1
|
Lei B, Zhu Y, Zhang Y. Combining a tunable pinhole with synchronous fluorescence spectrometry for visualization and quantification of benzo[ a]pyrene at the root epidermis microstructure of Kandelia obovata. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1879-1886. [PMID: 39301721 DOI: 10.1039/d4em00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The adsorption of polycyclic aromatic hydrocarbons (PAHs) by mangrove roots and their transport to chloroplasts is a potentially critical process that reduces the carbon sequestration efficiency of mangroves. Yet the crucial initial step, the distribution and retention of PAHs at the root epidermis microstructure, remains unclear. A novel method with a spatial resolution of 311 nm was developed for visualizing and quantifying benzo[a]pyrene (B[a]P) at the root epidermis microstructure (0.096 mm2) of Kandelia obovata (Ko). This method combined a tunable pinhole in laser confocal scanning microscopy with synchronous fluorescence spectrometry to reduce the auto-fluorescence interference in locating B[a]P and improve quantitative sensitivity. The linear range for the established method was 0.44-50.00 ng mm-2, with a detection limit of 0.063 ng mm-2 and a relative standard deviation of 9.45%. In a 60-day hydroponic experiment, B[a]P was primarily adsorbed along the epidermis cell walls of secondary lateral roots and lateral roots, with retained amounts of 0.65 ng mm-2 and 0.49 ng mm-2, respectively. It was found to cluster and predominantly accumulate at the epidermal cell surfaces of taproots (0.24 ng mm-2). B[a]P might enter inner root tissues through the root epidermal cell walls and surfaces of Ko, with the cell walls potentially being the main route. This study potentially provides a pathway for visualizing and quantifying B[a]P entering inner root tissues of mangroves.
Collapse
Affiliation(s)
- Bingman Lei
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Wang F, Zhou Z, Liu X, Zhu L, Guo B, Lv C, Zhu J, Chen ZH, Xu R. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley. BMC PLANT BIOLOGY 2024; 24:385. [PMID: 38724918 PMCID: PMC11080113 DOI: 10.1186/s12870-024-05091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.
Collapse
Affiliation(s)
- Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Zhenxiang Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohui Liu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Liang Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Wang F, Zhou Z, Liu R, Gu Y, Chen S, Xu R, Chen ZH, Shabala S. In situ mapping of ion distribution profiles and gene expression reveals interactions between hypoxia and Mn 2+/Fe 2+ availability in barley roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111607. [PMID: 36709004 DOI: 10.1016/j.plantsci.2023.111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Flooding stress affects soil properties thus altering the availability, uptake, and transport of mineral nutrients in plant roots. Flooding stress also increases the amount of soluble Mn2+ and Fe2+ in the soil and their uptake by plants, causing elemental toxicity. However, as oxygen profiles in plant roots are not uniform, it is still unclear how soil flooding will affect Mn2+/Fe2+ absorption and distribution in different cell types and tissues. In this study, waterlogging sensitive barley variety NasoNijo (NN) and tolerant variety TX9425 (TX) were exposed to hypoxia, metal (Mn2+ and Fe2+), and combined hypoxia + metal treatment to map the in situ ion profiles at different regions of barley root. We found that combined hypoxia and metal stress causes significantly more reduction in plant biomass compared with the single submergence or metal stress. Despite this, more Fe and Mn were accumulated under metal stress condition than those under combined stress, regardless of variety. Cultivar NN absorbed more Fe and Mn than TX in the cortical cells of the root meristem and in the mature zone under metal stress which was also verified by histochemical detection. In the mature zone, the expressions of Fe and Mn transporter genes including HvADPRibase-Mn (Manganese-dependent ADP-ribose), HvZIP1 (zinc-regulated transporter /Fe-regulated transporter-like protein 1), HvYS1 (yellow stripe 1), HvNRAMP5 (Natural Resistance-Associated Macrophage Protein 5) were significantly downregulated under all three treatments in both barley varieties except HvADPRibase-Mn HvZIP1 cortex of TX were unchanged under metal stress. Interestingly, the transcripts of HvMTP1 (metal tolerance protein 1) were significantly downregulated by metal and combined stress in stele and upregulated by hypoxia and metal stress in cortex of TX, but not affected in NN. It is concluded that Fe and Mn absorption involving HvMTP1is associated with the extent of waterlogging tolerance in barley.
Collapse
Affiliation(s)
- Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou 225009, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia; School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhenxiang Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou 225009, China
| | - Rong Liu
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Yangyang Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou 225009, China
| | - Song Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou 225009, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China; School of Biological Science, University of Western Australia, Crawley WA6009, Australia.
| |
Collapse
|
4
|
Salunkhe VN, Gedam P, Pradhan A, Gaikwad B, Kale R, Gawande S. Concurrent waterlogging and anthracnose-twister disease in rainy-season onions ( Allium cepa): Impact and management. Front Microbiol 2022; 13:1063472. [PMID: 36569050 PMCID: PMC9773214 DOI: 10.3389/fmicb.2022.1063472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Waterlogging and anthracnose-twister disease are significant obstacles in rainy-season onion cultivation. As a shallow-rooted crop, onions are highly sensitive to waterlogging. Wherever rainy-season onion cultivation has been undertaken, the anthracnose-twister disease complex is also widespread across the world in addition to waterlogging. Waterlogging is the major predisposing factor for anthracnose and other fungal diseases. However, studies on the combined stress impact on onions have been ignored. In the present review, we have presented an overview of the anthracnose-twister disease, the waterlogging effect on host physiology, host-pathogen interaction under waterlogging stress, and appropriate management strategies to mitigate the combined stress effects. Crucial soil and crop management strategies can help cope with the negative impact of concurrent stresses. Raised bed planting with drip irrigation, the use of plant bio-regulators along with nutrient management, and need-based fungicide sprays would be the most reliable and feasible management options. The most comprehensive solution to withstand combined stress impacts would be a genetic improvement of commercial onion cultivars.
Collapse
Affiliation(s)
- Vanita Navnath Salunkhe
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, Maharashtra, India,School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, Maharashtra, India
| | - Pranjali Gedam
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Aliza Pradhan
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, Maharashtra, India
| | - Bhaskar Gaikwad
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, Maharashtra, India
| | - Rajiv Kale
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Suresh Gawande
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, Maharashtra, India,*Correspondence: Suresh Gawande
| |
Collapse
|
5
|
Sánchez-Bermúdez M, del Pozo JC, Pernas M. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918537. [PMID: 35845642 PMCID: PMC9284278 DOI: 10.3389/fpls.2022.918537] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Climate change is a major threat to crop productivity that negatively affects food security worldwide. Increase in global temperatures are usually accompanied by drought, flooding and changes in soil nutrients composition that dramatically reduced crop yields. Against the backdrop of climate change, human population increase and subsequent rise in food demand, finding new solutions for crop adaptation to environmental stresses is essential. The effects of single abiotic stress on crops have been widely studied, but in the field abiotic stresses tend to occur in combination rather than individually. Physiological, metabolic and molecular responses of crops to combined abiotic stresses seem to be significantly different to individual stresses. Although in recent years an increasing number of studies have addressed the effects of abiotic stress combinations, the information related to the root system response is still scarce. Roots are the underground organs that directly contact with the soil and sense many of these abiotic stresses. Understanding the effects of abiotic stress combinations in the root system would help to find new breeding tools to develop more resilient crops. This review will summarize the current knowledge regarding the effects of combined abiotic stress in the root system in crops. First, we will provide a general overview of root responses to particular abiotic stresses. Then, we will describe how these root responses are integrated when crops are challenged to the combination of different abiotic stress. We will focus on the main changes on root system architecture (RSA) and physiology influencing crop productivity and yield and convey the latest information on the key molecular, hormonal and genetic regulatory pathways underlying root responses to these combinatorial stresses. Finally, we will discuss possible directions for future research and the main challenges needed to be tackled to translate this knowledge into useful tools to enhance crop tolerance.
Collapse
|
6
|
Tyagi A, Sharma S, Ali S, Gaikwad K. Crosstalk between H 2 S and NO: an emerging signalling pathway during waterlogging stress in legume crops. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:576-586. [PMID: 34693601 DOI: 10.1111/plb.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
In legumes, waterlogging is a major detrimental factor leading to huge yield losses. Generally, legumes lack tolerance to submergence, and conventional breeding to develop tolerant varieties are limited due to the lack of tolerant germplasm and potential target genes. Moreover, our understanding of the various signalling cascades, their interactions and key pathways induced during waterlogging is limited. Here, we focus on the role of two important plant signalling molecules, viz. hydrogen sulphide (H2 S) and nitric oxide (NO), during waterlogging stress in legumes. Plants and soil microbes produce these signalling molecules both endogenously and exogenously under various stresses, including waterlogging. NO and H2 S are known to regulate key physiological pathways, such as stomatal closure, leaf senescence and regulation of numerous stress signalling pathways, while NO plays a pivotal role in adventitious root formation during waterlogging. The crosstalk between H2 S and NO is synergistic because of the resemblance of their physiological effects and proteomic functions, which mainly operate through cysteine-dependent post-translational modifications via S-nitrosation and persulfidation. Such knowledge has provided novel platforms for researchers to unravel the complexity associated with H2 S-NO signalling and interactions with plant stress hormones. This review provides an overall summary on H2 S and NO, including biosynthesis, biological importance, crosstalk, transporter regulation as well as understanding their role during waterlogging using 'multi-omics' approach. Understanding H2 S and NO signalling will help in deciphering the metabolic interactions and identifying key regulatory genes that could be used for developing waterlogging tolerance in legumes.
