1
|
Soresinetti L, Naro G, Arnoldi I, Mosca A, Adam K, Kim HC, Klein TA, Gradoni F, Montarsi F, Bandi C, Epis S, Gabrieli P. The genetic trail of the invasive mosquito species Aedes koreicus from the east to the west of Northern Italy. PLoS Negl Trop Dis 2025; 19:e0012945. [PMID: 40163813 PMCID: PMC12005524 DOI: 10.1371/journal.pntd.0012945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 04/17/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Aedes koreicus is native to Far East Asia and recorded in Europe since 2008. In Italy, Ae. koreicus is widespread throughout the Northern part of the peninsula, highlighting its invasive potential and spread. However, no clear clues about the dispersal patterns of the species have been collected so far. METHODOLOGY/PRINCIPAL FINDINGS Population genetic analyses were performed to assess the genetic structure of populations of Ae. koreicus and to make hypotheses about its dispersal patterns in Northern Italy. Ten microsatellite markers specific for Ae. koreicus were used to genotype 414 individuals from 13 populations in the pre-alpine area of Italy, and neighboring Slovenia. Basic and Bayesian population genetic analyses were performed to evaluate patterns of genetic variation, genetic structure, and demography of selected mosquito populations. While presenting a certain degree of structuring, the Italian and Slovenian populations of Ae. koreicus were poorly differentiated. Moreover, demographic analysis supports the expansion of a single population propagule of Ae. koreicus in Italy and Slovenia and provides evidence of the presence of overwintering populations in the studied area. CONCLUSIONS/SIGNIFICANCE Our results highlight a common origin, and stable colonization of Northern Italy and Slovenia, as a probable consequence of the expansion of a unique population. This stresses out the importance of continuous monitoring of Ae. koreicus, to finally uncover the geographic origins and entrance pathways of invasive populations and to prevent or limit further introductions.
Collapse
Affiliation(s)
- Laura Soresinetti
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, Milan, Italy
| | - Giovanni Naro
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, Milan, Italy
| | - Irene Arnoldi
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, Milan, Italy
| | - Andrea Mosca
- Istituto per le Piante da Legno e l’Ambiente, I.P.L.A. S.p.A., Turin, Italy
| | - Katja Adam
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Heung Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, United States Army Garrison-Humphreys, Pyeongtaek, South Korea
| | - Terry A. Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, United States Army Garrison-Humphreys, Pyeongtaek, South Korea
| | - Francesco Gradoni
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padua), Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padua), Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Camerino, Camerino (Macerata), Italy.
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Camerino, Camerino (Macerata), Italy.
| | - Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Camerino, Camerino (Macerata), Italy.
| |
Collapse
|
2
|
Zadra N, Tatti A, Silverj A, Piccinno R, Devilliers J, Lewis C, Arnoldi D, Montarsi F, Escuer P, Fusco G, De Sanctis V, Feuda R, Sánchez-Gracia A, Rizzoli A, Rota-Stabelli O. Shallow Whole-Genome Sequencing of Aedes japonicus and Aedes koreicus from Italy and an Updated Picture of Their Evolution Based on Mitogenomics and Barcoding. INSECTS 2023; 14:904. [PMID: 38132578 PMCID: PMC10743467 DOI: 10.3390/insects14120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution.
Collapse
Affiliation(s)
- Nicola Zadra
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Alessia Tatti
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology, University of Padova, 35121 Padova, Italy;
- University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy
| | - Andrea Silverj
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Riccardo Piccinno
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Julien Devilliers
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Clifton Lewis
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy;
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Giuseppe Fusco
- Department of Biology, University of Padova, 35121 Padova, Italy;
| | | | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| |
Collapse
|
3
|
Soresinetti L, Arnoldi I, Negri A, Naro G, Michelutti A, Montarsi F, Mosca A, Bandi C, Gabrieli P, Epis S. Development of microsatellite markers for the invasive mosquito Aedes koreicus. Parasit Vectors 2023; 16:223. [PMID: 37415250 PMCID: PMC10324130 DOI: 10.1186/s13071-023-05823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/28/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Aedes koreicus is a mosquito species native to East Asia which has recently invaded several countries in Europe. In Italy, this mosquito was first detected in the North-East in 2011 and is now widely distributed in the entire northern part of the country. The development of specific genetic markers, such as microsatellites, is necessary to uncover the dispersal routes of this mosquito from its native areas and, eventually, to plan future control interventions. METHODS Available raw sequences of genomic DNA of Ae. koreicus were screened in silico using BLASTn to identify possible microsatellite-containing sequences. Specific primer pairs were then designed, and their efficiency was determined through polymerase chain reaction (PCR) on 32 individuals of Ae. koreicus collected in Italy. PCR conditions were optimised in three multiplex reactions. Genotyping of individual mosquitoes was performed on both single and multiplex PCR reactions. Finally, analysis of intra-population variation was performed to assess the level of polymorphism of the markers. RESULTS Mosquito genotyping provided consistent results in both single and multiplex reactions. Out of the 31 microsatellite markers identified in the Ae. koreicus genome raw sequences, 11 were polymorphic in the examined mosquito samples. CONCLUSIONS The results show that the 11 microsatellite markers developed here hold potential for investigating the genetic structure of Ae. koreicus populations. These markers could thus represent a novel and useful tool to infer the routes of invasion of this mosquito species into Europe and other non-native areas.
Collapse
Affiliation(s)
- Laura Soresinetti
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, 20133 Milan, Italy
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Irene Arnoldi
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, 20133 Milan, Italy
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- University School of Advanced Studies Pavia, IUSS, 27100 Pavia, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133 Milan, Italy
| | - Agata Negri
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, 20133 Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133 Milan, Italy
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185 Rome, Italy
| | - Giovanni Naro
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, 20133 Milan, Italy
| | - Alice Michelutti
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Andrea Mosca
- Istituto Per Le Piante da Legno E L ’Ambiente, I.P.L.A. S.P.A, 10132 Turin, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, 20133 Milan, Italy
- University School of Advanced Studies Pavia, IUSS, 27100 Pavia, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133 Milan, Italy
| | - Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, 20133 Milan, Italy
- University School of Advanced Studies Pavia, IUSS, 27100 Pavia, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133 Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”, University of Milan, 20133 Milan, Italy
- University School of Advanced Studies Pavia, IUSS, 27100 Pavia, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, 20133 Milan, Italy
| |
Collapse
|
4
|
Gloria-Soria A, Shragai T, Ciota AT, Duval TB, Alto BW, Martins AJ, Westby KM, Medley KA, Unlu I, Campbell SR, Kawalkowski M, Tsuda Y, Higa Y, Indelicato N, Leisnham PT, Caccone A, Armstrong PM. Population genetics of an invasive mosquito vector, Aedes albopictus in the Northeastern USA. NEOBIOTA 2022. [DOI: 10.3897/neobiota.78.84986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Asian tiger mosquito (Aedes albopictus) arrived in the USA in the 1980’s and rapidly spread throughout eastern USA within a decade. The predicted northern edge of its overwintering distribution on the East Coast of the USA roughly falls across New York, Connecticut, and Massachusetts, where the species has been recorded as early as 2000. It is unclear whether Ae. albopictus populations have become established and survive the cold winters in these areas or are recolonized every year. We genotyped and analyzed populations of Ae. albopictus from the northeast USA using 15 microsatellite markers and compared them with other populations across the country and to representatives of the major global genetic clades to investigate their connectivity and stability. Founder effects or bottlenecks were rare at the northern range of the Ae. albopictus distribution in the northeastern USA, with populations displaying high levels of genetic diversity and connectivity along the East Coast. There is no evidence of population turnover in Connecticut during the course of three consecutive years, with consistent genetic structure throughout this period. Overall, these results support the presence of established populations of Ae. albopictus in New York, Connecticut, and Massachusetts, successfully overwintering and migrating in large numbers. Given the stability and interconnectedness of these populations, Ae. albopictus has the potential to continue to proliferate and expand its range northward under mean warming conditions of climate change. Efforts to control Ae. albopictus in these areas should thus focus on vector suppression rather than eradication strategies, as local populations have become firmly established and are expected to reemerge every summer.
Collapse
|
5
|
Gloria-Soria A. Special Collection: Highlights of Medical, Urban and Veterinary Entomology. Highlights in Medical Entomology, 2021. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1853-1860. [PMID: 36197947 DOI: 10.1093/jme/tjac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 06/16/2023]
Abstract
Life remained far from normal as we completed the first year of the Covid-19 pandemic and entered a second year. Despite the challenges faced worldwide, together we continue to move the field of Medical Entomology forward. Here, I reflect on parallels between control of Covid-19 and vector-borne disease control, discuss the advantages and caveats of using new genotyping technologies for the study of invasive species, and proceed to highlight papers that were published between 2020 and 2021 with a focus on those related to mosquito surveillance and population genetics of mosquito vectors.
Collapse
Affiliation(s)
- A Gloria-Soria
- Department of Environmental Sciences, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA
| |
Collapse
|
6
|
Peach DAH, Matthews BJ. The Invasive Mosquitoes of Canada: An Entomological, Medical, and Veterinary Review. Am J Trop Med Hyg 2022; 107:231-244. [PMID: 35895394 PMCID: PMC9393454 DOI: 10.4269/ajtmh.21-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/03/2022] [Indexed: 11/07/2022] Open
Abstract
Several invasive mosquitoes have become established in Canada, including important pathogen vectors such as Aedes albopictus, Ae. japonicus, and Culex pipiens. Some species have been present for decades, while others are recent arrivals. Several species present new health concerns and may result in autochthonous seasonal outbreaks of pathogens, particularly in southern Canada, that were previously restricted to imported cases. This review provides an overview of current knowledge of the biological, medical, and veterinary perspectives of these invasive species and highlights the need for increased monitoring efforts and information sharing.
