1
|
Itzek A, Weißbach V, Meintrup D, Rieß B, van der Linden M, Borgmann S. Epidemiological and Clinical Features of Streptococcus dysgalactiae ssp. equisimilis stG62647 and Other emm Types in Germany. Pathogens 2023; 12:pathogens12040589. [PMID: 37111475 PMCID: PMC10143538 DOI: 10.3390/pathogens12040589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an important β-hemolytic pathogen historically described as mainly affecting animals. Studies epidemiologically assessing the pathogenicity in the human population in Germany are rare. (2) Methods: the present study combines national surveillance data from 2010 to 2022 with a single-center clinical study conducted from 2016 to 2022, focusing on emm type, Lancefield antigen, antimicrobial resistance, patient characteristics, disease severity, and clinical infection markers. (3) Results: The nationwide reported invasive SDSE infections suggest an increasing infection burden for the German population. One particular emm type, stG62647, increased over the study period, being the dominant type in both study cohorts, suggesting a mutation-driven outbreak of a virulent clone. The patient data show that men were more affected than women, although in the single-center cohort, this trend was reversed for patients with stG62647 SDSE. Men affected by stG62647 developed predominantly fascial infections, whereas women suffering from superficial and fascial non-stG62647 SDSE infections were significantly younger than other patients. Increasing age was a general risk factor for invasive SDSE infections. (4) Conclusions: further studies are needed to further elucidate the raised questions regarding outbreak origin, underlying molecular mechanisms as well as sex-dependent pathogen adaptation.
Collapse
Affiliation(s)
- Andreas Itzek
- German National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Victoria Weißbach
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| | - David Meintrup
- Faculty of Engineering and Management, University of Applied Sciences Ingolstadt, 85049 Ingolstadt, Germany
| | - Beate Rieß
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| | - Mark van der Linden
- German National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stefan Borgmann
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| |
Collapse
|
2
|
Faruck MO, Zhao L, Hussein WM, Khalil ZG, Capon RJ, Skwarczynski M, Toth I. Polyacrylate-Peptide Antigen Conjugate as a Single-Dose Oral Vaccine against Group A Streptococcus. Vaccines (Basel) 2020; 8:E23. [PMID: 31941060 PMCID: PMC7157655 DOI: 10.3390/vaccines8010023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Group A Streptococcus (GAS)-associated rheumatic heart disease is a leading cause of death caused by GAS infection. While antibiotics can treat the infection in most cases, growing antibiotic resistance, late medical intervention, and recurrent infection are major obstacles to the effective treatment of GAS-associated diseases. As GAS infection typically originates from the bacterial colonization of mucosal tissue in the throat, an oral vaccine that can generate both systemic and mucosal immune responses would solve problems associated with traditional medical interventions. Moreover, orally delivered vaccines are more easily administered and less expensive for mass immunization. In this study, the B-cell epitope J8, derived from GAS M protein, and universal T-helper Pan HLA-DR-binding epitope peptide (PADRE), were conjugated to poly (methyl acrylate) (PMA) to form a self-assembled nanoparticle vaccine candidate (PMA-P-J8). Strong systemic and mucosal immune responses were induced upon single oral immunization of mice with the conjugate. The antibodies generated were opsonic against GAS clinical isolates as measured after boost immunization. Thus, we developed a simple conjugate as an effective, adjuvant-free oral peptide-based vaccine.
Collapse
Affiliation(s)
- Mohammad Omer Faruck
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; (M.O.F.); (L.Z.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
3
|
Nevagi RJ, Dai W, Khalil ZG, Hussein WM, Capon RJ, Skwarczynski M, Toth I. Structure-activity relationship of group A streptococcus lipopeptide vaccine candidates in trimethyl chitosan-based self-adjuvanting delivery system. Eur J Med Chem 2019; 179:100-108. [PMID: 31247372 DOI: 10.1016/j.ejmech.2019.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Synthetic peptide vaccines based on epitopes derived from the conserved region of M-protein are proving to be a realistic option for protection against group A streptococcus (GAS). However, peptide epitopes alone are poorly immunogenic due to lack of pathogen-associated structural patterns. Therefore, we developed a GAS peptide vaccine based on combined lipidic TLR 2 agonist and self-adjuvanting polymers. We synthesized three α-poly-l-glutamic acid (PGA) conjugated lipopeptides composed of 2-amino-d,l-hexadecanoic acid, GAS B-cell peptide epitope J8 (QAEDKVKQSREAKKQVEKALKQLEDKVQ) and universal T-helper epitope PADRE (AKFVAAWTLKAAA) in different spatial arrangements. The anionic lipopeptide conjugates formed nanoparticles via ionic-complexation with a cationic polymer, trimethyl chitosan (TMC). We demonstrated that the spatial arrangement of vaccine components has a significant influence on peptide conformation and particle formation and, as such, contributes to the differential efficacy and opsonin-mediated killing potential of nanovaccines. Nanoparticles carrying branched helical lipopeptide with T-helper epitope on free N-termini (NP3) stimulated the most potent humoral immune responses. Lipopeptides without TMC (LP1-LP3) and TMC nanoparticles of peptide alone (without lipid) NP (P1) were poor inducers of antibody production, indicating that both TMC and lipid are required to induce a strong opsonic immune response.
