1
|
Utomo RNC, Palkowitz AL, Gan L, Rudzinski A, Franzen J, Ballerstedt H, Zimmermann M, Blank LM, Fischer H, Wolfart S, Tuna T. In vitro plaque formation model to unravel biofilm formation dynamics on implant abutment surfaces. J Oral Microbiol 2024; 16:2424227. [PMID: 39529861 PMCID: PMC11552293 DOI: 10.1080/20002297.2024.2424227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background Biofilm formation on implant-abutment surfaces can cause inflammatory reactions. Ethical concerns often limit intraoral testing, necessitating preliminary in vitro or animal studies. Here, we propose an in vitro model using human saliva and hypothesize that this model has the potential to closely mimic the dynamics of biofilm formation on implant-abutment material surfaces in vivo. Methods A saliva stock was mixed with modified Brain-Heart-Infusion medium to form biofilms on Titanium-Aluminum-Vanadium (Ti6Al4V) and Yttria-partially Stabilized Zirconia (Y-TZP) discs in 24-well plates. Biofilm analyses included crystal violet staining, intact cell quantification with BactoBox, 16S rRNA gene analysis, and short-chain fatty acids measurement. As a control, discs were worn in maxillary splints by four subjects for four days to induce in vivo biofilm formation. Results After four days, biofilms fully covered Ti6Al4V and Y-TZP discs both in vivo and in vitro, with similar cell viability. There was a 60.31% overlap of genera between in vitro and in vivo biofilms in the early stages, and 41% in the late stages. Ten key oral bacteria, including Streptococcus, Haemophilus, Neisseria, Veillonella, and Porphyromonas, were still detectable in vitro, representing the common stages of oral biofilm formation. Conclusion This in vitro model effectively simulates oral conditions and provides valuable insights into biofilm dynamics.
Collapse
Affiliation(s)
- Romualdus Nugraha Catur Utomo
- Department of Prosthodontics and Biomaterials, Center of Implantology, RWTH University Hospital Aachen, Aachen, Germany
| | - Alena Lisa Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Lin Gan
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF) RWTH Aachen University Hospital, Aachen, Germany
| | - Anna Rudzinski
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF) RWTH Aachen University Hospital, Aachen, Germany
| | - Julia Franzen
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF) RWTH Aachen University Hospital, Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Martin Zimmermann
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Stefan Wolfart
- Department of Prosthodontics and Biomaterials, Center of Implantology, RWTH University Hospital Aachen, Aachen, Germany
| | - Taskin Tuna
- Department of Prosthodontics and Biomaterials, Center of Implantology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
2
|
Wu C, Fujiki J, Mathieu J, Schwarz C, Cornell C, Alvarez PJJ. Phage-based biocontrol of Porphyromonas gingivalis through indirect targeting. Appl Environ Microbiol 2024; 90:e0095124. [PMID: 39248462 PMCID: PMC11497834 DOI: 10.1128/aem.00951-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Bacteriophages offer an opportunity for chemical-free, precise control of problematic bacteria, but this approach can be limited when lytic phages are difficult to obtain for the target host. In such cases, phage-based targeting of cooperating or cross-feeding bacteria (e.g., Streptococcus gordonii) can be an effective approach to control the problematic bacteria (e.g., Porphyromonas gingivalis). Using a dual-species biofilm system, phage predation of S. gordonii (108 PFU·mL-1) decreased the abundance of pathogenic P. gingivalis by >99% compared with no-treatment controls, while also inhibiting the production of cytotoxic metabolic end products (butyric and propionic acids). Phage treatment upregulated genes associated with interspecies co-adhesion (5- to 8-fold) and quorum sensing (10-fold) in residual P. gingivalis, which is conducive to increased potential to bind to S. gordonii. Counterintuitively, lower-titer phage applications (104 PFU·mL-1) increased the production of extracellular polymeric substance (EPS) by 22% and biofilm biomass by 50%. This overproduction of EPS may contribute to the phenomenon where the biofilm separated into two distinct species layers, as observed by confocal laser scanning microscopy. Although more complex mixed-culture systems should be considered to delineate the merits and limitations of this novel biocontrol approach (which would likely require the use of phage cocktails), our results offer proof of concept that indirect phage-based targeting can expand the applicability of phage-based control of pathogenic bacteria for public health protection. IMPORTANCE Lytic phages are valuable agents for targeted elimination of bacteria in diverse applications. Nevertheless, lytic phages are difficult to isolate for some target pathogens. We offer proof of concept that this limitation may be overcome via indirect phage targeting, which involves knocking out species that interact closely with and benefit the primary problematic target bacteria. Our target (P. gingivalis) only forms a periodontal pathogenic biofilm if the pioneer colonizer (S. gordonii) offers its surface for P. gingivalis to attach. Phage predation of the co-adhesive S. gordonii significantly reduced abundance of the target pathogen by >99%, decreased the total biofilm biomass by >44%, and suppressed its production of cytotoxic metabolic byproducts. Thus, this research extends the scope of phage-based biocontrol for public health protection.
Collapse
Affiliation(s)
- Chuncheng Wu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Jumpei Fujiki
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Carolyn Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
3
|
Christian N, Burden D, Emam A, Brenk A, Sperber S, Kalu M, Cuadra G, Palazzolo D. Effects of E-Liquids and Their Aerosols on Biofilm Formation and Growth of Oral Commensal Streptococcal Communities: Effect of Cinnamon and Menthol Flavors. Dent J (Basel) 2024; 12:232. [PMID: 39195076 DOI: 10.3390/dj12080232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
(1) Background: The rise in electronic cigarette (E-cigarette) popularity, especially among adolescents, has prompted research to investigate potential effects on health. Although much research has been carried out on the effect on lung health, the first site exposed to vaping-the oral cavity-has received relatively little attention. The aims of this study were twofold: to examine the effects of E-liquids on the viability and hydrophobicity of oral commensal streptococci, and the effects of E-cigarette-generated aerosols on the biomass and viability of oral commensal streptococci. (2) Methods: Quantitative and confocal biofilm analysis, live-dead staining, and hydrophobicity assays were used to determine the effect on oral commensal streptococci after exposure to E-liquids and/or E-cigarette-generated aerosols. (3) Results: E-liquids and flavors have a bactericidal effect on multispecies oral commensal biofilms and increase the hydrophobicity of oral commensal streptococci. Flavorless and some flavored E-liquid aerosols have a bactericidal effect on oral commensal biofilms while having no effect on overall biomass. (4) Conclusions: These results indicate that E-liquids/E-cigarette-generated aerosols alter the chemical interactions and viability of oral commensal streptococci. Consequently, the use of E-cigarettes has the potential to alter the status of disease and health in the oral cavity and, by extension, affect systemic health.
Collapse
Affiliation(s)
- Nicole Christian
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Burden
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
- School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Alexander Emam
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Alvin Brenk
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Sarah Sperber
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Michael Kalu
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Giancarlo Cuadra
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Dominic Palazzolo
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| |
Collapse
|
4
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
5
|
Bedoya-Correa CM, Betancur-Giraldo S, Franco J, Arango-Santander S. Probiotic Effect of Streptococcus dentisani on Oral Pathogens: An In Vitro Study. Pathogens 2024; 13:351. [PMID: 38787203 PMCID: PMC11123734 DOI: 10.3390/pathogens13050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Probiotics, including Streptococcus dentisani, have been proposed as an alternative to re-establish the ecology of the oral cavity and inhibit the formation of pathogenic biofilms. The main objective of this work was to assess the probiotic ability of S. dentisani against Streptococcus mutans, Streptococcus mitis, and Candida albicans biofilms. The ability of the strains to form a monospecies biofilm and the probiotic potential of S. dentisani using the competition, exclusion, and displacement strategies were determined. All strains were moderate biofilm producers. The ability of S. dentisani to compete with and exclude S. mutans and S. mitis during biofilm formation was not significant. However, S. dentisani significantly reduced pathologic streptococcal biofilms using the displacement strategy. Also S. dentisani reduced the formation of the C. albicans biofilm mainly through competition and displacement. In vitro, S. dentisani exhibited probiotic potential to reduce the formation of potentially pathogenic biofilms. Further investigation is required to understand the biofilm-inhibiting mechanisms exhibited by this probiotic strain.
Collapse
Affiliation(s)
- Claudia María Bedoya-Correa
- GIOM Group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Medellin 055421, Colombia; (J.F.); (S.A.-S.)
| | | | - John Franco
- GIOM Group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Medellin 055421, Colombia; (J.F.); (S.A.-S.)
- Salud y Sostenibilidad Group, School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia
| | - Santiago Arango-Santander
- GIOM Group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Medellin 055421, Colombia; (J.F.); (S.A.-S.)
| |
Collapse
|
6
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
7
|
Hara T, Sakanaka A, Lamont RJ, Amano A, Kuboniwa M. Interspecies metabolite transfer fuels the methionine metabolism of Fusobacterium nucleatum to stimulate volatile methyl mercaptan production. mSystems 2024; 9:e0076423. [PMID: 38289043 PMCID: PMC10878106 DOI: 10.1128/msystems.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.