Collapse
Affiliation(s)
- A Tyagi
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - S Sharma
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - S Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, Republic of Korea
| | - K Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
7
|
Meng X, Li L, Pascual J, Rahikainen M, Yi C, Jost R, He C, Fournier-Level A, Borevitz J, Kangasjärvi S, Whelan J, Berkowitz O. GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress. PLANT PHYSIOLOGY 2022; 188:2039-2058. [PMID: 35043967 PMCID: PMC8968326 DOI: 10.1093/plphys/kiac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/03/2021] [Indexed: 05/26/2023]
Abstract
Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | - Moona Rahikainen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, FI-20014, Finland
| | - Changyu Yi
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ricarda Jost
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Cunman He
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | - Justin Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Saijaliisa Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, FI-00014, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki, FI-00014, Finland
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|
8
|
Zimmermann MJ, Bose J, Kramer EM, Atkin OK, Tyerman SD, Baskin TI. Oxygen uptake rates have contrasting responses to temperature in the root meristem and elongation zone. PHYSIOLOGIA PLANTARUM 2022; 174:e13682. [PMID: 35373370 DOI: 10.1111/ppl.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Growing at either 15 or 25°C, roots of Arabidopsis thaliana, Columbia accession, produce cells at the same rate and have growth zones of the same length. To determine whether this constancy is related to energetics, we measured oxygen uptake by means of a vibrating oxygen-selective electrode. Concomitantly, the spatial distribution of elongation was measured kinematically, delineating meristem and elongation zone. All seedlings were germinated, grown, and measured at a given temperature (15 or 25°C). Columbia was compared to lines where cell production rate roughly doubles between 15 and 25°C: Landsberg and two Columbia mutants, er-105 and ahk3-3. For all genotypes and temperatures, oxygen uptake rate at any position was highest at the root cap, where mitochondrial density was maximal, based on the fluorescence of a reporter. Uptake rate declined through the meristem to plateau within the elongation zone. For oxygen uptake rate integrated over a zone, the meristem had steady-state Q10 values ranging from 0.7 to 2.1; by contrast, the elongation zone had values ranging from 2.6 to 3.3, implying that this zone exerts a greater respiratory demand. These results highlight a substantial energy consumption by the root cap, perhaps helpful for maintaining hypoxia in stem cells, and suggest that rapid elongation is metabolically more costly than is cell division.
Collapse
Affiliation(s)
- Maura J Zimmermann
- Plant Biology Program, University of Massachusetts, Amherst, Massachusetts, USA
- Biology Department, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jayakumar Bose
- School of Agriculture, Food and Wine, Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Eric M Kramer
- Physics Department, Bard College at Simon's Rock, Great Barrington, Massachusetts, USA
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Ma X, Li J, Deng C, Sun J, Liu J, Li N, Lu Y, Wang R, Zhao R, Zhou X, Lu C, Chen S. NaCl-altered oxygen flux profiles and H+-ATPase activity in roots of two contrasting poplar species. TREE PHYSIOLOGY 2021; 41:756-770. [PMID: 33105484 DOI: 10.1093/treephys/tpaa142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/27/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Maintaining mitochondrial respiration is crucial for proving ATP for H+ pumps to continuously exclude Na+ under salt stress. NaCl-altered O2 uptake, mitochondrial respiration and the relevance to H+-ATPase activity were investigated in two contrasting poplar species, Populus euphratica (salt-tolerant) and Populus popularis 35-44 (salt-sensitive). Compared with P. popularis, P. euphratica roots exhibited a greater capacity to extrude Na+ under NaCl stress (150 mM). The cytochemical analysis with Pb(NO3)2 staining revealed that P. euphratica root cells retained higher H+ hydrolysis activity than the salt-sensitive poplar during a long term (LT) of increasing salt stress (50-200 mM NaCl, 4 weeks). Long-sustained activation of proton pumps requires long-lasting supply of energy (adenosine triphosphate, ATP), which is delivered by aerobic respiration. Taking advantage of the vibrating-electrodes technology combined with the use of membrane-tipped, polarographic oxygen microelectrodes, the species, spatial and temporal differences in root O2 uptake were characterized under conditions of salt stress. Oxygen uptake upon NaCl shock (150 mM) was less declined in P. euphratica than in P. popularis, although the salt-induced transient kinetics were distinct from the drastic drop of O2 caused by hyperosmotic shock (255 mM mannitol). Short-term (ST) treatment (150 mM NaCl, 24 h) stimulated O2 influx in P. euphratica roots, and LT-treated P. euphratica displayed an increased O2 influx along the root axis, whereas O2 influx declined with increasing salinity in P. popularis roots. The spatial localization of O2 influxes revealed that the apical zone was more susceptible than the elongation region upon high NaCl (150, 200 mM) during ST and LT stress. Pharmacological experiments showed that the Na+ extrusion and H+-ATPase activity in salinized roots were correspondingly suppressed when O2 uptake was inhibited by a mitochondrial respiration inhibitor, NaN3. Therefore, we conclude that the stable mitochondrial respiration energized H+-ATPase of P. euphratica root cells for maintaining Na+ homeostasis under salt environments.
Collapse
Affiliation(s)
- Xiuying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
- Department of life Science and Engineering, Jining University, Qufu, Shandong 273155, People's Republic of China
| | - Jinke Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, People's Republic of China
| | - Jian Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Niya Li
- Department of Biology, College of Life Science, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Yanjun Lu
- College of Forestry, Northwest Agriculture & Forestry University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Ruigang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Xiaoyang Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Cunfu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
10
|
Wu Q, Su N, Huang X, Cui J, Shabala L, Zhou M, Yu M, Shabala S. Hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to ion homeostasis. PLANT COMMUNICATIONS 2021; 2:100188. [PMID: 34027398 PMCID: PMC8132176 DOI: 10.1016/j.xplc.2021.100188] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 05/03/2023]
Abstract
When plants are exposed to hypoxic conditions, the level of γ-aminobutyric acid (GABA) in plant tissues increases by several orders of magnitude. The physiological rationale behind this elevation remains largely unanswered. By combining genetic and electrophysiological approach, in this work we show that hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to cytosolic K+ homeostasis and Ca2+ signaling. We show that reduced O2 availability affects H+-ATPase pumping activity, leading to membrane depolarization and K+ loss via outward-rectifying GORK channels. Hypoxia stress also results in H2O2 accumulation in the cell that activates ROS-inducible Ca2+ uptake channels and triggers self-amplifying "ROS-Ca hub," further exacerbating K+ loss via non-selective cation channels that results in the loss of the cell's viability. Hypoxia-induced elevation in the GABA level may restore membrane potential by pH-dependent regulation of H+-ATPase and/or by generating more energy through the activation of the GABA shunt pathway and TCA cycle. Elevated GABA can also provide better control of the ROS-Ca2+ hub by transcriptional control of RBOH genes thus preventing over-excessive H2O2 accumulation. Finally, GABA can operate as a ligand directly controlling the open probability and conductance of K+ efflux GORK channels, thus enabling plants adaptation to hypoxic conditions.
Collapse
Affiliation(s)
- Qi Wu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nana Su
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Corresponding author
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia
- Corresponding author
| |
Collapse
|
11
|
Yemelyanov VV, Chirkova TV, Shishova MF, Lindberg SM. Potassium Efflux and Cytosol Acidification as Primary Anoxia-Induced Events in Wheat and Rice Seedlings. PLANTS 2020; 9:plants9091216. [PMID: 32948036 PMCID: PMC7570052 DOI: 10.3390/plants9091216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Both ion fluxes and changes of cytosolic pH take an active part in the signal transduction of different environmental stimuli. Here we studied the anoxia-induced alteration of cytosolic K+ concentration, [K+]cyt, and cytosolic pH, pHcyt, in rice and wheat, plants with different tolerances to hypoxia. The [K+]cyt and pHcyt were measured by fluorescence microscopy in single leaf mesophyll protoplasts loaded with the fluorescent potassium-binding dye PBFI-AM and the pH-sensitive probe BCECF-AM, respectively. Anoxic treatment caused an efflux of K+ from protoplasts of both plants after a lag-period of 300-450 s. The [K+]cyt decrease was blocked by tetraethylammonium (1 mM, 30 min pre-treatment) suggesting the involvement of plasma membrane voltage-gated K+ channels. The protoplasts of rice (a hypoxia-tolerant plant) reacted upon anoxia with a higher amplitude of the [K+]cyt drop. There was a simultaneous anoxia-dependent cytosolic acidification of protoplasts of both plants. The decrease of pHcyt was slower in wheat (a hypoxia-sensitive plant) while in rice protoplasts it was rapid and partially reversible. Ion fluxes between the roots of intact seedlings and nutrient solutions were monitored by ion-selective electrodes and revealed significant anoxia-induced acidification and potassium leakage that were inhibited by tetraethylammonium. The K+ efflux from rice was more distinct and reversible upon reoxygenation when compared with wheat seedlings.