Collapse
Affiliation(s)
- Reshma J Nevagi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wei Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Helwan University, Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Ein Helwan, Helwan, 11795, Egypt
| | - Robert J Capon
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
4
|
Pandey M, Ozberk V, Calcutt A, Langshaw E, Powell J, Rivera-Hernandez T, Ho MF, Philips Z, Batzloff MR, Good MF. Streptococcal Immunity Is Constrained by Lack of Immunological Memory following a Single Episode of Pyoderma. PLoS Pathog 2016; 12:e1006122. [PMID: 28027314 PMCID: PMC5222516 DOI: 10.1371/journal.ppat.1006122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/09/2017] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The immunobiology underlying the slow acquisition of skin immunity to group A streptococci (GAS), is not understood, but attributed to specific virulence factors impeding innate immunity and significant antigenic diversity of the type-specific M-protein, hindering acquired immunity. We used a number of epidemiologically distinct GAS strains to model the development of acquired immunity. We show that infection leads to antibody responses to the serotype-specific determinants on the M-protein and profound protective immunity; however, memory B cells do not develop and immunity is rapidly lost. Furthermore, antibodies do not develop to a conserved M-protein epitope that is able to induce immunity following vaccination. However, if re-infected with the same strain within three weeks, enduring immunity and memory B-cells (MBCs) to type-specific epitopes do develop. Such MBCs can adoptively transfer protection to naïve recipients. Thus, highly protective M-protein-specific MBCs may never develop following a single episode of pyoderma, contributing to the slow acquisition of immunity and to streptococcal endemicity in at-risk populations. GAS skin infections pose a significant health problem in the tropics. They are highly prevalent in developing countries as well as amongst the Indigenous populations of developed countries. In at-risk impoverished communities the epidemiology of GAS infections is very dynamic, leading to very high rates of streptococcal-associated serious pathology including rheumatic heart disease, glomerulonephritis and invasive GAS disease. Immunity to GAS takes over 20 years to develop and this has been attributed to sequence diversity of the type-specific surface M-protein. There are more than 250 different strains of GAS and it known that antibodies to the amino-terminal segment of the M-protein can kill organisms in a strain-specific manner in vitro. In the present study, using four different strains of GAS isolated from the skin lesions of Aboriginal patients in the Northern Territory of Australia, we make the discovery that skin infection does not induce long-lived type-specific immunity. However, following reinfection with the same strain memory B cells are generated and long-term strain-protective immunity then develops. The dependence on reinfection for the development of strain-specific immunity compounds with antigenic diversity of the M-protein and provides a rational explanation for the very slow acquisition of streptococcal immunity.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
- * E-mail: (MFG); (MP)
| | - Victoria Ozberk
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Emma Langshaw
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Jessica Powell
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Mei-Fong Ho
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Zachary Philips
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Michael R. Batzloff
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Michael F. Good
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
- * E-mail: (MFG); (MP)
| |
Collapse
|
5
|
Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. Streptococcus pyogenes adhesion and colonization. FEBS Lett 2016; 590:3739-3757. [PMID: 27312939 DOI: 10.1002/1873-3468.12254] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a human-adapted pathogen responsible for a wide spectrum of disease. GAS can cause relatively mild illnesses, such as strep throat or impetigo, and less frequent but severe life-threatening diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS is an important public health problem causing significant morbidity and mortality worldwide. The main route of GAS transmission between humans is through close or direct physical contact, and particularly via respiratory droplets. The upper respiratory tract and skin are major reservoirs for GAS infections. The ability of GAS to establish an infection in the new host at these anatomical sites primarily results from two distinct physiological processes, namely bacterial adhesion and colonization. These fundamental aspects of pathogenesis rely upon a variety of GAS virulence factors, which are usually under strict transcriptional regulation. Considerable progress has been made in better understanding these initial infection steps. This review summarizes our current knowledge of the molecular mechanisms of GAS adhesion and colonization.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre For Infection Research, Braunschweig, Germany
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
6
|
The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood. Infect Immun 2016; 84:1016-1031. [PMID: 26787724 DOI: 10.1128/iai.01296-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment.
