-cost treatment of arthritis and related inflammatory disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physiological Sciences, Federal University of São Carlos (UFSCAR), São Carlos, SP, Brazil
| | - Gabriel Shimizu Bassi
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fernando de Queiróz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Ulloa
- Department of Surgery, Center of Immunology & Inflammation, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| |
Collapse
|
13
|
Papke RL, Peng C, Kumar A, Stokes C. NS6740, an α7 nicotinic acetylcholine receptor silent agonist, disrupts hippocampal synaptic plasticity. Neurosci Lett 2018; 677:6-13. [PMID: 29679680 DOI: 10.1016/j.neulet.2018.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023]
Abstract
Long-term potentiation (LTP) in the dentate gyrus was previously shown to be enhanced by nicotine, an effect dependent on both homomeric α7 and heteromeric α2β2 nicotinic acetylcholine receptors (nAChR). In our experiments, bath-applied nicotine produced no significant enhancement of LTP. The α7 nAChR silent agonist NS6740, a weak activator of α7 nAChR ion channels but an effective modulator of the cholinergic anti-inflammatory pathway, decreased LTP and, additionally, produced a substantial reduction in the baseline synaptic function prior to the high frequency stimulation used to induce LTP. The effects of NS6740 on the various ligand-gated ion channels associated with the generation and modulation of dentate LTP were evaluated with receptors expressed in Xenopus oocytes. A 60 s pre-application of 5 μM NS6740 to α7 receptors blocked the response to subsequent applications of acetylcholine (ACh). In contrast, the responses of α2β2 nAChR to control applications of ACh were not significantly affected by NS6740. Likewise, responses of cells expressing GluR1 + GluR2 AMPA-type glutamate receptor subunits or GABAA α1, β2, and γ2L subunits to control agonist applications (100 μM kainic acid or 10 μM GABA, respectively), were unaffected by NS6740. The effects of NS6740 on α7 were inconsistent with simple antagonism since, while unresponsive to ACh, the receptors exposed to NS6740 were effectively activated by the positive allosteric modulator PNU-120596. The results support the hypothesis that NS6740 switches the mode of α7 signaling in a channel-independent manner that can reduce synaptic function.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States.
| | - Can Peng
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, PO Box 100244, Gainesville, FL 32610, United States
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, FL 32610, United States
| |
Collapse
|
14
|
Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med 2017; 282:64-75. [PMID: 28547815 DOI: 10.1111/joim.12626] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Imbalance in the autonomic nervous system (ANS) has been observed in many established chronic autoimmune diseases, including rheumatoid arthritis (RA), which is a prototypic immune-mediated inflammatory disease (IMID). We recently discovered that autonomic dysfunction precedes and predicts arthritis development in subjects at risk of developing seropositive RA. In addition, RA patients with relatively high vagus nerve tone (higher parasympathetic parameters, measured by heart rate variability) respond better to antirheumatic therapies. Together, these data suggest that the ANS may control inflammation in humans. This notion is supported by experimental studies in animal models of RA. We have found that stimulation of the so-called cholinergic anti-inflammatory pathway by efferent electrical vagus nerve stimulation (VNS) or pharmacological activation of the alpha7 subunit of nicotinic acetylcholine receptors (α7nAChR) improves clinical signs and symptoms of arthritis, reduces cytokine production and protects against progressive joint destruction. Conversely, increased arthritis activity was observed in alpha7nAChR knockout mice. These studies together with previous work in animal models of sepsis and other forms of inflammation provided the rationale for an experimental clinical trial in patients with RA. We could for the first time show that an implantable vagus nerve stimulator inhibits peripheral blood cytokine production in humans. VNS significantly inhibited TNF and IL-6 production and improved RA disease severity, even in some patients with therapy-resistant disease. This work strongly supports further studies using a bioelectronic approach to treat RA and other IMIDs.