Collapse
Affiliation(s)
- Daniel A. H. Peach
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
7
|
Vojtíšek J, Janssen N, Šikutová S, Šebesta O, Kampen H, Rudolf I. Emergence of the invasive Asian bush mosquito Aedes (Hulecoeteomyia) japonicus (Theobald, 1901) in the Czech Republic. Parasit Vectors 2022; 15:250. [PMID: 35820942 PMCID: PMC9277878 DOI: 10.1186/s13071-022-05332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/20/2022] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Aedes japonicus is a mosquito species native to North-East Asia that was first found established outside its original geographic distribution range in 1998 and has since spread massively through North America and Europe. In the Czech Republic, the species was not reported before 2021. METHODS Aedes invasive mosquitoes (AIM) are routinely surveyed in the Czech Republic by ovitrapping at potential entry ports. This surveillance is supported by appeals to the population to report uncommon mosquitoes. The submission of an Ae. japonicus specimen by a citizen in 2021 was followed by local search for aquatic mosquito stages in the submitter's garden and short-term adult monitoring with encephalitis virus surveillance (EVS) traps in its surroundings. Collected Ae. japonicus specimens were subjected to nad4 haplotype and microsatellite analyses. RESULTS Aedes japonicus was detected for the first time in the Czech Republic in 2021. Aquatic stages and adults were collected in Prachatice, close to the Czech-German border, and eggs in Mikulov, on the Czech-Austrian border. Morphological identification was confirmed by molecular taxonomy. Genetic analysis of specimens and comparison of genetic data with those of other European populations, particularly from Germany, showed the Prachatice specimens to be most closely related to a German population. The Mikulov specimens were more distantly related to those, with no close relatives identifiable. CONCLUSIONS Aedes japonicus is already widely distributed in Germany and Austria, two countries neighbouring the Czech Republic, and continues to spread rapidly in Central Europe. It must therefore be assumed that the species is already present at more than the two described localities in the Czech Republic and will further spread in this country. These findings highlight the need for more comprehensive AIM surveillance in the Czech Republic.
Collapse
Affiliation(s)
- Jakub Vojtíšek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Nele Janssen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany
| | - Silvie Šikutová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Šebesta
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany.
| | - Ivo Rudolf
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Zettle M, Anderson E, LaDeau SL. Changes in Container-Breeding Mosquito Diversity and Abundance Along an Urbanization Gradient are Associated With Dominance of Arboviral Vectors. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:843-854. [PMID: 35388898 DOI: 10.1093/jme/tjac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Environmental conditions associated with urbanization are likely to influence the composition and abundance of mosquito (Diptera, Culicidae) assemblages through effects on juvenile stages, with important consequences for human disease risk. We present six years (2011-2016) of weekly juvenile mosquito data from distributed standardized ovitraps and evaluate how variation in impervious cover and temperature affect the composition and abundance of container-breeding mosquito species in Maryland, USA. Species richness and evenness were lowest at sites with high impervious cover (>60% in 100-m buffer). However, peak diversity was recorded at sites with intermediate impervious cover (28-35%). Four species were observed at all sites, including two recent invasives (Aedes albopictus Skuse, Ae. japonicus Theobald), an established resident (Culex pipiens L), and one native (Cx. restuans Theobald). All four are viral vectors in zoonotic or human transmission cycles. Temperature was a positive predictor of weekly larval abundance during the growing season for each species, as well as a positive predictor of rapid pupal development. Despite being observed at all sites, each species responded differently to impervious cover. Abundance of Ae. albopictus larvae was positively associated with impervious cover, emphasizing that this medically-important vector not only persists in the warmer, impervious urban landscape but is positively associated with it. Positive temperature effects in our models of larval abundance and pupae occurrence in container habitats suggest that these four vector species are likely to continue to be present and abundant in temperate cities under future temperature scenarios.
Collapse
Affiliation(s)
- MyKenna Zettle
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Elsa Anderson
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | | |
Collapse
|
9
|
Brazier T, Cherif E, Martin JF, Gilles A, Blanchet S, Zhao Y, Combe M, McCairns RJS, Gozlan RE. The influence of native populations’ genetic history on the reconstruction of invasion routes: the case of a highly invasive aquatic species. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Martínez-Laiz G, Ros M, Guerra-García JM, Faasse M, Santos AM, Cabezas MP. Using molecular data to monitor the post-establishment evolution of the invasive skeleton shrimp Caprella scaura. MARINE ENVIRONMENTAL RESEARCH 2021; 166:105266. [PMID: 33588115 DOI: 10.1016/j.marenvres.2021.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The study aims to monitor the post-establishment success of the invasive skeleton shrimp Caprella scaura in the Atlantic-Mediterranean transition zone and understand its connectivity with other world areas, providing new information on the status of the introduced population and its global distribution. By using mitochondrial markers (16S and COI) we examined the temporal variation of populations in Cadiz Bay, Spain (hotspot for introductions in Europe) in between 2010 and 2017; as well as their linkage with foreign populations in its native and introduced distribution ranges. Cadiz Bay populations exhibited a connection with several European introduced populations (Iberian Peninsula, Canary Islands, Mediterranean Sea and The Netherlands), eastern USA, Sea of Japan and Australia. We found no evidence to support a Brazilian origin (one potential native area) of the Iberian Peninsula populations. We identified a progressive decrease in haplotype diversity and a low connectivity at the end of the monitoring period in one of the stations. Human-mediated changes in propagule pressure, and unfavorable environmental fluctuations are probably responsible for this. Meanwhile, populations in Cadiz Bay count on numerous foreign donors that could easily refuel the propagule input by exchanging gene flow. This implies that a vector regulation strategy has the potential of compromising the success of established non-native populations, which usually undergo vulnerability periods due to the challenging conditions of marinas. The use of molecular tools in a time series approach is then useful to identify the ideal time window to put in action management measures so that they are cost-effective.
Collapse
Affiliation(s)
- G Martínez-Laiz
- Laboratorio de Biología Marina, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| | - M Ros
- Laboratorio de Biología Marina, Facultad de Biología, Universidad de Sevilla, Seville, Spain; Departamento de Biología, CASEM, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| | - J M Guerra-García
- Laboratorio de Biología Marina, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - M Faasse
- Naturalis Biodiversity Center, Leiden & Eurofins AquaSense, Amsterdam, the Netherlands
| | - A M Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - M P Cabezas
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
11
|
Smitz N, De Wolf K, Deblauwe I, Kampen H, Schaffner F, De Witte J, Schneider A, Verlé I, Vanslembrouck A, Dekoninck W, Meganck K, Gombeer S, Vanderheyden A, De Meyer M, Backeljau T, Werner D, Müller R, Van Bortel W. Population genetic structure of the Asian bush mosquito, Aedes japonicus (Diptera, Culicidae), in Belgium suggests multiple introductions. Parasit Vectors 2021; 14:179. [PMID: 33766104 PMCID: PMC7995749 DOI: 10.1186/s13071-021-04676-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aedes japonicus japonicus has expanded beyond its native range and has established in multiple European countries, including Belgium. In addition to the population located at Natoye, Belgium, locally established since 2002, specimens were recently collected along the Belgian border. The first objective of this study was therefore to investigate the origin of these new introductions, which were assumed to be related to the expansion of the nearby population in western Germany. Also, an intensive elimination campaign was undertaken at Natoye between 2012 and 2015, after which the species was declared to be eradicated. This species was re-detected in 2017, and thus the second objective was to investigate if these specimens resulted from a new introduction event and/or from a few undetected specimens that escaped the elimination campaign. METHODS Population genetic variation at nad4 and seven microsatellite loci was surveyed in 224 and 68 specimens collected in Belgium and Germany, respectively. German samples were included as reference to investigate putative introduction source(s). At Natoye, 52 and 135 specimens were collected before and after the elimination campaign, respectively, to investigate temporal changes in the genetic composition and diversity. RESULTS At Natoye, the genotypic microsatellite make-up showed a clear difference before and after the elimination campaign. Also, the population after 2017 displayed an increased allelic richness and number of private alleles, indicative of new introduction(s). However, the Natoye population present before the elimination programme is believed to have survived at low density. At the Belgian border, clustering results suggest a relation with the western German population. Whether the introduction(s) occur via passive human-mediated ground transport or, alternatively, by natural spread cannot be determined yet from the dataset. CONCLUSION Further introductions within Belgium are expected to occur in the near future, especially along the eastern Belgian border, which is at the front of the invasion of Ae. japonicus towards the west. Our results also point to the complexity of controlling invasive species, since 4 years of intense control measures were found to be not completely successful at eliminating this exotic at Natoye.