Collapse
|
7
|
Abstract
Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being unable to limit the infection. Herein we describe the course of GAS infection in three human complement inhibitor transgenic (tg) mouse models that examined each inhibitor (human C4BP or FH) alone, or the two inhibitors together (C4BPxFH or 'double' tg). GAS infection with strains that bound C4BP and FH resulted in enhanced mortality in each of the three transgenic mouse models compared to infection in wild type mice. In addition, GAS manifested increased virulence in C4BPxFH mice: higher organism burdens and greater elevations of pro-inflammatory cytokines and they died earlier than single transgenic or wt controls. The effects of hu-C4BP and hu-FH were specific for GAS strains that bound these inhibitors because strains that did not bind the inhibitors showed reduced virulence in the 'double' tg mice compared to strains that did bind; mortality was also similar in wild-type and C4BPxFH mice infected by non-binding GAS. Our findings emphasize the importance of binding of complement inhibitors to GAS that results in impaired opsonization and phagocytic killing, which translates to enhanced virulence in a humanized whole animal model. This novel hu-C4BPxFH tg model may prove invaluable in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.
Collapse
|
8
|
Chlebicki MP, Oh CC. Recurrent Cellulitis: Risk Factors, Etiology, Pathogenesis and Treatment. Curr Infect Dis Rep 2014; 16:422. [DOI: 10.1007/s11908-014-0422-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Moreland NJ, Waddington CS, Williamson DA, Sriskandan S, Smeesters PR, Proft T, Steer AC, Walker MJ, Baker EN, Baker MG, Lennon D, Dunbar R, Carapetis J, Fraser JD. Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine 2014; 32:3713-20. [DOI: 10.1016/j.vaccine.2014.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/01/2014] [Indexed: 11/25/2022]
|
10
|
Anderson EL, Cole JN, Olson J, Ryba B, Ghosh P, Nizet V. The fibrinogen-binding M1 protein reduces pharyngeal cell adherence and colonization phenotypes of M1T1 group A Streptococcus. J Biol Chem 2013; 289:3539-46. [PMID: 24356958 DOI: 10.1074/jbc.m113.529537] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis ("strep throat") to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.
Collapse
|
11
|
Rohde M, Chhatwal GS. Adherence and invasion of streptococci to eukaryotic cells and their role in disease pathogenesis. Curr Top Microbiol Immunol 2012. [PMID: 23203001 DOI: 10.1007/82_2012_281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Streptococcal adhesion, invasion, intracellular trafficking, dissemination, and persistence in eukaryotic cells have a variety of implications in the infection pathogenesis. While cell adhesion establishes the initial host contact, adhering bacteria exploit the host cell for their own benefit. Internalization into the host cell is an essential step for bacterial survival and subsequent dissemination and persistence, thus playing a key role in the course of infection. This chapter summarizes the current knowledge about the diverse mechanisms of streptococcal adhesion to and invasion into different eukaryotic cells and the impact on dissemination and persistence which is reflected by consequences for the pathogenesis of streptococcal infections.
