1
|
Kim E, Van Reet J, Yoo SS. Enhanced transport of brain interstitial solutes mediated by stimulation of sensorimotor area in rats. Neuroreport 2024; 35:729-733. [PMID: 38829951 DOI: 10.1097/wnr.0000000000002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Solute transport in the brain is essential for maintaining cerebral homeostasis. Recent studies have shown that neuronal activity enhances the transport of cerebrospinal fluid solutes, but its impact on interstitial solute transport has not been established. In this study, we investigated whether neuronal activity affects the transport of interstitial solutes. METHODS Fluorescent Texas Red ovalbumin was injected intracortically into the unilateral sensorimotor area of the Sprague-Dawley rats. Regional neuronal activity around the injection site was elicited by transdermal electrical stimulation of a corresponding forelimb for 90 min ( n = 6). The control group of rats ( n = 6) did not receive any electrical stimulation. Subsequently, the spatial distributions of the tracer over the cortical surface and from the brain sections were imaged and compared between two groups. The ovalbumin fluorescence from the cervical lymph nodes was also compared between the groups to evaluate the effect of neuronal activity on solute clearance from the brain. RESULTS Tracer distribution over the brain surface/sections revealed a significantly higher uptake of ovalbumin in the hemisphere ipsilateral to the injection among the stimulated animals compared to the unstimulated group. This difference, however, was not seen in the hemisphere contralateral to injection. A trace amount of ovalbumin in the lymph nodes was equivalent between the groups, which indicated a considerable time needed for interstitial solutes to be drained from the brain. CONCLUSION The results suggest that neuronal activity enhances interstitial solute transport, calling for further examination of ultimate routes and mechanisms for brain solute clearance.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
2
|
Hall LG, Czeczor JK, Connor T, Botella J, De Jong KA, Renton MC, Genders AJ, Venardos K, Martin SD, Bond ST, Aston-Mourney K, Howlett KF, Campbell JA, Collier GR, Walder KR, McKenzie M, Ziemann M, McGee SL. Amyloid beta 42 alters cardiac metabolism and impairs cardiac function in male mice with obesity. Nat Commun 2024; 15:258. [PMID: 38225272 PMCID: PMC10789867 DOI: 10.1038/s41467-023-44520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
There are epidemiological associations between obesity and type 2 diabetes, cardiovascular disease and Alzheimer's disease. The role of amyloid beta 42 (Aβ42) in these diverse chronic diseases is obscure. Here we show that adipose tissue releases Aβ42, which is increased from adipose tissue of male mice with obesity and is associated with higher plasma Aβ42. Increasing circulating Aβ42 levels in male mice without obesity has no effect on systemic glucose homeostasis but has obesity-like effects on the heart, including reduced cardiac glucose clearance and impaired cardiac function. The closely related Aβ40 isoform does not have these same effects on the heart. Administration of an Aβ-neutralising antibody prevents obesity-induced cardiac dysfunction and hypertrophy. Furthermore, Aβ-neutralising antibody administration in established obesity prevents further deterioration of cardiac function. Multi-contrast transcriptomic analyses reveal that Aβ42 impacts pathways of mitochondrial metabolism and exposure of cardiomyocytes to Aβ42 inhibits mitochondrial complex I. These data reveal a role for systemic Aβ42 in the development of cardiac disease in obesity and suggest that therapeutics designed for Alzheimer's disease could be effective in combating obesity-induced heart failure.
Collapse
Affiliation(s)
- Liam G Hall
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Juliane K Czeczor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Becton Dickinson GmbH, Medical Affairs, 69126, Heidelberg, Germany
| | - Timothy Connor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Javier Botella
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirstie A De Jong
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Amanda J Genders
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences and Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Kylie Venardos
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Sheree D Martin
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Simon T Bond
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kathryn Aston-Mourney
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | | | - Ken R Walder
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Matthew McKenzie
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Mark Ziemann
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
- Ambetex Pty Ltd, Geelong, Australia.
| |
Collapse
|
3
|
Guan Y, Li Y, Gao W, Mei J, Xu W, Wang C, Ai H. Aggregation Dynamics Characteristics of Seven Different Aβ Oligomeric Isoforms-Dependence on the Interfacial Interaction. ACS Chem Neurosci 2024; 15:155-168. [PMID: 38109178 DOI: 10.1021/acschemneuro.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The aggregation of β-amyloid (Aβ) peptides has been confirmed to be associated with the onset of Alzheimer's disease (AD). Among the three phases of Aβ aggregation, the lag phase has been considered to be the best time for early Aβ pathological deposition clinical intervention and prevention for potential patients with normal cognition. Aβ peptide exists in various lengths in vivo, and Aβ oligomer in the early lag phase is neurotoxic but polymorphous and metastable, depending on Aβ length (isoform), molecular weight, and specific phase, and therefore hardly characterized experimentally. To cope with the problem, molecular dynamics simulation was used to investigate the aggregation process of five monomers for each of the seven common Aβ isoforms during the lag phase. Results showed that Aβ(1-40) and Aβ(1-38) monomers aggregated faster than their truncated analogues Aβ(4-40) and Aβ(4-38), respectively. However, the aggregation rate of Aβ(1-42) was slower than that of its truncated analogues Aβ(4-42) rather than that of Aβpe(3-42). More importantly, Aβ(1-38) is first predicted as more likely to form stable hexamer than the remaining five Aβ isoforms, as Aβ(1-42) does. It is hydrophobic interaction mainly (>50%) from the interfacial β1 and β2 regions of two reactants, pentamer and monomer, aggregated by Aβ(1-38)/Aβ(1-42) rather than by other Aβ isoforms, that drives the hexamer stably as a result of the formation of the effective hydrophobic collapse. This paper provides new insights into the aggregation characteristics of Aβ with different lengths and the conditions necessary for Aβ to form oligomers with a high molecular weight in the early lag phase, revealing the dependence of Aβ hexamer formation on the specific interfacial interaction.
Collapse
Affiliation(s)
- Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ye Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
4
|
Marsland P, Vore AS, DaPrano E, Paluch JM, Blackwell AA, Varlinskaya EI, Deak T. Sex-specific effects of ethanol consumption in older Fischer 344 rats on microglial dynamics and Aβ (1-42) accumulation. Alcohol 2023; 107:108-118. [PMID: 36155778 PMCID: PMC10251491 DOI: 10.1016/j.alcohol.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022]
Abstract
Chronic alcohol consumption, Alzheimer's disease (AD), and vascular dementia are all associated with cognitive decline later in life, raising questions about whether their underlying neuropathology may share some common features. Indeed, recent evidence suggests that ethanol exposure during adolescence or intermittent drinking in young adulthood increased neuropathological markers of AD, including both tau phosphorylation and beta-amyloid (Aβ) accumulation. The goal of the present study was to determine whether alcohol consumption later in life, a time when microglia and other neuroimmune processes tend to become overactive, would influence microglial clearance of Aβ(1-42), focusing specifically on microglia in close proximity to the neurovasculature. To do this, male and female Fischer 344 rats were exposed to a combination of voluntary and involuntary ethanol consumption from ∼10 months of age through ∼14 months of age. Immunofluorescence revealed profound sex differences in microglial co-localization, with Aβ(1-42) showing that aged female rats with a history of ethanol consumption had a higher number of iba1+ cells and marginally reduced expression of Aβ(1-42), suggesting greater phagocytic activity of Aβ(1-42) among females after chronic ethanol consumption later in life. Interestingly, these effects were most prominent in Iba1+ cells near neurovasculature that was stained with tomato lectin. In contrast, no significant effects of ethanol consumption were observed on any markers in males. These findings are among the first reports of a sex-specific increase in microglia-mediated phagocytosis of Aβ(1-42) by perivascular microglia in aged, ethanol-consuming rats, and may have important implications for understanding mechanisms of cognitive decline associated with chronic drinking.
Collapse
Affiliation(s)
- Paige Marsland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Andrew S Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Evan DaPrano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Joanna M Paluch
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Ashley A Blackwell
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Elena I Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
5
|
Berntsson E, Vosough F, Svantesson T, Pansieri J, Iashchishyn IA, Ostojić L, Dong X, Paul S, Jarvet J, Roos PM, Barth A, Morozova-Roche LA, Gräslund A, Wärmländer SKTS. Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides. Sci Rep 2023; 13:3341. [PMID: 36849796 PMCID: PMC9971182 DOI: 10.1038/s41598-023-29901-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1-40), Aβ(1-40)(H6A, H13A, H14A), Aβ(4-40), and Aβ(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
Collapse
Affiliation(s)
- Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Xiaolin Dong
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St. Göran Hospital, St. Göransplan 1, 112 19, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
6
|
Sakamuri SSVP, Sure VN, Wang X, Bix G, Fonseca VA, Mostany R, Katakam PVG. Amyloid [Formula: see text] (1-42) peptide impairs mitochondrial respiration in primary human brain microvascular endothelial cells: impact of dysglycemia and pre-senescence. GeroScience 2022; 44:2721-2739. [PMID: 35978067 PMCID: PMC9768086 DOI: 10.1007/s11357-022-00644-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023] Open
Abstract
Diabetes increases the risk of Alzheimer's disease (AD). We investigated the impact of glucose concentrations on the β-amyloid (Aβ)-induced alteration of mitochondrial/cellular energetics in primary human brain microvascular endothelial cells (HBMECs). HBMECs were grown and passaged in media containing 15 mmol/l glucose (normal) based on which the glucose levels in the media were designated as high (25 mmol/L) or low (5 mmol/L). HBMECs were treated with Aβ (1-42) (5 µmol/l) or a scrambled peptide for 24 h and mitochondrial respiratory parameters were measured using Seahorse Mito Stress Test. Aβ (1-42) decreased the mitochondrial ATP production at normal glucose levels and decreased spare respiratory capacity at high glucose levels. Aβ (1-42) diminished all mitochondrial respiratory parameters markedly at low glucose levels that were not completely recovered by restoring normal glucose levels in the media. The addition of mannitol (10 mmol/l) to low and normal glucose-containing media altered the Aβ (1-42)-induced bioenergetic defects. Even at normal glucose levels, pre-senescent HMBECs (passage 15) displayed greater Aβ (1-42)-induced mitochondrial respiratory impairments than young cells (passages 7-9). Thus, hypoglycemia, osmolarity changes, and senescence are stronger instigators of Aβ (1-42)-induced mitochondrial respiration and energetics in HBMECs and contributors to diabetes-related increased AD risk than hyperglycemia.