Collapse
Affiliation(s)
- Vladislav V. Yemelyanov
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia; (T.V.C.); (M.F.S.)
- Correspondence:
| | - Tamara V. Chirkova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia; (T.V.C.); (M.F.S.)
| | - Maria F. Shishova
- Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Universitetskaya em., 7/9, 199034 Saint-Petersburg, Russia; (T.V.C.); (M.F.S.)
| | - Sylvia M. Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
12
|
Zolti A, Green SJ, Sela N, Hadar Y, Minz D. The microbiome as a biosensor: functional profiles elucidate hidden stress in hosts. MICROBIOME 2020; 8:71. [PMID: 32438915 PMCID: PMC7243336 DOI: 10.1186/s40168-020-00850-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/28/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Microbial communities are highly responsive to environmental cues, and both their structure and activity can be altered in response to changing conditions. We hypothesized that host-associated microbial communities, particularly those colonizing host surfaces, can serve as in situ sensors to reveal environmental conditions experienced by both microorganisms and the host. For a proof-of-concept, we studied a model plant-soil system and employed a non-deterministic gene-centric approach. A holistic analysis was performed using plants of two species and irrigation with water of low quality to induce host stress. Our analyses examined the genetic potential (DNA) and gene expression patterns (RNA) of plant-associated microbial communities, as well as transcriptional profiling of host plants. RESULTS Transcriptional analysis of plants irrigated with treated wastewater revealed significant enrichment of general stress-associated root transcripts relative to plants irrigated with fresh water. Metagenomic analysis of root-associated microbial communities in treated wastewater-irrigated plants, however, revealed enrichment of more specific stress-associated genes relating to high levels of salt, high pH and lower levels of oxygen. Meta-analysis of these differentially abundant genes obtained from other metagenome studies, provided evidence of the link between environmental factors such as pH and oxygen and these genes. Analysis of microbial transcriptional response demonstrated that enriched gene content was actively expressed, which implies contemporary response to elevated levels of pH and salt. CONCLUSIONS We demonstrate here that microbial profiling can elucidate stress signals that cannot be observed even through interrogation of host transcriptome, leading to an alternate mechanism for evaluating in situ conditions experienced by host organisms. This study is a proof-of-concept for the use of microbial communities as microsensors, with great potential for interrogation of a wide range of host systems. Video Abstract.
Collapse
Affiliation(s)
- Avihai Zolti
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization–Volcani Center, 7528809 Rishon Lezion, Israel
| | - Stefan J. Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA
| | - Noa Sela
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization–Volcani Center, 7528809 Rishon Lezion, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization–Volcani Center, 7528809 Rishon Lezion, Israel
| |
Collapse
|
13
|
Chew J, Zhu L, Nielsen S, Graber E, Mitchell DRG, Horvat J, Mohammed M, Liu M, van Zwieten L, Donne S, Munroe P, Taherymoosavi S, Pace B, Rawal A, Hook J, Marjo C, Thomas DS, Pan G, Li L, Bian R, McBeath A, Bird M, Thomas T, Husson O, Solaiman Z, Joseph S, Fan X. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136431. [PMID: 31958720 DOI: 10.1016/j.scitotenv.2019.136431] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/27/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Biochar-based compound fertilizers (BCF) and amendments have proven to enhance crop yields and modify soil properties (pH, nutrients, organic matter, structure etc.) and are now in commercial production in China. While there is a good understanding of the changes in soil properties following biochar addition, the interactions within the rhizosphere remain largely unstudied, with benefits to yield observed beyond the changes in soil properties alone. We investigated the rhizosphere interactions following the addition of an activated wheat straw BCF at an application rates of 0.25% (g·g-1 soil), which could potentially explain the increase of plant biomass (by 67%), herbage N (by 40%) and P (by 46%) uptake in the rice plants grown in the BCF-treated soil, compared to the rice plants grown in the soil with conventional fertilizer alone. Examination of the roots revealed that micron and submicron-sized biochar were embedded in the plaque layer. BCF increased soil Eh by 85 mV and increased the potential difference between the rhizosphere soil and the root membrane by 65 mV. This increased potential difference lowered the free energy required for root nutrient accumulation, potentially explaining greater plant nutrient content and biomass. We also demonstrate an increased abundance of plant-growth promoting bacteria and fungi in the rhizosphere. We suggest that the redox properties of the biochar cause major changes in electron status of rhizosphere soils that drive the observed agronomic benefits.
Collapse
Affiliation(s)
- Jinkiat Chew
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longlong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia
| | - Ellen Graber
- Institute of Soil, Water and Environmental Sciences, The Volcani Centre, Agricultural Research Organization, POB 6, Bet Dagan 50250, Israel
| | - David R G Mitchell
- Electron Microscopy Centre, AIIM Building, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2517, Australia
| | - Joseph Horvat
- ISEM and School of Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mohanad Mohammed
- ISEM and School of Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Minglong Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lukas van Zwieten
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Scott Donne
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Paul Munroe
- School of Materials Science and Engineering, University of NSW, Kensington, NSW 2052, Australia
| | - Sarasadat Taherymoosavi
- School of Materials Science and Engineering, University of NSW, Kensington, NSW 2052, Australia
| | - Ben Pace
- School of Materials Science and Engineering, University of NSW, Kensington, NSW 2052, Australia
| | - Aditya Rawal
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, NSW 2052, Australia
| | - James Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, NSW 2052, Australia
| | - Chris Marjo
- Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales, NSW 2052, Australia
| | - Donald S Thomas
- Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales, NSW 2052, Australia
| | - Genxing Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianqing Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongjun Bian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anna McBeath
- College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns 4870, Australia
| | - Michael Bird
- College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns 4870, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia
| | - Olivier Husson
- CIRAD, UPR AIDA, F-34398 Montpellier, France; AIDA, Univ. Montpellier, CIRAD, Montpellier, France; Africa Rice Centre, 01 BP 2551, Bouaké 01, Cote d'Ivoire
| | - Zakaria Solaiman
- UWA School of Agriculture and Environment, and The UWA Institute of Agriculture, University of Western Australia, WA 6009, Australia
| | - Stephen Joseph
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia; School of Materials Science and Engineering, University of NSW, Kensington, NSW 2052, Australia
| | - Xiaorong Fan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Colmer TD, Winkel A, Kotula L, Armstrong W, Revsbech NP, Pedersen O. Root O 2 consumption, CO 2 production and tissue concentration profiles in chickpea, as influenced by environmental hypoxia. THE NEW PHYTOLOGIST 2020; 226:373-384. [PMID: 31838743 DOI: 10.1111/nph.16368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Roots in flooded soils experience hypoxia, with the least O2 in the vascular cylinder. Gradients in CO2 across roots had not previously been measured. The respiratory quotient (RQ; CO2 produced : O2 consumed) is expected to increase as O2 availability declines. A new CO2 microsensor and an O2 microsensor were used to measure profiles across roots of chickpea seedlings in aerated or hypoxic conditions. Simultaneous, nondestructive flux measurements of O2 consumption, CO2 production, and thus RQ, were taken for roots with declining O2 . Radial profiling revealed severe hypoxia and c. 0.8 kPa CO2 within the root vascular cylinder. The distance penetrated by O2 into the roots was shorter at lower O2 . The gradient in CO2 was in the opposite direction to that of O2 , across the roots and diffusive boundary layer. RQ increased as external O2 was lowered. For chickpea roots in solution at air equilibrium, O2 was very low and CO2 was elevated within the vascular cylinder; the extent of the severely hypoxic core increased as external O2 was reduced. The increased RQ in roots in response to declining external O2 highlighted the shift from respiration to ethanolic fermentation as the severely hypoxic/anoxic core became a progressively greater proportion of the root tissues.