Collapse
Affiliation(s)
- Manfred Rohde
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | |
Collapse
|
12
|
Ko YP, Liang X, Smith CW, Degen JL, Höök M. Binding of Efb from Staphylococcus aureus to fibrinogen blocks neutrophil adherence. J Biol Chem 2011; 286:9865-74. [PMID: 21247890 DOI: 10.1074/jbc.m110.199687] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In addition to its pivotal role in hemostasis, fibrinogen (Fg) and provisional fibrin matrices play important roles in inflammation and regulate innate immune responses by interacting with leukocytes. Efb (the extracellular fibrinogen-binding protein) is a secreted Staphylococcus aureus protein that engages host Fg and complement C3. However, the molecular details underlying the Efb-Fg interaction and the biological relevance of this interaction have not been determined. In the present study, we characterize the interaction of Efb with Fg. We demonstrate that the Fg binding activity is located within the intrinsically disordered N-terminal half of Efb (Efb-N) and that the D fragment of Fg is the region that mediates Efb-N binding. More detailed studies of the Efb-N-Fg interactions using ELISA and surface plasmon resonance analyses revealed that Efb-N exhibits a much higher affinity for Fg than typically observed with Fg-binding MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), and data obtained from ELISA analyses using truncated Efb-N constructs demonstrate that Efb-N contains two binding sites located within residues 30-67 and 68-98, respectively. Efb-N inhibits neutrophil adhesion to immobilized Fg by binding to Fg and blocking the interaction of the protein with the leukocyte integrin receptor, α(M)β(2). A motif in the Fg γ chain previously shown to be central to the α(M)β(2) interaction was shown to be functionally distinguishable from the Efb-N binding site, suggesting that the Fg-Efb interaction indirectly impedes Fg engagement by α(M)β(2). Taken together, these studies provide insights into how Efb interacts with Fg and suggest that Efb may support bacterial virulence at least in part by impeding Fg-driven leukocyte adhesion events.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Seymour LM, Deutscher AT, Jenkins C, Kuit TA, Falconer L, Minion FC, Crossett B, Padula M, Dixon NE, Djordjevic SP, Walker MJ. A processed multidomain mycoplasma hyopneumoniae adhesin binds fibronectin, plasminogen, and swine respiratory cilia. J Biol Chem 2010; 285:33971-8. [PMID: 20813843 DOI: 10.1074/jbc.m110.104463] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porcine enzootic pneumonia is a chronic respiratory disease that affects swine. The etiological agent of the disease, Mycoplasma hyopneumoniae, is a bacterium that adheres to cilia of the swine respiratory tract, resulting in loss of cilia and epithelial cell damage. A M. hyopneumoniae protein P116, encoded by mhp108, was investigated as a potential adhesin. Examination of P116 expression using proteomic analyses observed P116 as a full-length protein and also as fragments, ranging from 17 to 70 kDa in size. A variety of pathogenic bacterial species have been shown to bind the extracellular matrix component fibronectin as an adherence mechanism. M. hyopneumoniae cells were found to bind fibronectin in a dose-dependent and saturable manner. Surface plasmon resonance was used to show that a recombinant C-terminal domain of P116 bound fibronectin at physiologically relevant concentrations (K(D) 24 ± 6 nm). Plasmin(ogen)-binding proteins are also expressed by many bacterial pathogens, facilitating extracellular matrix degradation. M. hyopneumoniae cells were found to also bind plasminogen in a dose-dependent and saturable manner; the C-terminal domain of P116 binds to plasminogen (K(D) 44 ± 5 nm). Plasminogen binding was abolished when the C-terminal lysine of P116 was deleted, implicating this residue as part of the plasminogen binding site. P116 fragments adhere to the PK15 porcine kidney epithelial-like cell line and swine respiratory cilia. Collectively these data suggest that P116 is an important adhesin and virulence factor of M. hyopneumoniae.
Collapse
Affiliation(s)
- Lisa M Seymour
- Schools of Biological Sciences, University of Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Steer AC, Batzloff MR, Mulholland K, Carapetis JR. Group A streptococcal vaccines: facts versus fantasy. Curr Opin Infect Dis 2010; 22:544-52. [PMID: 19797947 DOI: 10.1097/qco.0b013e328332bbfe] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of progress of the development of group A streptococcal (GAS) vaccines with a focus on recent advances. RECENT FINDINGS Historically, GAS vaccine development has focused on the N-terminus of the M protein, which ultimately led to successful phase I/II clinical trials of a 26-valent recombinant M protein vaccine in 2004-2005. More recently, interest in antigens conserved among most, if not all, group A streptococci has increased. However, no vaccines containing these antigens have reached clinical trials. Three strategies have been used to develop conserved antigen vaccine candidates: use of the conserved region of the M protein; use of well described virulence factors as antigens, including streptococcal C5a peptidase, streptococcal carbohydrate, fibronectin-binding proteins, cysteine protease and streptococcal pili; and use of reverse vaccinology to identify novel antigens. SUMMARY Several vaccine candidates against GAS infection are in varying stages of preclinical and clinical development. Although there is great hope that one of these vaccine candidates will reach licensure in the next decade, only one, the multivalent N-terminal vaccine, has entered clinical trials in the last 30 years. Although strong advocacy for GAS vaccine development is important, there remains an urgent need to institute available public health control measures against GAS diseases globally, particularly in developing countries.