Collapse
Affiliation(s)
- Nathalie Smitz
- Royal Museum for Central Africa (BopCo & Biology Department), Leuvensesteenweg 17, 3080, Tervuren, Belgium.
| | - Katrien De Wolf
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Isra Deblauwe
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Helge Kampen
- Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | | | - Jacobus De Witte
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Anna Schneider
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Ingrid Verlé
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Adwine Vanslembrouck
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium.,Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium
| | - Wouter Dekoninck
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium
| | - Kenny Meganck
- Royal Museum for Central Africa (BopCo & Biology Department), Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Sophie Gombeer
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium
| | - Ann Vanderheyden
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium
| | - Marc De Meyer
- Royal Museum for Central Africa (BopCo & Biology Department), Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences (BopCo & Scientific Heritage Service), Vautierstraat 29, 1000, Brussels, Belgium.,Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374, Müncheberg, Germany
| | - Ruth Müller
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Wim Van Bortel
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium.,Outbreak Research Team, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| |
Collapse
|
12
|
Faizah AN, Kobayashi D, Amoa-Bosompem M, Higa Y, Tsuda Y, Itokawa K, Miura K, Hirayama K, Sawabe K, Isawa H. Evaluating the competence of the primary vector, Culex tritaeniorhynchus, and the invasive mosquito species, Aedes japonicus japonicus, in transmitting three Japanese encephalitis virus genotypes. PLoS Negl Trop Dis 2020; 14:e0008986. [PMID: 33370301 PMCID: PMC7793266 DOI: 10.1371/journal.pntd.0008986] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/08/2021] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
Japanese encephalitis virus (JEV) is maintained in an enzootic cycle between swine, water birds, and mosquitoes. JEV has circulated indigenously in Asia, with Culex tritaeniorhynchus as the primary vector. In some areas where the primary vector is scarce or absent, sporadic cases of Japanese encephalitis have been reported, with Aedes japonicus japonicus presumed to have the potential as a secondary vector. As one of the world's most invasive culicid species, Ae. j. japonicus carries a considerable health risk for spreading diseases to wider areas, including Europe and North America. Thus, evaluation of its competency as a JEV vector, particularly in a native population, will be essential in preventing potential disease spread. In this study, the two mosquito species' vector competence in transmitting three JEV genotypes (I, III, and V) was assessed, with Cx. tritaeniorhynchus serving as a point of reference. The mosquitoes were virus-fed and the infection rate (IR), dissemination rate (DR), and transmission rate (TR) evaluated individually by either RT-qPCR or focus forming assay. Results showed striking differences between the two species, with IR of 95% (261/274) and 9% (16/177) in Cx. tritaeniorhynchus and Ae. j. japonicus, respectively. Both mosquitoes were susceptible to all three JEV genotypes with significant differences in IR and mean viral titer. Results confirm the primary vector's competence, but the fact that JEV was able to establish in Ae. j. japonicus is of public health significance, and with 2%-16% transmission rate it has the potential to successfully transmit JEV to the next host. This may explain the human cases and infrequent detection in primary vector-free areas. Importantly, Ae. j. japonicus could be a relevant vector spreading the disease into new areas, indicating the need for security measures in areas where the mosquito is distributed or where it may be introduced.
Collapse
Affiliation(s)
- Astri Nur Faizah
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kozue Miura
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
Früh L, Kampen H, Koban MB, Pernat N, Schaub GA, Werner D. Oviposition of Aedes japonicus japonicus (Diptera: Culicidae) and associated native species in relation to season, temperature and land use in western Germany. Parasit Vectors 2020; 13:623. [PMID: 33334377 PMCID: PMC7744736 DOI: 10.1186/s13071-020-04461-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aedes japonicus japonicus, first detected in Europe in 2000 and considered established in Germany 10 years later, is of medical importance due to its opportunistic biting behaviour and its potential to transmit pathogenic viruses. Its seasonal phenology, temperature and land use preference related to oviposition in newly colonised regions remain unclear, especially in the context of co-occurring native mosquito species. METHODS Focussing on regions in Germany known to be infested by Ae. japonicus japonicus, we installed ovitraps in different landscapes and their transition zones and recorded the oviposition activity of mosquitoes in relation to season, temperature and land use (arable land, forest, settlement) in two field seasons (May-August 2017, April-November 2018). RESULTS Ae. japonicus japonicus eggs and larvae were encountered in 2017 from June to August and in 2018 from May to November, with a markedly high abundance from June to September in rural transition zones between forest and settlement, limited to water temperatures below 30 °C. Of the three native mosquito taxa using the ovitraps, the most frequent was Culex pipiens s.l., whose offspring was found in high numbers from June to August at water temperatures of up to 35 °C. The third recorded species, Anopheles plumbeus, rarely occurred in ovitraps positioned in settlements and on arable land, but was often associated with Ae. japonicus japonicus. The least frequent species, Aedes geniculatus, was mostly found in ovitraps located in the forest. CONCLUSIONS The transition zone between forest and settlement was demonstrated to be the preferred oviposition habitat of Ae. japonicus japonicus, where it was also the most frequent container-inhabiting mosquito species in this study. Compared to native taxa, Ae. japonicus japonicus showed an extended seasonal activity period, presumably due to tolerance of colder water temperatures. Higher water temperatures and arable land represent distribution barriers to this species. The frequently co-occurring native species An. plumbeus might be useful as an indicator for potentially suitable oviposition habitats of Ae. japonicus japonicus in hitherto uncolonised regions. The results contribute to a better understanding of mosquito ecology and provide a basis for more targeted monitoring, distribution modelling and risk management of mosquitoes.
Collapse
Affiliation(s)
- Linus Früh
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
- Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Insel Riems, 17493 Greifswald, Germany
| | - Marcel B. Koban
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
- Universität Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Nadja Pernat
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
- Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
| | - Günter A. Schaub
- Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
| |
Collapse
|
14
|
Baharmand I, Coatsworth H, Peach DAH, Belton P, Lowenberger C. Molecular relationships of introduced Aedes japonicus (Diptera: Culicidae) populations in British Columbia, Canada using mitochondrial DNA. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:285-296. [PMID: 33207061 DOI: 10.1111/jvec.12399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Aedes japonicus japonicus (Theobald) is a relatively recent immigrant to the Pacific Northwest, having been collected in Washington State in 2001 and in British Columbia (BC) since 2014. We applied a molecular barcoding approach to determine the phylogenetic relationship of Ae. j. japonicus populations in BC with those from around the world. We sequenced a 617 base-pair segment of the cytochrome c oxidase 1 gene and a 330 base-pair region of the NADH dehydrogenase 4 gene to find genetic variation and characterize phylogenetic and haplotypic relationships based on nucleotide divergences. Our results revealed low genetic diversity in the BC samples, suggesting that these populations arose from the same introduction event. However, our approach lacked the granularity to identify the exact country of origin of the Ae. j. japonicus collected in BC. Future efforts should focus on detecting and preventing new Ae. j. japonicus introductions, recognizing that current molecular techniques are unable to pin-point the precise source of an introduction.
Collapse
Affiliation(s)
- Iman Baharmand
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Heather Coatsworth
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Daniel A H Peach
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Peter Belton
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
15
|
Janssen N, Graovac N, Vignjević G, Bogojević MS, Turić N, Klobučar A, Kavran M, Petrić D, Ćupina AI, Fischer S, Werner D, Kampen H, Merdić E. Rapid spread and population genetics of Aedes japonicus japonicus (Diptera: Culicidae) in southeastern Europe (Croatia, Bosnia and Herzegovina, Serbia). PLoS One 2020; 15:e0241235. [PMID: 33119650 PMCID: PMC7595422 DOI: 10.1371/journal.pone.0241235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/11/2020] [Indexed: 12/01/2022] Open
Abstract
The Asian bush mosquito, Aedes japonicus japonicus (Theobald, 1901), a potential vector of several pathogens, has recently established in North America and Central Europe. In 2013, it was found on the Slovenian-Croatian border, and during the following years, it emerged in more and more counties of northwestern Croatia. Surveillance of Ae. j. japonicus and other invasive mosquito species was subsequently extended both spatially and temporally in Croatia and neighbouring Bosnia and Herzegovina and Serbia. Mosquito collections were conducted in 2017 and 2018, based on adult trapping through dry ice-baited CDC traps and BG-Lure-baited BG-Sentinel traps, larval sampling through dippers and nets, and ovitrapping. Aedes j. japonicus specimens from collected samples were subjected to population genetic analysis by comparing microsatellite signatures and nad4 DNA sequences between sampled locations and with data previously obtained from more western European distribution areas. Aedes j. japonicus immature stages were found at 19 sites in Croatia, two sites in Bosnia and Herzegovina and one site in Serbia. In Croatia, four new counties were found colonised, two in the east and two in the south of the previously known distribution area. A spread of 250 km could thus be documented within five years. The findings in Bosnia and Herzegovina and Serbia represent the first records of Ae. j. japonicus in these countries. Genetic analysis suggests at least two introduction events into the surveyed area. Among the locations analysed, Orahovica can be considered a genetic border. The individuals collected west of this point were found to be similar to samples previously collected in the border regions of Southeast Germany/Austria and Austria/Slovenia, while the specimens from more eastern Croatian localities, together with those from Bosnia and Herzegovina and Serbia, were genetically different and could not be assigned to a probable origin. Thus, introduction from Central Europe, possibly by vehicular traffic, into the study area is likely, but other origins, transportation routes and modes of entry appear to contribute. Further dispersal of Ae. j. japonicus to other parts of southeastern Europe is anticipated.
Collapse
Affiliation(s)
- Nele Janssen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald–Insel Riems, Germany
| | - Nataša Graovac
- Department of Biology, Josip Juraj Strossmayer University, Osijek, Croatia
| | - Goran Vignjević
- Department of Biology, Josip Juraj Strossmayer University, Osijek, Croatia
| | | | - Nataša Turić
- Department of Biology, Josip Juraj Strossmayer University, Osijek, Croatia
| | - Ana Klobučar
- Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Mihaela Kavran
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Dušan Petrić
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra Ignjatović Ćupina
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Susanne Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald–Insel Riems, Germany
| | - Doreen Werner
- Leibniz-Centre for Agricultural Landscape Research, Muencheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald–Insel Riems, Germany
| | - Enrih Merdić
- Department of Biology, Josip Juraj Strossmayer University, Osijek, Croatia
| |
Collapse
|
16
|
Janssen N, Werner D, Kampen H. Population genetics of the invasive Asian bush mosquito Aedes japonicus (Diptera, Culicidae) in Germany-a re-evaluation in a time period of separate populations merging. Parasitol Res 2019; 118:2475-2484. [PMID: 31270681 DOI: 10.1007/s00436-019-06376-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/09/2019] [Indexed: 01/08/2023]
Abstract
The Asian bush mosquito Aedes japonicus, endemic to East Asia, is one of the most expansive mosquito species in the world and has as yet established in 15 countries of Europe. Within Germany, the species has been spreading tremendously during the last years, and its four once geographically isolated populations were on the verge of merging in 2017. To reveal relationships and carry-over ways between the various populations, and thus, migration and displacement routes, the genetic make-up of Ae. japonicus from ten different locations throughout its German distribution area was investigated. For this purpose, a part of the mitochondrial DNA (nad4 gene) of collected specimens was sequenced and seven loci of short tandem repeats (microsatellites) were genotyped. When related to similar genetic studies carried out between 2012 and 2015, the results suggest that admixtures had since occurred, but no complete genetic mixture of populations had taken place. At the time of sampling for the present study, the western collection sites were still uniform in their genetic make-up; however, a carry-over of individuals from the southeastern to the northern and southwestern German populations was determined. Further introductions from abroad are possible. In summary, the genetic diversity of Ae. japonicus in Germany had grown considerably, thus increasing ecological variability and adaptability of the species. At this point (10 years after the first detection), it is not possible anymore to draw conclusions on the origins of the populations.