Collapse
Affiliation(s)
- Takeshi Hara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
| | - Akito Sakanaka
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Atsuo Amano
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
8
|
Li Z, Huang Q, Wang Z, Huang L, Gu L. Effects of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans on Modeling Subgingival Microbiome and Impairment of Oral Epithelial Barrier. J Infect Dis 2024; 229:262-272. [PMID: 37855446 DOI: 10.1093/infdis/jiad461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Periodontitis is an exemplar of dysbiosis associated with the coordinated action of multiple members within the microbial consortium. The polymicrobial synergy and dysbiosis hypothesis proposes a dynamic host-microbiome balance, with certain modulators capable of disrupting eubiosis and driving shifts towards dysbiosis within the community. However, these factors remain to be explored. We established a Porphyromonas gingivalis- or Aggregatibacter actinomycetemcomitans-modified subgingival microbiome model and 16S rRNA sequencing revealed that P. gingivalis and A. actinomycetemcomitans altered the microbiome structure and composition indicated by α and β diversity metrics. P. gingivalis increased the subgingival dysbiosis index (SDI), while A. actinomycetemcomitans resulted in a lower SDI. Furthermore, P. gingivalis-stimulated microbiomes compromised epithelium function and reduced expression of tight junction proteins, whereas A. actinomycetemcomitans yielded mild effects. In conclusion, by inoculating P. gingivalis, we created dysbiotic microcosm biofilms in vitro resembling periodontitis-related subgingival microbiota, exhibiting enhanced dysbiosis and impaired epithelium integrity.
Collapse
Affiliation(s)
- Zihan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qiuxia Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhuoran Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lisha Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
9
|
Faustova MO, Chumak YV, Loban’ GA, Ananieva MM, Havryliev VM. Decamethoxin and chlorhexidine bigluconate effect on the adhesive and biofilm-forming properties of Streptococcus mitis. FRONTIERS IN ORAL HEALTH 2023; 4:1268676. [PMID: 38024149 PMCID: PMC10664242 DOI: 10.3389/froh.2023.1268676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of the study Was to investigate the effect of antiseptics on the adhesive and biofilm-forming properties of clinical S.mitis isolates isolated from the oral cavity of patients with an infectious and inflammatory post-extraction complication. Materials and methods Twenty four clinical isolates of S.mitis isolated from patients were studied. The studied antiseptics included 0.02% aqueous solution of decamethoxin and 0.05% solution of chlorhexidine bigluconate. Adhesion of clinical isolates under the action of decamethoxin and chlorhexidine bigluconate was determined by the method of V.I. Brillis. The biofilm-forming properties of clinical isolates were studied using the "microtiter plate test" according to G.D. Christensen. Results The studied clinical isolates of S.mitis are classified as highly adherent microorganisms. Action of decamethoxin on clinical isolates decreases the adhesion index of the studied isolates in comparison with the adhesion index of the control culture. Action of chlorhexidine bigluconate on S.mitis isolates increases of adhession of the studied clinical isolates in comparison with the control. After the effect of decamethoxin, the optical density of clinical isolates decreased considering the optical density results of the control. The clinical isolates left an average film-forming capacity even after chlorhexidine bigluconate action. Conclusions Clinical isolates of S.mitis are highly adherent microorganisms. The antiseptic decamethoxin decreases the adhesion index of these bacteria, while chlorhexidine bigluconate increases the adhesion index of clinical S.mitis isolates. Clinical S. mitis isolates have an average biofilm formation capacity index. The antiseptic decamethoxin inhibits the biofilm formation capacity of S.mitis from medium to low.
Collapse
Affiliation(s)
- Mariia O. Faustova
- Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine
| | - Yuliia V. Chumak
- Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine
| | - Galina A. Loban’
- Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine
| | - Maiia M. Ananieva
- Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine
| | - Viktor M. Havryliev
- Department of Surgical Dentistry and Maxillo-Facial Surgery, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
10
|
Labossiere A, Ramsey M, Merritt J, Kreth J. Molecular commensalism-how to investigate underappreciated health-associated polymicrobial communities. mBio 2023; 14:e0134223. [PMID: 37754569 PMCID: PMC10653818 DOI: 10.1128/mbio.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The study of human commensal bacteria began with the first observation of prokaryotes >340 years ago. Since then, the study of human-associated microbes has been justifiably biased toward the study of infectious pathogens. However, the role of commensal microbes has in recent years begun to be understood with some appreciation of them as potential protectors of host health rather than bystanders. As our understanding of these valuable microbes grows, it highlights how much more remains to be learned about them and their roles in maintaining health. We note here that a thorough framework for the study of commensals, both in vivo and in vitro is overall lacking compared to well-developed methodologies for pathogens. The modification and application of methods for the study of pathogens can work well for the study of commensals but is not alone sufficient to properly characterize their relationships. This is because commensals live in homeostasis with the host and within complex communities. One difficulty is determining which commensals have a quantifiable impact on community structure and stability as well as host health, vs benign microbes that may indeed serve only as bystanders. Human microbiomes are composed of bacteria, archaea, fungi, and viruses. This review focuses particularly on oral bacteria, yet many of the principles of commensal impacts on host health observed in the mouth can translate well to other host sites. Here, we discuss the value of commensals, the shortcomings involved in model systems for their study, and some of the more notable impacts they have upon not only each other but host health.
Collapse
Affiliation(s)
- Alex Labossiere
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Matthew Ramsey
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Lamont RJ, Hajishengallis G, Koo H. Social networking at the microbiome-host interface. Infect Immun 2023; 91:e0012423. [PMID: 37594277 PMCID: PMC10501221 DOI: 10.1128/iai.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Microbial species colonizing host ecosystems in health or disease rarely do so alone. Organisms conglomerate into dynamic heterotypic communities or biofilms in which interspecies and interkingdom interactions drive functional specialization of constituent species and shape community properties, including nososymbiocity or pathogenic potential. Cell-to-cell binding, exchange of signaling molecules, and nutritional codependencies can all contribute to the emergent properties of these communities. Spatial constraints defined by community architecture also determine overall community function. Multilayered interactions thus occur between individual pairs of organisms, and the relative impact can be determined by contextual cues. Host responses to heterotypic communities and impact on host surfaces are also driven by the collective action of the community. Additionally, the range of interspecies interactions can be extended by bacteria utilizing host cells or host diet to indirectly or directly influence the properties of other organisms and the community microenvironment. In contexts where communities transition to a dysbiotic state, their quasi-organismal nature imparts adaptability to nutritional availability and facilitates resistance to immune effectors and, moreover, exploits inflammatory and acidic microenvironments for their persistence.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Begić G, Badovinac IJ, Karleuša L, Kralik K, Cvijanovic Peloza O, Kuiš D, Gobin I. Streptococcus salivarius as an Important Factor in Dental Biofilm Homeostasis: Influence on Streptococcus mutans and Aggregatibacter actinomycetemcomitans in Mixed Biofilm. Int J Mol Sci 2023; 24:ijms24087249. [PMID: 37108414 PMCID: PMC10139097 DOI: 10.3390/ijms24087249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A disturbed balance within the dental biofilm can result in the dominance of cariogenic and periodontopathogenic species and disease development. Due to the failure of pharmacological treatment of biofilm infection, a preventive approach to promoting healthy oral microbiota is necessary. This study analyzed the influence of Streptococcus salivarius K12 on the development of a multispecies biofilm composed of Streptococcus mutans, S. oralis and Aggregatibacter actinomycetemcomitans. Four different materials were used: hydroxyapatite, dentin and two dense polytetrafluoroethylene (d-PTFE) membranes. Total bacteria, individual species and their proportions in the mixed biofilm were quantified. A qualitative analysis of the mixed biofilm was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that in the presence of S. salivarius K 12 in the initial stage of biofilm development, the proportion of S. mutans was reduced, which resulted in the inhibition of microcolony development and the complex three-dimensional structure of the biofilm. In the mature biofilm, a significantly lower proportion of the periodontopathogenic species A. actinomycetemcomitans was found in the salivarius biofilm. Our results show that S. salivarius K 12 can inhibit the growth of pathogens in the dental biofilm and help maintain the physiological balance in the oral microbiome.
Collapse
Affiliation(s)
- Gabrijela Begić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Jelovica Badovinac
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Kristina Kralik
- Department of Medical Statistics and Medical Informatics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Davor Kuiš
- Department of Periodontology, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Dental Medicine, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Clinical Hospital Centre, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
13
|
Archambault L, Koshy-Chenthittayil S, Thompson A, Dongari-Bagtzoglou A, Laubenbacher R, Mendes P. Corrected and Republished from: "Understanding Lactobacillus paracasei and Streptococcus oralis Biofilm Interactions through Agent-Based Modeling". mSphere 2023; 8:e0065622. [PMID: 36942961 DOI: 10.1128/msphere.00656-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
As common commensals residing on mucosal tissues, Lactobacillus species are known to promote health, while some Streptococcus species act to enhance the pathogenicity of other organisms in those environments. In this study we used a combination of in vitro imaging of live biofilms and computational modeling to explore biofilm interactions between Streptococcus oralis, an accessory pathogen in oral candidiasis, and Lactobacillus paracasei, an organism with known probiotic properties. A computational agent-based model was created where the two species interact only by competing for space, oxygen, and glucose. Quantification of bacterial growth in live biofilms indicated that S. oralis biomass and cell numbers were much lower than predicted by the model. Two subsequent models were then created to examine more complex interactions between these species, one where L. paracasei secretes a surfactant and another where L. paracasei secretes an inhibitor of S. oralis growth. We observed that the growth of S. oralis could be affected by both mechanisms. Further biofilm experiments support the hypothesis that L. paracasei may secrete an inhibitor of S. oralis growth, although they do not exclude that a surfactant could also be involved. This contribution shows how agent-based modeling and experiments can be used in synergy to address multiple-species biofilm interactions, with important roles in mucosal health and disease. IMPORTANCE We previously discovered a role of the oral commensal Streptococcus oralis as an accessory pathogen. S. oralis increases the virulence of Candida albicans infections in murine oral candidiasis and epithelial cell models through mechanisms which promote the formation of tissue-damaging biofilms. Lactobacillus species have known inhibitory effects on biofilm formation of many microbes, including Streptococcus species. Agent-based modeling has great advantages as a means of exploring multifaceted relationships between organisms in complex environments such as biofilms. Here, we used an iterative collaborative process between experimentation and modeling to reveal aspects of the mostly unexplored relationship between S. oralis and L. paracasei in biofilm growth. The inhibitory nature of L. paracasei on S. oralis in biofilms may be exploited as a means of preventing or alleviating mucosal fungal infections.