Collapse
Affiliation(s)
- F A Koopman
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - M A van Maanen
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - M J Vervoordeldonk
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.,Galvani Bioelectronics, Stevenage, UK
| | - P P Tak
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline, Stevenage, UK.,University of Cambridge, Cambridge, UK.,Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Kristensen S, Schmidt EB, Schlemmer A, Rasmussen C, Lindgreen E, Johansen MB, Christensen JH. The effect of marine n-3 polyunsaturated fatty acids on cardiac autonomic and hemodynamic function in patients with psoriatic arthritis: a randomised, double-blind, placebo-controlled trial. Lipids Health Dis 2016; 15:216. [PMID: 27955663 PMCID: PMC5154054 DOI: 10.1186/s12944-016-0382-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the effect of marine n-3 polyunsaturated fatty acids (PUFA) on cardiac autonomic function and vascular function in patients with psoriatic arthritis. METHODS The study was conducted as a randomized, double-blind, placebo-controlled trial, where 145 patients with psoriatic arthritis were supplemented with 3 g of n-3 PUFA or olive oil (control) daily for 24 weeks. Blood pressure, heart rate, heart rate variability (HRV), central blood pressure, pulse wave velocity (PWV) and fatty acid composition of granulocytes, were determined at baseline and after supplementation. RESULTS At baseline we found a significant difference in the mean of all normal RR intervals (inverse of heart rate, vary from beat to beat) when comparing subjects with the highest vs the lowest fish intake (p = 0.03). After supplementation for 24 weeks there was a trend towards an increase in RR (p = 0.13) and decrease in heart rate (p = 0.12) comparing the n-3 PUFA group with the control group. However, per-protocol analysis showed significantly increased RR (p = 0.01) and lowered heart rate (p = 0.01) in the n-3 PUFA supplemented patients compared with controls. Blood pressure, PWV and Central blood pressure did not change after supplementation with n-3 PUFA. Adjustment for disease activity and conventional cardiovascular risk factors did not change the results. CONCLUSIONS Marine n-3 PUFA increased RR intervals in patients with psoriatic arthritis which may suggest a protective effect of n-3 PUFA against cardiovascular disease in this population. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT01818804.
Collapse
Affiliation(s)
- Salome Kristensen
- Department of Rheumatology, Aalborg University Hospital, Reberbansgade 14, 9000, Aalborg, Denmark.
| | - Erik Berg Schmidt
- Department of Cardiology, Aalborg University Hospital, Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Annette Schlemmer
- Department of Rheumatology, Aalborg University Hospital, Reberbansgade 14, 9000, Aalborg, Denmark
| | - Claus Rasmussen
- Department of Rheumatology, North Denmark Regional Hospital, 9800, Hjørring, Denmark
| | - Esther Lindgreen
- Department of Rheumatology, Aalborg University Hospital, Reberbansgade 14, 9000, Aalborg, Denmark
| | - Martin Berg Johansen
- Department of Cardiology and Unit of Clinical Biostatistics and Bioinformatics, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Jeppe Hagstrup Christensen
- Department of Nephrology, Aalborg University Hospital, Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| |
Collapse
|
16
|
Galle-Treger L, Suzuki Y, Patel N, Sankaranarayanan I, Aron JL, Maazi H, Chen L, Akbari O. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nat Commun 2016; 7:13202. [PMID: 27752043 PMCID: PMC5071851 DOI: 10.1038/ncomms13202] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. Airway hyperreactivity is driven by type 2 cytokines produced by ILC2 and Th2 cells. Here the authors show that an α7-nicotinic receptor agonist (GTS-21) inhibits ILC2 responses and is therapeutic against Alternaria-induced airway hyperreactivity in a humanized mouse model.
Collapse
Affiliation(s)
- Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Yuzo Suzuki
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Nisheel Patel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Ishwarya Sankaranarayanan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Jennifer L Aron
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| | - Lin Chen
- Departments of Biological Science and Chemistry, University of Southern California, 1050 Childs Way RIH 201, Los Angeles, California 90089, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 1450 Biggy Street NRT 5509, Los Angeles, California 90033, USA
| |
Collapse
|
17
|
Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A 2016; 113:8284-9. [PMID: 27382171 DOI: 10.1073/pnas.1605635113] [Citation(s) in RCA: 643] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the "inflammatory reflex," is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases.
Collapse
|
18
|
Rasouli J, Lekhraj R, Ozbalik M, Lalezari P, Casper D. Brain-Spleen Inflammatory Coupling: A Literature Review. ACTA ACUST UNITED AC 2016; 27:74-77. [PMID: 22611344 DOI: 10.23861/ejbm20112768] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent evidence suggests a link between brain injury and the autonomic release of pro-inflammatory cytokines by resident macrophages in the spleen. This phenomenon, termed "brain-spleen inflammatory coupling," has garnered attention from scientific and medical communities interested in developing novel treatments for traumatic brain injury (TBI). Cholinergic stimulation of the α7-subunit nicotinic acetylcholine receptor (α7NAchR) on splenic macrophages has been shown to inhibit their release of pro-inflammatory cytokines. This inhibition, mediated by the parasympathetic nervous system, has been shown to improve outcomes in animal models of sepsis, stroke, and TBI. As evidence of a beneficial role of splenic inhibition grows, new treatment strategies might be applied to many medical conditions involving neuroinflammation, a process that contributes to further neurological deterioration.