Collapse
Affiliation(s)
- Nele Janssen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| |
Collapse
|
17
|
Peach DAH, Almond M, Pol JC. Modeled distributions of Aedes japonicus japonicus and Aedes togoi (Diptera: Culicidae) in the United States, Canada, and northern Latin America. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:119-129. [PMID: 31124225 DOI: 10.1111/jvec.12336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The Asian bush mosquito, Aedes japonicus japonicus, and the coastal rock pool mosquito, Aedes togoi, are potential disease vectors present in both East Asia and North America. While their ranges are fairly well-documented in Asia, this is not the case for North America. We used maximum entropy modeling to estimate the potential distributions of Ae. togoi and Ae. j. japonicus in the United States, Canada, and northern Latin America under contemporary and future climatic conditions. Our results suggest suitable habitat that is not known to be occupied for Ae. j. japonicus in Atlantic and western Canada, Alaska, the western, midwestern, southern, and northeastern United States, and Latin America, and for Ae. togoi along the Pacific coast of North America and the Hawaiian Islands. Such areas are at risk of future invasion or may already contain undetected populations of these species. Our findings further predict that the limits of suitable habitat for each species will expand northward under future climatic conditions.
Collapse
Affiliation(s)
- Daniel A H Peach
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Max Almond
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Joshua C Pol
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
18
|
Koban MB, Kampen H, Scheuch DE, Frueh L, Kuhlisch C, Janssen N, Steidle JLM, Schaub GA, Werner D. The Asian bush mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Europe, 17 years after its first detection, with a focus on monitoring methods. Parasit Vectors 2019; 12:109. [PMID: 30871592 PMCID: PMC6419366 DOI: 10.1186/s13071-019-3349-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
After the first detection of the Asian bush mosquito Aedes japonicus japonicus in the year 2000 in France, its invasive nature was revealed in 2008 in Switzerland and Germany. In the following years, accumulating reports have shown that Ae. j. japonicus succeeded in establishing in several European countries. Surveillance efforts suggest that there are currently four populations in Europe, with the largest one, formed by the recent fusion of several smaller populations, ranging from West Germany, with extensions to Luxembourg and French Alsace, southwards to Switzerland and continuing westwards through Liechtenstein to western Austria. This paper summarises the present distribution of Ae. j. japonicus in Europe, based on published literature and hitherto unpublished findings by the authors, and critically reviews the monitoring strategies applied. A proposal for a more standardised monitoring approach is provided, aiming at the harmonisation of future data collections for improving the comparability between studies and the suitability of collected data for further research purposes, e.g. predictive modelling approaches.
Collapse
Affiliation(s)
- Marcel B. Koban
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
- University of Hohenheim, Stuttgart, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany
| | - Dorothee E. Scheuch
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany
| | - Linus Frueh
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| | | | - Nele Janssen
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany
| | | | | | - Doreen Werner
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| |
Collapse
|
19
|
Pfitzner WP, Lehner A, Hoffmann D, Czajka C, Becker N. First record and morphological characterization of an established population of Aedes (Hulecoeteomyia) koreicus (Diptera: Culicidae) in Germany. Parasit Vectors 2018; 11:662. [PMID: 30558660 PMCID: PMC6296035 DOI: 10.1186/s13071-018-3199-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The East Asian mosquito species Aedes koreicus was recorded out of its native range for the first time in Belgium in 2008. Since then, several other European populations or single individuals have been observed throughout Europe with reports from Italy, Switzerland, European Russia, Slovenia, Germany and Hungary. The Italian population seems to be the only one that is expanding rapidly, so the Swiss population very likely derives from it. RESULTS In a surveillance program for invasive mosquito species, a single larva of Ae. koreicus was found in a cemetery vase in 2016 in the city of Wiesbaden, Germany. In the following year the finding was confirmed and an established population could be proven over an area of about 50 km2. The morphological identification of the first larva was confirmed by sequencing of a region within the nad4 sequence. A study of adult females showed that the morphological characteristics of this population are not identical to the populations from Belgium and Italy. The eggs and larvae were found together with Aedes j. japonicus in the same breeding sites and ovitraps, as well as with other indigenous mosquito species such as Culex pipiens/Culex torrentium, Aedes geniculatus and Anopheles plumbeus. CONCLUSIONS Since the newly discovered population in Germany shows different morphological characteristics to the populations in Belgium and Italy, it seems to originate from an independent introduction. It remains unknown how the introduction took place. A further spread similar to the one in northern Italy can be assumed for the future due to similar climatic conditions.
Collapse
Affiliation(s)
- Wolf Peter Pfitzner
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage e. V. (KABS), Georg-Peter-Süß-Str. 3, 67346 Speyer, Germany
| | - Alice Lehner
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage e. V. (KABS), Georg-Peter-Süß-Str. 3, 67346 Speyer, Germany
| | - Daniel Hoffmann
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage e. V. (KABS), Georg-Peter-Süß-Str. 3, 67346 Speyer, Germany
| | - Christina Czajka
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage e. V. (KABS), Georg-Peter-Süß-Str. 3, 67346 Speyer, Germany
| | - Norbert Becker
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage e. V. (KABS), Georg-Peter-Süß-Str. 3, 67346 Speyer, Germany
| |
Collapse
|
20
|
Riles MT, Smith JP, Burkett-Cadena N, Connelly CR, Morse GW, Byrd BD. First Record of Aedes japonicus In Florida. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:340-344. [PMID: 29369021 DOI: 10.2987/17-6696.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The presence of Aedes j. japonicus in Florida is reported for the first time. Four adult females were collected by a Mosquito Magnet® X trap baited with pressurized CO2 in Okaloosa County, FL, in August 2012 and later identified as Ae. japonicus in 2014. Additional adult and larval specimens were collected during 2014-17 from Bay, Leon, Okaloosa, Santa Rosa, or Walton counties, Florida. Notes are provided on the location, general habitats, and mosquito associates that may be found with Ae. japonicus in northwestern Florida. The role of Ae. japonicus in arbovirus transmission within Florida is currently unknown and should be further explored.
Collapse
|
21
|
Tseng M. The Effect of Parasitism and Interpopulation Hybridization on Aedes albopictus (Diptera: Culicidae) Fitness. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1236-1242. [PMID: 28419266 DOI: 10.1093/jme/tjx075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 06/07/2023]
Abstract
Recent research in mosquito population genetics suggests that interpopulation hybridization has likely contributed to the rapid spread of the container-breeding mosquitoes. Here, I used laboratory experiments to investigate whether interpopulation Aedes (Stegomyia) albopictus (Skuse) F1 and F2 hybrids exhibit higher fitness than parental populations, and whether hybrid mosquito performance is related to infection by the coevolved protozoan parasite Ascogregarina taiwanensis (Lien and Levine). Overall, there were significant differences in development time, wing length, and survival between the two parental mosquito populations, but no difference in per capita growth rate r. Hybrid mosquitoes were generally intermediate in phenotype to the parentals, except that F2 females were significantly larger than the midparent average. In addition, As. taiwanensis parasites produced fewest oocysts when they were reared in hosts of hybrid origin. These data suggest that hybridization between previously isolated mosquito populations can result in slight increases in potential mosquito reproductive success, via increased hybrid body size, and via the temporary escape from coevolved parasites. These findings are significant because studies have shown that even slight hybrid vigor can have positive fitness consequences for population persistence. Although this was a laboratory experiment extending only to the F2 generation, many other invasive insects also carry coevolved parasites, and thus the patterns seen in this mosquito system may be broadly relevant.
Collapse
Affiliation(s)
- Michelle Tseng
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd., Vancouver, BC, V6T 1Z4
| |
Collapse
|
22
|
Corbel V, Fonseca DM, Weetman D, Pinto J, Achee NL, Chandre F, Coulibaly MB, Dusfour I, Grieco J, Juntarajumnong W, Lenhart A, Martins AJ, Moyes C, Ng LC, Raghavendra K, Vatandoost H, Vontas J, Muller P, Kasai S, Fouque F, Velayudhan R, Durot C, David JP. International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasit Vectors 2017; 10:278. [PMID: 28577363 PMCID: PMC5457540 DOI: 10.1186/s13071-017-2224-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022] Open
Abstract
Vector-borne diseases transmitted by insect vectors such as mosquitoes occur in over 100 countries and affect almost half of the world’s population. Dengue is currently the most prevalent arboviral disease but chikungunya, Zika and yellow fever show increasing prevalence and severity. Vector control, mainly by the use of insecticides, play a key role in disease prevention but the use of the same chemicals for more than 40 years, together with the dissemination of mosquitoes by trade and environmental changes, resulted in the global spread of insecticide resistance. In this context, innovative tools and strategies for vector control, including the management of resistance, are urgently needed. This report summarizes the main outputs of the first international workshop on Insecticide resistance in vectors of arboviruses held in Rio de Janeiro, Brazil, 5–8 December 2016. The primary aims of this workshop were to identify strategies for the development and implementation of standardized insecticide resistance management, also to allow comparisons across nations and across time, and to define research priorities for control of vectors of arboviruses. The workshop brought together 163 participants from 28 nationalities and was accessible, live, through the web (> 70,000 web-accesses over 3 days).