Collapse
Affiliation(s)
- Andrew C Steer
- Centre for International Child Health, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
15
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
16
|
Byrne JLB, Aagaard-Tillery KM, Johnson JL, Wright LJ, Silver RM. Group A streptococcal puerperal sepsis: initial characterization of virulence factors in association with clinical parameters. J Reprod Immunol 2009; 82:74-83. [PMID: 19682751 DOI: 10.1016/j.jri.2009.06.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 03/30/2009] [Accepted: 06/10/2009] [Indexed: 12/01/2022]
Abstract
Group A beta-hemolytic streptococcus (GAS) is an uncommon but potentially fatal source of postpartum infection. Pathogenesis in invasive GAS infections has been linked to bacterial virulence factors. In this study, we sought to provide an initial description of potential virulence factors in association with puerperal morbidity by virtue of specific M-protein type antigens. Women with confirmed GAS puerperal infection in the Salt Lake City region were prospectively identified over a 6-year interval (1991-1997). From this cohort, GAS isolates were analyzed with respect to M-serotype and presence of genes encoding the Streptococcal Pyogenic Exotoxins A and B (SPE-A and SPE-B). Bacterial isolates from 18 subjects with GAS puerperal infection underwent M-serotyping and PCR-based genotyping for the speA and speB genes. Among these, 8/18 subjects manifest criteria of severe disease. All 18 isolate strains expressed speB; 6/18 isolates expressed speA. Of the M-serotypes, 8/8 severe disease isolates expressed M-types 1 (N=3) or 28 (N=5). Pulse-field gel electrophoresis did not indicate an outbreak strain among similar isolates. We conclude that in this initial characterization, morbidity among women with GAS puerperal infection is associated with M-types 1 and 28, but not speB genotype.
Collapse
Affiliation(s)
- Janice L B Byrne
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, USA
| | | | | | | | | |
Collapse
|
17
|
Oliver MA, Rojo JM, Rodríguez de Córdoba S, Alberti S. Binding of complement regulatory proteins to group A Streptococcus. Vaccine 2009; 26 Suppl 8:I75-8. [PMID: 19388169 DOI: 10.1016/j.vaccine.2008.11.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus pyogenes or Group A Streptococcus (GAS) is the etiologic agent of important human infections such as acute pharyngitis, impetigo, rheumatic fever and the streptococcal toxic shock syndrome. Binding of the complement regulatory proteins factor H, factor H-like protein 1 (FHL-1), C4b-binding protein (C4BP), or CD46 is a crucial step in the pathogenesis of these infections. M protein is the GAS protein that generally mediates these interactions. However, a detailed analysis of the reports that have investigated the binding of complement regulatory components to GAS indicates that this microorganism has evolved alternative mechanisms for the recruitment of complement regulatory proteins to the bacterial surface. This article summarizes these data to provide a starting point for future research aimed at the characterization of additional mechanisms developed by GAS to evade the immune system.
Collapse
Affiliation(s)
- Maria A Oliver
- Institut Universitari d'Investigacions en Ciències de la Salut, Universitat de les Illes Balears, Crtra. Valldemosa, km 7.5, 07122 Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
18
|
Kazeeva TN, Shevelev AB. IgA-specific proteins of pathogenic bacteria. BIOCHEMISTRY (MOSCOW) 2009; 74:12-21. [DOI: 10.1134/s0006297909010027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Smeesters PR, Mardulyn P, Vergison A, Leplae R, Van Melderen L. Genetic diversity of Group A Streptococcus M protein: Implications for typing and vaccine development. Vaccine 2008; 26:5835-42. [DOI: 10.1016/j.vaccine.2008.08.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/12/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
20
|
Józsi M, Zipfel PF. Factor H family proteins and human diseases. Trends Immunol 2008; 29:380-7. [PMID: 18602340 DOI: 10.1016/j.it.2008.04.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 10/21/2022]
Abstract
Complement is a major defense system of innate immunity and aimed to destroy microbes. One of the central complement regulators is factor H, which belongs to a protein family that includes CFHL1 and five factor H-related (CFHR) proteins. Recent evidence shows that factor H family proteins (factor H and CFHRs) are associated with diverse and severe human diseases and are also used by human pathogenic microbes for complement evasion. Therefore, dissecting the exact functions of the individual CFHR proteins will provide insights into the pathophysiology of such inflammatory and infectious diseases and will define the therapeutic potential of these proteins.
Collapse
Affiliation(s)
- Mihály Józsi
- Junior Research Group Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena D-07745, Germany
| | | |
Collapse
|
21
|
McArthur JD, McKay FC, Ramachandran V, Shyam P, Cork AJ, Sanderson‐Smith ML, Cole JN, Ringdahl U, Sjöbring U, Ranson M, Walker MJ. Allelic variants of streptokinase fromStreptococcus pyogenesdisplay functional differences in plasminogen activation. FASEB J 2008; 22:3146-53. [DOI: 10.1096/fj.08-109348] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jason D. McArthur
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Fiona C. McKay
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Priya Shyam
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Amanda J. Cork
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Jason N. Cole
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Ulrika Ringdahl
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Ulf Sjöbring
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Marie Ranson
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Mark J. Walker
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| |
Collapse
|
22
|
Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG, McArthur JD, Chhatwal GS, Walker MJ. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 2008; 22:2715-22. [PMID: 18467595 DOI: 10.1096/fj.07-105643] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococcus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild-type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.