Collapse
Affiliation(s)
- J Rasouli
- Albert Einstein College of Medicine, Bronx NY 10461
| | | | | | | | | |
Collapse
|
19
|
St-Pierre S, Jiang W, Roy P, Champigny C, LeBlanc É, Morley BJ, Hao J, Simard AR. Nicotinic Acetylcholine Receptors Modulate Bone Marrow-Derived Pro-Inflammatory Monocyte Production and Survival. PLoS One 2016; 11:e0150230. [PMID: 26925951 PMCID: PMC4771711 DOI: 10.1371/journal.pone.0150230] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/10/2016] [Indexed: 12/24/2022] Open
Abstract
It is increasingly clear that nicotinic acetylcholine receptors (nAChRs) are involved in immune regulation, and that their activation can protect against inflammatory diseases. Previous data have shown that nicotine diminishes the numbers of peripheral monocytes and macrophages, especially those of the pro-inflammatory phenotype. The goal of the present study was to determine if nicotine modulates the production of bone marrow -derived monocytes/macrophages. In this study, we first found that murine bone marrow cells express multiple nAChR subunits, and that the α7 and α9 nAChRs most predominant subtypes found in immune cells and their precursors. Using primary cultures of murine bone marrow cells, we then determined the effect of nicotine on monocyte colony-stimulating factor and interferon gamma (IFNγ)-induced monocyte production. We found that nicotine lowered the overall number of monocytes, and more specifically, inhibited the IFNγ-induced increase in pro-inflammatory monocytes by reducing cell proliferation and viability. These data suggested that nicotine diminishes the ratio of pro-inflammatory versus anti-inflammatory monocyte produced in the bone marrow. We thus confirmed this hypothesis by measuring cytokine expression, where we found that nicotine inhibited the production of the pro-inflammatory cytokines TNFα, IL-1β and IL-12, while stimulating the secretion of IL-10, an anti-inflammatory cytokine. Finally, nicotine also reduced the number of pro-inflammatory monocytes in the bone marrow of LPS-challenged mice. Overall, our data demonstrate that both α7 and α9 nAChRs are involved in the regulation of pro-inflammatory M1 monocyte numbers.
Collapse
Affiliation(s)
- Stéphanie St-Pierre
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Wei Jiang
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Patrick Roy
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Camille Champigny
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Éric LeBlanc
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Barbara J. Morley
- Boys Town National Research Hospital, Omaha, NE, United States of America
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Alain R. Simard
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Moncton, NB, Canada
- * E-mail:
| |
Collapse
|
20
|
Li G, Zhou CL, Zhou QS, Zou HD. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats. Braz J Med Biol Res 2016; 49:e5008. [PMID: 26648090 PMCID: PMC4712483 DOI: 10.1590/1414-431x20155008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.