Collapse
Affiliation(s)
- Linda Archambault
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Sherli Koshy-Chenthittayil
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Angela Thompson
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | | | - Pedro Mendes
- Center for Quantitative Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
14
|
Abstract
Fusobacterium nucleatum is a common constituent of the oral microbiota in both periodontal health and disease. Previously, we discovered ornithine cross-feeding between F. nucleatum and Streptococcus gordonii, where S. gordonii secretes ornithine via an arginine-ornithine antiporter (ArcD), which in turn supports the growth and biofilm development of F. nucleatum; however, broader metabolic aspects of F. nucleatum within polymicrobial communities and their impact on periodontal pathogenesis have not been addressed. Here, we show that when cocultured with S. gordonii, F. nucleatum increased amino acid availability to enhance the production of butyrate and putrescine, a polyamine produced by ornithine decarboxylation. Coculture with Veillonella parvula, another common inhabitant of the oral microbiota, also increased lysine availability, promoting cadaverine production by F. nucleatum. We confirmed that ArcD-dependent S. gordonii-excreted ornithine induces synergistic putrescine production, and mass spectrometry imaging revealed that this metabolic capability creates a putrescine-rich microenvironment on the surface of F. nucleatum biofilms. We further demonstrated that polyamines caused significant changes in the biofilm phenotype of a periodontal pathogen, Porphyromonas gingivalis, with putrescine accelerating the biofilm life cycle of maturation and dispersal. This phenomenon was also observed with putrescine derived from S. gordonii-F. nucleatum coculture. Lastly, analysis of plaque samples revealed cooccurrence of P. gingivalis with genetic modules for putrescine production by S. gordonii and F. nucleatum. Overall, our results highlight the ability of F. nucleatum to induce synergistic polyamine production within multispecies consortia and provide insight into how the trophic web in oral biofilm ecosystems can eventually shape disease-associated communities. IMPORTANCE Periodontitis is caused by a pathogenic shift in subgingival biofilm ecosystems, which is accompanied by alterations in microbiome composition and function, including changes in the metabolic activity of the biofilm, which comprises multiple commensals and pathogens. While Fusobacterium nucleatum is a common constituent of the supra- and subgingival biofilms, its metabolic integration within polymicrobial communities and the impact on periodontal pathogenesis are poorly understood. Here, we report that amino acids supplied by other commensal bacteria induce polyamine production by F. nucleatum, creating polyamine-rich microenvironments. Polyamines reportedly have diverse functions in bacterial physiology and possible involvement in periodontal pathogenesis. We show that the F. nucleatum-integrated trophic network yielding putrescine from arginine through ornithine accelerates the biofilm life cycle of Porphyromonas gingivalis, a periodontal pathogen, from the planktonic state through biofilm formation to dispersal. This work provides insight into how cooperative metabolism within oral biofilms can tip the balance toward periodontitis.
Collapse
|
15
|
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol 2022; 12:887907. [PMID: 35782115 PMCID: PMC9247192 DOI: 10.3389/fcimb.2022.887907] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.
Collapse
Affiliation(s)
- Dina G. Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
16
|
The Role of Glycoside Hydrolases in S. gordonii and C. albicans Interactions. Appl Environ Microbiol 2022; 88:e0011622. [PMID: 35506689 DOI: 10.1128/aem.00116-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Candida albicans can coaggregate with Streptococcus gordonii and cocolonize in the oral cavity. Saliva provides a vital microenvironment for close interactions of oral microorganisms. However, the level of fermentable carbohydrates in saliva is not sufficient to support the growth of multiple species. Glycoside hydrolases (GHs) that hydrolyze glycoproteins are critical for S. gordonii growth in low-fermentable-carbohydrate environments such as saliva. However, whether GHs are involved in the cross-kingdom interactions between C. albicans and S. gordonii under such conditions remains unknown. In this study, C. albicans and S. gordonii were cocultured in heart infusion broth with a low level of fermentable carbohydrate. Planktonic growth, biofilm formation, cell aggregation, and GH activities of monocultures and cocultures were examined. The results revealed that the planktonic growth of cocultured S. gordonii in a low-carbohydrate environment was elevated, while that of cocultured C. albicans was reduced. The biomass of S. gordonii in dual-species biofilms was higher than that of monocultures, while that of cocultured C. albicans was decreased. GH activity was observed in S. gordonii, and elevated activity of GHs was detected in S. gordonii-C. albicans cocultures, with elevated expression of GH-related genes of S. gordonii. By screening a mutant library of C. albicans, we identified a tec1Δ/Δ mutant strain that showed reduced ability to promote the growth and GH activities of S. gordonii compared with the wild-type strain. Altogether, the findings of this study demonstrate the involvement of GHs in the cross-kingdom metabolic interactions between C. albicans and S. gordonii in an environment with low level of fermentable carbohydrates. IMPORTANCE Cross-kingdom interactions between Candida albicans and oral streptococci such as Streptococcus gordonii have been reported. However, their interactions in a low-fermentable-carbohydrate environment like saliva is not clear. The current study revealed glycoside hydrolase-related cross-kingdom communications between S. gordonii and C. albicans under the low-fermentable-carbohydrate condition. We demonstrate that C. albicans can promote the growth and metabolic activities of S. gordonii by elevating the activities of cell-wall-anchored glycoside hydrolases of S. gordonii. C. albicans gene TEC1 is critical for this cross-kingdom metabolic communication.
Collapse
|
17
|
Tubero Euzebio Alves V, Al-Attar A, Alimova Y, Maynard MH, Kirakodu S, Martinez-Porras A, Hawk GS, Ebersole JL, Stamm S, Gonzalez OA. Streptococcus gordonii-Induced miRNAs Regulate CCL20 Responses in Human Oral Epithelial Cells. Infect Immun 2022; 90:e0058621. [PMID: 35099275 PMCID: PMC8929334 DOI: 10.1128/iai.00586-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
The mechanisms through which oral commensal bacteria mitigates uncontrolled inflammatory responses of the oral mucosa remain unknown. Here, we show that representative oral bacterial species normally associated with oral health [S. gordonii (Sg), V. parvula (Vp), A. naeslundii (An), C. sputigena (Cs), and N. mucosa (Nm)] enhanced differential chemokine responses in oral epithelial cells (OECs), with some bacteria (An, Vp, and Nm) inducing higher chemokine levels (CXCL1, CXCL8) than others (Sg, Cs). Although all bacterial species (except Cs) increased CCL20 mRNA levels consistent with protein elevations in cell lysates, only An, Vp, and Nm induced higher CCL20 secretion, similar to the effect of the oral pathogen F. nucleatum (Fn). In contrast, most CCL20 remained associated with OECs exposed to Sg and negligible amounts released into the cell supernatants. Consistently, Sg attenuated An-induced CCL20. MiR-4516 and miR-663a were identified as Sg-specifically induced miRNAs modulating validated targets of chemokine-associated pathways. Cell transfection with miR-4516 and miR-663a decreased An- and Fn-induced CCL20. MiRNA upregulation and attenuation of An-induced CCL20 by Sg were reversed by catalase. Up-regulation of both miRNAs was specifically enhanced by oral streptococci H2O2-producers. These findings suggest that CCL20 levels produced by OECs in response to bacterial challenge are regulated by Sg-induced miR-4516 and miR-663a in a mechanism that involves hydrogen peroxide. This type of molecular mechanism could partly explain the central role of specific oral streptococcal species in balancing inflammatory and antimicrobial responses given the critical role of CCL20 in innate (antimicrobial) and adaptive immunity (modulates Th17 responses).
Collapse
Affiliation(s)
| | - Ahmad Al-Attar
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Yelena Alimova
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Marshall H. Maynard
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Andrés Martinez-Porras
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory S. Hawk
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, USA
| | - Stefan Stamm
- Department of Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
18
|
Lamont RJ, Fitzsimonds ZR, Wang H, Gao S. Role of Porphyromonas gingivalis in oral and orodigestive squamous cell carcinoma. Periodontol 2000 2022; 89:154-165. [PMID: 35244980 DOI: 10.1111/prd.12425] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral and esophageal squamous cell carcinomas harbor a diverse microbiome that differs compositionally from precancerous and healthy tissues. Though causality is yet to be definitively established, emerging trends implicate periodontal pathogens such as Porphyromonas gingivalis as associated with the cancerous state. Moreover, infection with P. gingivalis correlates with a poor prognosis, and P. gingivalis is oncopathogenic in animal models. Mechanistically, properties of P. gingivalis that have been established in vitro and could promote tumor development include induction of a dysbiotic inflammatory microenvironment, inhibition of apoptosis, increased cell proliferation, enhanced angiogenesis, activation of epithelial-to-mesenchymal transition, and production of carcinogenic metabolites. The microbial community context is also relevant to oncopathogenicity, and consortia of P. gingivalis and Fusobacterium nucleatum are synergistically pathogenic in oral cancer models in vivo. In contrast, oral streptococci, such as Streptococcus gordonii, can antagonize protumorigenic epithelial cell phenotypes induced by P. gingivalis, indicating functionally specialized roles for bacteria in oncogenic communities. Consistent with the notion of the bacterial community constituting the etiologic unit, metatranscriptomic data indicate that functional, rather than compositional, properties of the tumor-associated communities have more relevance to cancer development. A consistent association of P. gingivalis with oral and orodigestive carcinoma could have diagnostic potential for early detection of these conditions that have a high incidence and low survival rates.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Huizhi Wang
- Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, Richmond, Virginia, USA
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
19
|
Souza JG, Costa RC, Sampaio AA, Abdo VL, Nagay BE, Castro N, Retamal-Valdes B, Shibli JA, Feres M, Barão VA, Bertolini M. Cross-kingdom microbial interactions in dental implant-related infections: is Candida albicans a new villain? iScience 2022; 25:103994. [PMID: 35313695 PMCID: PMC8933675 DOI: 10.1016/j.isci.2022.103994] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Candida albicans, an oral fungal opportunistic pathogen, has shown the ability to colonize implant surfaces and has been frequently isolated from biofilms associated with dental implant-related infections, possibly due to its synergistic interactions with certain oral bacteria. Moreover, evidence suggests that this cross-kingdom interaction on implant can encourage bacterial growth, leading to increased fungal virulence and mucosal damage. However, the role of Candida in implant-related infections has been overlooked and not widely explored or even considered by most microbiological analyses and therapeutic approaches. Thus, we summarized the scientific evidence regarding the ability of C. albicans to colonize implant surfaces, interact in implant-related polymicrobial biofilms, and its possible role in peri-implant infections as far as biologic plausibility. Next, a systematic review of preclinical and clinical studies was conducted to identify the relevance and the gap in the existing literature regarding the role of C. albicans in the pathogenesis of peri-implant infections.