Collapse
Affiliation(s)
- M L Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Simerska P, Abdel-Aal ABM, Fujita Y, Batzloff MR, Good MF, Toth I. Synthesis and in vivo studies of carbohydrate-based vaccines against group A Streptococcus. Biopolymers 2008; 90:611-6. [DOI: 10.1002/bip.20992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Gillen CM, Courtney HS, Schulze K, Rohde M, Wilson MR, Timmer AM, Guzman CA, Nizet V, Chhatwal G, Walker MJ. Opacity Factor Activity and Epithelial Cell Binding by the Serum Opacity Factor Protein of Streptococcus pyogenes Are Functionally Discrete. J Biol Chem 2008; 283:6359-66. [DOI: 10.1074/jbc.m706739200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Simerska P, Abdel-Aal ABM, Fujita Y, Moyle PM, McGeary RP, Batzloff MR, Olive C, Good MF, Toth I. Development of a liposaccharide-based delivery system and its application to the design of group A streptococcal vaccines. J Med Chem 2008; 51:1447-52. [PMID: 18278857 DOI: 10.1021/jm701410p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group A streptococcus (GAS) is associated with many human diseases, ranging in severity from benign to life-threatening. A promising strategy for developing vaccines against GAS involves the use of carbohydrates as carriers for peptide antigens. This study describes the optimized synthesis of d-glucose and d-galactose derived carriers, bearing an adipate linker and four tert-butoxycarbonyl protected aminopropyl groups. Prophylactic GAS vaccine candidates were synthesized by conjugating multiple copies of a single GAS M protein derived peptide antigen (either J8 or J14) onto the carbohydrate carriers. These antigens contain peptide sequences, which are highly conserved and offer the potential to prevent infections caused by up to 70% of GAS strains. Lipophilic amino acids were also conjugated to the d-glucose anomeric carbon to produce a self-adjuvanting liposaccharide vaccine. High serum IgG antibody titers against each of the incorporated peptide epitopes were detected following subcutaneous immunization of B10.BR (H-2 (k)) mice with the liposaccharide vaccine candidates.
Collapse
Affiliation(s)
- Pavla Simerska
- School of Molecular and Microbial Sciences , The University of Queensland, St Lucia 4072, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
A non-human primate model of acute group a Streptococcus pharyngitis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 431:255-67. [PMID: 18287762 DOI: 10.1007/978-1-60327-032-8_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This chapter describes methods for using non-human primates as a model of group A streptococcal (GAS) pharyngitis. This model has been used successfully to study host-pathogen interactions occurring during pharyngeal GAS infections. The protocol as described will compare two different GAS strains for their ability to cause clinical symptoms of pharyngitis.
Collapse
|
27
|
Abdel-Aal ABM, Batzloff MR, Fujita Y, Barozzi N, Faria A, Simerska P, Moyle PM, Good MF, Toth I. Structure–Activity Relationship of a Series of Synthetic Lipopeptide Self-Adjuvanting Group A Streptococcal Vaccine Candidates. J Med Chem 2007; 51:167-72. [DOI: 10.1021/jm701091d] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abu-Baker M. Abdel-Aal
- School of Molecular and Microbial Sciences (SMMS), The University of Queensland, St. Lucia 4072, Queensland, Australia, and The Queensland Institute of Medical Research (QIMR), Herston 4029, Queensland, Australia
| | - Michael R. Batzloff
- School of Molecular and Microbial Sciences (SMMS), The University of Queensland, St. Lucia 4072, Queensland, Australia, and The Queensland Institute of Medical Research (QIMR), Herston 4029, Queensland, Australia
| | - Yoshio Fujita
- School of Molecular and Microbial Sciences (SMMS), The University of Queensland, St. Lucia 4072, Queensland, Australia, and The Queensland Institute of Medical Research (QIMR), Herston 4029, Queensland, Australia
| | - Nadia Barozzi
- School of Molecular and Microbial Sciences (SMMS), The University of Queensland, St. Lucia 4072, Queensland, Australia, and The Queensland Institute of Medical Research (QIMR), Herston 4029, Queensland, Australia
| | - Andres Faria
- School of Molecular and Microbial Sciences (SMMS), The University of Queensland, St. Lucia 4072, Queensland, Australia, and The Queensland Institute of Medical Research (QIMR), Herston 4029, Queensland, Australia
| | - Pavla Simerska
- School of Molecular and Microbial Sciences (SMMS), The University of Queensland, St. Lucia 4072, Queensland, Australia, and The Queensland Institute of Medical Research (QIMR), Herston 4029, Queensland, Australia
| | - Peter M. Moyle
- School of Molecular and Microbial Sciences (SMMS), The University of Queensland, St. Lucia 4072, Queensland, Australia, and The Queensland Institute of Medical Research (QIMR), Herston 4029, Queensland, Australia
| | - Michael F. Good
- School of Molecular and Microbial Sciences (SMMS), The University of Queensland, St. Lucia 4072, Queensland, Australia, and The Queensland Institute of Medical Research (QIMR), Herston 4029, Queensland, Australia
| | - Istvan Toth
- School of Molecular and Microbial Sciences (SMMS), The University of Queensland, St. Lucia 4072, Queensland, Australia, and The Queensland Institute of Medical Research (QIMR), Herston 4029, Queensland, Australia