Collapse
Affiliation(s)
- Siva S. V. P. Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
| | - Venkata N. Sure
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
| | - Xiaoying Wang
- Department of Neurosurgery, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, LA 70118 New Orleans, USA
- Clinical Neuroscience Research Center, 131 S. Robertson, Suite 1300, New Orleans, LA 70112 USA
| | - Gregory Bix
- Department of Neurosurgery, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, LA 70118 New Orleans, USA
- Clinical Neuroscience Research Center, 131 S. Robertson, Suite 1300, New Orleans, LA 70112 USA
| | - Vivian A. Fonseca
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, LA 70118 New Orleans, USA
| | - Prasad V. G. Katakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, LA 70118 New Orleans, USA
- Clinical Neuroscience Research Center, 131 S. Robertson, Suite 1300, New Orleans, LA 70112 USA
| |
Collapse
|
7
|
Santiago-Mujika E, Luthi-Carter R, Giorgini F, Mukaetova-Ladinska EB. Tubulin Isotypes and Posttranslational Modifications in Vascular Dementia and Alzheimer's Disease. J Alzheimers Dis Rep 2022; 6:739-748. [PMID: 36606207 PMCID: PMC9741746 DOI: 10.3233/adr-220068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Vascular dementia (VaD) and Alzheimer's disease (AD) are the two most common forms of dementia. Although these two types of dementia have different etiologies, they share some similarities in their pathophysiology, such as neuronal loss and decreased levels of tau protein. We hypothesize that these can have an impact upon the molecular changes in tubulin, precede the neuronal cell loss, and lead to changes in cytoskeletal associated proteins, as documented in both VaD and AD. Objective We characterized different isotypes of tubulin together with their posttranslational modifications, as well as several microtubule associated proteins (MAPs), such as tau protein, MAP2 and MAP6, all together known as the tubulin code. Methods We performed western blotting in human brain homogenates of controls and AD and VaD subjects. Results We report that the levels of different tubulin isotypes differ depending on the dementia type and the brain area being studied: whereas α-tubulin is increased in the temporal lobe of VaD patients, it is decreased in the frontal lobe of AD patients. In VaD patients, the frontal lobe had a decrease in tyrosinated tubulin, which was accompanied by a decrease in tau protein and a tendency for lower levels of MAP2. Conclusion Our findings highlight distinct changes in the tubulin code in VaD and AD, suggesting a therapeutic opportunity for different dementia subtypes in the future.
Collapse
Affiliation(s)
| | - Ruth Luthi-Carter
- School of Psychology and Visual Sciences, University of Leicester, Leicester, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Elizabeta B. Mukaetova-Ladinska
- School of Psychology and Visual Sciences, University of Leicester, Leicester, UK,Evington Centre, Leicester General Hospital, Leicester, UK,Correspondence to: Elizabeta B. Mukaetova-Ladinska, School of Psychology and Visual Sciences, University of Leicester Maurice Shock Building (MSB) University Road Leicester, LE1 7RH, UK. Tel.: +44 0116 373 6405; E-mail:
| |
Collapse
|
8
|
Summers KL, Roseman G, Schilling KM, Dolgova NV, Pushie MJ, Sokaras D, Kroll T, Harris HH, Millhauser GL, Pickering IJ, George GN. Alzheimer's Drug PBT2 Interacts with the Amyloid β 1-42 Peptide Differently than Other 8-Hydroxyquinoline Chelating Drugs. Inorg Chem 2022; 61:14626-14640. [PMID: 36073854 PMCID: PMC9957665 DOI: 10.1021/acs.inorgchem.2c01694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid β (Aβ) peptide is central to disease pathology, which is supported by elevated Aβ levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aβ, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aβ(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aβ(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aβ(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aβ(1-42) species in solution, leaving a single Cu(II)Aβ(1-42) species. It follows that the Cu(II) site in this Cu(II)Aβ(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aβ(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aβ(1-42).
Collapse
Affiliation(s)
- Kelly L. Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Kevin M. Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Natalia V. Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - M. Jake Pushie
- Department of Surgery, University of Saskatchewan, 103 Hospital Dr, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Hugh H. Harris
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
9
|
Yang X, Yun Y, Wang P, Zhao J, Sun X. Upregulation of RCAN1.4 by HIF1α alleviates OGD-induced inflammatory response in astrocytes. Ann Clin Transl Neurol 2022; 9:1224-1240. [PMID: 35836352 PMCID: PMC9380140 DOI: 10.1002/acn3.51624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Ischemic stroke is a leading cause of human mortality and long-term disability worldwide. As one of the main forms of regulator of calcineurin 1 (RCAN1), the contribution of RCAN1.4 in diverse biological and pathological conditions has been implicated. But the role of RCAN1.4 in ischemic stroke progression remains elusive. This study is to explore the expression changes and roles of RCAN1.4 in ischemic stroke as well as the underlying mechanisms for these changes and effects of RCAN1.4 in ischemic stroke. METHODS Middle cerebral artery occlusion model in C57BL/6J mice and oxygen-glucose deprivation (OGD) model in primary astrocytes were performed to induce the cerebral ischemic stroke. The expression pattern of RCAN1.4 was assessed using real-time quantitative PCR and western blotting in vivo and in vitro. Mechanistically, the underlying mechanism for the elevation of RCAN1.4 in the upstream was investigated. Lentiviruses were administrated, and the effect of RCAN1.4 in postischemic inflammation was clearly clarified. RESULTS Here we uncovered that RCAN1.4 was dramatically increased in mouse ischemic brains and OGD-induced primary astrocytes. HIF1α, activated upon OGD, significantly upregulated RCAN1.4 gene expression through specifically binding to the RCAN1.4 promoter region and activating its promoter activity. The functional hypoxia-responsive element (HRE) was located between -254 and -245 bp in the RCAN1.4 promoter region. Moreover, elevated RCAN1.4 alleviated the release of pro-inflammatory cytokines TNFα, IL1β, IL6 and reduced expression of iNOS, COX2 in primary astrocytes upon OGD, whereas RCAN1.4 silencing has the opposite effect. Of note, RCAN1.4 overexpression inhibited OGD-induced NF-κB activation in primary astrocytes, leading to decreased degradation of IκBα and reduced nuclear translocation of NF-κB/p65. INTERPRETATION Our results reveal a novel mechanism underscoring the upregulation of RCAN1.4 by HIF1α and the protective effect of RCAN1.4 against postischemic inflammation, suggesting its significance as a promising therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiaxin Yang
- Department of NeurologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Yan Yun
- Department of RadiologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Pin Wang
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Juan Zhao
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Xiulian Sun
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Brain Research InstituteQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health CommissionQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| |
Collapse
|
10
|
N-terminally truncated Aβ4-x proteoforms and their relevance for Alzheimer's pathophysiology. Transl Neurodegener 2022; 11:30. [PMID: 35641972 PMCID: PMC9158284 DOI: 10.1186/s40035-022-00303-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/21/2022] [Indexed: 01/22/2023] Open
Abstract
Background The molecular heterogeneity of Alzheimer’s amyloid-β (Aβ) deposits extends well beyond the classic Aβ1-40/Aβ1-42 dichotomy, substantially expanded by multiple post-translational modifications that increase the proteome diversity. Numerous truncated fragments consistently populate the brain Aβ peptidome, and their homeostatic regulation and potential contribution to disease pathogenesis are largely unknown. Aβ4-x peptides have been reported as major components of plaque cores and the limited studies available indicate their relative abundance in Alzheimer’s disease (AD). Methods Immunohistochemistry was used to assess the topographic distribution of Aβ4-x species in well-characterized AD cases using custom-generated monoclonal antibody 18H6—specific for Aβ4-x species and blind for full-length Aβ1-40/Aβ1-42—in conjunction with thioflavin-S and antibodies recognizing Aβx-40 and Aβx-42 proteoforms. Circular dichroism, thioflavin-T binding, and electron microscopy evaluated the biophysical and aggregation/oligomerization properties of full-length and truncated synthetic homologues, whereas stereotaxic intracerebral injections of monomeric and oligomeric radiolabeled homologues in wild-type mice were used to evaluate their brain clearance characteristics. Results All types of amyloid deposits contained the probed Aβ epitopes, albeit expressed in different proportions. Aβ4-x species showed preferential localization within thioflavin-S-positive cerebral amyloid angiopathy and cored plaques, strongly suggesting poor clearance characteristics and consistent with the reduced solubility and enhanced oligomerization of their synthetic homologues. In vivo clearance studies demonstrated a fast brain efflux of N-terminally truncated and full-length monomeric forms whereas their oligomeric counterparts—particularly of Aβ4-40 and Aβ4-42—consistently exhibited enhanced brain retention. Conclusions The persistence of aggregation-prone Aβ4-x proteoforms likely contributes to the process of amyloid formation, self-perpetuating the amyloidogenic loop and exacerbating amyloid-mediated pathogenic pathways.
Collapse
|
11
|
Abstract
Amyloid-β (Aβ) peptides are involved in Alzheimer's disease (AD) development. The interactions of these peptides with copper and zinc ions also seem to be crucial for this pathology. Although Cu(II) and Zn(II) ions binding by Aβ peptides has been scrupulously investigated, surprisingly, this phenomenon has not been so thoroughly elucidated for N-truncated Aβ4-x-probably the most common version of this biomolecule. This negligence also applies to mixed Cu-Zn complexes. From the structural in silico analysis presented in this work, it appears that there are two possible mixed Cu-Zn(Aβ4-x) complexes with different stoichiometries and, consequently, distinct properties. The Cu-Zn(Aβ4-x) complex with 1:1:1 stoichiometry may have a neuroprotective superoxide dismutase-like activity. On the other hand, another mixed 2:1:2 Cu-Zn(Aβ4-x) complex is perhaps a seed for toxic oligomers. Hence, this work proposes a novel research direction for our better understanding of AD development.
Collapse
|
12
|
Marengo L, Armbrust F, Schoenherr C, Storck SE, Schmitt U, Zampar S, Wirths O, Altmeppen H, Glatzel M, Kaether C, Weggen S, Becker-Pauly C, Pietrzik CU. Meprin β knockout reduces brain Aβ levels and rescues learning and memory impairments in the APP/lon mouse model for Alzheimer's disease. Cell Mol Life Sci 2022; 79:168. [PMID: 35235058 PMCID: PMC8891209 DOI: 10.1007/s00018-022-04205-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
β-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the major described β-secretase to generate Aβ peptides in Alzheimer's disease (AD). However, all therapeutic attempts to block BACE1 activity and to improve AD symptoms have so far failed. A potential candidate for alternative Aβ peptides generation is the metalloproteinase meprin β, which cleaves APP predominantly at alanine in p2 and in this study we can detect an increased meprin β expression in AD brain. Here, we report the generation of the transgenic APP/lon mouse model of AD lacking the functional Mep1b gene (APP/lon × Mep1b-/-). We examined levels of canonical and truncated Aβ species using urea-SDS-PAGE, ELISA and immunohistochemistry in brains of APP/lon mouse × Mep1b-/-. Additionally, we investigated the cognitive abilities of these mice during the Morris water maze task. Aβ1-40 and 1-42 levels are reduced in APP/lon mice when meprin β is absent. Immunohistochemical staining of mouse brain sections revealed that N-terminally truncated Aβ2-x peptide deposition is decreased in APP/lon × Mep1b-/- mice. Importantly, loss of meprin β improved cognitive abilities and rescued learning behavior impairments in APP/lon mice. These observations indicate an important role of meprin β within the amyloidogenic pathway and Aβ production in vivo.