Collapse
Affiliation(s)
- Timothy David Colmer
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Anders Winkel
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, 2100, Copenhagen, Denmark
| | - Lukasz Kotula
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - William Armstrong
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Biological Sciences, University of Hull, Kingston upon Hull, Yorkshire, HU6 7RX, UK
| | - Niels Peter Revsbech
- Department of Bioscience, Aarhus University Centre for Water Technology, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| | - Ole Pedersen
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, 2100, Copenhagen, Denmark
| |
Collapse
|
15
|
Jiménez JDLC, Kotula L, Veneklaas EJ, Colmer TD. Root-zone hypoxia reduces growth of the tropical forage grass Urochloa humidicola in high-nutrient but not low-nutrient conditions. ANNALS OF BOTANY 2019; 124:1019-1032. [PMID: 31152584 PMCID: PMC6881221 DOI: 10.1093/aob/mcz071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/27/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS The perennial C4 grass Urochloa humidicola is widely planted on infertile acidic and waterlogging-prone soils of tropical America. Waterlogging results in soil anoxia, and O2 deficiency can reduce nutrient uptake by roots. Interestingly, both nutrient deficiencies and soil waterlogging can enhance root cortical cell senescence, and the increased gas-filled porosity facilitates internal aeration of roots. We tested the influence of nutrient supply and root-zone O2 on root traits, leaf nutrient concentrations and growth of U. humidicola. METHODS Plants were grown in pots in a completely randomized design under aerated or stagnant deoxygenated hydroponic conditions and six nutrient regimes, with low to high concentrations of all essential elements, for 28 d in a controlled-temperature greenhouse. The standard acid solution (SAS) used was previously designed based on infertile acidic soils of the tropical America savannas, and step increases in the concentration of SAS were used in aerated or deoxygenated 0.1 % agar solution, which mimics changes in gas composition in waterlogged soils. Measurements included shoot and root growth, root porosity, root anatomy, radial O2 loss, and leaf tissue nutrient concentrations. KEY RESULTS Shoot dry mass was reduced for plants in stagnant compared with aerated conditions at high, but not at low, levels of mineral nutrition. In low-nutrition stagnant solution, roots were shorter, of greater porosity and had smaller radial thickness of the stele. Suberized lamellae and lignified sclerenchyma, as well as a strong barrier to radial O2 loss, were documented for roots from all treatments. Leaf nutrient concentrations of K, Mg and Ca (but not N, P and S) were higher in aerated than in stagnant conditions. CONCLUSIONS Under low-nutrient conditions, plant growth in stagnant solution was equal to that in aerated solution, whereas under higher-nutrient regimes growth increased but dry mass in stagnant solution was less than in aerated solution. Slow growth in low-nutrient conditions limited any further response to the low O2 treatment, and greater porosity and smaller stele size in roots would enhance internal O2 movement within roots in the nutrient-limited stagnant conditions. A constitutive barrier to radial O2 loss and aerenchyma facilitates O2 movement to the tips of roots, which presumably contributes to maintaining nutrient uptake and the tolerance of U. humidicola to low O2 in the root-zone.
Collapse
Affiliation(s)
- Juan de la Cruz Jiménez
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Lukasz Kotula
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | - Erik J Veneklaas
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- School of Biological Sciences, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- The Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- The Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
16
|
Zhang X, Chen J, Liu X, Gao M, Chen X, Huang C. Nickel uptake and distribution in Agropyron cristatum L. in the presence of pyrene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:370-376. [PMID: 30849657 DOI: 10.1016/j.ecoenv.2019.01.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
PAHs affect the uptake of heavy metal by plants. The uptake pathway, distribution and detoxification of nickel (Ni) in Agropyron cristatum L. (A. cristatum) were investigated in the presence of pyrene in this study. Most of Ni was adsorbed on the cell wall in the insoluble phosphate (57.31-72.18%) form and pectate and protein integrated (38.27-38.98%) form. Ni was transferred to the organelle (from 37.84% to 40.52%) in the presence of pyrene. The concentration of Ni in A. cristatum decreased by 27.42%; it was affected by the ATP production inhibitor and 29.49% by the P-type ATPase inhibitor. The results indicated that the uptake of Ni related closely to the synthesis and decomposition of ATP and was an active uptake process. Contents of phytochelatins (PCs) in A. cristatum in Ni contaminated soils increased by 19.97%, and an additional 4.13% increase occurred in the presence of pyrene when compared to single Ni contamination. The content of malic acid in A. cristatum was the highest for 262.78 mg g-1 in shoots and 46.81 mg g-1 in roots with Ni contamination. Besides, acetic acid in shoots and roots increased by 40.25% and 102.63% with Ni contamination, and by 61.59% and 185.71% with Ni-pyrene co-contamination. This study preliminarily explored the inhibitory mechanism of pyrene on plant uptake of Ni.
Collapse
Affiliation(s)
- Xinying Zhang
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| | - Jing Chen
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| | - Xiaoyan Liu
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China.
| | - Mingjing Gao
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| | - Xueping Chen
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| | - Cheng Huang
- Laboratory of Environmental Remediation, School of Environmental and Chemical Engineering, Shanghai University, No. 99, Shangda Road, Baoshan District, Shanghai 200444, China
| |
Collapse
|
17
|
Moriconi JI, Kotula L, Santa-María GE, Colmer TD. Root phenotypes of dwarf and "overgrowth" SLN1 barley mutants, and implications for hypoxic stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:60-70. [PMID: 30665049 DOI: 10.1016/j.jplph.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Gibberellins are central to the regulation of plant development and growth. Action of gibberellins involves the degradation of DELLA proteins, which are negative regulators of growth. In barley (Hordeum vulgare), certain mutations affecting genes involved in gibberellin synthesis or coding for the barley DELLA protein (Sln1) confer dwarfism. Recent studies have identified new alleles of Sln1 with the capacity to revert the dwarf phenotype back to the taller phenotypes. While the effect of these overgrowth alleles on shoot phenotypes has been explored, no information is available for roots. Here, we examined aspects of the root phenotypes displayed by plants with various Sln1 gene alleles, and tested responses to growth in an O2-deficient root-zone as occurs during soil waterlogging. One overgrowth line, bearing the Sln1d.8 allele carrying two amino acid substitutions (one in the amino terminus and one in the GRAS domain of the encoded DELLA protein), displays profound and opposite effects on shoot height and root length. While it stimulates shoot height, it severely compromises root length by a reduction of cell size in zones distal to the root apex. In addition, Sln1d.8 plants counteract the negative effect of the original mutation on the formation of adventitious roots. Interestingly, plants bearing this allele display enhanced resistance to flooding stress in a way non-related with increased root porosity. Thus, various Sln1 gene alleles contribute to root phenotypes and can also influence plant responses to root-zone O2-deficiency stress.
Collapse
Affiliation(s)
- Jorge I Moriconi
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130 Buenos Aires, Argentina; UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lukasz Kotula
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Guillermo E Santa-María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM), Avenida Intendente Marino, km 8.2, Chascomús, 7130 Buenos Aires, Argentina
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
18
|
Manik SMN, Pengilley G, Dean G, Field B, Shabala S, Zhou M. Soil and Crop Management Practices to Minimize the Impact of Waterlogging on Crop Productivity. FRONTIERS IN PLANT SCIENCE 2019; 10:140. [PMID: 30809241 PMCID: PMC6379354 DOI: 10.3389/fpls.2019.00140] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/28/2019] [Indexed: 05/25/2023]
Abstract
Waterlogging remains a significant constraint to cereal production across the globe in areas with high rainfall and/or poor drainage. Improving tolerance of plants to waterlogging is the most economical way of tackling the problem. However, under severe waterlogging combined agronomic, engineering and genetic solutions will be more effective. A wide range of agronomic and engineering solutions are currently being used by grain growers to reduce losses from waterlogging. In this scoping study, we reviewed the effects of waterlogging on plant growth, and advantages and disadvantages of various agronomic and engineering solutions which are used to mitigate waterlogging damage. Further research should be focused on: cost/benefit analyses of different drainage strategies; understanding the mechanisms of nutrient loss during waterlogging and quantifying the benefits of nutrient application; increasing soil profile de-watering through soil improvement and agronomic strategies; revealing specificity of the interaction between different management practices and environment as well as among management practices; and more importantly, combined genetic, agronomic and engineering strategies for varying environments.
Collapse
Affiliation(s)
| | - Georgina Pengilley
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Geoffrey Dean
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Brian Field
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
- Hubei Collaborative Innovation Center for Grain Industry/School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
19
|
Gill MB, Zeng F, Shabala L, Zhang G, Yu M, Demidchik V, Shabala S, Zhou M. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. Int J Mol Sci 2019; 20:E699. [PMID: 30736310 PMCID: PMC6387252 DOI: 10.3390/ijms20030699] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing adequate supply of oxygen to roots under waterlogging conditions, such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this trait has never been targeted in breeding programs and thus represents an untapped resource for improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo were screened for superoxide anion (O₂•-) and hydrogen peroxide (H₂O₂)-two major ROS species accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL on chromosome 2H was identified for both O₂•- (QSO.TxNn.2H) and H₂O₂ (QHP.TxNn.2H) contents. This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance reported in previous studies, explaining 23% and 24% of the phenotypic variation for O₂•- and H₂O2 contents, respectively. The analysis showed a causal association between ROS production and both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors affecting crop production around the globe and frequently occur together. The markers associated with this QTL could potentially be used in future breeding programs to improve waterlogging and salinity tolerance.