| |
Collapse
|
28
|
Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG, Simpson AJ, Buchanan JT, Chhatwal GS, Kotb M, Nizet V. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 2007; 13:981-5. [PMID: 17632528 DOI: 10.1038/nm1612] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 05/30/2007] [Indexed: 12/16/2022]
Abstract
Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacterium's shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogen's escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.
Collapse
Affiliation(s)
- Mark J Walker
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Amela I, Cedano J, Querol E. Pathogen proteins eliciting antibodies do not share epitopes with host proteins: a bioinformatics approach. PLoS One 2007; 2:e512. [PMID: 17551592 PMCID: PMC1885212 DOI: 10.1371/journal.pone.0000512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/04/2007] [Indexed: 12/20/2022] Open
Abstract
The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity with human proteins should be very good vaccine candidates, and the other way around.
Collapse
Affiliation(s)
- Isaac Amela
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Cedano
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Tart AH, Walker MJ, Musser JM. New understanding of the group A Streptococcus pathogenesis cycle. Trends Microbiol 2007; 15:318-25. [PMID: 17524649 DOI: 10.1016/j.tim.2007.05.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/26/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
Group A Streptococcus (GAS) has long been recognized as a human pathogen causing an exceptionally broad range of infections. Despite intense research, however, the molecular mechanisms of GAS disease remain unclear. Recently, many important discoveries have been made that shed light on GAS pathogenesis and open exciting avenues for future research. Advances in genome sequencing, microarray technology and proteomic analysis, in combination with the development of more suitable animal models, have markedly increased our knowledge of the mechanisms underlying GAS pathogenesis. The information gained from these studies will translate into improved diagnostics and new targets for therapeutic drugs and vaccines.
Collapse
Affiliation(s)
- Anne H Tart
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, 6565 Fannin Street B490, Houston, TX 77030, USA
| | | | | |
Collapse
|
31
|
Sanderson-Smith ML, Dowton M, Ranson M, Walker MJ. The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues. J Bacteriol 2006; 189:1435-40. [PMID: 17012384 PMCID: PMC1797364 DOI: 10.1128/jb.01218-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 microM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (K(d) = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys(96) and Lys(101) reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg(107) and His(108) to alanine. Furthermore, mutagenesis of Arg(107) and His(108) abolished plasminogen binding by Prp despite the presence of Lys(96) and Lys(101) in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins.
Collapse
|
32
|
Yoonim N, Olive C, Pruksachatkunakorn C, Pruksakorn S. Bactericidal activity of M protein conserved region antibodies against group A streptococcal isolates from the Northern Thai population. BMC Microbiol 2006; 6:71. [PMID: 16895610 PMCID: PMC1557512 DOI: 10.1186/1471-2180-6-71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/09/2006] [Indexed: 11/10/2022] Open
Abstract
Background Most group A streptococcal (GAS) vaccine strategies have focused on the surface M protein, a major virulence factor of GAS. The amino-terminus of the M protein elicits antibodies, that are both opsonic and protective, but which are type specific. J14, a chimeric peptide that contains 14 amino acids from the M protein conserved C-region at the carboxy-terminus, offers the possibility of a vaccine which will elicit protective opsonic antibodies against multiple different GAS strains. In this study, we searched for J14 and J14-like sequences and the number of their repeats in the C-region of the M protein from GAS strains isolated from the Northern Thai population. Then, we examined the bactericidal activity of J14, J14.1, J14-R1 and J14-R2 antisera against multiple Thai GAS strains. Results The emm genes of GAS isolates were sequenced and grouped as 14 different J14-types. The most diversity of J14-types was found in the C1-repeat. The J14.1 type was the major sequence in the C2 and C3-repeats. We have shown that antisera raised against the M protein conserved C-repeat region peptides, J14, J14.1, J14-R1 and J14-R2, commonly found in GAS isolates from the Northern Thai population, are able to kill GAS of multiple different emm types derived from an endemic area. The mean percent of bactericidal activities for all J14 and J14-like peptide antisera against GAS isolates were more than 70%. The mean percent of bactericidal activity was highest for J14 antisera followed by J14-R2, J14.1 and J14-R1 antisera. Conclusion Our study demonstrated that antisera raised against the M protein conserved C-repeat region are able to kill multiple different strains of GAS isolated from the Northern Thai population. Therefore, the four conserved "J14" peptides have the potential to be used as GAS vaccine candidates to prevent streptococcal infections in an endemic area.