Collapse
Affiliation(s)
- João G.S. Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Corresponding author
| | - Raphael C. Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Aline A. Sampaio
- Department of Clinic, Pathology and Dental Surgery, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Victória L. Abdo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Bruna E. Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Nidia Castro
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Belén Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Jamil A. Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Corresponding author
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
20
|
Luo TL, Vanek ME, Gonzalez-Cabezas C, Marrs CF, Foxman B, Rickard AH. In vitro model systems for exploring oral biofilms: From single-species populations to complex multi-species communities. J Appl Microbiol 2022; 132:855-871. [PMID: 34216534 PMCID: PMC10505481 DOI: 10.1111/jam.15200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/05/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Numerous in vitro biofilm model systems are available to study oral biofilms. Over the past several decades, increased understanding of oral biology and advances in technology have facilitated more accurate simulation of intraoral conditions and have allowed for the increased generalizability of in vitro oral biofilm studies. The integration of contemporary systems with confocal microscopy and 16S rRNA community profiling has enhanced the capabilities of in vitro biofilm model systems to quantify biofilm architecture and analyse microbial community composition. In this review, we describe several model systems relevant to modern in vitro oral biofilm studies: the constant depth film fermenter, Sorbarod perfusion system, drip-flow reactor, modified Robbins device, flowcells and microfluidic systems. We highlight how combining these systems with confocal microscopy and community composition analysis tools aids exploration of oral biofilm development under different conditions and in response to antimicrobial/anti-biofilm agents. The review closes with a discussion of future directions for the field of in vitro oral biofilm imaging and analysis.
Collapse
Affiliation(s)
- Ting L. Luo
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Michael E. Vanek
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Carlos Gonzalez-Cabezas
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Carl F. Marrs
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alexander H. Rickard
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Understanding Lactobacillus paracasei and Streptococcus oralis Biofilm Interactions through Agent-Based Modeling. mSphere 2021; 6:e0087521. [PMID: 34908459 PMCID: PMC8673396 DOI: 10.1128/msphere.00875-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As common commensals residing on mucosal tissues, Lactobacillus species are known to promote health, while some Streptococcus species act to enhance the pathogenicity of other organisms in those environments. In this study, we used a combination of in vitro imaging of live biofilms and computational modeling to explore biofilm interactions between Streptococcus oralis, an accessory pathogen in oral candidiasis, and Lactobacillus paracasei, an organism with known probiotic properties. A computational agent-based model was created where the two species interact only by competing for space, oxygen and glucose. Quantification of bacterial growth in live biofilms indicated that S. oralis biomass and cell numbers were much lower than predicted by the model. Two subsequent models were then created to examine more complex interactions between these species, one where L. paracasei secretes a surfactant, and another where L. paracasei secretes an inhibitor of S. oralis growth. We observed that the growth of S. oralis could be affected by both mechanisms. Further biofilm experiments support the hypothesis that L. paracasei may secrete an inhibitor of S. oralis growth, although they do not exclude that a surfactant could also be involved. This contribution shows how agent-based modeling and experiments can be used in synergy to address multiple species biofilm interactions, with important roles in mucosal health and disease. IMPORTANCE We previously discovered a role of the oral commensal Streptococcus oralis as an accessory pathogen. S. oralis increases the virulence of Candida albicans infections in murine oral candidiasis and epithelial cell models through mechanisms which promote the formation of tissue-damaging biofilms. Lactobacillus species have known inhibitory effects on biofilm formation of many microbes, including Streptococcus species. Agent-based modeling has great advantages as a means of exploring multifaceted relationships between organisms in complex environments such as biofilms. Here, we used an iterative collaborative process between experimentation and modeling to reveal aspects of the mostly unexplored relationship between S. oralis and L. paracasei in biofilm growth. The inhibitory nature of L. paracasei on S. oralis in biofilms may be exploited as a means of preventing or alleviating mucosal fungal infections.
Collapse
|
22
|
In Vitro Effects of Streptococcus oralis Biofilm on Peri-Implant Soft Tissue Cells. Cells 2020; 9:cells9051226. [PMID: 32429151 PMCID: PMC7290395 DOI: 10.3390/cells9051226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Human gingival epithelial cells (HGEps) and fibroblasts (HGFs) are the main cell types in peri-implant soft tissue. HGEps are constantly exposed to bacteria, but HGFs are protected by connective tissue as long as the mucosa-implant seal is intact. Streptococcus oralis is one of the commensal bacteria, is highly abundant at healthy implant sites, and might modulate soft tissue cells-as has been described for other streptococci. We have therefore investigated the effects of the S. oralis biofilm on HGEps and HGFs. HGEps or HGFs were grown separately on titanium disks and responded to challenge with S. oralis biofilm. HGFs were severely damaged after 4 h, exhibiting transcriptional inflammatory and stress responses. In contrast, challenge with S. oralis only induced a mild transcriptional inflammatory response in HGEps, without cellular damage. HGFs were more susceptible to the S. oralis biofilm than HGEps. The pro-inflammatory interleukin 6 (IL-6) was attenuated in HGFs, as was interleukin 8 (CXCL8) in HGEps. This indicates that S. oralis can actively protect tissue. In conclusion, commensal biofilms can promote homeostatic tissue protection, but only if the implant-mucosa interface is intact and HGFs are not directly exposed.
Collapse
|
23
|
Souza JGS, Bertolini M, Thompson A, Mansfield JM, Grassmann AA, Maas K, Caimano MJ, Barao VAR, Vickerman MM, Dongari-Bagtzoglou A. Role of glucosyltransferase R in biofilm interactions between Streptococcus oralis and Candida albicans. THE ISME JOURNAL 2020; 14:1207-1222. [PMID: 32042100 PMCID: PMC7174356 DOI: 10.1038/s41396-020-0608-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Streptococcal glucosyltransferases (Gtf) synthesize α-glucan exopolymers which contribute to biofilm matrix. Streptococcus oralis interacts with the opportunistic pathogen Candida albicans to form hypervirulent biofilms. S. oralis 34 has a single gtf gene (gtfR). However, the role of gtfR in single and mixed species biofilms with C. albicans has never been examined. A gtfR deletion mutant, purified GtfR, and recombinant GtfR glucan-binding domain were tested in single and mixed biofilms on different substrata in vitro. A mouse oral infection model was also used. We found that in single species biofilms growing with sucrose on abiotic surfaces S. oralis gtfR increased biofilm matrix, but not bacterial biomass. In biofilms with C. albicans, S. oralis encoding gtfR showed increased bacterial biomass on all surfaces. C. albicans had a positive effect on α-glucan synthesis, and α-glucans increased C. albicans accretion on abiotic surfaces. In single and mixed infection of mice receiving sucrose S. oralis gtfR enhanced mucosal burdens. However, sucrose had a negative impact on C. albicans burdens and reduced S. oralis burdens in co-infected mice. Our data provide new insights on the GtfR-mediated interactions between the two organisms and the influence of biofilm substratum and the mucosal environment on these interactions.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Angela Thompson
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Jillian M Mansfield
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - André Alex Grassmann
- Departments of Medicine, Pediatrics and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Kendra Maas
- Microbial Analysis, Resources, and Services Core, University of Connecticut, Storrs, CT, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Valentim Adelino Ricardo Barao
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - M Margaret Vickerman
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA.
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA.
| |
Collapse
|
24
|
Biofilm Interactions of Candida albicans and Mitis Group Streptococci in a Titanium-Mucosal Interface Model. Appl Environ Microbiol 2020; 86:AEM.02950-19. [PMID: 32111586 DOI: 10.1128/aem.02950-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci from the mitis group (represented mainly by Streptococcus mitis, Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii) form robust biofilms with Candida albicans in different experimental models. These microorganisms have been found in polymicrobial biofilms forming on titanium biomaterial surfaces in humans with peri-implant disease. The purpose of this work was to study mutualistic interactions in biofilms forming on titanium and their effect on the adjacent mucosa, using a relevant infection model. Single and mixed biofilms of C. albicans and each Streptococcus species were grown on titanium disks. Bacterial and fungal biovolume and biomass were quantified in these biofilms. Organotypic mucosal constructs were exposed to preformed titanium surface biofilms to test their effect on secretion of proinflammatory cytokines and cell damage. C. albicans promoted bacterial biofilms of all mitis Streptococcus species on titanium surfaces. This relationship was mutualistic since all bacterial species upregulated the efg1 hypha-associated gene in C. albicans Mixed biofilms caused increased tissue damage but did not increase proinflammatory cytokine responses compared to biofilms comprising Candida alone. Interestingly, spent culture medium from tissues exposed to titanium biofilms suppressed Candida growth on titanium surfaces.IMPORTANCE Our findings provide new insights into the cross-kingdom interaction between C. albicans and Streptococcus species representative of the mitis group. These microorganisms colonize titanium-based dental implant materials, but little is known about their ability to cause inflammation and damage of the adjacent mucosal tissues. Using an in vitro biomaterial-mucosal interface infection model, we showed that mixed biofilms of each species with C. albicans enhance tissue damage. One possible mechanism for this effect is the increased fungal hypha-associated virulence gene expression we observed in mixed biofilms with these species. Interestingly, we also found that the interaction of multispecies biofilms with organotypic mucosal surfaces led to the release of growth-suppressing mediators of Candida, which may represent a homeostatic defense mechanism of the oral mucosa against fungal overgrowth. Thus, our findings provide novel insights into biofilms on biomaterials that may play an important role in the pathogenesis of mucosal infections around titanium implants.