Collapse
Affiliation(s)
- G Li
- Renmin Hospital, Department of Critical Care Medicine, Wuhan University, Wuhan, Hubei Province, China
| | - C L Zhou
- Renmin Hospital, Department of Critical Care Medicine, Wuhan University, Wuhan, Hubei Province, China
| | - Q S Zhou
- Renmin Hospital, Department of Critical Care Medicine, Wuhan University, Wuhan, Hubei Province, China
| | - H D Zou
- Renmin Hospital, Department of Critical Care Medicine, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Hilderman M, Qureshi AR, Al-Abed Y, Abtahi F, Lindecrantz K, Anderstam B, Bruchfeld A. Cholinergic anti-inflammatory pathway activity in dialysis patients: a role for neuroimmunomodulation? Clin Kidney J 2015; 8:599-605. [PMID: 26413288 PMCID: PMC4581391 DOI: 10.1093/ckj/sfv074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/27/2015] [Indexed: 01/04/2023] Open
Abstract
Background The cholinergic anti-inflammatory pathway (CAP) modulates inflammatory responses through the vagus nerve and the α-7-nicotinic acetylcholine receptor (α7nAChR) on macrophages and immune cells. Sympathetic/parasympathetic imbalance and chronic inflammation are both linked to poor outcome in dialysis patients. The aim of this study was to investigate CAP activity in these patients. Methods Twenty dialysis patients, 12 hemodialysis (HD) and 8 peritoneal dialysis (PD) patients (12 male, 8 female; age range 47–83 years) and 8 controls (5 male, 3 female; age range 31–52 years) were analyzed for C-reactive protein (CRP), tumor necrosis factor (TNF), interleukin-1b (IL-1b), IL-6 and IL-10 at baseline. The cytokines were then assessed after whole blood stimulation ex vivo with lipopolysaccharide (LPS) (10 and 100 ng/mL) and again in the presence of 45 and 90 μmol/L GTS-21, a cholinergic α7nAChR agonist. Results CRP, TNF, IL-1 and IL-6 were significantly higher, whereas IL-10 was significantly lower at baseline in patients compared with controls. After LPS stimulation, TNF increased significantly more in patients than in controls but decreased to similar levels in both groups after addition of GTS-21. IL-6 attenuation was comparable with TNF and the IL-1b pattern was similar but remained significantly higher in patients. Interestingly, IL-10 increased after GTS-21 in a dose-dependent manner, but only in patients. Results in HD and PD patients did not differ. Conclusions The response of immune cells after LPS exposure and cholinergic stimulation suggests a functional CAP in dialysis patients. It may thus be possible to target the α7nAChR control of cytokine release as an anti-inflammatory strategy and thereby improve outcome in these patients.
Collapse
Affiliation(s)
- Marie Hilderman
- Renal Medicine and Baxter Novum , CLINTEC, Karolinska Institutet , Stockholm , Sweden
| | - Abdul R Qureshi
- Renal Medicine and Baxter Novum , CLINTEC, Karolinska Institutet , Stockholm , Sweden
| | - Yousef Al-Abed
- Center for Biomedical Science , Feinstein Institute for Medical Research , Manhasset, NY , USA
| | - Farhad Abtahi
- Royal Institute of Technology , School of Technology and Health , Stockholm , Sweden
| | - Kaj Lindecrantz
- Royal Institute of Technology , School of Technology and Health , Stockholm , Sweden
| | - Björn Anderstam
- Renal Medicine and Baxter Novum , CLINTEC, Karolinska Institutet , Stockholm , Sweden
| | - Annette Bruchfeld
- Renal Medicine and Baxter Novum , CLINTEC, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
22
|
McAllen RM, Cook AD, Khiew HW, Martelli D, Hamilton JA. The interface between cholinergic pathways and the immune system and its relevance to arthritis. Arthritis Res Ther 2015; 17:87. [PMID: 25889979 PMCID: PMC4378008 DOI: 10.1186/s13075-015-0597-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nervous and immune systems are likely to be interacting in arthritis, with the possible involvement of both neural and non-neural cholinergic transmission. Centrally acting muscarinic agonists, electrical stimulation of the vagus and treatment with nicotinic receptor agonists can all act systemically to reduce inflammation, although the responsible pathways are incompletely understood. While this ‘cholinergic anti-inflammatory pathway’ is widely viewed as a significant pathophysiological mechanism controlling inflammation, the evidence supporting this view is critically reviewed and considered inconclusive; an alternative pathway via sympathetic nerves is implicated. This review also discusses how cholinergic pathways, both neural and non-neural, may impact on inflammation and specifically arthritis. Nicotinic agonists have been reported to reduce the incidence and severity of murine arthritis, albeit an observation we could not confirm, and clinical studies in rheumatoid arthritis have been proposed and/or are underway. While the therapeutic potential of nicotinic agonists and vagal stimulation is clear, we suggest that the ‘cholinergic anti-inflammatory pathway’ should not be uncritically embraced as a significant factor in the pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Andrew D Cook
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hsu Wei Khiew