Collapse
Affiliation(s)
- Liana Marengo
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Fred Armbrust
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Caroline Schoenherr
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Steffen E. Storck
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrich Schmitt
- Leibniz-Institute for Resilience Research, Mainz, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center HH-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center HH-Eppendorf, Hamburg, Germany
| | | | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Becker-Pauly
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Claus U. Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099 Mainz, Germany
| |
Collapse
|
13
|
Aksnes M, Aass HCD, Tiiman A, Terenius L, Bogdanović N, Vukojević V, Knapskog AB. Serum Amyloidogenic Nanoplaques and Cytokines in Alzheimer's Disease: Pilot Study in a Small Naturalistic Memory Clinic Cohort. J Alzheimers Dis 2022; 86:1459-1470. [PMID: 35213378 PMCID: PMC9108575 DOI: 10.3233/jad-215504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Neuroinflammation is a central component of Alzheimer’s disease (AD) and correlates closely with amyloid pathology. Markers of inflammation such as cytokines, and amyloidogenic aggregates, so-called nanoplaques, are both promising biomarker candidates for AD. We have previously shown that there is a relationship between the levels of nanoplaques and cytokines in cerebrospinal fluid, but it is unknown whether this association extends to serum. Objective: Investigate in a naturalistic memory clinic cohort whether the associations between nanoplaques and cytokines in the cerebrospinal fluid extends to serum. Methods: We collected serum from 49 patients assessed for cognitive complaints at the Oslo University Hospital Memory Clinic (15 with clinical AD). We assessed the levels of serum nanoplaques with the novel Thioflavin-T fluorescence correlation spectroscopy (ThT-FCS) assay. Serum levels of nine cytokines (eotaxin-1, granulocyte colony-stimulating factor [G-CSF], interleukin [IL]-6, IL-7, IL-8, monocyte chemoattractant protein-1 (MCP-1), gamma induced protein 10 (IP-10), macrophage inflammatory protein [MIP]-1α, and MIP-1β) were quantified with a multiplex assay and read on a Luminex IS 200 instrument. Results: Serum nanoplaques were not increased in clinical AD patients compared to non-AD memory clinic patients and nanoplaques were not associated with any cytokines. The cytokines IL-8 and G-CSF were increased in patients with clinical AD compared to non-AD patients. Conclusion: In this small pilot study, serum nanoplaques were not associated with serum cytokines. Nanoplaque levels could not be used to separate clinical AD patients from non-AD patients in this unselected memory clinic cohort.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | | | - Ann Tiiman
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Lars Terenius
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanović
- Department of Geriatric Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Neurobiology, Care Science and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Vladana Vukojević
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Norway
| |
Collapse
|
14
|
Elbert DL, Patterson BW, Lucey BP, Benzinger TLS, Bateman RJ. Importance of CSF-based Aβ clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways. Commun Biol 2022; 5:98. [PMID: 35087179 PMCID: PMC8795390 DOI: 10.1038/s42003-022-03037-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
The kinetics of amyloid beta turnover within human brain is still poorly understood. We previously found a dramatic decline in the turnover of Aβ peptides in normal aging. It was not known if brain interstitial fluid/cerebrospinal fluid (ISF/CSF) fluid exchange, CSF turnover, blood-brain barrier function or proteolysis were affected by aging or the presence of β amyloid plaques. Here, we describe a non-steady state physiological model developed to decouple CSF fluid transport from other processes. Kinetic parameters were estimated using: (1) MRI-derived brain volumes, (2) stable isotope labeling kinetics (SILK) of amyloid-β peptide (Aβ), and (3) lumbar CSF Aβ concentration during SILK. Here we show that changes in blood-brain barrier transport and/or proteolysis were largely responsible for the age-related decline in Aβ turnover rates. CSF-based clearance declined modestly in normal aging but became increasingly important due to the slowing of other processes. The magnitude of CSF-based clearance was also lower than that due to blood-brain barrier function plus proteolysis. These results suggest important roles for blood-brain barrier transport and proteolytic degradation of Aβ in the development Alzheimer’s Disease in humans. To understand if brain interstitial fluid/cerebrospinal fluid (ISF/CSF) exchange, CSF turnover, blood-brain barrier function or proteolysis were affected by aging or the presence of β amyloid plaques, Elbert et al. develop a non-steady state physiological model using MRI-derived brain volumes, stable isotope labeling kinetics of Aβ, and lumbar CSF Aβ concentration. Their model suggests an important role for blood-brain barrier transport and proteolytic degradation of Aβ in the development Alzheimer’s Disease in humans.
Collapse
Affiliation(s)
- Donald L Elbert
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| | - Bruce W Patterson
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Tammie L S Benzinger
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
15
|
Gulmammadli N, Konukoğlu D, Merve Kurtuluş E, Tezen D, Ibrahim Erbay M, Bozluolçay M. Serum Sirtuin-1, HMGB1-TLR4, NF-KB and IL-6 Levels in Alzheimer's: The Relation Between Neuroinflammatory Pathway and Severity of Dementia. Curr Alzheimer Res 2022; 19:841-848. [PMID: 36573053 DOI: 10.2174/1567205020666221226140721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), which affects the world's aging population, is a progressive neurodegenerative disease requiring markers or tools to accurately and easily diagnose and monitor the process. OBJECTIVE In this study, serum Sirtuin-1(SIRT-1), High Mobility Group Box 1 (HMGB1), Toll-Like Receptor-4 (TLR4), Nuclear Factor Kappa B (NF-kB), Interleukin-6 (IL-6), Amyloid βeta-42 (Aβ- 42), and p-tau181 levels in patients diagnosed with AD according to NINCS-ADRA criteria were studied. We investigated the inflammatory pathways that lead to progressive neuronal loss and highlight their possible relationship with dementia severity in the systemic circulation. METHODS Patients over 60 years of age were grouped according to their Standard Mini Mental Test results, MRI, and/or Fludeoxyglucose positron emission tomography or according to their CT findings as Control n:20; AD n:32; Vascular Dementia (VD) n:17; AD + VD; n = 21. Complete blood count, Glucose, Vitamin B12, Folic Acid, Enzymes, Urea, Creatinine, Electrolytes, Bilirubin, and Thyroid Function tests were evaluated. ELISA was used for the analysis of serum SIRT1, HMGB1, TLR4, NF-kB, IL-6, Aβ-42, and p-tau181 levels. RESULTS Levels of serum Aβ-42, SIRT1, HMGB1, and IL-6 were significantly higher (p< 0.001, p< 0.01, p< 0.001, and p< 0.001, respectively), and TLR4 levels were significantly lower (p< 0.001) in the dementia group than in the control group. No significant difference was observed between dementia and control groups for serum NF-kB and p-tau181 levels. CONCLUSION Our results show that the levels of the Aβ42, SIRT 1, HMGB1, and TLR4 pathways are altered in AD and VD. SIRT 1 activity plays an important role in the inflammatory pathway of dementia development, particularly in AD.
Collapse
Affiliation(s)
- Nazrin Gulmammadli
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Dildar Konukoğlu
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Eda Merve Kurtuluş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Gelişim University, İstanbul, Turkey
| | - Didem Tezen
- Department of Neurology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Muhammed Ibrahim Erbay
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Melda Bozluolçay
- Department of Neurology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| |
Collapse
|
16
|
Santiago-Mujika E, Luthi-Carter R, Giorgini F, Kalaria RN, Mukaetova-Ladinska EB. Tubulin and Tubulin Posttranslational Modifications in Alzheimer's Disease and Vascular Dementia. Front Aging Neurosci 2021; 13:730107. [PMID: 34776926 PMCID: PMC8586541 DOI: 10.3389/fnagi.2021.730107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/04/2021] [Indexed: 01/26/2023] Open
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most common forms of dementia in older people. Although these two dementia types differ in their etiology, they share many pathophysiological and morphological features, including neuronal loss, which is associated with the microtubule (MT) destabilization. Stabilization of MTs is achieved in different ways: through interactions with MT binding proteins (MTBP) or by posttranslational modifications (PTMs) of tubulin. Polyglutamylation and tyrosination are two foremost PTMs that regulate the interaction between MTs and MTBPs, and play, therefore, a role in neurodegeneration. In this review, we summarize key information on tubulin PTMs in relation to AD and VaD and address the importance of studying further the tubulin code to reveal sites of potential intervention in development of novel and effective dementia therapy.
Collapse
Affiliation(s)
- Estibaliz Santiago-Mujika
- Department of Neuroscience, Behavior and Psychology, University of Leicester, Leicester, United Kingdom
| | - Ruth Luthi-Carter
- Department of Neuroscience, Behavior and Psychology, University of Leicester, Leicester, United Kingdom
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Raj N. Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeta B. Mukaetova-Ladinska
- Department of Neuroscience, Behavior and Psychology, University of Leicester, Leicester, United Kingdom
- Evington Centre, Leicester General Hospital, Leicester, United Kingdom
| |
Collapse
|
17
|
Bayer TA. N-Truncated Aβ Starting at Position Four-Biochemical Features, Preclinical Models, and Potential as Drug Target in Alzheimer's Disease. Front Aging Neurosci 2021; 13:710579. [PMID: 34489680 PMCID: PMC8417877 DOI: 10.3389/fnagi.2021.710579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
The discussion of whether amyloid plaque Aβ is a valid drug target to fight Alzheimer’s disease (AD) has been a matter of scientific dispute for decades. This question can only be settled by successful clinical trials and the approval of disease-modifying drugs. However, many clinical trials with antibodies against different regions of the amyloid Aβ peptide have been discontinued, as they did not meet the clinical endpoints required. Recently, passive immunization of AD patients with Donanemab, an antibody directed against the N-terminus of pyroglutamate Aβ, showed beneficial effects in a phase II trial, supporting the concept that N-truncated Aβ is a relevant target for AD therapy. There is long-standing evidence that N-truncated Aβ variants are the main variants found in amyloid plaques besides full-length Aβ1–42, t, therefore their role in triggering AD pathology and as targets for drug development are of interest. While the contribution of pyroglutamate Aβ3–42 to AD pathology has been well studied in the past, the potential role of Aβ4–42 has been largely neglected. The present review will therefore focus on Aβ4–42 as a possible drug target based on human and mouse pathology, in vitro and in vivo toxicity, and anti-Aβ4-X therapeutic effects in preclinical models.
Collapse
Affiliation(s)
- Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
18
|
Vignon A, Salvador-Prince L, Lehmann S, Perrier V, Torrent J. Deconstructing Alzheimer's Disease: How to Bridge the Gap between Experimental Models and the Human Pathology? Int J Mol Sci 2021; 22:8769. [PMID: 34445475 PMCID: PMC8395727 DOI: 10.3390/ijms22168769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Discovered more than a century ago, Alzheimer's disease (AD) is not only still present in our societies but has also become the most common dementia, with 50 million people worldwide affected by the disease. This number is expected to double in the next generation, and no cure is currently available to slow down or stop the disease progression. Recently, some advances were made due to the approval of the aducanumab treatment by the American Food and Drug Administration. The etiology of this human-specific disease remains poorly understood, and the mechanisms of its development have not been completely clarified. Several hypotheses concerning the molecular mechanisms of AD have been proposed, but the existing studies focus primarily on the two main markers of the disease: the amyloid β peptides, whose aggregation in the brain generates amyloid plaques, and the abnormally phosphorylated tau proteins, which are responsible for neurofibrillary tangles. These protein aggregates induce neuroinflammation and neurodegeneration, which, in turn, lead to cognitive and behavioral deficits. The challenge is, therefore, to create models that best reproduce this pathology. This review aims at gathering the different existing AD models developed in vitro, in cellulo, and in vivo. Many models have already been set up, but it is necessary to identify the most relevant ones for our investigations. The purpose of the review is to help researchers to identify the most pertinent disease models, from the most often used to the most recently generated and from simple to complex, explaining their specificities and giving concrete examples.