Collapse
|
25
|
Bernard C, Girardot M, Imbert C. Candida albicans interaction with Gram-positive bacteria within interkingdom biofilms. J Mycol Med 2020; 30:100909. [DOI: 10.1016/j.mycmed.2019.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022]
|
26
|
Hickey NA, Shalamanova L, Whitehead KA, Dempsey-Hibbert N, van der Gast C, Taylor RL. Exploring the putative interactions between chronic kidney disease and chronic periodontitis. Crit Rev Microbiol 2020; 46:61-77. [PMID: 32046541 DOI: 10.1080/1040841x.2020.1724872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) and chronic periodontitis (CP) are both common diseases, which are found disproportionately comorbid with each other and have been reported to have a detrimental effect on the progression of each respective disease. They have an overlap in risk factors and both are a source of systemic inflammation along with a wide selection of immunological and non-specific effects that can affect the body over the lifespan of the conditions. Previous studies have investigated the directionality of the relationship between these two diseases; however, there is a lack of literature that has examined how these diseases may be interacting at the localized and systemic level. This review discusses how oral microorganisms have the ability to translocate and have distal effects and provides evidence for microbial involvement in a systemic disease. Furthermore, it summarizes the reported local and systemic effects of CKD and CP and discusses how the interaction of these effects may be responsible for directionality associations reported.
Collapse
Affiliation(s)
- Niall A Hickey
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Liliana Shalamanova
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Kathryn A Whitehead
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Nina Dempsey-Hibbert
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Christopher van der Gast
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Rebecca L Taylor
- Centre for Bioscience, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
27
|
Chinnici J, Yerke L, Tsou C, Busarajan S, Mancuso R, Sadhak ND, Kim J, Maddi A. Candida albicans cell wall integrity transcription factors regulate polymicrobial biofilm formation with Streptococcus gordonii. PeerJ 2019; 7:e7870. [PMID: 31616604 PMCID: PMC6791342 DOI: 10.7717/peerj.7870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Polymicrobial biofilms play important roles in oral and systemic infections. The oral plaque bacterium Streptococcus gordonii is known to attach to the hyphal cell wall of the fungus Candida albicans to form corn-cob like structures in biofilms. However, the role of C. albicans in formation of polymicrobial biofilms is not completely understood. The objective of this study was to determine the role of C. albicans transcription factors in regulation of polymicrobial biofilms and antibiotic tolerance of S. gordonii. The proteins secreted by C. albicans and S. gordonii in mixed planktonic cultures were determined using mass spectrometry. Antibiotic tolerance of S. gordonii to ampicillin and erythromycin was determined in mixed cultures and mixed biofilms with C. albicans. Additionally, biofilm formation of S. gordonii with C. albicans knock-out mutants of 45 transcription factors that affect cell wall integrity, filamentous growth and biofilm formation was determined. Furthermore, these mutants were also screened for antibiotic tolerance in mixed biofilms with S. gordonii. Analysis of secreted proteomes resulted in the identification of proteins being secreted exclusively in mixed cultures. Antibiotic testing showed that S. gordonii had significantly increased survival in mixed planktonic cultures with antibiotics as compared to single cultures. C. albicans mutants of transcription factors Sfl2, Brg1, Leu3, Cas5, Cta4, Tec1, Tup1, Rim101 and Efg1 were significantly affected in mixed biofilm formation. Also mixed biofilms of S. gordonii with mutants of C. albicans transcription factors, Tec1 and Sfl2, had significantly reduced antibiotic tolerance as compared to control cultures. Our data indicates that C. albicans may have an important role in mixed biofilm formation as well as antibiotic tolerance of S. gordonii in polymicrobial biofilms. C. albicans may play a facilitating role than being just an innocent bystander in oral biofilms and infections.
Collapse
Affiliation(s)
- Jennifer Chinnici
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Lisa Yerke
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Charlene Tsou
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Sujay Busarajan
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Ryan Mancuso
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Nishanth D Sadhak
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Jaewon Kim
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Abhiram Maddi
- Departments of Periodontics & Endodontics and Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
28
|
Ingendoh‐Tsakmakidis A, Mikolai C, Winkel A, Szafrański SP, Falk CS, Rossi A, Walles H, Stiesch M. Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol 2019; 21:e13078. [PMID: 31270923 PMCID: PMC6771885 DOI: 10.1111/cmi.13078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
The impact of oral commensal and pathogenic bacteria on peri-implant mucosa is not well understood, despite the high prevalence of peri-implant infections. Hence, we investigated responses of the peri-implant mucosa to Streptococcus oralis or Aggregatibacter actinomycetemcomitans biofilms using a novel in vitro peri-implant mucosa-biofilm model. Our 3D model combined three components, organotypic oral mucosa, implant material, and oral biofilm, with structural assembly close to native situation. S. oralis induced a protective stress response in the peri-implant mucosa through upregulation of heat shock protein (HSP70) genes. Attenuated inflammatory response was indicated by reduced cytokine levels of interleukin-6 (IL-6), interleukin-8 (CXCL8), and monocyte chemoattractant protein-1 (CCL2). The inflammatory balance was preserved through increased levels of tumor necrosis factor-alpha (TNF-α). A. actinomycetemcomitans induced downregulation of genes important for cell survival and host inflammatory response. The reduced cytokine levels of chemokine ligand 1 (CXCL1), CXCL8, and CCL2 also indicated a diminished inflammatory response. The induced immune balance by S. oralis may support oral health, whereas the reduced inflammatory response to A. actinomycetemcomitans may provide colonisation advantage and facilitate later tissue invasion. The comprehensive characterisation of peri-implant mucosa-biofilm interactions using our 3D model can provide new knowledge to improve strategies for prevention and therapy of peri-implant disease.
Collapse
Affiliation(s)
| | - Carina Mikolai
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| | - Szymon P. Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| | - Christine S. Falk
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Angela Rossi
- Translational Center for Regenerative TherapiesFraunhofer Institute of Silicate Research ISCWürzburgGermany
| | - Heike Walles
- Translational Center for Regenerative TherapiesFraunhofer Institute of Silicate Research ISCWürzburgGermany
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital of WürzburgWürzburgGermany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| |
Collapse
|
29
|
Ohshima J, Wang Q, Fitzsimonds ZR, Miller DP, Sztukowska MN, Jung YJ, Hayashi M, Whiteley M, Lamont RJ. Streptococcus gordonii programs epithelial cells to resist ZEB2 induction by Porphyromonas gingivalis. Proc Natl Acad Sci U S A 2019; 116:8544-8553. [PMID: 30971493 PMCID: PMC6486779 DOI: 10.1073/pnas.1900101116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The polymicrobial microbiome of the oral cavity is a direct precursor of periodontal diseases, and changes in microhabitat or shifts in microbial composition may also be linked to oral squamous cell carcinoma. Dysbiotic oral epithelial responses provoked by individual organisms, and which underlie these diseases, are widely studied. However, organisms may influence community partner species through manipulation of epithelial cell responses, an aspect of the host microbiome interaction that is poorly understood. We report here that Porphyromonas gingivalis, a keystone periodontal pathogen, can up-regulate expression of ZEB2, a transcription factor which controls epithelial-mesenchymal transition and inflammatory responses. ZEB2 regulation by P. gingivalis was mediated through pathways involving β-catenin and FOXO1. Among the community partners of P. gingivalis, Streptococcus gordonii was capable of antagonizing ZEB2 expression. Mechanistically, S. gordonii suppressed FOXO1 by activating the TAK1-NLK negative regulatory pathway, even in the presence of P. gingivalis Collectively, these results establish S. gordonii as homeostatic commensal, capable of mitigating the activity of a more pathogenic organism through modulation of host signaling.