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Davide Martelli
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
23
|
Kooman JP, Kotanko P, Schols AMWJ, Shiels PG, Stenvinkel P. Chronic kidney disease and premature ageing. Nat Rev Nephrol 2014; 10:732-42. [PMID: 25287433 DOI: 10.1038/nrneph.2014.185] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic kidney disease (CKD) shares many phenotypic similarities with other chronic diseases, including heart failure, chronic obstructive pulmonary disease, HIV infection and rheumatoid arthritis. The most apparent similarity is premature ageing, involving accelerated vascular disease and muscle wasting. We propose that in addition to a sedentary lifestyle and psychosocial and socioeconomic determinants, four major disease-induced mechanisms underlie premature ageing in CKD: an increase in allostatic load, activation of the 'stress resistance response', activation of age-promoting mechanisms and impairment of anti-ageing pathways. The most effective current interventions to modulate premature ageing-treatment of the underlying disease, optimal nutrition, correction of the internal environment and exercise training-reduce systemic inflammation and oxidative stress and induce muscle anabolism. Deeper mechanistic insight into the phenomena of premature ageing as well as early diagnosis of CKD might improve the application and efficacy of these interventions and provide novel leads to combat muscle wasting and vascular impairment in chronic diseases.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Peter Kotanko
- Renal Research Institute, 315 East 62nd Street, 4th floor, NY 10065, New York, USA
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Karolinska Institutet, SE-14157 Stockholm, Sweden
| |
Collapse
|
24
|
Wu S, Zhao H, Luo H, Xiao X, Zhang H, Li T, Zuo X. GTS-21, an α7-nicotinic acetylcholine receptor agonist, modulates Th1 differentiation in CD4 + T cells from patients with rheumatoid arthritis. Exp Ther Med 2014; 8:557-562. [PMID: 25009619 PMCID: PMC4079428 DOI: 10.3892/etm.2014.1754] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 05/15/2014] [Indexed: 12/19/2022] Open
Abstract
GTS-21 (also known as DMBX-anabaseine), a selective α7 nicotinic acetylcholine receptor (α7nAChR) agonist, has previously been found to inhibit the inflammation associated with rheumatoid arthritis (RA). RA is an autoimmune disease, where an abnormal immune system plays a critical role in the occurrence and development of synovium inflammation and bone damage. However, prior to this study, the immunological mechanism by which GTS-21 protects against RA had not been elucidated. In the present study, the effects of GTS-21 on T helper 1 (Th1) cells, which have an important role in the inflammation associated with RA, were investigated. Peripheral blood mononuclear cells (PBMCs) and cluster of differentiation (CD)4+ T cells were separated from patients with RA, and the effects of GTS-21 on PBMCs stimulated with anti-CD3/-CD28 antibodies and CD4+ T cells were investigated in the context of Th1-cell differentiation. ELISA was used to analyze interferon (IFN)-γ expression and flow cytometric analysis was used to detect the percentage of IFN-γ+ CD3+CD8− T cells. In addition, western blotting was employed to detect the levels of the T-box transcription factor TBX21, which is a Th1 cell-specific transcription factor. The present study showed that GTS-21 reduced IFN-γ production in PBMCs from patients with RA. Under conditions of Th1-cell differentiation, GTS-21 reduced the percentage of IFNγ+CD3+CD8− T cells and IFN-γ production in the culture supernatant and also inhibited the expression of the Th1 cell-specific transcription factor TBX21. The effects of GTS-21 were blocked by the α7nAchR antagonist α-bungarotoxin, which increased the expression of IFN-γ and TBX21. This study demonstrated that GTS-21 is able to inhibit RA Th1-cell differentiation through activation of the α7nAchR.
Collapse
Affiliation(s)
- Shiyao Wu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongjun Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xianzhong Xiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tong Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
25
|
The alpha 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits Porphyromonas gingivalis-induced expression of interleukin-8 by oral keratinocytes. Inflamm Res 2014; 63:557-68. [PMID: 24609617 PMCID: PMC4050294 DOI: 10.1007/s00011-014-0725-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022] Open
Abstract
Objective The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes. Materials and methods Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to Porphyromonas gingivalis in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to P. gingivalis lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-bla cell reporter assay. Results Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited P. gingivalis-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to P. gingivalis lipopolysaccharide. Conclusion These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.