Collapse
Affiliation(s)
- Vincent Corbel
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC, UM1-CNRS 5290-IRD 224), B.P. 64501, 911 Avenue Agropolis, 34394, Cedex 5, Montpellier, France.
| | - Dina M Fonseca
- Rutgers University (RU), Center for Vector Biology, 180 Jones Avenue, New Brunswick, NJ, 08901, USA
| | - David Weetman
- Liverpool School of Tropical Medicine (LSTM), Department of Vector Biology, Pembroke Place, Liverpool, L35QA, UK
| | - João Pinto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Nicole L Achee
- Department of Biological Sciences, University of Notre Dame (UND), Eck Institute for Global Health, 239 Galvin Life Science Center, Notre Dame, Indiana, 46556, USA
| | - Fabrice Chandre
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC, UM1-CNRS 5290-IRD 224), B.P. 64501, 911 Avenue Agropolis, 34394, Cedex 5, Montpellier, France
| | - Mamadou B Coulibaly
- Malaria Research and Training Center (MRTC), Point G, Bamako, B.P, 1805, Mali
| | - Isabelle Dusfour
- Institut Pasteur de la Guyane (IPG), 23 avenue Pasteur B.P. 6010, 97306, Cedex, Cayenne, French Guiana
| | - John Grieco
- Department of Biological Sciences, University of Notre Dame (UND), Eck Institute for Global Health, 239 Galvin Life Science Center, Notre Dame, Indiana, 46556, USA
| | - Waraporn Juntarajumnong
- Department of Entomology, Kasetsart University (KU), 50 Ngam Wong Wan Rd, Ladyaow, Bangkok, Chatuchak, 10900, Thailand
| | - Audrey Lenhart
- Center for Global Health/Division of Parasitic Diseases and Malaria/Entomology Branch, U.S. Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd. NE, MS G-49; Bldg. 23, Atlanta, GA, 30329, USA
| | - Ademir J Martins
- Instituto Oswaldo Cruz (Fiocruz), Avenida Brasil 4365, Rio de Janeiro/RJ CEP, Manguinhos, 21040-360, Brazil
| | - Catherine Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Lee Ching Ng
- Environmental Health Institute (EHI), National Environment Agency (NEA), 11 Biopolis Way, Helios Block, #04-03/04 & #06-05/08, Singapore, Republic of Singapore
| | - Kamaraju Raghavendra
- National Institute of Malaria Research (NIMR), Department of Health Research, GoI Sector 8, Dwarka, Delhi, 110 077, India
| | - Hassan Vatandoost
- Department of Medical Entomology & Vector Control, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences (TUMS), Pour Sina Street, P.O. Box: 14155-6446, Tehran, Iran
| | - John Vontas
- Institute Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Panepistimioupoli, Voutes, 70013, Heraklio, Crete, Greece.,Pesticide Science Laboratory, Agricultural University of Athens, Ieara Odoes 75, 118, Athens, Greece
| | - Pie Muller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box 4002, Basel, Switzerland
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjukuku, Tokyo, Japan
| | - Florence Fouque
- Vector Environment and Society Unit, The Special Programme for Research and Training in Tropical Diseases World Health Organization, 20, avenue Appia, CH-1211, 27, Geneva, Switzerland
| | - Raman Velayudhan
- Vector Ecology and Management, Department of Control of Neglected Tropical Diseases (HTM/NTD), World Health Organization, 20 Avenue Appia, CH-1211, 27, Geneva, Switzerland
| | - Claire Durot
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC, UM1-CNRS 5290-IRD 224), B.P. 64501, 911 Avenue Agropolis, 34394, Cedex 5, Montpellier, France
| | - Jean-Philippe David
- Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS Université Grenoble-Alpes, Domaine universitaire de Saint-Martin d'Hères, 2233 rue de la piscine, 38041, Cedex 9, Grenoble, France.
| |
Collapse
|
23
|
Kim H, Hoelmer KA, Lee S. Population genetics of the soybean aphid in North America and East Asia: test for introduction between native and introduced populations. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1299-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Egizi A, Kiser J, Abadam C, Fonseca DM. The hitchhiker's guide to becoming invasive: exotic mosquitoes spread across a US state by human transport not autonomous flight. Mol Ecol 2016; 25:3033-47. [PMID: 27087539 DOI: 10.1111/mec.13653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 02/03/2023]
Abstract
Not all exotic species establish and expand aggressively (i.e. become invasive). As potential vectors of disease agents, invasive mosquitoes can have considerable impact on public health, livestock and wildlife; therefore, understanding the species characteristics and ecological circumstances promoting their invasiveness is important. The mosquito Aedes japonicus japonicus, originally from north-east Asia, was introduced at least two separate times to the north-eastern USA, as surmised from the initial existence of two populations with distinct nuclear and mitochondrial genetic signatures that later intermixed. Since these original introductions in the late 1990s, Ae. j. japonicus has expanded across 31 US states, two Canadian provinces and five European countries. Although some of the expanded range was due to other independent introductions, to understand what drove the postintroduction expansion of Ae. j. japonicus within the north-eastern USA, we performed a high-resolution landscape genetic analysis of 461 specimens collected across Virginia, a state south of the original introductions. All specimens were genotyped at seven pre-optimized microsatellite loci, and a subsample was sequenced at one mitochondrial locus. We concluded that throughout Virginia this species has primarily expanded in association with humans: genetic distance and distance along roads remained correlated after controlling for geographic distance, and proximity to I-95, a major interstate highway, strongly predicted nuclear ancestry. In contrast, there was very limited evidence of diffusion even at distances potentially suitable for autonomous mosquito flight. This implies that its association with humans (rather than innate species characteristics) is the single most important determinant of invasiveness in this mosquito.
Collapse
Affiliation(s)
- Andrea Egizi
- Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ, 08901, USA.,Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ, USA
| | - Jay Kiser
- City of Suffolk Mosquito Control, 866 Carolina Rd., Suffolk, VA, 23434, USA
| | - Charles Abadam
- City of Suffolk Mosquito Control, 866 Carolina Rd., Suffolk, VA, 23434, USA
| | - Dina M Fonseca
- Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ, 08901, USA.,Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
25
|
Zielke DE, Walther D, Kampen H. Newly discovered population of Aedes japonicus japonicus (Diptera: Culicidae) in Upper Bavaria, Germany, and Salzburg, Austria, is closely related to the Austrian/Slovenian bush mosquito population. Parasit Vectors 2016; 9:163. [PMID: 27000804 PMCID: PMC4802659 DOI: 10.1186/s13071-016-1447-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/10/2016] [Indexed: 11/23/2022] Open
Abstract
Background The German mosquito surveillance instrument ‘Mueckenatlas’ requests the general public to collect and submit mosquito specimens. Among these, increasing numbers of individuals of invasive species have been registered. Specimens of the Asian bush mosquito Aedes japonicus japonicus submitted from German Upper Bavaria, where this species had not previously been recorded, triggered regional monitoring in mid-2015. Methods The search for Ae. j. japonicus breeding sites and developmental stages concentrated on cemeteries in the municipality of origin of the submitted specimens and, subsequently, in the whole region. A virtual grid consisting of 10 × 10 km2 cells in which up to three cemeteries were checked, was laid over the region. A cell was considered positive as soon as Ae. j. japonicus larvae were detected, and regarded negative when no larvae could be found in any of the cemeteries inspected. All cells surrounding a positive cell were screened accordingly. A subset of collected Aedes j. japonicus specimens was subjected to microsatellite and nad4 sequence analyses, and obtained data were compared to individuals from previously discovered European populations. Results Based on the grid cells, an area of approximately 900 km2 was populated by Ae. j. japonicus in Upper Bavaria and neighbouring Austria. Genetic analyses of microsatellites and nad4 gene sequences generated one genotype out of two previously described for Europe and three haplotypes, one of which had previously been found in Europe only in Ae. j. japonicus samples from a population in East Austria and Slovenia. The genetic analysis suggests the new population is closely related to the Austrian/Slovenian population. Conclusion As Ae. j. japonicus is well adapted to temperate climates, it has a strong tendency to expand and to colonise new territories in Central Europe, which is facilitated by human-mediated, passive transportation. The new population in Upper Bavaria/Austria is the seventh separate population described in Europe. According to our data, it originated from a previously detected population in eastern Austria/Slovenia and not from an introduction event from abroad. The dispersal and population dynamics of Ae. j. japonicus should be thoroughly surveyed, as this species is a potential vector of disease agents. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1447-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorothee E Zielke
- Leibniz-Centre for Agricultural Landscape Research, Eberswalder Str. 84, 15374, Muencheberg, Germany.,Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Doreen Walther
- Leibniz-Centre for Agricultural Landscape Research, Eberswalder Str. 84, 15374, Muencheberg, Germany.
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald - Insel Riems, Germany
| |
Collapse
|
26
|
Medlock JM, Hansford KM, Versteirt V, Cull B, Kampen H, Fontenille D, Hendrickx G, Zeller H, Van Bortel W, Schaffner F. An entomological review of invasive mosquitoes in Europe. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:637-63. [PMID: 25804287 DOI: 10.1017/s0007485315000103] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Among the invasive mosquitoes registered all over the world, Aedes species are particularly frequent and important. As several of them are potential vectors of disease, they present significant health concerns for 21st century Europe. Five species have established in mainland Europe, with two (Aedes albopictus and Aedes japonicus) becoming widespread and two (Ae. albopictus and Aedes aegypti) implicated in disease transmission to humans in Europe. The routes of importation and spread are often enigmatic, the ability to adapt to local environments and climates are rapid, and the biting nuisance and vector potential are both an ecomonic and public health concern. Europeans are used to cases of dengue and chikungunya in travellers returning from the tropics, but the threat to health and tourism in mainland Europe is substantive. Coupled to that are the emerging issues in the European overseas territorities and this paper is the first to consider the impacts in the remoter outposts of Europe. If entomologists and public health authorities are to address the spread of these mosquitoes and mitigate their health risks they must first be prepared to share information to better understand their biology and ecology, and share data on their distribution and control successes. This paper focusses in greater detail on the entomological and ecological aspects of these mosquitoes to assist with the risk assessment process, bringing together a large amount of information gathered through the ECDC VBORNET project.