Collapse
Affiliation(s)
- Anaïs Vignon
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Lucie Salvador-Prince
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, CHU Montpellier, 34095 Montpellier, France;
| | - Véronique Perrier
- INM, University of Montpellier, INSERM, CNRS, 34095 Montpellier, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| |
Collapse
|
19
|
Yuan X, Wang Z, Zhang L, Sui R, Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer's disease. Int J Biol Macromol 2021; 183:1184-1190. [PMID: 33965487 DOI: 10.1016/j.ijbiomac.2021.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023]
Abstract
Aggregation of tau protein into the form of insoluble amyloid fibrils is linked with Alzheimer's disease. The identification of potential small molecules that can inhibit tau protein from undergoing aggregation has received a great deal of interest, recently. In the present study, the possible inhibitory effects of liquiritigenin as a member of chiral flavanone family on tau amyloid fibrils formation and their resulting neurotoxicity were assessed by different biophysical and cellular assays. The inhibitory effect of the liquiritigenin against tau amyloid formation was investigated using thioflavin T (ThT) and 1-Anilino-8-naphthalene sulfonate (ANS) fluorescence spectroscopy, Congo red (CR) binding assays, transmission electron microscopy (TEM) analysis, and circular dichroism (CD) spectroscopy. Neurotoxicity assays were also performed against neuron-like cells (SH-SY5Y) using 3-(4,5-Dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) reduction, reactive oxygen species (ROS), catalase (CAT) and caspase-3 activity measurements. We found that liquiritigenin served as an efficient inhibitor of tau amyloid fibrils formation through prevention of structural transition in tau structure, exposure of hydrophobic patches and their associated neurotoxicity mediated by decrease in the production of ROS and caspase-3 activity and elevation of CAT activity. These data may finally find applications in the development of promising inhibitors against amyloid fibril formation and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueling Yuan
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
Kim HB, Kim D, Kim H, Kim W, Chung S, Lee SH, Kim HR, Oh SB. Aβ Accumulation in Vmo Contributes to Masticatory Dysfunction in 5XFAD Mice. J Dent Res 2021; 100:960-967. [PMID: 33719684 DOI: 10.1177/00220345211000263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) shows various symptoms that reflect cognitive impairment and loss of neural circuit integrity. Sensory dysfunctions such as olfactory and ocular pathology are also observed and used as indicators for early detection of AD. Although mastication is suggested to correlate with AD progression, changes in the masticatory system have yet to be established in transgenic animal models of AD. In the present study, we have assessed pathologic hallmarks of AD with the masticatory behavior of 5XFAD mice. We found that masticatory efficiency and maximum biting force were decreased in 5XFAD mice, with no significant change in general motor function. Immunohistochemical analysis revealed significant accumulation of Aβ (amyloid β), increased microglia number, and cell death in Vmo (trigeminal motor nucleus) as compared with other cranial motor nuclei that innervate the orofacial region. Masseter muscle weight and muscle fiber size were also decreased in 5XFAD mice. Taken together, our results demonstrate that Aβ accumulation in Vmo contributes to masticatory dysfunction in 5XFAD mice, suggesting a close association between masticatory dysfunction and dementia.
Collapse
Affiliation(s)
- H B Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - D Kim
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - H Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea
| | - W Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - S Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - S H Lee
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - H R Kim
- College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - S B Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
The Aggregation Pattern of Aβ
1–40
is Altered by the Presence of
N
‐Truncated Aβ
4–40
and/or Cu
II
in a Similar Way through Ionic Interactions. Chemistry 2021; 27:2798-2809. [DOI: 10.1002/chem.202004484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 12/19/2022]
|
22
|
Mital M, Szutkowski K, Bossak-Ahmad K, Skrobecki P, Drew SC, Poznański J, Zhukov I, Frączyk T, Bal W. The Palladium(II) Complex of A β4-16 as Suitable Model for Structural Studies of Biorelevant Copper(II) Complexes of N-Truncated Beta-Amyloids. Int J Mol Sci 2020; 21:E9200. [PMID: 33276669 PMCID: PMC7731285 DOI: 10.3390/ijms21239200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
The Aβ4-42 peptide is a major beta-amyloid species in the human brain, forming toxic aggregates related to Alzheimer's Disease. It also strongly chelates Cu(II) at the N-terminal Phe-Arg-His ATCUN motif, as demonstrated in Aβ4-16 and Aβ4-9 model peptides. The resulting complex resists ROS generation and exchange processes and may help protect synapses from copper-related oxidative damage. Structural characterization of Cu(II)Aβ4-x complexes by NMR would help elucidate their biological function, but is precluded by Cu(II) paramagneticism. Instead we used an isostructural diamagnetic Pd(II)-Aβ4-16 complex as a model. To avoid a kinetic trapping of Pd(II) in an inappropriate transient structure, we designed an appropriate pH-dependent synthetic procedure for ATCUN Pd(II)Aβ4-16, controlled by CD, fluorescence and ESI-MS. Its assignments and structure at pH 6.5 were obtained by TOCSY, NOESY, ROESY, 1H-13C HSQC and 1H-15N HSQC NMR experiments, for natural abundance 13C and 15N isotopes, aided by corresponding experiments for Pd(II)-Phe-Arg-His. The square-planar Pd(II)-ATCUN coordination was confirmed, with the rest of the peptide mostly unstructured. The diffusion rates of Aβ4-16, Pd(II)-Aβ4-16 and their mixture determined using PGSE-NMR experiment suggested that the Pd(II) complex forms a supramolecular assembly with the apopeptide. These results confirm that Pd(II) substitution enables NMR studies of structural aspects of Cu(II)-Aβ complexes.
Collapse
Affiliation(s)
- Mariusz Mital
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Karolina Bossak-Ahmad
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Piotr Skrobecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Simon C. Drew
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warszawa, Poland; (M.M.); (K.B.-A.); (P.S.); (S.C.D.); (J.P.)
| |
Collapse
|
23
|
Lee JS, Lee H, Park S, Choe Y, Park YH, Cheon BK, Hahn A, Ossenkoppele R, Kim HJ, Kim S, Yoo H, Jang H, Cho SH, Kim SJ, Kim JP, Jung YH, Park KC, DeCarli C, Weiner MW, Na DL, Seo SW. Association between APOE ε2 and Aβ burden in patients with Alzheimer- and vascular-type cognitive impairment. Neurology 2020; 95:e2354-e2365. [PMID: 32928967 DOI: 10.1212/wnl.0000000000010811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/03/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the association between APOE genotype and β-amyloid (Aβ) burden, as measured by PET in patients with subcortical vascular cognitive impairment (SVCI) and those with Alzheimer disease-related cognitive impairment (ADCI). METHODS This was a cross-sectional study of 310 patients with SVCI and 999 with ADCI. To evaluate the effects of APOE genotype or diagnostic group on Aβ positivity, we performed multivariate logistic regression analyses. Further distinctive underlying features of latent subgroups were examined by employing a latent class cluster analysis approach. RESULTS In comparison with ε3 homozygotes, in the ADCI group, ε2 carriers showed a lower frequency of Aβ positivity (odds ratio [OR] 0.43, 95% confidence interval [CI] 0.23-0.79), while in the SVCI group, ε2 carriers showed a higher frequency of Aβ positivity (OR 2.26, 95% CI 1.02-5.01). In particular, we observed an interaction effect of ε2 carrier status and diagnostic group on Aβ positivity (OR 5.12, 95% CI 1.93-13.56), in that relative to ε3 homozygotes, there were more Aβ-positive ε2 carriers in the SVCI group than in the ADCI group. We also identified latent subgroups of Aβ-positive APOE ε2 carriers with SVCI and Aβ-positive APOE ε4 carriers with ADCI. CONCLUSIONS Our findings suggest that APOE ε2 is distinctly associated with Aβ deposition in patients with SVCI and those with ADCI. Our findings further suggest that there is a distinctive subgroup of Aβ-positive APOE ε2 carriers with SVCI among patients with cognitive impairment.
Collapse
Affiliation(s)
- Jin San Lee
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA.
| | - Hyejoo Lee
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA.
| | - Seongbeom Park
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Yeongsim Choe
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Yu Hyun Park
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Bo Kyoung Cheon
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Alice Hahn
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Rik Ossenkoppele
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Hee Jin Kim
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Seonwoo Kim
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Heejin Yoo
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Hyemin Jang
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Soo Hyun Cho
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Seung Joo Kim
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Jun Pyo Kim
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Young Hee Jung
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Key-Chung Park
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Charles DeCarli
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Michael W Weiner
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Duk L Na
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA
| | - Sang Won Seo
- From the Department of Neurology (J.S.L., H.L., S.P., Y.C., Y.H.P., B.K.C., A.H., H.J.K., H.J., J.P.K., D.L.N., S.W.S.), Samsung Alzheimer Research Center (H.J.K., H.J., J.P.K., D.L.N., S.W.S.), and Statistics and Data Center (S.K., H.Y.), Samsung Medical Center; Department of Intelligent Precision Healthcare Convergence (S.W.S.), Sungkyunkwan University School of Medicine; Department of Health Sciences and Technology (S.W.S.), SAIHST, Sungkyunkwan University; Department of Neurology (J.S.L., K.-C.P.), Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea; Department of Neurology and Alzheimer Center (R.O.), Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands; Department of Neurology (S.H.C.), Chonnam National University Medical School, Gwangju; Department of Neurology (S.J.K.), Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon; Department of Neurology (Y.H.J.), Myungji Hospital, Goyang, Korea; Department of Neurology and Center for Neuroscience (C.D.), University of California, Davis; Department of Medicine (M.W.W.), University of California; and Department of Veterans Affairs Medical Center (M.W.W.), Center for Imaging of Neurodegenerative Diseases, San Francisco, CA.
| |
Collapse
|
24
|
Wang H, Lu J, Gao WC, Ma X, Li N, Ding Z, Wu C, Zhu M, Qiao G, Xiao C, Zhang C, Chen C, Weng Z, Yang W, Zheng CB. Donepezil down-regulates propionylation, 2-hydroxyisobutyrylation, butyrylation, succinylation, and crotonylation in the brain of bilateral common carotid artery occlusion-induced vascular dementia rats. Clin Exp Pharmacol Physiol 2020; 47:1731-1739. [PMID: 32424975 DOI: 10.1111/1440-1681.13352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 11/26/2022]
Abstract
Vascular dementia (VaD), caused by stroke or small vessel disease, is the second-most common type of dementia after Alzheimer's disease (AD). Donepezil is an acetylcholinesterase inhibitor that is currently used in patients with mild to moderate AD, and has recently been shown to improve cognitive performance in patients with VaD. In this study, we evaluated the effects of donepezil on VaD, and investigated the underlying molecular mechanisms of action. VaD was established by ligation of the bilateral common carotid artery occlusion (BCCAO). Executive function was tested by the Morris water maze (MWM) test and the attentional set shifting task (ASST). Our results showed that donepezil improved executive dysfunction and cognitive flexibility in BCCAO rats. In addition, we showed that donepezil treatment decreased the level of Aβ1-42 in BCCAO rats by enzyme-linked immunosorbent assay. Post-translational modifications (PTMs) are known to be critical mechanisms in the regulation of various cellular processes. Furthermore, PTMs have been linked to the central nervous system, which highlights the importance of PTMs in neurodegenerative diseases. In this study, we used western blot analysis to identify several novel PTMs in the hippocampus of BCCAO rats that were treated with or without donepezil. The data revealed that lysine propionylation, 2-hydroxyisobutyrylation, butyrylation, succinylation, and crotonylation were elevated in the hippocampus of BCCAO rats when compared to sham rats. This increase was abolished by donepezil treatment. Taken together, we speculate that donepezil treatment improves cognitive function in our animal model of VaD, possibly by reducing aberrant acyl-PTMs.