Collapse
Affiliation(s)
- Jun Ohshima
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Maryta N Sztukowska
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
- University of Information Technology and Management, 35-225 Rzeszow, Poland
| | - Young-Jung Jung
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 565-0871 Osaka, Japan
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30322
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202;
| |
Collapse
|
30
|
Neilands J, Davies JR, Bikker FJ, Svensäter G. Parvimonas micra stimulates expression of gingipains from Porphyromonas gingivalis in multi-species communities. Anaerobe 2019; 55:54-60. [DOI: 10.1016/j.anaerobe.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/15/2022]
|
31
|
Brown JL, Yates EA, Bielecki M, Olczak T, Smalley JW. Potential role for Streptococcus gordonii-derived hydrogen peroxide in heme acquisition by Porphyromonas gingivalis. Mol Oral Microbiol 2019; 33:322-335. [PMID: 29847019 DOI: 10.1111/omi.12229] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 01/16/2023]
Abstract
Streptococcus gordonii, an accessory pathogen and early colonizer of plaque, co-aggregates with many oral species including Porphyromonas gingivalis. It causes α-hemolysis on blood agar, a process mediated by H2 O2 and thought to involve concomitant oxidation of hemoglobin (Hb). Porphyromonas gingivalis has a growth requirement for heme, which is acquired mainly from Hb. The paradigm for Hb heme acquisition involves the initial oxidation of oxyhemoglobin (oxyHb) to methemoglobin (metHb), followed by heme release and extraction through the actions of K-gingipain protease and/or the HmuY hemophore-like protein. The ability of S. gordonii to mediate Hb oxidation may potentially aid heme capture during co-aggregation with P. gingivalis. Hemoglobin derived from zones of S. gordonii α-hemolysis was found to be metHb. Generation of metHb from oxyHb by S. gordonii cells was inhibited by catalase, and correlated with levels of cellular H2 O2 production. Generation of metHb by S. gordonii occurred through the higher Hb oxidation state of ferrylhemoglobin. Heme complexation by the P. gingivalis HmuY was employed as a measure of the ease of heme capture from metHb. HmuY was able to extract iron(III)protoporphyrin IX from metHb derived from zones of S. gordonii α-hemolysis and from metHb generated by the action of S. gordonii cells on isolated oxyHb. The rate of HmuY-Fe(III)heme complex formation from S. gordonii-mediated metHb was greater than from an equivalent concentration of auto-oxidized metHb. It is concluded that S. gordonii may potentially aid heme acquisition by P. gingivalis by facilitating metHb formation in the presence of oxyHb.
Collapse
Affiliation(s)
- J L Brown
- School of Dentistry, Institute of Clinical Sciences, University of Liverpool, Liverpool, UK
| | - E A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Bielecki
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - T Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - J W Smalley
- School of Dentistry, Institute of Clinical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
32
|
Nobbs A, Kreth J. Genetics of sanguinis-Group Streptococci in Health and Disease. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0052-2018. [PMID: 30681069 PMCID: PMC11590441 DOI: 10.1128/microbiolspec.gpp3-0052-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
With the application of increasingly advanced "omics" technologies to the study of our resident oral microbiota, the presence of a defined, health-associated microbial community has been recognized. Within this community, sanguinis-group streptococci, comprising the closely related Streptococcus sanguinis and Streptococcus gordonii, together with Streptococcus parasanguinis, often predominate. Their ubiquitous and abundant nature reflects the evolution of these bacteria as highly effective colonizers of the oral cavity. Through interactions with host tissues and other microbes, and the capacity to readily adapt to prevailing environmental conditions, sanguinis-group streptococci are able to shape accretion of the oral plaque biofilm and promote development of a microbial community that exists in harmony with its host. Nonetheless, upon gaining access to the blood stream, those very same colonization capabilities can confer upon sanguinis-group streptococci the ability to promote systemic disease. This article focuses on the role of sanguinis-group streptococci as the commensurate commensals, highlighting those aspects of their biology that enable the coordination of health-associated biofilm development. This includes the molecular mechanisms, both synergistic and antagonistic, that underpin adhesion to substrata, intercellular communication, and polymicrobial community formation. As our knowledge of these processes advances, so will the opportunities to exploit this understanding for future development of novel strategies to control oral and extraoral disease.
Collapse
Affiliation(s)
- Angela Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
33
|
Abstract
The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Magi G, Marini E, Brenciani A, Di Lodovico S, Gentile D, Ruberto G, Cellini L, Nostro A, Facinelli B, Napoli E. Chemical composition of Pistacia vera L. oleoresin and its antibacterial, anti-virulence and anti-biofilm activities against oral streptococci, including Streptococcus mutans. Arch Oral Biol 2018; 96:208-215. [PMID: 30296655 DOI: 10.1016/j.archoralbio.2018.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/07/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aim of this study was to characterize the chemical composition of oleoresin of Pistacia vera L. and to determine its antimicrobial and anti-virulence activity versus selected oral streptococci. DESIGN A gaschromatografic analysis of the oleoresin was performed. The antimicrobial and anti-virulence activity of the oleoresin and its fractions was evaluated by the Minimum Inhibitory Concentration (MIC) and/or Minimum Bactericidal Concentration (MBC), biofilm production and haemolytic activity inhibition experiments. RESULTS The oleoresin MBCs were ≥1024 μg/mL for all tested strains; the neutral and acidic fraction MBCs ranged from 128 to 2048 μg/mL. Essential oil's MBCs (from 256 to 2048 μg/mL) were almost identical to MICs, suggesting a bactericidal effect. P. vera oleoresin at sub-lethal concentrations significantly reduced biofilm production by Streptococcus mutans (up to 49.4%) and by Streptococcus sanguinis (up to 71.2%). In addition, the acidic fraction showed a specific anti-biofilm activity against S. mutans (up to 41.3% reduction). A significant dose-dependent reduction in the haemolytic activity of S. mutans (up to 65.9%) and of S. anginosus (up to 78.3%) was observed after growth in the presence of oleoresin at sub-lethal concentrations. The acidic fraction reduced haemolytic activity (up to 54.3% at 64 μg/mL) of S. mutans only. CONCLUSIONS Given the anti-virulence activity of the P. vera oleoresin and its acidic fraction against S. mutans, our findings suggest their potential use in oral hygiene. These data represent the first step in the exploitation of P. vera L. oleoresin.
Collapse
Affiliation(s)
- Gloria Magi
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Emanuela Marini
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Davide Gentile
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, Catania, Italy
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, Catania, Italy
| | - Luigina Cellini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Bruna Facinelli
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, Catania, Italy.
| |
Collapse
|
35
|
Influence of Streptococcus mitis and Streptococcus sanguinis on virulence of Candida albicans: in vitro and in vivo studies. Folia Microbiol (Praha) 2018; 64:215-222. [PMID: 30232727 DOI: 10.1007/s12223-018-0645-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
The aim was to evaluate in vitro possible interactions, gene expression, and biofilm formation in species of Candida albicans, Streptococcus mitis, and Streptococcus sanguinis and their in vivo pathogenicity. The in vitro analysis evaluated the effects of S. mitis and S. sanguinis on C. albicans's biofilm formation by CFU count, filamentation capacity, and adhesion (ALS1, ALS3, HWP1) and transcriptional regulatory gene (BCR1, CPH1, EFG1) expression. In vivo studies evaluated the pathogenicity of the interaction of the microorganisms on Galleria mellonella, with analyses of the CFU per milliliter count and filamentation. In vitro results indicated that there was an observed decrease in CFU (79.4-71.5%) in multi-species biofilms. The interaction with S. mitis inhibited filamentation, which seems to increase its virulence factor with over-expression of genes ALS1, ALS3, and HWP1 as well the interaction with S. sanguinis as ALS3 and HWP1. S. mitis upregulated BRC1, CPH1, and EFG1. The histological images of in vivo study indicate an increase in the filamentation of C. albicans when in interaction with the other species. It was concluded that S. mitis interaction suggests increased virulence factors of C. albicans, with periods of lower virulence and proto-cooperation in the interaction with S. sanguinis.
Collapse
|
36
|
Distinct Regulatory Role of Carbon Catabolite Protein A (CcpA) in Oral Streptococcal spxB Expression. J Bacteriol 2018; 200:JB.00619-17. [PMID: 29378884 DOI: 10.1128/jb.00619-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Pyruvate oxidase (SpxB)-dependent H2O2 production is under the control of carbon catabolite protein A (CcpA) in the oral species Streptococcus sanguinis and Streptococcus gordonii Interestingly, both species react differently to the presence of the preferred carbohydrate source glucose. S. gordonii CcpA-dependent regulation of spxB follows classical carbon catabolite repression. Conversely, spxB expression in S. sanguinis is not influenced by glucose but is repressed by CcpA. Here, we constructed strains expressing the heterologous versions of CcpA or the spxB promoter region to learn if the distinct regulation of spxB expression is transferable from S. gordonii to S. sanguinis and vice versa. While cross-species binding of CcpA to the spxB promoter is conserved in vitro, we were unable to swap the species-specific regulation. This suggests that a regulatory mechanism upstream of CcpA most likely is responsible for the observed difference in spxB expression. Moreover, the overall ecological significance of differential spxB regulation in the presence of various glucose concentrations was tested with additional oral streptococcus isolates and demonstrated that carbohydrate-dependent and carbohydrate-independent mechanisms exist to control expression of spxB in the oral biofilm. Overall, our data demonstrate the unexpected finding that metabolic pathways between two closely related oral streptococcal species can be regulated differently despite an exceptionally high DNA sequence identity.IMPORTANCE Polymicrobial diseases are the result of interactions among the residential microbes, which can lead to a dysbiotic community. Streptococcus sanguinis and Streptococcus gordonii are considered commensal species that are present in the healthy dental biofilm. Both species are able to produce significant amounts of H2O2 via the enzymatic action of the pyruvate oxidase SpxB. H2O2 is able to inhibit species associated with oral diseases. SpxB and its gene-regulatory elements present in both species are highly conserved. Nonetheless, a differential response to the presence of glucose was observed. Here, we investigate the mechanisms that lead to this differential response. Detailed knowledge of the regulatory mechanisms will aid in a better understanding of oral disease development and how to prevent dysbiosis.