Collapse
|
26
|
Straub RH. Interaction of the endocrine system with inflammation: a function of energy and volume regulation. Arthritis Res Ther 2014; 16:203. [PMID: 24524669 PMCID: PMC3978663 DOI: 10.1186/ar4484] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During acute systemic infectious disease, precisely regulated release of energy-rich substrates (glucose, free fatty acids, and amino acids) and auxiliary elements such as calcium/phosphorus from storage sites (fat tissue, muscle, liver, and bone) are highly important because these factors are needed by an energy-consuming immune system in a situation with little or no food/water intake (sickness behavior). This positively selected program for short-lived infectious diseases is similarly applied during chronic inflammatory diseases. This review presents the interaction of hormones and inflammation by focusing on energy storage/expenditure and volume regulation. Energy storage hormones are represented by insulin (glucose/lipid storage and growth-related processes), insulin-like growth factor-1 (IGF-1) (muscle and bone growth), androgens (muscle and bone growth), vitamin D (bone growth), and osteocalcin (bone growth, support of insulin, and testosterone). Energy expenditure hormones are represented by cortisol (breakdown of liver glycogen/adipose tissue triglycerides/muscle protein, and gluconeogenesis; water retention), noradrenaline/adrenaline (breakdown of liver glycogen/adipose tissue triglycerides, and gluconeogenesis; water retention), growth hormone (glucogenic, lipolytic; has also growth-related aspects; water retention), thyroid gland hormones (increase metabolic effects of adrenaline/noradrenaline), and angiotensin II (induce insulin resistance and retain water). In chronic inflammatory diseases, a preponderance of energy expenditure pathways is switched on, leading to typical hormonal changes such as insulin/IGF-1 resistance, hypoandrogenemia, hypovitaminosis D, mild hypercortisolemia, and increased activity of the sympathetic nervous system and the renin-angiotensin-aldosterone system. Though necessary during acute inflammation in the context of systemic infection or trauma, these long-standing changes contribute to increased mortality in chronic inflammatory diseases.
Collapse
|
27
|
Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev 2012; 248:188-204. [PMID: 22725962 DOI: 10.1111/j.1600-065x.2012.01138.x] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural reflex circuits regulate cytokine release to prevent potentially damaging inflammation and maintain homeostasis. In the inflammatory reflex, sensory input elicited by infection or injury travels through the afferent vagus nerve to integrative regions in the brainstem, and efferent nerves carry outbound signals that terminate in the spleen and other tissues. Neurotransmitters from peripheral autonomic nerves subsequently promote acetylcholine-release from a subset of CD4(+) T cells that relay the neural signal to other immune cells, e.g. through activation of α7 nicotinic acetylcholine receptors on macrophages. Here, we review recent progress in the understanding of the inflammatory reflex and discuss potential therapeutic implications of current findings in this evolving field.
Collapse
Affiliation(s)
- Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | |
Collapse
|
28
|
Zoheir N, Lappin DF, Nile CJ. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease? Inflamm Res 2012; 61:915-26. [PMID: 22777144 DOI: 10.1007/s00011-012-0513-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/27/2012] [Accepted: 06/07/2012] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The aim of this review is to examine the evidence for a functional cholinergic system operating within the periodontium and determine the evidence for its role in periodontal immunity. INTRODUCTION Acetylcholine can influence the immune system via the 'cholinergic anti-inflammatory pathway'. This pathway is mediated by the vagus nerve which releases acetylcholine to interact with the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) on proximate immuno-regulatory cells. Activation of the α7nAChR on these cells leads to down-regulated expression of pro-inflammatory mediators and thus regulates localised inflammatory responses. The role of the vagus nerve in periodontal pathophysiology is currently unknown. However, non-neuronal cells can also release acetylcholine and express the α7nAChR; these include keratinocytes, fibroblasts, T cells, B cells and macrophages. Therefore, by both autocrine and paracrine methods non-neuronal acetylcholine can also be hypothesised to modulate the localised immune response. METHODS A Pubmed database search was performed for studies providing evidence for a functional cholinergic system operating in the periodontium. In addition, literature on the role of the 'cholinergic anti-inflammatory pathway' in modulating the immune response was extrapolated to hypothesise that similar mechanisms of immune regulation occur within the periodontium. CONCLUSION The evidence suggests a functional non-neuronal 'cholinergic anti-inflammatory pathway' may operate in the periodontium and that this may be targeted therapeutically to treat periodontal disease.