Collapse
Affiliation(s)
- Hongyan Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Jun Lu
- Department of Pharmacology, Guilin Medical University, Guilin, China
| | - Wen-Cong Gao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xin Ma
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Na Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zhituan Ding
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chunmei Wu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Maoceng Zhu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Guanrong Qiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Changhong Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chen Chen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zhiying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| |
Collapse
|
25
|
Wezynfeld NE, Tobolska A, Mital M, Wawrzyniak UE, Wiloch MZ, Płonka D, Bossak-Ahmad K, Wróblewski W, Bal W. Aβ 5-x Peptides: N-Terminal Truncation Yields Tunable Cu(II) Complexes. Inorg Chem 2020; 59:14000-14011. [PMID: 32924459 PMCID: PMC7539298 DOI: 10.1021/acs.inorgchem.0c01773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Aβ5-x peptides (x = 38, 40, 42) are minor Aβ species in normal brains but elevated upon the application of inhibitors of Aβ processing enzymes. They are interesting from the point of view of coordination chemistry for the presence of an Arg-His metal binding sequence at their N-terminus capable of forming a 3-nitrogen (3N) three-coordinate chelate system. Similar sequences in other bioactive peptides were shown to bind Cu(II) ions in biological systems. Therefore, we investigated Cu(II) complex formation and reactivity of a series of truncated Aβ5-x peptide models comprising the metal binding site: Aβ5-9, Aβ5-12, Aβ5-12Y10F, and Aβ5-16. Using CD and UV-vis spectroscopies and potentiometry, we found that all peptides coordinated the Cu(II) ion with substantial affinities higher than 3 × 1012 M-1 at pH 7.4 for Aβ5-9 and Aβ5-12. This affinity was elevated 3-fold in Aβ5-16 by the formation of the internal macrochelate with the fourth coordination site occupied by the imidazole nitrogen of the His13 or His14 residue. A much higher boost of affinity could be achieved in Aβ5-9 and Aβ5-12 by adding appropriate amounts of the external imidazole ligand. The 3N Cu-Aβ5-x complexes could be irreversibly reduced to Cu(I) at about -0.6 V vs Ag/AgCl and oxidized to Cu(III) at about 1.2 V vs Ag/AgCl. The internal or external imidazole coordination to the 3N core resulted in a slight destabilization of the Cu(I) state and stabilization of the Cu(III) state. Taken together these results indicate that Aβ5-x peptides, which bind Cu(II) ions much more strongly than Aβ1-x peptides and only slightly weaker than Aβ4-x peptides could interfere with Cu(II) handling by these peptides, adding to copper dyshomeostasis in Alzheimer brains.
Collapse
Affiliation(s)
- Nina E Wezynfeld
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Aleksandra Tobolska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Mariusz Mital
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Urszula E Wawrzyniak
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Z Wiloch
- Charge Transfer Processes in Hydrodynamic Systems Group, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Karolina Bossak-Ahmad
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wojciech Wróblewski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
26
|
Ristori E, Donnini S, Ziche M. New Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature. Front Physiol 2020; 11:1056. [PMID: 32973564 PMCID: PMC7481479 DOI: 10.3389/fphys.2020.01056] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular homeostasis is maintained by the blood-brain barrier (BBB), a highly selective structure that separates the peripheral blood circulation from the brain and protects the central nervous system (CNS). Dysregulation of BBB function is the precursor of several neurodegenerative diseases including Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA), both related to β-amyloid (Aβ) accumulation and deposition. The origin of BBB dysfunction before and/or during CAA and AD onset is not known. Several studies raise the possibility that vascular dysfunction could be an early step in these diseases and could even precede significant Aβ deposition. Though accumulation of neuron-derived Aβ peptides is considered the primary influence driving AD and CAA pathogenesis, recent studies highlighted the importance of the physiological role of the β-amyloid precursor protein (APP) in endothelial cell homeostasis, suggesting a potential role of this protein in maintaining vascular stability. In this review, we will discuss the physiological function of APP and its cleavage products in the vascular endothelium. We further suggest how loss of APP homeostatic regulation in the brain vasculature could lead toward pathological outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marina Ziche
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
27
|
Zampar S, Klafki HW, Sritharen K, Bayer TA, Wiltfang J, Rostagno A, Ghiso J, Miles LA, Wirths O. N-terminal heterogeneity of parenchymal and vascular amyloid-β deposits in Alzheimer's disease. Neuropathol Appl Neurobiol 2020; 46:673-685. [PMID: 32497293 PMCID: PMC8082844 DOI: 10.1111/nan.12637] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Aims: The deposition of amyloid-β (Aβ) peptides in the form of extracellular plaques in the brain represents one of the classical hallmarks of Alzheimer’s disease (AD). In addition to ‘full-length’ Aβ starting with aspartic acid (Asp-1), considerable amounts of various shorter, N-terminally truncated Aβ peptides have been identified by mass spectrometry in autopsy samples from individuals with AD. Methods: Selectivity of several antibodies detecting full-length, total or N-terminally truncated Aβ species has been characterized with capillary isoelectric focusing assays using a set of synthetic Aβ peptides comprising different N-termini. We further assessed the N-terminal heterogeneity of extracellular and vascular Aβ peptide deposits in the human brain by performing immunohistochemical analyses using sporadic AD cases with antibodies targeting different N-terminal residues, including the biosimilar antibodies Bapineuzumab and Crenezumab. Results: While antibodies selectively recognizing Aβ1–x showed a much weaker staining of extracellular plaques and tended to accentuate cerebrovascular amyloid deposits, antibodies detecting Aβ starting with phenylalanine at position 4 of the Aβ sequence showed abundant amyloid plaque immunoreactivity in the brain parenchyma. The biosimilar antibody Bapineuzumab recognized Aβ starting at Asp-1 and demonstrated abundant immunoreactivity in AD brains. Discussion: In contrast to other studied Aβ1–x-specific antibodies, Bapineuzumab displayed stronger immunoreactivity on fixed tissue samples than with sodium dodecyl sulfate-denatured samples on Western blots. This suggests conformational preferences of this antibody. The diverse composition of plaques and vascular deposits stresses the importance of understanding the roles of various Aβ variants during disease development and progression in order to generate appropriate target-developed therapies.
Collapse
Affiliation(s)
- S Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - H W Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - K Sritharen
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - T A Bayer
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - J Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - A Rostagno
- Departments of, Pathology, New York University School of Medicine, New York, NY, USA
| | - J Ghiso
- Departments of, Pathology, New York University School of Medicine, New York, NY, USA.,Department of, Psychiatry, New York University School of Medicine, New York, NY, USA
| | - L A Miles
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - O Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
28
|
Karkisaval AG, Rostagno A, Azimov R, Ban DK, Ghiso J, Kagan BL, Lal R. Ion channel formation by N-terminally truncated Aβ (4-42): relevance for the pathogenesis of Alzheimer's disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102235. [PMID: 32531337 DOI: 10.1016/j.nano.2020.102235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
Aβ deposition is a pathological hallmark of Alzheimer's disease (AD). Besides the full-length amyloid forming peptides (Aβ1-40 and Aβ1-42), biochemical analyses of brain deposits have identified a variety of N- and C-terminally truncated Aβ variants in sporadic and familial AD patients. However, their relevance for AD pathogenesis remains largely understudied. We demonstrate that Aβ4-42 exhibits a high tendency to form β-sheet structures leading to fast self-aggregation and formation of oligomeric assemblies. Atomic force microscopy and electrophysiological studies reveal that Aβ4-42 forms highly stable ion channels in lipid membranes. These channels that are blocked by monoclonal antibodies specifically recognizing the N-terminus of Aβ4-42. An Aβ variant with a double truncation at phenylalanine-4 and leucine 34, (Aβ4-34), exhibits unstable channel formation capability. Taken together the results presented herein highlight the potential benefit of C-terminal proteolytic cleavage and further support an important pathogenic role for N-truncated Aβ species in AD pathophysiology.
Collapse
Affiliation(s)
- Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, 92092, USA
| | - Agueda Rostagno
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Rustam Azimov
- Department of Psychiatry, Geffen School of Medicine, University of California, Los Angeles, California 90095, USA; Semel Neuropsychiatric for Neuroscience & Human Behavior, University of California, Los Angeles, California 90095, United States
| | - Deependra K Ban
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, 92092, USA
| | - Jorge Ghiso
- Department of Pathology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| | - Bruce L Kagan
- Department of Psychiatry, Geffen School of Medicine, University of California, Los Angeles, California 90095, USA; Semel Neuropsychiatric for Neuroscience & Human Behavior, University of California, Los Angeles, California 90095, United States.
| | - Ratnesh Lal
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, 92092, USA; Department of Bioengineering, University of California San Diego, La Jolla, California, 92092, USA; Materials Science and Engineering, University of California San Diego, La Jolla, California, 92092, USA.
| |
Collapse
|
29
|
Stefaniak E, Płonka D, Szczerba P, Wezynfeld NE, Bal W. Copper Transporters? Glutathione Reactivity of Products of Cu-Aβ Digestion by Neprilysin. Inorg Chem 2020; 59:4186-4190. [PMID: 32212682 PMCID: PMC7588031 DOI: 10.1021/acs.inorgchem.0c00427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Aβ4–42 is the major subspecies of Aβ peptides characterized
by avid Cu(II) binding via the ATCUN/NTS motif. It is thought to be
produced in vivo proteolytically by neprilysin, but in vitro experiments in the presence of Cu(II) ions indicated
preferable formation of C-terminally truncated ATCUN/NTS species including
CuIIAβ4–16, CuIIAβ4–9, and also CuIIAβ12–16, all with nearly femtomolar affinities at neutral pH. Such small
complexes may serve as shuttles for copper clearance from extracellular
brain spaces, on condition they could survive intracellular conditions
upon crossing biological barriers. In order to ascertain such possibility,
we studied the reactions of CuIIAβ4–16, CuIIAβ4–9, CuIIAβ12–16, and CuIIAβ1–16 with reduced glutathione (GSH) under aerobic and anaerobic conditions
using absorption spectroscopy and mass spectrometry. We found CuIIAβ4–16 and CuIIAβ4–9 to be strongly resistant to reduction and concomitant
formation of Cu(I)–GSH complexes, with reaction times ∼10
h, while CuIIAβ12–16 was reduced
within minutes and CuIIAβ1–16 within
seconds of incubation. Upon GSH exhaustion by molecular oxygen, the
CuIIAβ complexes were reformed with no concomitant
oxidative damage to peptides. These finding reinforce the concept
of Aβ4–x peptides as physiological
trafficking partners of brain copper. Aβ4−16, Aβ4−9, and Aβ12−16, oligopeptide products of β-amyloid degradation
by neprilysin, bind CuII ions very tightly and are considered
as possible CuII carriers in the brain. We demonstrated
that CuII(Aβ4−x) complexes, but not CuII(Aβ12−16), are kinetically resistant to reduction by glutathione. No covalent
Aβ peptide modifications were observed during the copper reduction
and reoxidation by ambient oxygen, yielding the original complexes.