Collapse
Affiliation(s)
- Muhammad Bilal Gill
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Min Yu
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
| | - Vadim Demidchik
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 222030 Minsk, Belarus.
| | - Sergey Shabala
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| |
Collapse
|
20
|
Abstract
A major problem of climate change is the increasing duration and frequency of heavy rainfall events. This leads to soil flooding that negatively affects plant growth, eventually leading to death of plants if the flooding persists for several days. Most crop plants are very sensitive to flooding, and dramatic yield losses occur due to flooding each year. This review summarizes recent progress and approaches to enhance crop resistance to flooding. Most experiments have been done on maize, barley, and soybean. Work on other crops such as wheat and rape has only started. The most promising traits that might enhance crop flooding tolerance are anatomical adaptations such as aerenchyma formation, the formation of a barrier against radial oxygen loss, and the growth of adventitious roots. Metabolic adaptations might be able to improve waterlogging tolerance as well, but more studies are needed in this direction. Reasonable approaches for future studies are quantitative trait locus (QTL) analyses or genome-wide association (GWA) studies in combination with specific tolerance traits that can be easily assessed. The usage of flooding-tolerant relatives or ancestral cultivars of the crop of interest in these experiments might enhance the chances of finding useful tolerance traits to be used in breeding.
Collapse
|
21
|
Gill MB, Zeng F, Shabala L, Böhm J, Zhang G, Zhou M, Shabala S. The ability to regulate voltage-gated K+-permeable channels in the mature root epidermis is essential for waterlogging tolerance in barley. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:667-680. [PMID: 29301054 PMCID: PMC5853535 DOI: 10.1093/jxb/erx429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/17/2017] [Indexed: 05/19/2023]
Abstract
Oxygen depletion under waterlogged conditions results in a compromised operation of H+-ATPase, with strong implications for membrane potential maintenance, cytosolic pH homeostasis, and transport of all nutrients across membranes. The above effects, however, are highly tissue specific and time dependent, and the causal link between hypoxia-induced changes to the cell's ionome and plant adaptive responses to hypoxia is not well established. This work aimed to fill this gap and investigate the effects of oxygen deprivation on K+ signalling and homeostasis in plants, and potential roles of GORK (depolarization-activated outward-rectifying potassium) channels in adaptation to oxygen-deprived conditions in barley. A significant K+ loss was observed in roots exposed to hypoxic conditions; this loss correlated with the cell's viability. Stress-induced K+ loss was stronger in the root apex immediately after stress onset, but became more pronounced in the root base as the stress progressed. The amount of K+ in shoots of plants grown in waterlogged soil correlated strongly with K+ flux under hypoxia measured in laboratory experiments. Hypoxia induced membrane depolarization; the severity of this depolarization was less pronounced in the tolerant group of cultivars. The expression of GORK was down-regulated by 1.5-fold in mature root but it was up-regulated by 10-fold in the apex after 48 h hypoxia stress. Taken together, our results suggest that the GORK channel plays a central role in K+ retention and signalling under hypoxia stress, and measuring hypoxia-induced K+ fluxes from the mature root zone may be used as a physiological marker to select waterlogging-tolerant varieties in breeding programmes.
Collapse
Affiliation(s)
- Muhammad Bilal Gill
- Department of Agronomy, Zhejiang University, Hangzhou, China
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Fanrong Zeng
- Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Jennifer Böhm
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Guoping Zhang
- Department of Agronomy, Zhejiang University, Hangzhou, China
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
22
|
Dwivedi SK, Kumar S, Bhakta N, Singh SK, Rao KK, Mishra JS, Singh AK. Improvement of submergence tolerance in rice through efficient application of potassium under submergence-prone rainfed ecology of Indo-Gangetic Plain. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:907-916. [PMID: 32480619 DOI: 10.1071/fp17054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 05/19/2017] [Indexed: 06/11/2023]
Abstract
Potassium (K) is one of the limiting factors that negatively influenced rice growth and yield in submergence-prone soils. We conducted an experiment during the wet season of 2014-15 to achieve optimal doses of K and understand the effect of K application on submerged rice in terms of survival, chlorophyll content, non-structural carbohydrates (NSC), anti-oxidant activities and yield. Results revealed that chlorophyll and NSC content were significantly (P≤0.05) lower whereas the activity of anti-oxidants (catalase, superoxide dismutase and total peroxidase) were significantly (P≤0.05) higher after submergence compared with pre-submergence. Further, application of K at a higher basal dose (40kgha-1) was more beneficial to improve survival after de-submergence by maintaining NSC, chlorophyll content and higher activity of anti-oxidants with lower level of lipid peroxidation. Furthermore, results showed superiority of the treatments having application of higher doses with one foliar spray (T9-40kg K2O ha-1 (basal)+one foliar spray at 0.5% K at panicle initiation (PI) stage) for grain yield. We conclude that application of a higher dose of K with one foliar application at PI stage is more beneficial to enhance plant survival, better recovery and yield gain of rice during complete submergence.
Collapse
Affiliation(s)
- Sharad Kumar Dwivedi
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Santosh Kumar
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Narayan Bhakta
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Shishir Kant Singh
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Karnena Koteswara Rao
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Janki Sharan Mishra
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Anil Kumar Singh
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| |
Collapse
|
23
|
Wang F, Chen ZH, Liu X, Colmer TD, Shabala L, Salih A, Zhou M, Shabala S. Revealing the roles of GORK channels and NADPH oxidase in acclimation to hypoxia in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3191-3204. [PMID: 28338729 PMCID: PMC5853854 DOI: 10.1093/jxb/erw378] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/20/2016] [Indexed: 05/19/2023]
Abstract
Regulation of root cell K+ is essential for acclimation to low oxygen stress. The potential roles of GORK (depolarization-activated guard cell outward-rectifying potassium) channels and RBOHD (respiratory burst oxidase homologue D) in plant adaptive responses to hypoxia were investigated in the context of tissue specificity (epidermis versus stele; elongation versus mature zone) in roots of Arabidopsis. The expression of GORK and RBOHD was down-regulated by 2- to 3-fold within 1 h and 24 h of hypoxia treatment in Arabidopsis wild-type (WT) roots. Interestingly, a loss of the functional GORK channel resulted in a waterlogging-tolerant phenotype, while rbohD knockout was sensitive to waterlogging. To understand their functions under hypoxia stress, we studied K+, Ca2+, and reactive oxygen species (ROS) distribution in various root cell types. gork1-1 plants had better K+ retention ability in both the elongation and mature zone compared with the WT and rbohD under hypoxia. Hypoxia induced a Ca2+ increase in each cell type after 72 h, and the increase was much less pronounced in rbohD than in the WT. In most tissues except the elongation zone in rbohD, the H2O2 concentration had decreased after 1 h of hypoxia, but then increased significantly after 24 h of hypoxia in each zone and tissue, further suggesting that RBOHD may shape hypoxia-specific Ca2+ signatures via the modulation of apoplastic H2O2 production. Taken together, our data suggest that plants lacking functional GORK channels are more capable of retaining K+ for their better performance under hypoxia, and that RBOHD is crucial in hypoxia-induced Ca2+ signalling for stress sensing and acclimation mechanism.
Collapse
Affiliation(s)
- Feifei Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Xiaohui Liu
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- School of Light Industry Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Timothy D Colmer
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Anya Salih
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
24
|
Li LZ, Tu C, Wu LH, Peijnenburg WJGM, Ebbs S, Luo YM. Pathways of root uptake and membrane transport of Cd 2+ in the zinc/cadmium hyperaccumulating plant Sedum plumbizincicola. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1038-1046. [PMID: 27662630 DOI: 10.1002/etc.3625] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/21/2016] [Indexed: 05/19/2023]
Abstract
Uptake and membrane transport of cadmium (Cd) in roots of the hyperaccumulator Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu was characterized by assessing the impact of various inhibitors and ion channel blockers on Cd accumulation as well as the real-time net Cd2+ flux at the roots with application of the scanning ion-selective electrode technique. The uncouplers 2,4-dinitrophenol and P-type adenosine triphosphatase inhibitor Na3 VO4 significantly limited Cd2+ uptake and transport kinetics in the root of S. plumbizincicola. These findings indicate that Cd is actively taken up into the roots. The Cd content in plant was significantly decreased with pretreatments of the Ca2+ channel blocker La3+ or Gd3+ and the K+ channel blocker tetraethylammonium, as well as in the presence of higher concentration of Ca2+ and K+ . These findings indicated that uptake of Cd2+ into the root of S. plumbizincicola proceeds through ion channels that are permeable to both Ca2+ and K+ as confirmed by the direct evidence of real-time net Cd2+ fluxes at the root surface in the treatments with ion channel inhibitors, as well as in the presence of elevated concentrations of Ca2+ and K+ . In addition, the results suggested a role for phytochelatin and protein synthesis in mediating Cd2+ uptake by S. plumbizincicola. These findings increase the understanding of Cd2+ uptake and membrane transport pathways in roots of the Zn/Cd hyperaccumulator S. plumbizincicola. Environ Toxicol Chem 2017;36:1038-1046. © 2016 SETAC.