Collapse
Affiliation(s)
- J M Medlock
- Medical Entomology Group,MRA/BS,Emergency Response Department,Public Health England,Porton Down,Salisbury,UK
| | - K M Hansford
- Medical Entomology Group,MRA/BS,Emergency Response Department,Public Health England,Porton Down,Salisbury,UK
| | - V Versteirt
- Avia-GIS,Risschotlei 33,2980 Zoersel,Belgium
| | - B Cull
- Medical Entomology Group,MRA/BS,Emergency Response Department,Public Health England,Porton Down,Salisbury,UK
| | - H Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health,Südufer 10,17493 Greifswald - Insel Riems,Germany
| | - D Fontenille
- Centre National d'Expertise sur les Vecteurs (CNEV), Institut de recherche pour le développement (IRD), UMR MIVEGEC,BP 64501,34394 Montpellier,France
| | - G Hendrickx
- Avia-GIS,Risschotlei 33,2980 Zoersel,Belgium
| | - H Zeller
- Emerging and Vector-borne Diseases, European Centre for Disease Prevention and Control,Tomtebodavägen 11A,17183 Stockholm,Sweden
| | - W Van Bortel
- Emerging and Vector-borne Diseases, European Centre for Disease Prevention and Control,Tomtebodavägen 11A,17183 Stockholm,Sweden
| | - F Schaffner
- Avia-GIS,Risschotlei 33,2980 Zoersel,Belgium
| |
Collapse
|
27
|
Egizi A, Fefferman NH, Fonseca DM. Evidence that implicit assumptions of 'no evolution' of disease vectors in changing environments can be violated on a rapid timescale. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0136. [PMID: 25688024 DOI: 10.1098/rstb.2014.0136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7-10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics.
Collapse
Affiliation(s)
- Andrea Egizi
- Department of Entomology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA Graduate Program in Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Nina H Fefferman
- Graduate Program in Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Department of Entomology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA Graduate Program in Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
28
|
Abstract
Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world’s largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have yet to be investigated.
Collapse
Affiliation(s)
- Caroline Louise
- Laboratório Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Paloma Oliveira Vidal
- Laboratório Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Lincoln Suesdek
- Laboratório Parasitologia, Instituto Butantan, São Paulo, SP, Brasil
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brasil
- * E-mail:
| |
Collapse
|
29
|
Temporal Genetic Dynamics of an Invasive Species, Frankliniella occidentalis (Pergande), in an Early Phase of Establishment. Sci Rep 2015; 5:11877. [PMID: 26138760 PMCID: PMC4490395 DOI: 10.1038/srep11877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 01/21/2023] Open
Abstract
Many species can successfully colonize new areas despite their propagules having low genetic variation. We assessed whether the decreased genetic diversity could result in temporal fluctuations of genetic parameters of the new populations of an invasive species, western flower thrips, Frankliniella occidentalis, using mitochondrial and microsatellite markers. This study was conducted in eight localities from four climate regions in China, where F. occidentalis was introduced in the year 2000 and had lower genetic diversity than its native populations. We also tested the level of genetic differentiation in these introduced populations. The genetic diversity of the samples at different years in the same locality was not significantly different from each other in most localities. FST and STRUCTURE analysis also showed that most temporal population comparisons from the same sites were not significantly differentiated. Our results showed that the invasive populations of F. occidentalis in China can maintain temporal stability in genetic composition at an early phase of establishment despite having lower genetic diversity than in their native range.
Collapse
|
30
|
Benazzo A, Ghirotto S, Vilaça ST, Hoban S. Using ABC and microsatellite data to detect multiple introductions of invasive species from a single source. Heredity (Edinb) 2015; 115:262-72. [PMID: 25920671 DOI: 10.1038/hdy.2015.38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 11/09/2022] Open
Abstract
The introduction of invasive species to new locations (that is, biological invasions) can have major impact on biodiversity, agriculture and public health. As such, determining the routes and modality of introductions with genetic data has become a fundamental goal in molecular ecology. To assist with this goal, new statistical methods and frameworks have been developed, such as approximate Bayesian computation (ABC) for inferring invasion history. Here, we present a model of invasion accounting for multiple introductions from a single source (MISS), a heretofore largely unexplored model. We simulate microsatellite data to evaluate the power of ABC to distinguish between single and multiple introductions from the same source, under a range of demographic parameters. We also apply ABC to microsatellite data from three invasions of bumblebee in New Zealand. In addition, we assess the performance of several methods of summary statistics selection. Our simulated results suggested good ability to distinguish between one- and two-wave models over much but not all of the parameter space tested, independent of summary statistics used. Globally, parameter estimation was good except for bottleneck timing. For one of the bumblebee species, we clearly rejected the MISS model, while for the other two we found inconclusive results. Since a second wave may provide genetic reinforcement to initial colonists, help relieve inbreeding among founders, or increase the hazard of the invasion, its detection may be crucial for managing invasions; we suggest that the MISS model could be considered as a potential model in future theoretical and empirical studies of invasions.
Collapse
Affiliation(s)
- A Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - S Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - S T Vilaça
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - S Hoban
- 1] Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy [2] National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
31
|
Zielke DE, Ibáñez-Justicia A, Kalan K, Merdić E, Kampen H, Werner D. Recently discovered Aedes japonicus japonicus (Diptera: Culicidae) populations in The Netherlands and northern Germany resulted from a new introduction event and from a split from an existing population. Parasit Vectors 2015; 8:40. [PMID: 25608763 PMCID: PMC4311435 DOI: 10.1186/s13071-015-0648-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/08/2015] [Indexed: 11/21/2022] Open
Abstract
Background Originally native to East Asia, Aedes japonicus japonicus, a potential vector of several arboviruses, has become one of the most invasive mosquito species in the world. After having established in the USA, it is now spreading in Europe, with new populations emerging. In contrast to the USA, the introduction pathways and modes of dispersal in Europe are largely obscure. Methods To find out if two recently detected populations of Ae. j. japonicus in The Netherlands and northern Germany go back to new importations or to movements within Europe, the genetic makeup of mosquito specimens from all known European populations was compared. For this purpose, seven microsatellite loci from a representative number of mosquito specimens were genotyped and part of their mitochondrial nad4 gene sequenced. Results A novel nad4 haplotype found in the newly discovered Dutch population of Ae. j. japonicus suggests that this population is not closely related to the other European populations but has emanated from a further introduction event. With five nad4 haplotypes, the Dutch population also shows a very high genetic diversity indicating that either the founder population was very large or multiple introductions took place. By contrast, the recently detected North German population could be clearly assigned to one of the two previously determined European Ae. j. japonicus microsatellite genotypes and shows nad4 haplotypes that are known from West Germany. Conclusion As the European populations of Ae. j. japonicus are geographically separated but genetically mixed, their establishment must be attributed to passive transportation. In addition to intercontinental shipment, it can be assumed that human activities are also responsible for medium- and short-distance overland spread. A better understanding of the processes underlying the introduction and spread of this invasive species will help to increase public awareness of the human-mediated displacement of mosquitoes and to find strategies to avoid it.
Collapse
Affiliation(s)
- Dorothee E Zielke
- Institute for Land Use Systems, Leibniz-Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374, Muencheberg, Germany.
| | - Adolfo Ibáñez-Justicia
- National Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Ministry of Economic Affairs Wageningen, Wageningen, The Netherlands.
| | | | | | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany.
| | - Doreen Werner
- Institute for Land Use Systems, Leibniz-Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374, Muencheberg, Germany.
| |
Collapse
|
32
|
Versteirt V, Nagy ZT, Roelants P, Denis L, Breman FC, Damiens D, Dekoninck W, Backeljau T, Coosemans M, Van Bortel W. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding. Mol Ecol Resour 2014; 15:449-57. [PMID: 25143182 DOI: 10.1111/1755-0998.12318] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022]
Abstract
Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well-supported clusters. Intraspecific Kimura 2-parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra- and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.
Collapse
Affiliation(s)
- V Versteirt
- Department of Biomedical Science, Vector Biology Group, Medical Entomology Unit, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, B-2000, Belgium; Avia-GIS, Risschotlei 33, Zoersel, B-2980, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Distribution and genetic structure of Aedes japonicus japonicus populations (Diptera: Culicidae) in Germany. Parasitol Res 2014; 113:3201-10. [PMID: 25056941 DOI: 10.1007/s00436-014-4000-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
In recent years, the number of imported cases of arthropod-borne diseases in Europe, such as dengue fever, has increased steadily, as did the emergence and distribution of invasive insect vectors. Consequently, the risk of disease spreading into previously unaffected regions through invasive mosquitoes is also increasing. One example of an invasive mosquito is Aedes japonicus japonicus (A. j. japonicus), which spread from its original habitat in Japan to North America and Europe. This species has been shown to act as a vector for Japanese encephalitis and West Nile viruses. In Europe, A. j. japonicus has been detected in Switzerland, Belgium, Slovenia, and Germany, where it has become a resident species. Here, we describe the recent spread and genetic structure of A. j. japonicus populations in Germany. By monitoring the species in Baden-Württemberg in 2011 and 2012, we observed a considerable enlargement of the infested area from 54 municipalities in 2011 to 124 municipalities in 2012. To elucidate the colonization of Europe by A. j. japonicus, seven microsatellite loci were studied in 106 individuals sampled in Germany and Switzerland in 2012. The same markers were genotyped in 31 North American and 26 Japanese specimens. Population genetic analyses indicated that A. j. japonicus in Baden-Württemberg and North Rhine-Westphalia represented two genetically distinct populations with FST-values of 0.073-0.152, suggesting that they originated from two independent introduction events in the past. These results are of particular interest in light of vectorial variability for the transmission of viruses and other pathogens in Europe.