These features suggest that CuII(Aβ4−x) complexes might be able to cross the blood−brain
barrier.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Paulina Szczerba
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Nina E Wezynfeld
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
30
|
Wirths O, Zampar S. Emerging roles of N- and C-terminally truncated Aβ species in Alzheimer’s disease. Expert Opin Ther Targets 2019; 23:991-1004. [DOI: 10.1080/14728222.2019.1702972] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
31
|
Yu P, Venkat P, Chopp M, Zacharek A, Shen Y, Liang L, Landschoot-Ward J, Liu Z, Jiang R, Chen J. Deficiency of tPA Exacerbates White Matter Damage, Neuroinflammation, Glymphatic Dysfunction and Cognitive Dysfunction in Aging Mice. Aging Dis 2019; 10:770-783. [PMID: 31440383 PMCID: PMC6675536 DOI: 10.14336/ad.2018.0816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease primarily involved in mediating thrombus breakdown and regulating catabolism of amyloid-beta (Aβ). The aim of this study is to investigate age-dependent decline of endogenous tPA and the effects of tPA decline on glymphatic function and cognitive outcome in mice. Male, young (3m), adult (6m) and middle-aged (12m) C57/BL6 (wild type) and tPA knockout (tPA-/-) mice were subject to a battery of cognitive tests and white matter (WM) integrity, neuroinflammation, and glymphatic function were evaluated. Adult WT mice exhibit significantly decreased brain tPA level compared to young WT mice and middle-aged WT mice have significantly lower brain tPA levels than young and adult WT mice. Middle-aged WT mice exhibit significant neuroinflammation, reduced WM integrity and increased thrombin deposition compared to young and adult mice, and increased blood brain barrier (BBB) permeability and reduced cognitive ability compared to young WT mice. In comparison to adult WT mice, adult tPA-/- mice exhibit significant BBB leakage, decreased dendritic spine density, increased thrombin deposition, neuroinflammation, and impaired functioning of the glymphatic system. Compared to age-matched WT mice, adult and middle-aged tPA-/- mice exhibit significantly increased D-Dimer expression and decreased perivascular Aquaporin-4 expression. Compared to age-matched WT mice, young, adult and middle-aged tPA-/- mice exhibit significant cognitive impairment, axonal damage, and increased deposition of amyloid precursor protein (APP), Aβ, and fibrin. Endogenous tPA may play an important role in contributing to aging induced cognitive decline, axonal/WM damage, BBB disruption and glymphatic dysfunction in the brain.
Collapse
Affiliation(s)
- Peng Yu
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,2Neurology, Henry Ford Hospital, Detroit, MI, USA.,3Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | | | - Michael Chopp
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA.,4Department of Physics, Oakland University, Rochester, MI, USA
| | | | - Yi Shen
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Linlin Liang
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA.,5Reproductive Medical Center, Henan Provincial People's Hospital, Zhengzhou, China
| | - Julie Landschoot-Ward
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Zhongwu Liu
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Rongcai Jiang
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jieli Chen
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
32
|
Stefaniak E, Bal W. Cu II Binding Properties of N-Truncated Aβ Peptides: In Search of Biological Function. Inorg Chem 2019; 58:13561-13577. [PMID: 31304745 DOI: 10.1021/acs.inorgchem.9b01399] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As life expectancy increases, the number of people affected by progressive and irreversible dementia, Alzheimer's Disease (AD), is predicted to grow. No drug designs seem to be working in humans, apparently because the origins of AD have not been identified. Invoking amyloid cascade, metal ions, and ROS production hypothesis of AD, herein we share our point of view on Cu(II) binding properties of Aβ4-x, the most prevalent N-truncated Aβ peptide, currently known as the main constituent of amyloid plaques. The capability of Aβ4-x to rapidly take over copper from previously tested Aβ1-x peptides and form highly stable complexes, redox unreactive and resistant to copper exchange reactions, prompted us to propose physiological roles for these peptides. We discuss the new findings on the reactivity of Cu(II)Aβ4-x with coexisting biomolecules in the context of synaptic cleft; we suggest that the role of Aβ4-x peptides is to quench Cu(II) toxicity in the brain and maintain neurotransmission.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| |
Collapse
|
33
|
Martinelli AHS, Lopes FC, John EBO, Carlini CR, Ligabue-Braun R. Modulation of Disordered Proteins with a Focus on Neurodegenerative Diseases and Other Pathologies. Int J Mol Sci 2019; 20:ijms20061322. [PMID: 30875980 PMCID: PMC6471803 DOI: 10.3390/ijms20061322] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have rigid 3D structures, showing changes in their folding depending on the environment or ligands. Intrinsically disordered proteins are widely spread in eukaryotic genomes, and these proteins participate in many cell regulatory metabolism processes. Some IDPs, when aberrantly folded, can be the cause of some diseases such as Alzheimer′s, Parkinson′s, and prionic, among others. In these diseases, there are modifications in parts of the protein or in its entirety. A common conformational variation of these IDPs is misfolding and aggregation, forming, for instance, neurotoxic amyloid plaques. In this review, we discuss some IDPs that are involved in neurodegenerative diseases (such as beta amyloid, alpha synuclein, tau, and the “IDP-like” PrP), cancer (p53, c-Myc), and diabetes (amylin), focusing on the structural changes of these IDPs that are linked to such pathologies. We also present the IDP modulation mechanisms that can be explored in new strategies for drug design. Lastly, we show some candidate drugs that can be used in the future for the treatment of diseases caused by misfolded IDPs, considering that cancer therapy has more advanced research in comparison to other diseases, while also discussing recent and future developments in this area of research. Therefore, we aim to provide support to the study of IDPs and their modulation mechanisms as promising approaches to combat such severe diseases.
Collapse
Affiliation(s)
- Anne H S Martinelli
- Department of Molecular Biology and Biotechnology & Department of Biophysics, Biosciences Institute-IB, (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Fernanda C Lopes
- Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Elisa B O John
- Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Célia R Carlini
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 91410-000, RS, Brazil.
- Brain Institute-InsCer, Laboratory of Neurotoxins, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Department of Pharmaceutical Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre CEP 90050-170, RS, Brazil.
| |
Collapse
|
34
|
Zong W, Zeng X, Chen S, Chen L, Zhou L, Wang X, Gao Q, Zeng G, Hu K, Ouyang D. Ginsenoside compound K attenuates cognitive deficits in vascular dementia rats by reducing the Aβ deposition. J Pharmacol Sci 2019; 139:223-230. [PMID: 30799178 DOI: 10.1016/j.jphs.2019.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
Ginsenoside compound K (CK) is the main metabolite of protopanaxadiol-type ginsenosides and has been demonstrated to exert neuroprotective and cognition-enhancing effects. The effects of CK on cognitive function in vascular dementia (VD) has not been elucidated. Therefore, the present study aims to elucidate the effects of CK on memory function as well as its potential mechanism in VD rats. Sprague-Dawley rats were subjected to Chronic Cerebral Hypoperfusion (CCH) by permanent bilateral common carotid artery occlusion (2VO). CCH induced neuronal damage and aggravated the aggregation of Amyloid-β1-42 peptides (Aβ1-42), which plays a critical role in the neurotoxicity and cognitive impairment. CK treatment attenuated CCH-induced Aβ1-42 deposition and ameliorated cognition impairment. Furthermore, CK enhanced the activity of the pSer9-Glycogen synthase kinase 3β (pSer9-GSK3β) and the insulin degrading enzyme (IDE), which mainly involved the production and clearance of Aβ1-42. Moreover, CK treatment enhanced the activity of protein kinase B (PKB/Akt), a key kinase in phosphatidylinositol 3 kinase (PI3K)/Akt pathway that can regulate the activity of GSK-3β and IDE. In short, our findings provide the first evidence that CK might attenuate cognitive deficits and Aβ1-42 deposition in the hippocampus via enhancing the expression of pSer9-GSK-3β and IDE.
Collapse
Affiliation(s)
- Wenjing Zong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Siyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, 410000, People's Republic of China
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Xintong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Qing Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, 410331, People's Republic of China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, 410000, People's Republic of China.
| |
Collapse
|
35
|
Walter S, Jumpertz T, Hüttenrauch M, Ogorek I, Gerber H, Storck SE, Zampar S, Dimitrov M, Lehmann S, Lepka K, Berndt C, Wiltfang J, Becker-Pauly C, Beher D, Pietrzik CU, Fraering PC, Wirths O, Weggen S. The metalloprotease ADAMTS4 generates N-truncated Aβ4-x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer's disease. Acta Neuropathol 2019; 137:239-257. [PMID: 30426203 DOI: 10.1007/s00401-018-1929-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/17/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
Abstract
Brain accumulation and aggregation of amyloid-β (Aβ) peptides is a critical step in the pathogenesis of Alzheimer's disease (AD). Full-length Aβ peptides (mainly Aβ1-40 and Aβ1-42) are produced through sequential proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. However, studies of autopsy brain samples from AD patients have demonstrated that a large fraction of insoluble Aβ peptides are truncated at the N-terminus, with Aβ4-x peptides being particularly abundant. Aβ4-x peptides are highly aggregation prone, but their origin and any proteases involved in their generation are unknown. We have identified a recognition site for the secreted metalloprotease ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) in the Aβ peptide sequence, which facilitates Aβ4-x peptide generation. Inducible overexpression of ADAMTS4 in HEK293 cells resulted in the secretion of Aβ4-40 but unchanged levels of Aβ1-x peptides. In the 5xFAD mouse model of amyloidosis, Aβ4-x peptides were present not only in amyloid plaque cores and vessel walls, but also in white matter structures co-localized with axonal APP. In the ADAMTS4-/- knockout background, Aβ4-40 levels were reduced confirming a pivotal role of ADAMTS4 in vivo. Surprisingly, in the adult murine brain, ADAMTS4 was exclusively expressed in oligodendrocytes. Cultured oligodendrocytes secreted a variety of Aβ species, but Aβ4-40 peptides were absent in cultures derived from ADAMTS4-/- mice indicating that the enzyme was essential for Aβ4-x production in this cell type. These findings establish an enzymatic mechanism for the generation of Aβ4-x peptides. They further identify oligodendrocytes as a source of these highly amyloidogenic Aβ peptides.
Collapse
|
36
|
Bossak-Ahmad K, Mital M, Płonka D, Drew SC, Bal W. Oligopeptides Generated by Neprilysin Degradation of β-Amyloid Have the Highest Cu(II) Affinity in the Whole Aβ Family. Inorg Chem 2018; 58:932-943. [PMID: 30582328 DOI: 10.1021/acs.inorgchem.8b03051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The catabolism of β-amyloid (Aβ) is carried out by numerous endopeptidases including neprilysin, which hydrolyzes peptide bonds preceding positions 4, 10, and 12 to yield Aβ4-9 and a minor Aβ12- x species. Alternative processing of the amyloid precursor protein by β-secretase also generates the Aβ11- x species. All these peptides contain a Xxx-Yyy-His sequence, also known as an ATCUN or NTS motif, making them strong chelators of Cu(II) ions. We synthesized the corresponding peptides, Phe-Arg-His-Asp-Ser-Gly-OH (Aβ4-9), Glu-Val-His-His-Gln-Lys-am (Aβ11-16), Val-His-His-Gln-Lys-am (Aβ12-16), and pGlu-Val-His-His-Gln-Lys-am (pAβ11-16), and investigated their Cu(II) binding properties using potentiometry, and UV-vis, circular dichroism, and electron paramagnetic resonance spectroscopies. We found that the three peptides with unmodified N-termini formed square-planar Cu(II) complexes at pH 7.4 with analogous geometries but significantly varied Kd values of 6.6 fM (Aβ4-9), 9.5 fM (Aβ12-16), and 1.8 pM (Aβ11-16). Cyclization of the N-terminal Glu11 residue to the pyroglutamate species pAβ11-16 dramatically reduced the affinity (5.8 nM). The Cu(II) affinities of Aβ4-9 and Aβ12-16 are the highest among the Cu(II) complexes of Aβ peptides. Using fluorescence spectroscopy, we demonstrated that the Cu(II) exchange between the Phe-Arg-His and Val-His-His motifs is very slow, on the order of days. These results are discussed in terms of the relevance of Aβ4-9, a major Cu(II) binding Aβ fragment generated by neprilysin, as a possible Cu(II) carrier in the brain.