Collapse
Affiliation(s)
- Lian-Zhen Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, People's Republic of China
| | - Chen Tu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, People's Republic of China
| | - Long-Hua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Willie J G M Peijnenburg
- Center for Safety of Products and Substances, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Stephen Ebbs
- Department of Plant Biology, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Yong-Ming Luo
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, People's Republic of China
| |
Collapse
|
25
|
Li LZ, Tu C, Peijnenburg WJGM, Luo YM. Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:351-358. [PMID: 28012673 DOI: 10.1016/j.envpol.2016.11.085] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Wheat is one of several cereals that is capable of accumulating higher amounts of Cd in plant tissues. It is important to understand the Cd2+ transport processes in roots that result in excess Cd accumulation. Traditional destructive technologies have limited capabilities in analyzing root samples due to methodological limitations, and sometimes may result in false conclusions. The mechanisms of Cd2+ uptake into the roots of wheat seedlings (Triticum aestivum L.) were investigated by assessing the impact of various inhibitors and channel blockers on Cd accumulation as well as the real-time net Cd2+ flux at roots with the non-destructive scanning ion-selective electrode technique. The P-type ATPase inhibitor Na3VO4 (500 μM) had little effect on Cd uptake (p < 0.05) and the kinetics of transport in the root of wheat, suggesting that Cd2+ uptake into wheat root cells is not directly dependent on H+ gradients. While, the uncoupler 2,4-dinitrophenol significantly limited Cd2+ uptake (p < 0.05) and transport kinetics in the root of wheat, suggesting the existence of metabolic mediation in the Cd2+ uptake process by wheat. The Cd content at the whole-plant level in wheat was significantly (p < 0.05) decreased upon pretreatment with the Ca2+ channel blockers La3+ or Gd3+ and Verapamil, but not in case of pretreatment with the K+ channel blocker tetraethylammonium (TEA). In addition, the inhibitors of the Ca2+ channel, as well as high concentrations of Ca2+, reduced the real-time net Cd2+ fluxes at the root surface in SIET experiments. These results indicate that Cd2+ moves across the plasma lemma of the wheat root via Ca2+ channels. In addition, our results suggested a role for protein synthesis in mediating Cd2+ uptake and transport by wheat.
Collapse
Affiliation(s)
- Lian-Zhen Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, PR China.
| | - Chen Tu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, PR China.
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for Safety of Substances and Products, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands.
| | - Yong-Ming Luo
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, PR China.
| |
Collapse
|
26
|
Wang F, Chen ZH, Liu X, Colmer TD, Zhou M, Shabala S. Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3747-62. [PMID: 26889007 PMCID: PMC4896357 DOI: 10.1093/jxb/erw034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Waterlogging is a major abiotic stress that limits the growth of plants. The crucial role of Ca(2+) as a second messenger in response to abiotic and biotic stimuli has been widely recognized in plants. However, the physiological and molecular mechanisms of Ca(2+) distribution within specific cell types in different root zones under hypoxia is poorly understood. In this work, whole-plant physiological and tissue-specific Ca(2+) changes were studied using several ACA (Ca(2+)-ATPase) and CAX (Ca(2+)/proton exchanger) knock-out Arabidopsis mutants subjected to waterlogging treatment. In the wild-type (WT) plants, several days of hypoxia decreased the expression of ACA8, CAX4, and CAX11 by 33% and 50% compared with the control. The hypoxic treatment also resulted in an up to 11-fold tissue-dependent increase in Ca(2+) accumulation in root tissues as revealed by confocal microscopy. The increase was much higher in stelar cells in the mature zone of Arabidopsis mutants with loss of function for ACA8, ACA11, CAX4, and CAX11 In addition, a significantly increased Ca(2+) concentration was found in the cytosol of stelar cells in the mature zone after hypoxic treatment. Three weeks of waterlogging resulted in dramatic loss of shoot biomass in cax11 plants (67% loss in shoot dry weight), while in the WT and other transport mutants this decline was only 14-22%. These results were also consistent with a decline in leaf chlorophyll fluorescence (F v/F m). It is suggested that CAX11 plays a key role in maintaining cytosolic Ca(2+) homeostasis and/or signalling in root cells under hypoxic conditions.
Collapse
Affiliation(s)
- Feifei Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith NSW2751, Australia
| | - Xiaohui Liu
- School of Science and Health, Western Sydney University, Penrith NSW2751, Australia School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Timothy David Colmer
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
27
|
Shabala S, Bose J, Fuglsang AT, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1015-31. [PMID: 26507891 DOI: 10.1093/jxb/erv465] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Igor Pottosin
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, México
| |
Collapse
|
28
|
Kotula L, Clode PL, Striker GG, Pedersen O, Läuchli A, Shabala S, Colmer TD. Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (Hordeum vulgare). THE NEW PHYTOLOGIST 2015; 208:1114-25. [PMID: 26094736 DOI: 10.1111/nph.13535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/29/2015] [Indexed: 05/08/2023]
Abstract
Oxygen deficiency associated with soil waterlogging adversely impacts root respiration and nutrient acquisition. We investigated the effects of O2 deficiency and salinity (100 mM NaCl) on radial O2 concentrations and cell-specific ion distributions in adventitious roots of barley (Hordeum vulgare). Microelectrode profiling measured O2 concentrations across roots in aerated, aerated saline, stagnant or stagnant saline media. X-ray microanalysis at two positions behind the apex determined the cell-specific elemental concentrations of potassium (K), sodium (Na) and chloride (Cl) across roots. Severe O2 deficiency occurred in the stele and apical regions of roots in stagnant solutions. O2 deficiency in the stele reduced the concentrations of K, Na and Cl in the pericycle and xylem parenchyma cells at the subapical region. Near the root apex, Na declined across the cortex in roots from the aerated saline solution but was relatively high in all cell types in roots from the stagnant saline solution. Oxygen deficiency has a substantial impact on cellular ion concentrations in roots. Both pericycle and xylem parenchyma cells are involved in energy-dependent K loading into the xylem and in controlling radial Na and Cl transport. At root tips, accumulation of Na in the outer cell layers likely contributed to reduction of Na in inner cells of the tips.
Collapse
Affiliation(s)
- Lukasz Kotula
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Peta L Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Gustavo G Striker
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ole Pedersen
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Advanced Studies, The University of Western Australia, Crawley, WA, 6009, Australia
- Freshwater Biological Laboratory, University of Copenhagen, Copenhagen, 2100, Denmark
| | - André Läuchli
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616-8627, USA
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Timothy D Colmer
- School of Plant Biology, Faculty of Science, The University of Western Australia, Crawley, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
29
|
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FRONTIERS IN PLANT SCIENCE 2015; 6:873. [PMID: 26579140 PMCID: PMC4621421 DOI: 10.3389/fpls.2015.00873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest.
Collapse
Affiliation(s)
- Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan UniversityLondon, UK
| |
Collapse
|
30
|
He L, Li B, Lu X, Yuan L, Yang Y, Yuan Y, Du J, Guo S. The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia. Sci Rep 2015; 5:11391. [PMID: 26304855 PMCID: PMC4548228 DOI: 10.1038/srep11391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 04/29/2015] [Indexed: 11/20/2022] Open
Abstract
Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca(2+) and K(+) in root cells by increasing the activity of plasma membrane (PM) H(+)-ATPase and tonoplast H(+)-ATPase and H(+)-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber.
Collapse
Affiliation(s)
- Lizhong He
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Horticulture Research Institute, Shanghai Academy Agricultural Sciences, Key Laboratory of Protected Horticulture Technology, Shanghai, 201403, China
| | - Bin Li
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomin Lu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Life Science, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Lingyun Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanjuan Yang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Du
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Atwell BJ, Greenway H, Colmer TD. Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings. THE NEW PHYTOLOGIST 2015; 206:36-56. [PMID: 25472708 DOI: 10.1111/nph.13173] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/09/2014] [Indexed: 05/08/2023]
Abstract
Anoxia tolerance in plants is distinguished by direction of the sparse supply of energy to processes crucial to cell maintenance and sometimes to growth, as in rice seedlings. In anoxic rice coleoptiles energy is used to synthesise proteins, take up K(+) , synthesise cell walls and lipids, and in cell maintenance. Maintenance of electrochemical H(+) gradients across the tonoplast and plasma membrane is crucial for solute compartmentation and thus survival. These gradients sustain some H(+) -solute cotransport and regulate cytoplasmic pH. Pyrophosphate (PPi ), the alternative energy donor to ATP, allows direction of energy to the vacuolar H(+) -PPi ase, sustaining H(+) gradients across the tonoplast. When energy production is critically low, operation of a biochemical pHstat allows H(+) -solute cotransport across plasma membranes to continue for at least for 18 h. In active (e.g. growing) cells, PPi produced during substantial polymer synthesis allows conversion of PPi to ATP by PPi -phosphofructokinase (PFK). In quiescent cells with little polymer synthesis and associated PPi formation, the PPi required by the vacuolar H(+) -PPi ase and UDPG pyrophosphorylase involved in sucrose mobilisation via sucrose synthase might be produced by conversion of ATP to PPi through reversible glycolytic enzymes, presumably pyruvate orthophosphate dikinase. These hypotheses need testing with species characterised by contrasting anoxia tolerance.