Collapse
Affiliation(s)
- Nonglak Yoonim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Colleen Olive
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | | | - Sumalee Pruksakorn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
33
|
Abstract
Group A streptococci (GAS) are gram positive cocci that can be divided into more than 100 M-serotypes or emm types based on their M proteins. Their virulence is related directly to the M protein on the cell surface that inhibits phagocytosis. Although it is more commonly thought of in the context of causing clinical illness, Streptococcus pyogenes can colonize the pharynx and skin. Infections due to GAS include pharyngitis, impetigo, ecthyma, erysipelas, and cellulitis. These infections, as well as the manifestations of invasive disease including streptococcal toxic shock syndrome and necrotizing fasciitis, will be reviewed in this article. Also included will be the nonsuppurative complications of GAS infections, acute rheumatic fever and post streptococcal glomerular nephritis. GAS is an important cause of infections in children in both the ambulatory and hospital settings. Current efforts aimed at the development of a vaccine are warranted but remain in preliminary stages at this time.
Collapse
Affiliation(s)
- Judith M Martin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Division of Infectious Diseases, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
34
|
Fernandez-Moreira E, Helbig JH, Swanson MS. Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes. Infect Immun 2006; 74:3285-95. [PMID: 16714556 PMCID: PMC1479291 DOI: 10.1128/iai.01382-05] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cultured in broth to the transmissive phase, Legionella pneumophila infects macrophages by inhibiting phagosome maturation, whereas replicative-phase cells are transported to the lysosomes. Here we report that the ability of L. pneumophila to inhibit phagosome-lysosome fusion correlated with developmentally regulated modifications of the pathogen's surface, as judged by its lipopolysaccharide profile and by its binding to a sialic acid-specific lectin and to the hydrocarbon hexadecane. Likewise, the composition of membrane vesicles shed by L. pneumophila was developmentally regulated, based on binding to the lectin and to the lipopolysaccharide-specific monoclonal antibody 3/1. Membrane vesicles were sufficient to inhibit phagosome-lysosome fusion by a mechanism independent of type IV secretion, since only approximately 25% of beads suspended with or coated by vesicles from transmissive phase wild type or dotA secretion mutants colocalized with lysosomal probes, whereas approximately 75% of beads were lysosomal when untreated or presented with vesicles from the L. pneumophila letA regulatory mutant or E. coli. As observed previously for L. pneumophila infection of mouse macrophages, vesicles inhibited phagosome-lysosome fusion only temporarily; by 10 h after treatment with vesicles, macrophages delivered approximately 72% of ingested beads to lysosomes. Accordingly, in the context of the epidemiology of the pneumonia Legionnaires' disease and virulence mechanisms of Leishmania and Mycobacteria, we discuss a model here in which L. pneumophila developmentally regulates its surface composition and releases vesicles into phagosomes that inhibit their fusion with lysosomes.
Collapse
Affiliation(s)
- Esteban Fernandez-Moreira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, Institut Medizinische Mikrobiologie und Hygiene, Medical Faculty TU Dresden, D-01307 Dresden, Germany
| | - Juergen H. Helbig
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, Institut Medizinische Mikrobiologie und Hygiene, Medical Faculty TU Dresden, D-01307 Dresden, Germany
| | - Michele S. Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, Institut Medizinische Mikrobiologie und Hygiene, Medical Faculty TU Dresden, D-01307 Dresden, Germany
- Corresponding author. Mailing address: University of Michigan Medical School, 6734 Medical Sciences Building II, Ann Arbor, MI 48109-0620. Phone: (734) 647-7295. Fax: (734) 764-3562. E-mail:
| |
Collapse
|