Collapse
Affiliation(s)
- Karolina Bossak-Ahmad
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Mariusz Mital
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Simon C Drew
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| |
Collapse
|
37
|
Streltsov VA, Ekanayake RSK, Drew SC, Chantler CT, Best SP. Structural Insight into Redox Dynamics of Copper Bound N-Truncated Amyloid-β Peptides from in Situ X-ray Absorption Spectroscopy. Inorg Chem 2018; 57:11422-11435. [PMID: 30169035 DOI: 10.1021/acs.inorgchem.8b01255] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
X-ray absorption spectroscopy of CuII amyloid-β peptide (Aβ) under in situ electrochemical control (XAS-EC) has allowed elucidation of the redox properties of CuII bound to truncated peptide forms. The Cu binding environment is significantly different for the Aβ1-16 and the N-truncated Aβ4-9, Aβ4-12, and Aβ4-16 (Aβ4-9/12/16) peptides, where the N-truncated sequence (F4R5H6) provides the high-affinity amino-terminal copper nickel (ATCUN) binding motif. Low temperature (ca. 10 K) XAS measurements show the adoption of identical CuII ATCUN-type binding sites (CuIIATCUN) by the first three amino acids (FRH) and a longer-range interaction modeled as an oxygen donor ligand, most likely water, to give a tetragonal pyramid geometry in the Aβ4-9/12/16 peptides not previously reported. Both XAS-EC and EPR measurements show that CuII:Aβ4-16 can be reduced at mildly reducing potentials, similar to that of CuII:Aβ1-16. Reduction of peptides lacking the H13H14 residues, CuII:Aβ4-9/12, require far more forcing conditions, with metallic copper the only metal-based reduction product. The observations suggest that reduction of CuIIATCUN species at mild potentials is possible, although the rate of reduction is significantly enhanced by involvement of H13H14. XAS-EC analysis reveals that, following reduction, the peptide acts as a terdentate ligand to CuI (H13, H14 together with the linking amide oxygen atom). Modeling of the EXAFS is most consistent with coordination of an additional water oxygen atom to give a quasi-tetrahedral geometry. XAS-EC analysis of oxidized CuII:Aβ4-12/16 gives structural parameters consistent with crystallographic data for a five-coordinate CuIII complex and the CuIIATCUN complex. The structural results suggest that CuII and the oxidation product are both accommodated in an ATCUN-like binding site.
Collapse
Affiliation(s)
- Victor A Streltsov
- Florey Department of Neuroscience and Mental Health , The University of Melbourne , Melbourne , Australia.,School of Physics , The University of Melbourne , Melbourne , Australia
| | | | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital) , The University of Melbourne , Melbourne , Australia
| | | | - Stephen P Best
- School of Chemistry , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
38
|
Dunys J, Valverde A, Checler F. Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease? J Biol Chem 2018; 293:15419-15428. [PMID: 30143530 DOI: 10.1074/jbc.r118.003999] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histopathology of Alzheimer's disease (AD) is characterized by neuronal loss, neurofibrillary tangles, and senile plaque formation. The latter results from an exacerbated production (familial AD cases) or altered degradation (sporadic cases) of 40/42-amino acid-long β-amyloid peptides (Aβ peptides) that are produced by sequential cleavages of Aβ precursor protein (βAPP) by β- and γ-secretases. The amyloid cascade hypothesis proposes a key role for the full-length Aβ42 and the Aβ40/42 ratio in AD etiology, in which soluble Aβ oligomers lead to neurotoxicity, tau hyperphosphorylation, aggregation, and, ultimately, cognitive defects. However, following this postulate, during the last decade, several clinical approaches aimed at decreasing full-length Aβ42 production or neutralizing it by immunotherapy have failed to reduce or even stabilize AD-related decline. Thus, the Aβ peptide (Aβ40/42)-centric hypothesis is probably a simplified view of a much more complex situation involving a multiplicity of APP fragments and Aβ catabolites. Indeed, biochemical analyses of AD brain deposits and fluids have unraveled an Aβ peptidome consisting of additional Aβ-related species. Such Aβ catabolites could be due to either primary enzymatic cleavages of βAPP or secondary processing of Aβ itself by exopeptidases. Here, we review the diversity of N- and C-terminally truncated Aβ peptides and their biosynthesis and outline their potential function/toxicity. We also highlight their potential as new pharmaceutical targets and biomarkers.
Collapse
Affiliation(s)
- Julie Dunys
- From the Université Côte d'Azur, INSERM, CNRS, IPMC, Team labeled "Laboratory of Excellence (LABEX) Distalz," 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Audrey Valverde
- From the Université Côte d'Azur, INSERM, CNRS, IPMC, Team labeled "Laboratory of Excellence (LABEX) Distalz," 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Frédéric Checler
- From the Université Côte d'Azur, INSERM, CNRS, IPMC, Team labeled "Laboratory of Excellence (LABEX) Distalz," 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| |
Collapse
|
39
|
Lanza V, Bellia F, Rizzarelli E. An inorganic overview of natural Aβ fragments: Copper(II) and zinc(II)-mediated pathways. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Sumner IL, Edwards RA, Asuni AA, Teeling JL. Antibody Engineering for Optimized Immunotherapy in Alzheimer's Disease. Front Neurosci 2018; 12:254. [PMID: 29740272 PMCID: PMC5924811 DOI: 10.3389/fnins.2018.00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
There are nearly 50 million people with Alzheimer's disease (AD) worldwide and currently no disease modifying treatment is available. AD is characterized by deposits of Amyloid-β (Aβ), neurofibrillary tangles, and neuroinflammation, and several drug discovery programmes studies have focussed on Aβ as therapeutic target. Active immunization and passive immunization against Aβ leads to the clearance of deposits in humans and transgenic mice expressing human Aβ but have failed to improve memory loss. This review will discuss the possible explanations for the lack of efficacy of Aβ immunotherapy, including the role of a pro-inflammatory response and subsequent vascular side effects, the binding site of therapeutic antibodies and the timing of the treatment. We further discuss how antibodies can be engineered for improved efficacy.
Collapse
Affiliation(s)
- Isabelle L Sumner
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Ross A Edwards
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Jessica L Teeling
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
41
|
Dietrich K, Bouter Y, Müller M, Bayer TA. Synaptic Alterations in Mouse Models for Alzheimer Disease-A Special Focus on N-Truncated Abeta 4-42. Molecules 2018; 23:E718. [PMID: 29561816 PMCID: PMC6017701 DOI: 10.3390/molecules23040718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
This commentary reviews the role of the Alzheimer amyloid peptide Aβ on basal synaptic transmission, synaptic short-term plasticity, as well as short- and long-term potentiation in transgenic mice, with a special focus on N-terminal truncated Aβ4-42. Aβ4-42 is highly abundant in the brain of Alzheimer's disease (AD) patients. It demonstrates increased neurotoxicity compared to full length Aβ, suggesting an important role in the pathogenesis of AD. Transgenic Tg4-42 mice, a model for sporadic AD, express human Aβ4-42 in Cornu Ammonis (CA1) neurons, and develop age-dependent hippocampal neuron loss and neurological deficits. In contrast to other transgenic AD mouse models, the Tg4-42 model exhibits synaptic hyperexcitability, altered synaptic short-term plasticity with no alterations in short- and long-term potentiation. The outcomes of this study are discussed in comparison with controversial results from other AD mouse models.
Collapse
Affiliation(s)
- Katharina Dietrich
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Humboldtallee 23, 37073 Göttingen, Germany.
- Center for Physiology and Pathophysiology, Institute for Neuro- and Sense Physiology, University Medical Center (UMG), Georg-August-University, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| |
Collapse
|
42
|
Lopez-Noguerola JS, Giessen NME, Ueberück M, Meißner JN, Pelgrim CE, Adams J, Wirths O, Bouter Y, Bayer TA. Synergistic Effect on Neurodegeneration by N-Truncated Aβ 4-42 and Pyroglutamate Aβ 3-42 in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2018; 10:64. [PMID: 29568268 PMCID: PMC5852075 DOI: 10.3389/fnagi.2018.00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/23/2018] [Indexed: 01/09/2023] Open
Abstract
The N-terminally truncated pyroglutamate Aβ3-42 (AβpE3-42) and Aβ4-42 peptides are known to be highly abundant in the brain of Alzheimer's disease (AD) patients. Both peptides show enhanced aggregation and neurotoxicity in comparison to full-length Aβ, suggesting that these amyloid peptides may play an important role in the pathogenesis of AD. The aim of the present work was to study the direct effect of the combination of AβpE3-42 and Aβ4-42 on ongoing AD-related neuron loss, pathology, and neurological deficits in transgenic mice. Bigenic mice were generated by crossing the established TBA42 and Tg4-42 mouse models expressing the N-truncated Aβ peptides AβpE3-42 and Aβ4-42, respectively. After generation of the bigenic mice, detailed phenotypical characterization was performed using either immunostainings to evaluate amyloid pathology or quantification of neuron numbers using design-based stereology. The elevated plus maze was used to study anxiety levels. In order to evaluate sensori-motor deficits, the inverted grid, the balance beam and the string suspension tasks were applied. We could demonstrate that co-expression of AβpE3-42 and Aβ4-42 accelerates neuron loss in the CA1 pyramidal layer of young bigenic mice as seen by reduced neuron numbers in comparison to single transgenic homozygous mice expressing either AβpE3-42 or Aβ4-42. This observation coincides with the robust intraneuronal Aβ accumulation observed in the bigenic mice. In addition, loss of anxiety and motor deficits were enhanced in an age-dependent manner. The sensori-motor deficits correlate with the abundant spinal cord pathology, as demonstrated by robust intracellular Aβ accumulation within motor neurons and extracellular Aβ deposition. Our observations demonstrate that a combination of AβpE3-42 and Aβ4-42 has a stronger effect on ongoing AD pathology than the peptides alone. Therefore, AβpE3-42 and Aβ4-42 might represent excellent potential therapeutic targets and diagnostic markers for AD.
Collapse
Affiliation(s)
- Jose S Lopez-Noguerola
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Nicolai M E Giessen
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Maximilian Ueberück
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Julius N Meißner
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Charlotte E Pelgrim
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Johnathan Adams
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, University Medical Center, Georg-August-University, Goettingen, Germany
| |
Collapse
|
43
|
Borghesani V, Alies B, Hureau C. Cu(II) binding to various forms of amyloid-β peptides. Are they friends or foes? Eur J Inorg Chem 2018; 2018:7-15. [PMID: 30186035 PMCID: PMC6120674 DOI: 10.1002/ejic.201700776] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 01/25/2023]
Abstract
In the present micro-review, we describe the Cu(II) binding to several forms of amyloid-β peptides, the peptides involved in Alzheimer's disease. It has indeed been shown that in addition to the "full-length" peptide originating from the precursor protein after cleavage at position 1, several other shorter peptides do exist in large proportion and may be involved in the disease as well. Cu(II) binding to amyloid-β peptides is one of the key interactions that impact both the aggregating properties of the amyloid peptides and the Reactive Oxygen Species (ROS) production, two events linked to the etiology of the disease. Binding sites and affinity are described in correlation with Cu(II) induced ROS formation and Cu(II) altered aggregation, for amyloid peptides starting at position 1, 3, 4, 11 and for the corresponding pyroglutamate forms when they could be obtained (i.e. for peptides cleaved at positions 3 and 11). It appears that the current paradigm which points out a toxic role of the Cu(II) - amyloid-β interaction might well be shifted towards a possible protective role when the peptides considered are the N-terminally truncated ones.