Collapse
Affiliation(s)
- Brian J Atwell
- Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, 2109, NSW, Australia
| | - Hank Greenway
- School of Plant Biology and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | - Timothy D Colmer
- School of Plant Biology and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| |
Collapse
|
32
|
Di Bella CE, Grimoldi AA, Rossi Lopardo MS, Escaray FJ, Ploschuk EL, Striker GG. Differential growth of Spartina densiflora populations under saline flooding is related to adventitious root formation and innate root ion regulation. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 43:52-61. [PMID: 32480441 DOI: 10.1071/fp15149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/27/2015] [Indexed: 06/11/2023]
Abstract
Global change anticipates scenarios of sea level rise that would provoke long lasting floods, especially in lowland areas of salt marshes. Our aim was to evaluate the morpho-physiological adjustment ability to deal with continuous saline flooding of Spartina densiflora Brogn. plants from lowlands and uplands along a subtle topographical gradient (0.2m differential altitude). Plants from both origins were subjected to continuous saline flooding (300mM NaCl) for 35 days. Responses associated to adventitious rooting, aerenchyma formation, concentration of Na+, K+ and Cl- in roots and shoots tissues, tillering and growth were assessed. Root responses differentiated populations given that lowland plants showed higher ability for adventitious root formation and innate superior root ion regulation than upland plants. High constitutive K+ concentration plus high Na+ exclusion in root tissues led to significant low values of Na+:K+ ratios in lowland plants. Better root functioning was, in turn, related with more consistent shoot performance as lowland plants maintained plant tiller number and shoot relative growth rate unaltered while upland plants decreased both parameters by 35 and 18%, respectively, when in saline flooding. The superior performance of lowland plants indicates that locally adapted populations can be promoted in salt marsh habitats with subtle differences at topographic level.
Collapse
Affiliation(s)
- Carla E Di Bella
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET. Av. San Martín 4453 (CPA 1417 DSE) Buenos Aires, Argentina
| | - Agustín A Grimoldi
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET. Av. San Martín 4453 (CPA 1417 DSE) Buenos Aires, Argentina
| | - María S Rossi Lopardo
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET. Av. San Martín 4453 (CPA 1417 DSE) Buenos Aires, Argentina
| | | | - Edmundo L Ploschuk
- Cátedra de Cultivos Industriales, Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martín 4453 (CPA 1417 DSE) Buenos Aires, Argentina
| | - Gustavo G Striker
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET. Av. San Martín 4453 (CPA 1417 DSE) Buenos Aires, Argentina
| |
Collapse
|
33
|
Teakle NL, Colmer TD, Pedersen O. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water. PLANT, CELL & ENVIRONMENT 2014; 37:2339-2349. [PMID: 24393094 DOI: 10.1111/pce.12269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas films reduce Na(+) and Cl(-) ingress into leaves when submerged by saline water - the thin gas layer physically separates the floodwater from the leaf surface. This feature aids survival of plants exposed to short-term saline submergence, as well as the previously recognized beneficial effects of gas exchange under water.
Collapse
Affiliation(s)
- Natasha Lea Teakle
- School of Plant Biology (M084), UWA Institute of Agriculture, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia; Centre for Ecohydrology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia; Graduate Research School, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
| | | | | |
Collapse
|
34
|
Shabala S, Shabala L, Barcelo J, Poschenrieder C. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. PLANT, CELL & ENVIRONMENT 2014; 37:2216-33. [PMID: 24689809 DOI: 10.1111/pce.12339] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 05/20/2023]
Abstract
This review provides a comprehensive assessment of a previously unexplored topic: elucidating the role that plasma- and organelle-based membrane transporters play in plant-adaptive responses to flooding. We show that energy availability and metabolic shifts under hypoxia and anoxia are critical in regulating membrane-transport activity. We illustrate the high tissue and time dependence of this regulation, reveal the molecular identity of transporters involved and discuss the modes of their regulation. We show that both reduced oxygen availability and accumulation of transition metals in flooded roots result in a reduction in the cytosolic K(+) pool, ultimately determining the cell's fate and transition to programmed cell death (PCD). This process can be strongly affected by hypoxia-induced changes in the amino acid pool profile and, specifically, ϒ-amino butyric acid (GABA) accumulation. It is suggested that GABA plays an important regulatory role, allowing plants to proceed with H2 O2 signalling to activate a cascade of genes that mediate plant adaptation to flooding while at the same time, preventing the cell from entering a 'suicide program'. We conclude that progress in crop breeding for flooding tolerance can only be achieved by pyramiding the numerous physiological traits that confer efficient energy maintenance, cytosolic ion homeostasis, and reactive oxygen species (ROS) control and detoxification.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, TAS 7001, Australia
| | | | | | | |
Collapse
|
35
|
Zeng F, Konnerup D, Shabala L, Zhou M, Colmer TD, Zhang G, Shabala S. Linking oxygen availability with membrane potential maintenance and K+ retention of barley roots: implications for waterlogging stress tolerance. PLANT, CELL & ENVIRONMENT 2014; 37:2325-38. [PMID: 25132404 DOI: 10.1111/pce.12422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 05/24/2023]
Abstract
Oxygen deprivation is a key determinant of root growth and functioning under waterlogging. In this work, changes in net K(+) flux and membrane potential (MP) of root cells were measured from elongation and mature zones of two barley varieties under hypoxia and anoxia conditions in the medium, and as influenced by ability to transport O2 from the shoot. We show that O2 deprivation results in an immediate K(+) loss from roots, in a tissue- and time-specific manner, affecting root K(+) homeostasis. Both anoxia and hypoxia induced transient membrane depolarization; the extent of this depolarization varied depending on severity of O2 stress and was less pronounced in a waterlogging-tolerant variety. Intact roots of barley were capable of maintaining H(+) -pumping activity under hypoxic conditions while disrupting O2 transport from shoot to root resulted in more pronounced membrane depolarization under O2 -limited conditions and in anoxia a rapid loss of the cell viability. It is concluded that the ability of root cells to maintain MP and cytosolic K(+) homeostasis is central to plant performance under waterlogging, and efficient O2 transport from the shoot may enable operation of the plasma membrane H(+) -ATPase in roots even under conditions of severe O2 limitation in the soil solution.
Collapse
Affiliation(s)
- Fanrong Zeng
- School of Land and Food, University of Tasmania, Hobart, Tasmania, 7001, Australia; Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Shabala S, Pottosin I. Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. PHYSIOLOGIA PLANTARUM 2014; 151:257-79. [PMID: 24506225 DOI: 10.1111/ppl.12165] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/15/2013] [Accepted: 01/13/2014] [Indexed: 05/18/2023]
Abstract
Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Tas, 7001, Australia
| | | |
Collapse
|
37
|
Kirk GJD, Greenway H, Atwell BJ, Ismail AM, Colmer TD. Adaptation of Rice to Flooded Soils. PROGRESS IN BOTANY 2014. [DOI: 10.1007/978-3-642-38797-5_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Alamri SA, Barrett-Lennard EG, Teakle NL, Colmer TD. Improvement of salt and waterlogging tolerance in wheat: comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1168-1178. [PMID: 32481184 DOI: 10.1071/fp12385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/29/2013] [Indexed: 06/11/2023]
Abstract
Hordeum marinum Huds. is a waterlogging-tolerant halophyte that has been hybridised with bread wheat (Triticum aestivum L.) to produce an amphiploid containing both genomes. This study tested the hypothesis that traits associated with waterlogging and salinity tolerances would be expressed in H. marinum-wheat amphiploids. Four H. marinum accessions were used as parents to produce amphiploids with Chinese Spring wheat, and their responses to hypoxic and 200mM NaCl were evaluated. Relative growth rate (RGR) in the hypoxic-saline treatment was better maintained in the amphiploids (58-71% of controls) than in wheat (56% of control), but the amphiploids were more affected than H. marinum (68-97% of controls). In hypoxic-saline conditions, leaf Na+ concentrations in the amphiploids were lower than in wheat (30-41% lower) but were 39-47% higher than in the H. marinum parents. A strong barrier to radial oxygen loss formed in basal root zones under hypoxic conditions in two H. marinum accessions; this barrier was moderate in the amphiploids, absent in wheat, and was weaker for the hypoxic-saline treatment. Porosity of adventitious roots increased with the hypoxic treatments; values were 24-38% in H. marinum, 16-27% in the amphiploids and 16% in wheat. Overall, the amphiploids showed greater salt and waterlogging tolerances than wheat, demonstrating the expression of relevant traits from H. marinum in the amphiploids.