Collapse
|
34
|
Zielke DE, Werner D, Schaffner F, Kampen H, Fonseca DM. Unexpected patterns of admixture in German populations of Aedes japonicus japonicus (Diptera: Culicidae) underscore the importance of human intervention. PLoS One 2014; 9:e99093. [PMID: 24992470 PMCID: PMC4081119 DOI: 10.1371/journal.pone.0099093] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/11/2014] [Indexed: 11/19/2022] Open
Abstract
The mosquito Aedes japonicus japonicus, originally restricted to temperate East Asia, is now widespread in North America and more recently has become established in Europe. To ascertain the putative number of separate introductions to Europe and examine patterns of expansion we analyzed the genetic makeup of Ae. j. japonicus populations from five cemeteries in North Rhine-Westphalia and Rhineland-Palatinate, two western German federal states, as well as of specimens from populations in Belgium, Switzerland, and Austria/Slovenia. To do so, we genotyped individual specimens at seven pre-existing polymorphic microsatellite loci and sequenced part of the nad4 mitochondrial locus. We found evidence of two different genotypic signatures associated with different nad4 mitochondrial haplotypes, indicating at least two genetically differentiated populations of Ae. j. japonicus in Europe (i.e. two distinct genotypes). Belgian, Swiss, and Austrian/Slovenian populations all share the same genotypic signature although they have become differentiated since isolation. Contrary to expectations, the German Ae. j. japonicus are not closely related to those in Belgium which are geographically nearest but are also highly inbred. German populations have a unique genotype but also evidence of mixing between the two genotypes. Also unexpectedly, the populations closest to the center of the German infestation had the highest levels of admixture indicating that separate introductions did not expand and merge but instead their expansion was driven by punctuated human-mediated transport. Critically, the resulting admixed populations have higher genetic diversity and appear invasive as indicated by their increased abundance and recent spread across western Germany.
Collapse
Affiliation(s)
- Dorothee E. Zielke
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
- * E-mail:
| | - Doreen Werner
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Francis Schaffner
- National Centre for Vector Entomology, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Avia-GIS, Zoersel, Belgium
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Dina M. Fonseca
- Center for Vector Biology and Department of Entomology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
35
|
Egizi A, Fonseca DM. Ecological limits can obscure expansion history: patterns of genetic diversity in a temperate mosquito in Hawaii. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0710-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Roles of spatial partitioning, competition, and predation in the North American invasion of an exotic mosquito. Oecologia 2014; 175:601-11. [DOI: 10.1007/s00442-014-2909-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
37
|
Kampen H, Werner D. Out of the bush: the Asian bush mosquito Aedes japonicus japonicus (Theobald, 1901) (Diptera, Culicidae) becomes invasive. Parasit Vectors 2014; 7:59. [PMID: 24495418 PMCID: PMC3917540 DOI: 10.1186/1756-3305-7-59] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/24/2014] [Indexed: 11/24/2022] Open
Abstract
The Asian bush or rock pool mosquito Aedes japonicus japonicus is one of the most expansive culicid species of the world. Being native to East Asia, this species was detected out of its original distribution range for the first time in the early 1990s in New Zealand where it could not establish, though. In 1998, established populations were reported from the eastern US, most likely as a result of introductions several years earlier. After a massive spread the mosquito is now widely distributed in eastern North America including Canada and two US states on the western coast. In the year 2000, it was demonstrated for the first time in Europe, continental France, but could be eliminated. A population that had appeared in Belgium in 2002 was not controlled until 2012 as it did not propagate. In 2008, immature developmental stages were discovered in a large area in northern Switzerland and bordering parts of Germany. Subsequent studies in Germany showed a wide distribution and several populations of the mosquito in various federal states. Also in 2011, the species was found in southeastern Austria (Styria) and neighbouring Slovenia. In 2013, a population was detected in the Central Netherlands, specimens were collected in southern Alsace, France, and the complete northeastern part of Slovenia was found colonized, with specimens also present across borders in adjacent Croatia. Apparently, at the end of 2013 a total of six populations occurred in Europe although it is not clear whether all of them are completely isolated. Similarly, it is not known whether these populations go back to the same number of introductions. While entry ports and long-distance continental migration routes are also obscure, it is likely that the international used tyre trade is the most important mode of intercontinental transportation of the mosquito. Aedes j. japonicus does not only display an aggressive biting behaviour but is suspected to be a vector of various disease agents and to displace indigenous culicid species. Therefore, Aedes j. japonicus might both cause public health problems in the future and have a significant impact on the biodiversity of the invaded territories.
Collapse
Affiliation(s)
- Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald - Insel Riems 17493, Germany.
| | | |
Collapse
|
38
|
Kaufman MG, Fonseca DM. Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). ANNUAL REVIEW OF ENTOMOLOGY 2014; 59:31-49. [PMID: 24397520 PMCID: PMC4106299 DOI: 10.1146/annurev-ento-011613-162012] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) has recently expanded beyond its native range of Japan and Korea into large parts of North America and Central Europe. Population genetic studies begun immediately after the species was detected in North America revealed genetically distinct introductions that subsequently merged, likely contributing to the successful expansion. Interactions, particularly in the larval stage, with other known disease vectors give this invasive subspecies the potential to influence local disease dynamics. Its successful invasion likely does not involve superior direct competitive abilities, but it is associated with the use of diverse larval habitats and a cold tolerance that allows an expanded seasonal activity range in temperate climates. We predict a continued but slower expansion of Ae. j. japonicus in North America and a continued rapid expansion into other areas as this mosquito will eventually be considered a permanent resident of much of North America, Europe, Asia, and parts of Hawaii.
Collapse
Affiliation(s)
- Michael G. Kaufman
- Department of Entomology, Michigan State University, East Lansing, Michigan 48824
| | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
39
|
Rasheed SB, Boots M, Frantz AC, Butlin RK. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan. MEDICAL AND VETERINARY ENTOMOLOGY 2013; 27:430-440. [PMID: 23662926 DOI: 10.1111/mve.12001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.
Collapse
Affiliation(s)
- S B Rasheed
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, U.K.Department of Zoology, University of Peshawar, Peshawar, PakistanDepartment of Biosciences, University of Exeter, Penryn, U.K. andInstitute of Zoology, University of Greifswald, Greifswald, Germany
| | | | | | | |
Collapse
|
40
|
Werner D, Kampen H. The further spread of Aedes japonicus japonicus (Diptera, Culicidae) towards northern Germany. Parasitol Res 2013; 112:3665-8. [PMID: 23974325 DOI: 10.1007/s00436-013-3564-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 11/25/2022]
Abstract
After its first detection in 2008 in the south German federal state of Baden-Wuerttemberg, another distinct population of the invasive Asian bush mosquito Aedes japonicus japonicus was unexpectedly found in western Germany in 2012. Range expansion had already been observed for the southern German population and was anticipated for the western German one. Here, we report on a third, apparently independent and even more northerly German colonization area of Aedes j. japonicus in southern Lower Saxony and northeastern North Rhine-Westphalia, which was discovered in spring 2013. In a snapshot study, intended to determine the presence or absence of Aedes j. japonicus in an area close to Hanover, the capital of the northern German federal state of Lower Saxony, where a specimen had been collected in late 2012, central water basins of cemeteries were checked for pre-imaginal mosquito stages at the beginning of the mosquito season 2013. Almost 20% of the inspected cemeteries were found positive (25 out of 129), with many of them being located in towns and villages close to the motorways A2 and A7. Being of Far Eastern origin, the Asian bush mosquito is well adapted to moderate climates and appears to be further expanding its distribution area in Central Europe. As it is a proven laboratory vector of several mosquito-borne disease agents, its present and future distribution areas should be carefully monitored.
Collapse
Affiliation(s)
- Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, 15374, Muencheberg, Germany,
| | | |
Collapse
|
41
|
Macrogenomic evidence for the origin of the black fly Simulium suzukii (Diptera: Simuliidae) on Okinawa Island, Japan. PLoS One 2013; 8:e70765. [PMID: 23951001 PMCID: PMC3739796 DOI: 10.1371/journal.pone.0070765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/22/2013] [Indexed: 11/19/2022] Open
Abstract
To determine the geographic origin of the black fly Simulium suzukii on Okinawa Island, Japan, macrogenomic profiles derived from its polytene chromosomes were compared with those of mainland and other insular populations of S. suzukii and of the isomorphic Simulium tani species complex. The Okinawan population is a chromosomally unique cytoform, designated ‘D,’ which is essentially monomorphic and differs by about 27 fixed rearrangements from the chromosomal standard sequence for the subgenus Simulium and by two fixed differences from its nearest known relative, representing the type of S. suzukii, on the main islands of Japan. Chromosomal band sequences revealed two additional, sympatric cytoforms of S. suzukii, designated ‘A’ and ‘B,’ each with species status, in Korea, and a third cytoform, designated ‘C,’ on Hokkaido, Japan. A new cytoform, ‘K,’ of S. tani from Malaysia, representing the type of S. tani, is more closely related to cytoforms in Thailand, as are populations from Taiwan previously treated as S. suzukii but more closely aligned with S. tani and newly recognized as cytoform ‘L’ of the latter nominal species. Rooting of chromosomal band sequences by outgroup comparisons allowed directionality of chromosomal rearrangements to be established, enabling phylogenetic inference of cytoforms. Of 41 macrogenomic rearrangements discovered in the five new cytoforms, four provide evidence for a stepwise origin of the Okinawan population from populations characteristic of the main islands of Japan. The macrogenomic approach applied to black flies on Okinawa Island illustrates its potential utility in defining source areas for other species of flies including those that might pose medical and veterinary risks.