Collapse
Affiliation(s)
- Valentina Borghesani
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | | | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
44
|
Akinyemi RO, Allan LM, Oakley A, Kalaria RN. Hippocampal Neurodegenerative Pathology in Post-stroke Dementia Compared to Other Dementias and Aging Controls. Front Neurosci 2017; 11:717. [PMID: 29311794 PMCID: PMC5742173 DOI: 10.3389/fnins.2017.00717] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022] Open
Abstract
Neuroimaging evidence from older stroke survivors in Nigeria and Northeast England showed medial temporal lobe atrophy (MTLA) to be independently associated with post-stroke cognitive impairment and dementia. Given the hypothesis ascribing MTLA to neurodegenerative processes, we assessed Alzheimer pathology in the hippocampal formation and entorhinal cortex of autopsied brains from of post-stroke demented and non-demented subjects in comparison with controls and other dementias. We quantified markers of amyloid β (total Aβ, Aβ-40, Aβ-42, and soluble Aβ) and hyperphosphorylated tau in the hippocampal formation and entorhinal cortex of 94 subjects consisting of normal controls (n = 12), vascular dementia, VaD (17), post-stroke demented, PSD (n = 15), and post-stroke non-demented, PSND (n = 23), Alzheimer's disease, AD (n = 14), and mixed AD and vascular dementia, AD_VAD (n = 13) using immunohistochemical techniques. We found differential expression of amyloid and tau across the disease groups, and across hippocampal sub-regions. Among amyloid markers, the pattern of Aβ-42 immunoreactivity was similar to that of total Aβ. Tau immunoreactivity showed highest expression in the AD and mixed AD and vascular dementia, AD_VaD, which was higher than in control, post - stroke and VaD groups (p < 0.05). APOE ε4 allele positivity was associated with higher expression of amyloid and tau pathology in the subiculum and entorhinal cortex of post-stroke cases (p < 0.05). Comparison between PSND and PSD revealed higher total Aβ immunoreactivity in PSND compared to PSD in the CA1, subiculum and entorhinal cortex (p < 0.05) but no differences between PSND and PSD in Aβ-42, Aβ-40, soluble Aβ or tau immunoreactivities (p > 0.05). Correlation of MMSE and CAMCOG scores with AD pathological measures showed lack of correlation with amyloid species although tau immunoreactivity demonstrated correlation with memory scores (p < 0.05). Our findings suggest hippocampal AD pathology does not necessarily differ between demented and non-demented post-stroke subjects. The dissociation of cognitive performance with hippocampal AD pathological burden suggests more dominant roles for non-Alzheimer neurodegenerative and / or other non-neurodegenerative substrates for dementia following stroke.
Collapse
Affiliation(s)
- Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Oyo, Nigeria.,Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louise M Allan
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arthur Oakley
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rajesh N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
45
|
Wirths O, Walter S, Kraus I, Klafki HW, Stazi M, Oberstein TJ, Ghiso J, Wiltfang J, Bayer TA, Weggen S. N-truncated Aβ 4-x peptides in sporadic Alzheimer's disease cases and transgenic Alzheimer mouse models. ALZHEIMERS RESEARCH & THERAPY 2017; 9:80. [PMID: 28978359 PMCID: PMC5628465 DOI: 10.1186/s13195-017-0309-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023]
Abstract
Background The deposition of neurotoxic amyloid-β (Aβ) peptides in plaques in the brain parenchyma and in cerebral blood vessels is considered to be a key event in Alzheimer’s disease (AD) pathogenesis. Although the presence and impact of full-length Aβ peptides such as Aβ1–40 and Aβ1–42 have been analyzed extensively, the deposition of N-terminally truncated Aβ peptide species has received much less attention, largely because of the lack of specific antibodies. Methods This paper describes the generation and characterization of novel antibodies selective for Aβ4–x peptides and provides immunohistochemical evidence of Aβ4–x in the human brain and its distribution in the APP/PS1KI and 5XFAD transgenic mouse models. Results The Aβ4–x staining pattern was restricted mainly to amyloid plaque cores and cerebral amyloid angiopathy in AD and Down syndrome cases and in both AD mouse models. In contrast, diffuse amyloid deposits were largely negative for Aβ4–x immunoreactivity. No overt intraneuronal staining was observed. Conclusions The findings of this study are consistent with previous reports demonstrating a high aggregation propensity of Aβ4–x peptides and suggest an important role of these N-truncated Aβ species in the process of amyloidogenesis and plaque core formation. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0309-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver Wirths
- Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075, Goettingen, Germany. .,Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075, Goettingen, Germany.
| | - Susanne Walter
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Inga Kraus
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075, Goettingen, Germany
| | - Hans W Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075, Goettingen, Germany
| | - Martina Stazi
- Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075, Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075, Goettingen, Germany
| | - Timo J Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Departments of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075, Goettingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Institute for Research in Biomedicine (iBiMED), Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Thomas A Bayer
- Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075, Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075, Goettingen, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
46
|
Aβ truncated species: Implications for brain clearance mechanisms and amyloid plaque deposition. Biochim Biophys Acta Mol Basis Dis 2017; 1864:208-225. [PMID: 28711595 DOI: 10.1016/j.bbadis.2017.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022]
Abstract
Extensive parenchymal and vascular Aβ deposits are pathological hallmarks of Alzheimer's disease (AD). Besides classic full-length peptides, biochemical analyses of brain deposits have revealed high degree of Aβ heterogeneity likely resulting from the action of multiple proteolytic enzymes. In spite of the numerous studies focusing in Aβ, the relevance of N- and C-terminal truncated species for AD pathogenesis remains largely understudied. In the present work, using novel antibodies specifically recognizing Aβ species N-terminally truncated at position 4 or C-terminally truncated at position 34, we provide a clear assessment of the differential topographic localization of these species in AD brains and transgenic models. Based on their distinct solubility, brain N- and C-terminal truncated species were extracted by differential fractionation and identified via immunoprecipitation coupled to mass spectrometry analysis. Biochemical/biophysical studies with synthetic homologues further confirmed the different solubility properties and contrasting fibrillogenic characteristics of the truncated species composing the brain Aβ peptidome. Aβ C-terminal degradation leads to the production of more soluble fragments likely to be more easily eliminated from the brain. On the contrary, N-terminal truncation at position 4 favors the formation of poorly soluble, aggregation prone peptides with high amyloidogenic propensity and the potential to exacerbate the fibrillar deposits, self-perpetuating the amyloidogenic loop. Detailed assessment of the molecular diversity of Aβ species composing interstitial fluid and amyloid deposits at different disease stages, as well as the evaluation of the truncation profile during various pharmacologic approaches will provide a comprehensive understanding of the still undefined contribution of Aβ truncations to the disease pathogenesis and their potential as novel therapeutic targets.
Collapse
|
47
|
Drew SC. The Case for Abandoning Therapeutic Chelation of Copper Ions in Alzheimer's Disease. Front Neurosci 2017; 11:317. [PMID: 28626387 PMCID: PMC5455140 DOI: 10.3389/fnins.2017.00317] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/18/2017] [Indexed: 12/26/2022] Open
Abstract
The "therapeutic chelation" approach to treating Alzheimer's disease (AD) evolved from the metals hypothesis, with the premise that small molecules can be designed to prevent transition metal-induced amyloid deposition and oxidative stress within the AD brain. Over more than 20 years, countless in vitro studies have been devoted to characterizing metal binding, its effect on Aβ aggregation, ROS production, and in vitro toxicity. Despite a lack of evidence for any clinical benefit, the conjecture that therapeutic chelation is an effective approach for treating AD remains widespread. Here, the author plays the devil's advocate, questioning the experimental evidence, the dogma, and the value of therapeutic chelation, with a major focus on copper ions.
Collapse
Affiliation(s)
- Simon C. Drew
- Department of Medicine, Royal Melbourne Hospital, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
48
|
Goch W, Bal W. Numerical Simulations Reveal Randomness of Cu(II) Induced Aβ Peptide Dimerization under Conditions Present in Glutamatergic Synapses. PLoS One 2017; 12:e0170749. [PMID: 28125716 PMCID: PMC5268396 DOI: 10.1371/journal.pone.0170749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
The interactions between the Aβ1-40 molecules species and the copper ions (Cu(II)) were intensively investigated due to their potential role in the development of the Alzheimer Disease (AD). The rate and the mechanism of the Cu(II)-Aβ complexes formation determines the aggregation pathway of the Aβ species, starting from smaller but more cytotoxic oligomers and ending up in large Aβ plaques, being the main hallmark of the AD. In our study we exploit the existing knowledge on the Cu(II)-Aβ interactions and create the theoretical model of the initial phase of the copper- driven Aβ aggregation mechanism. The model is based on the direct solution of the Chemical Master Equations, which capture the inherent stochastics of the considered system. In our work we argue that due to a strong Cu(II) affinity to Aβ and temporal accessibility of the Cu(II) ions during normal synaptic activity the aggregation driven by Cu(II) dominates the pure Aβ aggregation. We also demonstrate the dependence of the formation of different Cu(II)-Aβ complexes on the concentrations of reagents and the synaptic activity. Our findings correspond to recent experimental results and give a sound hypothesis on the AD development mechanisms.
Collapse
Affiliation(s)
- Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
49
|
Becker-Pauly C, Pietrzik CU. The Metalloprotease Meprin β Is an Alternative β-Secretase of APP. Front Mol Neurosci 2017; 9:159. [PMID: 28105004 PMCID: PMC5215381 DOI: 10.3389/fnmol.2016.00159] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023] Open
Abstract
The membrane bound metalloprotease meprin β is important for collagen fibril assembly in connective tissue formation and for the detachment of the intestinal mucus layer for proper barrier function. Recent proteomic studies revealed dozens of putative new substrates of meprin β, including the amyloid precursor protein (APP). It was shown that APP is cleaved by meprin β in distinct ways, either at the β-secretase site resulting in increased levels of Aβ peptides, or at the N-terminus releasing 11 kDa, and 20 kDa peptide fragments. The latter event was discussed to be rather neuroprotective, whereas the ectodomain shedding of APP by meprin β reminiscent to BACE-1 is in line with the amyloid hypothesis of Alzheimer's disease, promoting neurodegeneration. The N-terminal 11 kDa and 20 kDa peptide fragments represent physiological cleavage products, since they are found in human brains under different diseased or non-diseased states, whereas these fragments are completely missing in brains of meprin β knock-out animals. Meprin β is not only a sheddase of adhesion molecules, such as APP, but was additionally demonstrated to cleave within the prodomain of ADAM10. Activated ADAM10, the α-secretase of APP, is then able to shed meprin β from the cell surface thereby abolishing the β-secretase activity. All together meprin β seems to be a novel player in APP processing events, even influencing other enzymes involved in APP cleavage.
Collapse
Affiliation(s)
- Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Institute of Biochemistry, University of Kiel Kiel, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz Mainz, Germany
| |
Collapse
|
50
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|