Collapse
|
37
|
Macrophage Polarization Alters Postphagocytosis Survivability of the Commensal Streptococcus gordonii. Infect Immun 2018; 86:IAI.00858-17. [PMID: 29229734 DOI: 10.1128/iai.00858-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Oral streptococci are generally considered commensal organisms; however, they are becoming recognized as important associate pathogens during the development of periodontal disease as well as being associated with several systemic diseases, including as a causative agent of infective endocarditis. An important virulence determinant of these bacteria is an ability to evade destruction by phagocytic cells, yet how this subversion occurs is mostly unknown. Using Streptococcus gordonii as a model commensal oral streptococcus that is also associated with disease, we find that resistance to reactive oxygen species (ROS) with an active ability to damage phagosomes allows the bacterium to avoid destruction within macrophages. This ability to survive relies not only on the ROS resistance capabilities of the bacterium but also on ROS production by macrophages, with both being required for maximal survival of internalized bacteria. Importantly, we also show that this dependence on ROS production by macrophages for resistance has functional significance: S. gordonii intracellular survival increases when macrophages are polarized toward an activated (M1) profile, which is known to result in prolonged phagosomal ROS production compared to that of alternatively (M2) polarized macrophages. We additionally find evidence of the bacterium being capable of both delaying the maturation of and damaging phagosomes. Taken together, these results provide essential insights regarding the mechanisms through which normally commensal oral bacteria can contribute to both local and systemic inflammatory disease.
Collapse
|
38
|
Wen ZT, Liao S, Bitoun JP, De A, Jorgensen A, Feng S, Xu X, Chain PSG, Caufield PW, Koo H, Li Y. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium. Front Cell Infect Microbiol 2017; 7:524. [PMID: 29326887 PMCID: PMC5742344 DOI: 10.3389/fcimb.2017.00524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P < 0.001), while biofilms by L. fermentum reduced by >1-log (P < 0.001). L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P < 0.001), but drastically reduced the survival rates following exposure to hydrogen peroxide (P < 0.001), as compared to the respective mono-species cultures. When analyzed by RNA-seq, more than 134 genes were identified in S. mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community.
Collapse
Affiliation(s)
- Zezhang T Wen
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Sumei Liao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob P Bitoun
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Arpan De
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ashton Jorgensen
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Shihai Feng
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Xiaoming Xu
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patrick S G Chain
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Page W Caufield
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yihong Li
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| |
Collapse
|
39
|
Kuboniwa M, Houser JR, Hendrickson EL, Wang Q, Alghamdi SA, Sakanaka A, Miller DP, Hutcherson JA, Wang T, Beck DAC, Whiteley M, Amano A, Wang H, Marcotte EM, Hackett M, Lamont RJ. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol 2017; 2:1493-1499. [PMID: 28924191 PMCID: PMC5678995 DOI: 10.1038/s41564-017-0021-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Many human infections are polymicrobial in origin, and interactions among community inhabitants shape colonization patterns and pathogenic potential 1 . Periodontitis, which is the sixth most prevalent infectious disease worldwide 2 , ensues from the action of dysbiotic polymicrobial communities 3 . The keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii interact to form communities in vitro and exhibit increased fitness in vivo 3,4 . The mechanistic basis of this polymicrobial synergy, however, has not been fully elucidated. Here we show that streptococcal 4-aminobenzoate/para-amino benzoic acid (pABA) is required for maximal accumulation of P. gingivalis in dual-species communities. Metabolomic and proteomic data showed that exogenous pABA is used for folate biosynthesis, and leads to decreased stress and elevated expression of fimbrial adhesins. Moreover, pABA increased the colonization and survival of P. gingivalis in a murine oral infection model. However, pABA also caused a reduction in virulence in vivo and suppressed extracellular polysaccharide production by P. gingivalis. Collectively, these data reveal a multidimensional aspect to P. gingivalis-S. gordonii interactions and establish pABA as a critical cue produced by a partner species that enhances the fitness of P. gingivalis while diminishing its virulence.
Collapse
Affiliation(s)
- Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - John R Houser
- Institute for Cellular and Molecular Biology, and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik L Hendrickson
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Samar A Alghamdi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Justin A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Tiansong Wang
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - David A C Beck
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of eScience, University of Washington, Seattle, WA, 98195, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Edward M Marcotte
- Institute for Cellular and Molecular Biology, and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Murray Hackett
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA.
| |
Collapse
|
40
|
Hutcherson JA, Sinclair KM, Belvin BR, Gui Q, Hoffman PS, Lewis JP. Amixicile, a novel strategy for targeting oral anaerobic pathogens. Sci Rep 2017; 7:10474. [PMID: 28874750 PMCID: PMC5585216 DOI: 10.1038/s41598-017-09616-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/24/2017] [Indexed: 01/27/2023] Open
Abstract
The oral microflora is composed of both health-promoting as well as disease-initiating bacteria. Many of the disease-initiating bacteria are anaerobic and include organisms such as Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Tannerella forsythia. Here we investigated a novel therapeutic, amixicile, that targets pyruvate:ferredoxin oxidoreductase (PFOR), a major metabolic enzyme involved in energy generation through oxidative decarboxylation of pyruvate. PFOR is present in these anaerobic pathogenic bacteria and thus we hypothesized that amixicile would effectively inhibit their growth. In general, PFOR is present in all obligate anaerobic bacteria, while oral commensal aerobes, including aerotolerant ones, such as Streptococcus gordonii, use pyruvate dehydrogenase to decarboxylate pyruvate. Accordingly, we observed that growth of the PFOR-containing anaerobic periodontal pathogens, grown in both monospecies as well as multispecies broth cultures was inhibited in a dose-dependent manner while that of S. gordonii was unaffected. Furthermore, we also show that amixicile is effective against these pathogens grown as monospecies and multispecies biofilms. Finally, amixicile is the first selective therapeutic agent active against bacteria internalized by host cells. Together, the results show that amixicile is an effective inhibitor of oral anaerobic bacteria and as such, is a good candidate for treatment of periodontal diseases.
Collapse
Affiliation(s)
- Justin A Hutcherson
- Philips Institute of Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kathryn M Sinclair
- Philips Institute of Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Benjamin R Belvin
- Philips Institute of Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qin Gui
- Philips Institute of Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Janina P Lewis
- Philips Institute of Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA.
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA.
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
41
|
Phenotype and Function of Myeloid-Derived Suppressor Cells Induced by Porphyromonas gingivalis Infection. Infect Immun 2017; 85:IAI.00213-17. [PMID: 28533469 DOI: 10.1128/iai.00213-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Porphyromonas gingivalis, a major etiologic agent of periodontitis, has been reported to induce the expansion of myeloid-derived suppressor cells (MDSC); however, little is known regarding the subpopulations of MDSC expanded by P. gingivalis infection. Flow cytometry was used to evaluate bone marrow and spleen cells from mice infected with P. gingivalis and controls for surface expression of CD11b, Ly6G, and Ly6C. To characterize the phenotype of MDSC subpopulations induced by infection, cells were sorted based on the differential expression of Ly6G and Ly6C. Moreover, since MDSC are suppressors of T cell immune activity, we determined the effect of the induced subpopulations of MDSC on the proliferative response of OVA-specific CD4+ T cells. Lastly, the plasticity of MDSC to differentiate into osteoclasts was assessed by staining for tartrate-resistant acid phosphatase activity. P. gingivalis infection induced the expansion of three subpopulations of MDSC (Ly6G++ Ly6C+, Ly6G+ Ly6C++, and Ly6G+ Ly6C+); however, only CD11b+ Ly6G+ Ly6C++-expressing cells exerted a significant suppressive effect on T cell proliferation. Inhibition of proliferative responses required T cell-MDSC contact and was mediated by inducible nitric oxide synthase and cationic amino acid transporter 2 via gamma interferon. Furthermore, only the CD11b+ Ly6G+ Ly6C++ subpopulation of MDSC induced by P. gingivalis infection was able to differentiate into osteoclasts. Thus, the inflammatory response induced by P. gingivalis infection promotes the expansion of immune-suppressive cells and consequently the development of regulatory inhibitors that curtail the host response. Moreover, monocytic MDSC have the plasticity to differentiate into OC, thus perhaps contributing to the OC pool in states of periodontal disease.
Collapse
|
42
|
Olsen I, Lambris JD, Hajishengallis G. Porphyromonas gingivalis disturbs host-commensal homeostasis by changing complement function. J Oral Microbiol 2017; 9:1340085. [PMID: 28748042 PMCID: PMC5508361 DOI: 10.1080/20002297.2017.1340085] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic rod that has been proposed as an orchestrator of complement-dependent dysbiotic inflammation. This notion was suggested from its capacities to manipulate the complement–Toll-like receptor crosstalk in ways that promote dysbiosis and periodontal disease in animal models. Specifically, while at low colonization levels, P. gingivalis interferes with innate immunity and leads to changes in the counts and composition of the oral commensal microbiota. The resulting dysbiotic microbial community causes disruption of host–microbial homeostasis, leading to inflammatory bone loss. These findings suggested that P. gingivalis can be considered as a keystone pathogen. The concept of keystone pathogens is one where their effects have community-wide significance and are disproportionate of their abundance. The present review summarizes the relevant literature and discusses whether the results from the animal models can be extrapolated to man.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine; University of Pennsylvania, PA, USA
| |
Collapse
|
43
|
Xu H, Sobue T, Bertolini M, Thompson A, Vickerman M, Nobile CJ, Dongari-Bagtzoglou A. S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms. Virulence 2017; 8:1602-1617. [PMID: 28481721 DOI: 10.1080/21505594.2017.1326438] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida albicans and Streptococcus oralis are ubiquitous oral commensal organisms. Under host-permissive conditions these organisms can form hypervirulent mucosal biofilms. C. albicans biofilm formation is controlled by 6 master transcriptional regulators: Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1. The objective of this work was to test whether any of these regulators play a role in cross-kingdom interactions between C. albicans and S. oralis in oral mucosal biofilms, and identify downstream target gene(s) that promote these interactions. Organotypic mucosal constructs and a mouse model of oropharyngeal infection were used to analyze mucosal biofilm growth and fungal gene expression. By screening 6 C. albicans transcription regulator reporter strains we discovered that EFG1 was strongly activated by interaction with S. oralis in late biofilm growth stages. EFG1 gene expression was increased in polymicrobial biofilms on abiotic surfaces, mucosal constructs and tongue tissues of mice infected with both organisms. EFG1 was required for robust Candida-streptococcal biofilm growth in organotypic constructs and mouse oral tissues. S. oralis stimulated C. albicans ALS1 gene expression in an EFG1-dependent manner, and Als1 was identified as a downstream effector of the Efg1 pathway which promoted C. albicans-S. oralis coaggregation interactions in mixed biofilms. We conclude that S. oralis induces an increase in EFG1 expression in C. albicans in late biofilm stages. This in turn increases expression of ALS1, which promotes coaggregation interactions and mucosal biofilm growth. Our work provides novel insights on C. albicans genes which play a role in cross-kingdom interactions with S. oralis in mucosal biofilms.