Collapse
|
42
|
Damal K, Murrell EG, Juliano SA, Conn JE, Loew SS. Phylogeography of Aedes aegypti (yellow fever mosquito) in South Florida: mtDNA evidence for human-aided dispersal. Am J Trop Med Hyg 2013; 89:482-8. [PMID: 23918216 DOI: 10.4269/ajtmh.13-0102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The invasive dengue vector Aedes aegypti has persisted for > 200 years in South Florida in the United States. We tested the hypotheses that Florida's landscape creates dispersal barriers and corridors and that long-distance human-aided dispersal structures populations of Ae. aegypti. We evaluated the phylogeography of 362 individuals from Florida's East and West Coasts with a 760-bp (418- and 342-bp fragments of ND5 and ND4, respectively) mitochondrial sequence. Populations from these two coasts were not significantly differentiated, suggesting that limited urbanization in central Florida is not a strong barrier to gene flow. Evidence for long-distance dispersal between Ft. Lauderdale and the West and Ft. Myers and the East indicates the importance of human-aided dispersal. West Coast populations showed no genetic differentiation, indicating that West Coast rivers and bays did not significantly impede gene flow. Phylogeographic analysis of haplotypes showed two distinct matrilines with no geographic patterns, suggesting multiple introductions or balancing selection.
Collapse
Affiliation(s)
- Kavitha Damal
- Division of Epidemiology, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
43
|
LaDeau SL, Leisnham PT, Biehler D, Bodner D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: understanding ecological drivers and mosquito-borne disease risk in temperate cities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:1505-26. [PMID: 23583963 PMCID: PMC3709331 DOI: 10.3390/ijerph10041505] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 11/17/2022]
Abstract
Mosquito-vectored pathogens are responsible for devastating human diseases and are (re)emerging in many urban environments. Effective mosquito control in urban landscapes relies on improved understanding of the complex interactions between the ecological and social factors that define where mosquito populations can grow. We compared the density of mosquito habitat and pupae production across economically varying neighborhoods in two temperate U.S. cities (Baltimore, MD and Washington, DC). Seven species of mosquito larvae were recorded. The invasive Aedes albopictus was the only species found in all neighborhoods. Culex pipiens, a primary vector of West Nile virus (WNV), was most abundant in Baltimore, which also had more tire habitats. Both Culex and Aedes pupae were more likely to be sampled in neighborhoods categorized as being below median income level in each city and Aedes pupae density was also greater in container habitats found in these lower income neighborhoods. We infer that lower income residents may experience greater exposure to potential disease vectors and Baltimore residents specifically, were at greater risk of exposure to the predominant WNV vector. However, we also found that resident-reported mosquito nuisance was not correlated with our measured risk index, indicating a potentially important mismatch between motivation needed to engage participation in control efforts and the relative importance of control among neighborhoods.
Collapse
Affiliation(s)
| | - Paul T. Leisnham
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA; E-Mail: (P.T.L.); (D.B.)
| | - Dawn Biehler
- Geography & Environmental Systems, University of Maryland Baltimore County, Baltimore, MD 21250, USA; E-Mail:
| | - Danielle Bodner
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA; E-Mail: (P.T.L.); (D.B.)
| |
Collapse
|
44
|
Kampen H, Zielke D, Werner D. A new focus of Aedes japonicus japonicus (Theobald, 1901) (Diptera, Culicidae) distribution in Western Germany: rapid spread or a further introduction event? Parasit Vectors 2012; 5:284. [PMID: 23216741 PMCID: PMC3533968 DOI: 10.1186/1756-3305-5-284] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background The Asian bush mosquito, Aedes japonicus japonicus, a potential vector of several viruses, was first detected in Germany in 2008 on the Swiss-German border. In the following years, this invasive species apparently succeeded in establishing populations in southern Germany and in spreading northwards. In 2011, its distribution area already covered large areas of the federal state of Baden-Wurttemberg, and its northernmost German collection point was reported to be close to Stuttgart. Several independent submissions to our laboratories of Ae. j. japonicus specimens in July 2012, originating from the same area in the federal state of North Rhine-Westphalia, western Germany, prompted us to carry out an immediate surveillance in this region in the expectation of finding a further distribution focus of Ae. j. japonicus in Germany. Methods After inspecting the places of residence of the collectors of the submitted mosquito specimens, all kinds of water containers in 123 cemeteries in surrounding towns and villages were checked for mosquito developmental stages. These were collected and kept to produce adults for morphological species identification. One specimen per collection site was identified genetically by COI sequence analysis. Results Aedes j. japonicus adults and immature stages were found in 36 towns/villages that were checked (29%) over an area of approximately 2,000 km2 in southern North Rhine-Westphalia and northern Rhineland Palatinate. The species could not be demonstrated further south when monitoring towards the northernmost previous collection sites in southern Germany. It therefore remains to be elucidated whether the species has entered western Germany from the south, from Belgium in the west where it has been demonstrated to occur locally since 2002, or through a new introduction. Conclusions Aedes j. japonicus is obviously much more widely distributed in Germany than previously thought. It appears to be well adapted, to have a strong expansion tendency and to replace indigenous mosquito species. Thus, a further spread is anticipated and elimination seems hardly possible anymore. The vector potency of the species should be reason enough to thoroughly monitor its future development in Germany.
Collapse
Affiliation(s)
- Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, Greifswald, Insel Riems 17493, Germany.
| | | | | |
Collapse
|
45
|
Hoban SM, Schlarbaum SE, Brosi SL, Romero-Severson J. A rare case of natural regeneration in butternut, a threatened forest tree, is parent and space limited. CONSERV GENET 2012. [DOI: 10.1007/s10592-012-0386-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, Van Bortel W. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis 2012; 12:435-47. [PMID: 22448724 PMCID: PMC3366101 DOI: 10.1089/vbz.2011.0814] [Citation(s) in RCA: 447] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There has been growing interest in Europe in recent years in the establishment and spread of invasive mosquitoes, notably the incursion of Aedes albopictus through the international trade in used tires and lucky bamboo, with onward spread within Europe through ground transport. More recently, five other non-European aedine mosquito species have been found in Europe, and in some cases populations have established locally and are spreading. Concerns have been raised about the involvement of these mosquito species in transmission cycles of pathogens of public health importance, and these concerns were borne out following the outbreak of chikungunya fever in Italy in 2007, and subsequent autochthonous cases of dengue fever in France and Croatia in 2010. This article reviews current understanding of all exotic (five introduced invasive and one intercepted) aedine species in Europe, highlighting the known import pathways, biotic and abiotic constraints for establishment, control strategies, and public health significance, and encourages Europe-wide surveillance for invasive mosquitoes.
Collapse
Affiliation(s)
- Jolyon M Medlock
- Medical Entomology and Zoonoses Ecology Group, Microbial Risk Assessment, Emergency Response Division, Health Protection Agency, Porton Down, Salisbury, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
47
|
Becker N, Pluskota B, Kaiser A, Schaffner F. Exotic Mosquitoes Conquer the World. PARASITOLOGY RESEARCH MONOGRAPHS 2012. [DOI: 10.1007/978-3-642-28842-5_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Yang CC, Ascunce MS, Luo LZ, Shao JG, Shih CJ, Shoemaker D. Propagule pressure and colony social organization are associated with the successful invasion and rapid range expansion of fire ants in China. Mol Ecol 2011; 21:817-33. [PMID: 22181975 DOI: 10.1111/j.1365-294x.2011.05393.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We characterized patterns of genetic variation in populations of the fire ant Solenopsis invicta in China using mitochondrial DNA sequences and nuclear microsatellite loci to test predictions as to how propagule pressure and subsequent dispersal following establishment jointly shape the invasion success of this ant in this recently invaded area. Fire ants in Wuchuan (Guangdong Province) are genetically differentiated from those found in other large infested areas of China. The immediate source of ants in Wuchuan appears to be somewhere near Texas, which ranks first among the southern USA infested states in the exportation of goods to China. Most colonies from spatially distant, outlying areas in China are genetically similar to one another and appear to share a common source (Wuchuan, Guangdong Province), suggesting that long-distance jump dispersal has been a prevalent means of recent spread of fire ants in China. Furthermore, most colonies at outlier sites are of the polygyne social form (featuring multiple egg-laying queens per nest), reinforcing the important role of this social form in the successful invasion of new areas and subsequent range expansion following invasion. Several analyses consistently revealed characteristic signatures of genetic bottlenecks for S. invicta populations in China. The results of this study highlight the invasive potential of this pest ant, suggest that the magnitude of international trade may serve as a predictor of propagule pressure and indicate that rates and patterns of subsequent range expansion are partly determined by the interplay between species traits and the trade and transportation networks.
Collapse
Affiliation(s)
- Chin-Cheng Yang
- Master Program for Plant Medicine, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Kim H, Kim M, Ho Kwon D, Park S, Lee Y, Jang H, Lee S, Lee SH, Huang J, Hong KJ, Jang Y. Development and characterization of 15 microsatellite loci fromLycorma delicatula(Hemiptera: Fulgoridae). Anim Cells Syst (Seoul) 2011. [DOI: 10.1080/19768354.2011.604936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
50
|
RONNÅS CECILIA, CASSEL-LUNDHAGEN ANNA, BATTISTI ANDREA, WALLÉN JOHAN, LARSSON STIG. Limited emigration from an outbreak of a forest pest insect. Mol Ecol 2011; 20:4606-17. [DOI: 10.1111/j.1365-294x.2011.05312.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|