Collapse
Affiliation(s)
- Noha Zoheir
- Infection and Immunity Research Group, University of Glasgow Dental School, Level 9, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK
| | | | | |
Collapse
|
29
|
Koopman FA, Stoof SP, Straub RH, van Maanen MA, Vervoordeldonk MJ, Tak PP. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 2011; 17:937-48. [PMID: 21607292 PMCID: PMC3188868 DOI: 10.2119/molmed.2011.00065] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/19/2011] [Indexed: 01/14/2023] Open
Abstract
The immunomodulatory effect of the autonomic nervous system has raised considerable interest over the last decades. Studying the influence on the immune system and the role in inflammation of the sympathetic as well as the parasympathetic nervous system not only will increase our understanding of the mechanism of disease, but also could lead to the identification of potential new therapeutic targets for chronic immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). An imbalanced autonomic nervous system, with a reduced parasympathetic and increased sympathetic tone, has been a consistent finding in RA patients. Studies in animal models of arthritis have shown that influencing the sympathetic (via α- and β-adrenergic receptors) and the parasympathetic (via the nicotinic acetylcholine receptor α7nAChR or by electrically stimulating the vagus nerve) nervous system can have a beneficial effect on inflammation markers and arthritis. The immunosuppressive effect of the parasympathetic nervous system appears less ambiguous than the immunomodulatory effect of the sympathetic nervous system, where activation can lead to increased or decreased inflammation depending on timing, doses and kind of adrenergic agent used. In this review we will discuss the current knowledge of the role of both the sympathetic (SNS) and parasympathetic nervous system (PNS) in inflammation with a special focus on the role in RA. In addition, potential antirheumatic strategies that could be developed by targeting these autonomic pathways are discussed.
Collapse
Affiliation(s)
- Frieda A Koopman
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Susanne P Stoof
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
- Arthrogen BV, Amsterdam, the Netherlands
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Marjolein A van Maanen
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Margriet J Vervoordeldonk
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
- Arthrogen BV, Amsterdam, the Netherlands
| | - Paul P Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
| |
Collapse
|
30
|
Wang X, Yang Z, Xue B, Shi H. Activation of the cholinergic antiinflammatory pathway ameliorates obesity-induced inflammation and insulin resistance. Endocrinology 2011; 152:836-46. [PMID: 21239433 PMCID: PMC3040050 DOI: 10.1210/en.2010-0855] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity is associated with a chronic inflammatory state characterized by adipose tissue macrophage infiltration and inflammation, which contributes to insulin resistance. The cholinergic antiinflammatory pathway, which acts through the macrophage α7-nicotinic acetylcholine receptor (α7nAChR), is important in innate immunity. Here we show that adipose tissue possesses a functional cholinergic signaling pathway. Activating this pathway by nicotine in genetically obese (db/db) and diet-induced obese mice significantly improves glucose homeostasis and insulin sensitivity without changes of body weight. This is associated with suppressed adipose tissue inflammation. In addition, macrophages from α7nAChR-/- [α7 knockout (α7KO)] mice have elevated proinflammatory cytokine production in response to free fatty acids and TNFα, known agents causing inflammation and insulin resistance. Nicotine significantly suppressed free fatty acid- and TNFα-induced cytokine production in wild type (WT), but not α7KO macrophages. These data suggest that α7nAChR is important in mediating the antiinflammatory effect of nicotine. Indeed, inactivating this pathway in α7KO mice results in significantly increased adipose tissue infiltration of classically activated M1 macrophages and inflammation in α7KO mice than their WT littermates. As a result, α7KO mice exhibit more severely impaired insulin sensitivity than WT mice without changes of body weight. These data suggest that the cholinergic antiinflammatory pathway plays an important role in obesity-induced inflammation and insulin resistance. Targeting this pathway may provide novel therapeutic benefits in the prevention and treatment of obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- XianFeng Wang
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Medical Center Boulevard, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
31
|
Das UN. Can vagus nerve stimulation halt or ameliorate rheumatoid arthritis and lupus? Lipids Health Dis 2011; 10:19. [PMID: 21261967 PMCID: PMC3037330 DOI: 10.1186/1476-511x-10-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 12/15/2022] Open
Abstract
Acetylcholine, the principal vagus neurotransmitter, inhibits inflammation by suppressing the production of pro-inflammatory cytokines through a mechanism dependent on the α7 nicotinic acetylcholine receptor subunit (alpha7nAChR) that explains why vagus nerve stimulation is anti-inflammatory in nature. Strong expression of alpha7nAChR in the synovium of rheumatoid arthritis and psoriatic arthritis patients was detected. Peripheral macrophages and synovial fibroblasts respond in vitro to specific alpha7nAChR cholinergic stimulation with potent inhibition of proinflammatory cytokines. Fibroblasts balance inflammatory mechanisms and arthritis development through feedback cholinergic stimulation by nearby immune cells. Collagen induced arthritis in alpha7nAChR(-/-) mice was significantly severe and showed increased synovial inflammation and joint destruction compared to the wild-type mice. Similar to vagal nerve stimulation and alpha7nAChR agonists, polyunsaturated fatty acids: eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also suppress inflammation. In view of their similar anti-inflammatory actions, it is proposed that vagal nerve stimulation, alpha7nAChR agonists and EPA and DHA may augment the formation of anti-inflammatory lipid molecules: lipoxins, resolvins, protectins and maresins. This implies that therapies directed at regulation of the cholinergic and alpha7nAChR mediated mechanisms and enhancing the formation of lipoxins, resolvins, protectins and maresins may halt and/or ameliorate rheumatoid arthritis, lupus and other rheumatological conditions.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, USA.