Collapse
Affiliation(s)
- Hongbin Xu
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | - Takanori Sobue
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | - Martinna Bertolini
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | - Angela Thompson
- a School of Dental Medicine, University of Connecticut , Farmington , CT , USA
| | | | - Clarissa J Nobile
- c School of Natural Sciences, University of California , Merced, Merced , CA , USA
| | | |
Collapse
|
44
|
Role of Oral Health in Dysphagic Stroke Recovery. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016. [DOI: 10.1007/s40141-016-0135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells. Biomaterials 2016; 105:156-166. [PMID: 27521618 DOI: 10.1016/j.biomaterials.2016.07.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/27/2016] [Accepted: 07/31/2016] [Indexed: 11/20/2022]
Abstract
Protein drugs (PD) are minimally utilized in dental medicine due to high cost and invasive surgical delivery. There is limited clinical advancement in disrupting virulent oral biofilms, despite their high prevalence in causing dental caries. Poor efficacy of antimicrobials following topical treatments or to penetrate and disrupt formed biofilms is a major challenge. We report an exciting low-cost approach using plant-made antimicrobial peptides (PMAMPs) retrocyclin or protegrin with complex secondary structures (cyclic/hairpin) for topical use to control biofilms. The PMAMPs rapidly killed the pathogen Streptococcus mutans and impaired biofilm formation following a single topical application of tooth-mimetic surface. Furthermore, we developed a synergistic approach using PMAMPs combined with matrix-degrading enzymes to facilitate their access into biofilms and kill the embedded bacteria. In addition, we identified a novel role for PMAMPs in delivering drugs to periodontal and gingival cells, 13-48 folds more efficiently than any other tested cell penetrating peptides. Therefore, PDs fused with protegrin expressed in plant cells could potentially play a dual role in delivering therapeutic proteins to gum tissues while killing pathogenic bacteria when delivered as topical oral formulations or in chewing gums. Recent FDA approval of plant-produced PDs augurs well for clinical advancement of this novel concept.
Collapse
|
46
|
Thamadilok S, Roche-Håkansson H, Håkansson AP, Ruhl S. Absence of capsule reveals glycan-mediated binding and recognition of salivary mucin MUC7 by Streptococcus pneumoniae. Mol Oral Microbiol 2016; 31:175-88. [PMID: 26172471 PMCID: PMC4713356 DOI: 10.1111/omi.12113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 11/30/2022]
Abstract
Salivary proteins modulate bacterial colonization in the oral cavity and interact with systemic pathogens that pass through the oropharynx. An interesting example is the opportunistic respiratory pathogen Streptococcus pneumoniae that normally resides in the nasopharynx, but belongs to the greater Mitis group of streptococci, most of which colonize the oral cavity. Streptococcus pneumoniae also expresses a serine-rich repeat (SRR) adhesin, PsrP, which is a homologue to oral Mitis group SRR adhesins, such as Hsa of Streptococcus gordonii and SrpA of Streptococcus sanguinis. As the latter bind to salivary glycoproteins through recognition of terminal sialic acids, we wanted to determine whether S. pneumoniae also binds to salivary proteins through possibly the same mechanism. We found that only a capsule-free mutant of S. pneumoniae TIGR4 binds to salivary proteins, most prominently to mucin MUC7, but that this binding was not mediated through PsrP or recognition of sialic acid. We also found, however, that PsrP is involved in agglutination of human red blood cells (RBCs). After removal of PsrP, an additional previously masked lectin-like adhesin activity mediating agglutination of sialidase-treated RBCs becomes revealed. Using a custom-spotted glycoprotein and neoglycoprotein dot blot array, we identify candidate glycan motifs recognized by PsrP and by the putative S. pneumoniae adhesin that could perhaps be responsible for pneumococcal binding to salivary MUC7 and glycoproteins on RBCs.
Collapse
Affiliation(s)
- Supaporn Thamadilok
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Hazeline Roche-Håkansson
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Anders P. Håkansson
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214
| |
Collapse
|
47
|
Microbial Diversity in the Early In Vivo-Formed Dental Biofilm. Appl Environ Microbiol 2016; 82:1881-8. [PMID: 26746720 DOI: 10.1128/aem.03984-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022] Open
Abstract
Although the mature dental biofilm composition is well studied, there is very little information on the earliest phase of in vivo tooth colonization. Progress in dental biofilm collection methodologies and techniques of large-scale microbial identification have made new studies in this field of oral biology feasible. The aim of this study was to characterize the temporal changes and diversity of the cultivable and noncultivable microbes in the early dental biofilm. Samples of early dental biofilm were collected from 11 healthy subjects at 0, 2, 4, and 6 h after removal of plaque and pellicle from tooth surfaces. With the semiquantitative Human Oral Microbiome Identification Microarray (HOMIM) technique, which is based on 16S rRNA sequence hybridizations, plaque samples were analyzed with the currently available 407 HOMIM microbial probes. This led to the identification of at least 92 species, with streptococci being the most abundant bacteria across all time points in all subjects. High-frequency detection was also made with Haemophilus parainfluenzae, Gemella haemolysans, Slackia exigua, and Rothia species. Abundance changes over time were noted for Streptococcus anginosus and Streptococcus intermedius (P = 0.02), Streptococcus mitis bv. 2 (P = 0.0002), Streptococcus oralis (P = 0.0002), Streptococcus cluster I (P = 0.003), G. haemolysans (P = 0.0005), and Stenotrophomonas maltophilia (P = 0.02). Among the currently uncultivable microbiota, eight phylotypes were detected in the early stages of biofilm formation, one belonging to the candidate bacterial division TM7, which has attracted attention due to its potential association with periodontal disease.
Collapse
|
48
|
Sobue T, Diaz P, Xu H, Bertolini M, Dongari-Bagtzoglou A. Experimental Models of C. albicans-Streptococcal Co-infection. Methods Mol Biol 2016; 1356:137-52. [PMID: 26519070 DOI: 10.1007/978-1-4939-3052-4_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Interactions of C. albicans with co-colonizing bacteria at mucosal sites can be synergistic or antagonistic in disease development, depending on the bacterial species and mucosal site. Mitis group streptococci and C. albicans colonize the oral mucosa of the majority of healthy individuals. These streptococci have been termed "accessory pathogens," defined by their ability to initiate multispecies biofilm assembly and promote the virulence of the mixed bacterial biofilm community in which they participate. To demonstrate whether interactions with Mitis group streptococci limit or promote the potential of C. albicans to become an opportunistic pathogen, in vitro and in vivo co-infection models are needed. Here, we describe two C. albicans-streptococcal co-infection models: an organotypic oral mucosal tissue model that incorporates salivary flow and a mouse model of oral co-infection that requires reduced levels of immunosuppression compared to single fungal infection.
Collapse
Affiliation(s)
- Takanori Sobue
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Patricia Diaz
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Hongbin Xu
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
49
|
Sakanaka A, Takeuchi H, Kuboniwa M, Amano A. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells. Microb Pathog 2015; 94:42-7. [PMID: 26456558 DOI: 10.1016/j.micpath.2015.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 01/01/2023]
Abstract
Porphyromonas gingivalis is deeply involved in the pathogenesis of marginal periodontitis, and recent findings have consolidated its role as an important and unique pathogen. This bacterium has a unique dual lifestyle in periodontal sites including subgingival dental plaque (biofilm) and gingival cells, as it has been clearly shown that P. gingivalis is able to exert virulence using completely different tactics in each environment. Inter-bacterial cross-feeding enhances the virulence of periodontal microflora, and such metabolic and adhesive interplay creates a supportive environment for P. gingivalis and other species. Human oral epithelial cells harbor a large intracellular bacterial load, resembling the polymicrobial nature of periodontal biofilm. P. gingivalis can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. Subsequently, from its intracellular position, the pathogen exploits cellular recycling pathways to exit invaded cells, by which it is able to control its population in infected tissues, allowing for persistent infection in gingival tissues. Here, we outline the dual lifestyle of P. gingivalis in subgingival areas and its effects on the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
50
|
Xu H, Jenkinson HF, Dongari-Bagtzoglou A. Innocent until proven guilty: mechanisms and roles of Streptococcus-Candida interactions in oral health and disease. Mol Oral Microbiol 2015; 29:99-116. [PMID: 24877244 PMCID: PMC4238848 DOI: 10.1111/omi.12049] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Candida albicans and streptococci of the mitis group colonize the oral cavities of the majority of healthy humans. While C. albicans is considered an opportunistic pathogen, streptococci of this group are broadly considered avirulent or even beneficial organisms. However, recent evidence suggests that multi-species biofilms with these organisms may play detrimental roles in host homeostasis and may promote infection. In this review we summarize the literature on molecular interactions between members of this streptococcal group and C. albicans, with emphasis on their potential role in the pathogenesis of opportunistic oral mucosal infections.
Collapse
|