| |
Collapse
|
32
|
Huston JM, Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med 2011; 269:45-53. [PMID: 21158977 PMCID: PMC4527046 DOI: 10.1111/j.1365-2796.2010.02321.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological therapeutics targeting TNF, IL-1 and IL-6 are widely used for treatment of rheumatoid arthritis, inflammatory bowel disease and a growing list of other syndromes, often with remarkable success. Now advances in neuroscience have collided with this therapeutic approach, perhaps rendering possible the development of nerve stimulators to inhibit cytokines. Action potentials transmitted in the vagus nerve culminate in the release of acetylcholine that blocks cytokine production by cells expressing acetylcholine receptors. The molecular mechanism of this cholinergic anti-inflammatory pathway is attributable to signal transduction by the nicotinic alpha 7 acetylcholine receptor subunit, a regulator of the intracellular signals that control cytokine transcription and translation. Favourable preclinical data support the possibility that nerve stimulators may be added to the future therapeutic armamentarium, possibly replacing some drugs to inhibit cytokines.
Collapse
Affiliation(s)
- J M Huston
- Department of Surgery, Division of General Surgery, Trauma, Surgical Critical Care, and Burns, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
33
|
Abstract
In inflammatory disorders such as rheumatoid arthritis, cytokines and danger signals are sensed by the central nervous system, which adapts behavior and physiologic responses during systemic stress. The central nervous system can also signal the periphery to modulate inflammation through efferent hormonal and neuronal pathways. The brain and spinal cord are involved in this bidirectional interaction. A variety of neuronal pathways that modulate synovial inflammation have been implicated, including the sympathetic and the parasympathetic branches of the autonomic system. Another mechanism, the dorsal root reflex, involves antidromic signaling along somatic afferent fibers that influences joint inflammation by releasing neuropeptides and other neuromediators in the periphery. Some of the neurotransmitters and neuroreceptors involved have been identified in preclinical models and represent novel targets for the treatment of rheumatic diseases.
Collapse
|
34
|
Das UN. Current and emerging strategies for the treatment and management of systemic lupus erythematosus based on molecular signatures of acute and chronic inflammation. J Inflamm Res 2010; 3:143-70. [PMID: 22096364 PMCID: PMC3218729 DOI: 10.2147/jir.s9425] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lupus is a chronic, systemic inflammatory condition in which eicosanoids, cytokines, nitric oxide (NO), a deranged immune system, and genetics play a significant role. Our studies revealed that an imbalance in the pro- and antioxidants and NO and an alteration in the metabolism of essential fatty acids exist in lupus. The current strategy of management includes administration of nonsteroidal anti-inflammatory drugs such as hydroxychloroquine and immunosuppressive drugs such as corticosteroids. Investigational drugs include the following: 1) belimumab, a fully human monoclonal antibody that specifically recognizes and inhibits the biological activity of B-lymphocyte stimulator, also known as B-cell-activation factor of the TNF family; 2) stem cell transplantation; 3) rituximab, a chimeric monoclonal antibody against CD20, which is primarily found on the surface of B-cells and can therefore destroy B-cells; and 4) IL-27, which has potent anti-inflammatory actions. Our studies showed that a regimen of corticosteroids and cyclophosphamide, and methods designed to enhance endothelial NO synthesis and augment antioxidant defenses, led to induction of long-lasting remission of the disease. These results suggest that methods designed to modulate molecular signatures of the disease process and suppress inflammation could be of significant benefit in lupus. Some of these strategies could be vagal nerve stimulation, glucose-insulin infusion, and administration of lipoxins, resolvins, protectins, and nitrolipids by themselves or their stable synthetic analogs that are known to suppress inflammation and help in the resolution and healing of the inflammation-induced damage. These strategies are likely to be useful not only in lupus but also in other conditions, such as rheumatoid arthritis, scleroderma, ischemia-reperfusion injury to the myocardium, ischemic heart disease, and sepsis.
Collapse
Affiliation(s)
- Undurti N Das
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India; UND Life Sciences, Shaker Heights, OH, USA
| |
Collapse
|