Collapse
Affiliation(s)
- Saud A Alamri
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Edward G Barrett-Lennard
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Natasha L Teakle
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Timothy D Colmer
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
39
|
Wei W, Li D, Wang L, Ding X, Zhang Y, Gao Y, Zhang X. Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 208:102-111. [PMID: 23683935 DOI: 10.1016/j.plantsci.2013.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/13/2013] [Accepted: 03/22/2013] [Indexed: 05/27/2023]
Abstract
Waterlogging threatens severely to the sesame production in China, India and Burma, which are the top three sesame producers of the world. It was of great importance to explore the dynamics and mechanisms of action of anaerobic proteins and antioxidant enzymes together with the morph-anatomic adaptions in waterlogged sesame. The sesame accessions ZZM2541 and Ezhi-2 respond to waterlogging in considerably different performance. The stress induced wilting and leaf chlorosis in both accessions, but symptom occurred earlier in the susceptive Ezhi-2. In the more tolerant ZZM2541, adventitious roots formed above the flooding level, and plentiful of aerenchyma developed in the root and stem. However, it was discovered no apparent intercellular spaces existing in the spongy mesophyll in leaves of both accessions. The activities of ADH, PDC and LDH increased in roots of both accessions after suffering of the stress. The increase of ADH and PDC activity was more pronounced in ZZM2541, while a significantly higher LDH activity appeared in Ezhi-2. All the activities of SOD, APX and CAT were higher in the leaves of ZZM2541 than in Ezhi-2, and the leaves of Ezhi-2 showed a higher content of MDA throughout the duration of waterlogging. It was suggested that the tolerance to waterlogging of ZZM2541 appears to depend on a combination of metabolic and morpho-anatomical adaptions.
Collapse
Affiliation(s)
- Wenliang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Newman I, Chen SL, Porterfield DM, Sun J. Non-invasive flux measurements using microsensors: theory, limitations, and systems. Methods Mol Biol 2013; 913:101-17. [PMID: 22895754 DOI: 10.1007/978-1-61779-986-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Knowledge of the fluxes of ions and neutral molecules across the outer membrane or boundary of living tissues and cells is an important strand of applied molecular biology. Such fluxes can be measured non-invasively with good resolution in time and space. Two systems (MIFE™ and SIET) have been developed and have become widely used to implement this technique, and they are commercially available. This Chapter is the first comparative description of these two systems. It gives the context, the basic underlying theory, practical limitations inherent in the technique, theoretical developments, guidance on the practicalities of the technique, and the functionality of the two systems. Although the technique is strongly relevant to plant salt tolerance and other plant stresses (drought, temperature, pollutants, waterlogging), it also has rich relevance throughout biomedical studies and the molecular genetics of transport proteins.
Collapse
Affiliation(s)
- Ian Newman
- School of Mathematics and Physics, University of Tasmania, Hobart, TAS, Australia.
| | | | | | | |
Collapse
|
41
|
Wang M, Zheng Q, Shen Q, Guo S. The critical role of potassium in plant stress response. Int J Mol Sci 2013; 14:7370-90. [PMID: 23549270 PMCID: PMC3645691 DOI: 10.3390/ijms14047370] [Citation(s) in RCA: 460] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/23/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023] Open
Abstract
Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K) is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.
Collapse
Affiliation(s)
- Min Wang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qingsong Zheng
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qirong Shen
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Shiwei Guo
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| |
Collapse
|
42
|
Shabala S, Shabala L, Bose J, Cuin T, Newman I. Ion flux measurements using the MIFE technique. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 953:171-83. [PMID: 23073883 DOI: 10.1007/978-1-62703-152-3_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Noninvasive microelectrode ion flux measurements (the MIFE™ technique) allow the concurrent quantification of net fluxes of several ions with high spatial (several μm) and temporal (ca 5 s) resolution. The MIFE technique has become a popular tool for studying the adaptive responses of plant cells and tissues to a large number of abiotic and biotic stresses. This chapter briefly summarizes some key findings on spatial and temporal organization of plant nutrient acquisition obtained by the MIFE technique, as well as the MIFE contribution towards elucidating the mechanisms behind a plant's perception and signaling of major abiotic stresses. The full protocols for microelectrode fabrication, calibration, and use are then given, and two basic routines for mapping root ion flux profiles and studying transient ion flux kinetics are given.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia.
| | | | | | | | | |
Collapse
|
43
|
Xu R, Wang J, Li C, Johnson P, Lu C, Zhou M. A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.). PLoS One 2012; 7:e43079. [PMID: 22916210 PMCID: PMC3423432 DOI: 10.1371/journal.pone.0043079] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
Introduction Salinity and waterlogging are two major abiotic stresses severely limiting barley production. The lack of a reliable screening method makes it very hard to improve the tolerance through breeding programs. Methods This work used 188 DH lines from a cross between a Chinese landrace variety, TX9425 (waterlogging and salinity tolerant), and a Japanese malting barley, Naso Nijo (waterlogging and salinity sensitive), to identify QTLs associated with the tolerance. Results Four QTLs were found for waterlogging tolerance. The salinity tolerance was evaluated with both a hydroponic system and in potting mixture. In the trial with potting mixture, only one major QTL was identified to associate with salinity tolerance. This QTL explained nearly 50% of the phenotypic variation, which makes it possible for further fine mapping and cloning of the gene. This QTL was also identified in the hydroponic experiment for different salt-related traits. The position of this QTL was located at a similar position to one of the major QTLs for waterlogging tolerance, indicating the possibility of similar mechanisms controlling both waterlogging and salinity tolerance. Conclusion The markers associated with the QTL provided a unique opportunity in breeding programs for selection of salinity and waterlogging tolerance.
Collapse
Affiliation(s)
- Rugen Xu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology and Barley Research Institution of Yangzhou University, Yangzhou, China
| | - Junmei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengdao Li
- Department of Agriculture and Food, Government of Western Australia, South Perth, Western Australia, Australia
| | - Peter Johnson
- Tasmanian Institute of Agriculture, University of Tasmania, Kings Meadows, Tasmania, Australia
| | - Chao Lu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology and Barley Research Institution of Yangzhou University, Yangzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Kings Meadows, Tasmania, Australia
- * E-mail:
| |
Collapse
|
44
|
Chen Z, Huang YC, Liang JH, Zhao F, Zhu YG. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. BIORESOURCE TECHNOLOGY 2012; 108:55-59. [PMID: 22265978 DOI: 10.1016/j.biortech.2011.10.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 05/31/2023]
Abstract
Wetland plants possess the unique ability to release oxygen as well as organic matter into the rhizosphere. It is understood that microbial fuel cells (MFCs) can use organic matter from plants as key electron donors, but the effect of root excreted oxygen on MFCs is presently unknown. In this study, a novel biocathode was buried in the rice rhizosphere and found to be capable of delivering electrons to root excreted oxygen for oxygen reduction reactions. The voltages between electrodes in the rhizosphere and bulk soil were found to increase initially, but dissipate after approximately 1 month. Results from the MFC and oxygen microelectrode experiments indicated that the oxygen efflux rate from rice roots was dependent on the root maturity. Furthermore, the excreted oxygen from wetland plant roots could be used for the construction of highly efficient biocathodes.
Collapse
Affiliation(s)
- Zheng Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | |
Collapse
|
45
|
Mugnai S, Marras AM, Mancuso S. Effect of hypoxic acclimation on anoxia tolerance in Vitis roots: response of metabolic activity and K+ fluxes. PLANT & CELL PHYSIOLOGY 2011; 52:1107-16. [PMID: 21551160 DOI: 10.1093/pcp/pcr061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effect of a hypoxic pre-treatment (HPT) on improving tolerance to prolonged anoxia conditions in two contrasting Vitis species (V. riparia, anoxia tolerant; V. rupestris, anoxia sensitive) was evaluated. The energy economy of root cells was studied by measuring heat production, the activity of pyruvate decarboxylase (PDC) and alcohol dehdrogenase (ADH), ethanol and ATP production, and K(+) fluxes. The results showed that HPT is an effective tool in order to maintain a sustainable metabolic performance in both the species under anoxia conditions, especially in sensitive species such as V. rupestris. Our results showed that the improved tolerance was mainly driven by: (i) an enhanced activity of key enzymes in alcohol fermentation (ADC and PDC); (ii) the capability to maintain a higher level of respiration, evidenced by a lesser decrease in heat development and ATP production; and (iii) the maintenance of a better ion homeostasis (highlighted by measurement of K(+) fluxes) and K(+) channel functionality.
Collapse
Affiliation(s)
- Sergio Mugnai
- Department of Plant, Soil and Environmental Sciences, University of Florence, Florence, Italy.
| | | | | |
Collapse
|
46
|
Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. THE NEW PHYTOLOGIST 2011; 190:289-98. [PMID: 21563365 DOI: 10.1111/j.1469-8137.2010.03575.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Waterlogging affects large areas of agricultural land, resulting in severe economic penalties because of massive losses in crop production. Traditionally, plant breeding for waterlogging tolerance has been based on the field assessment of a range of agronomic and morphological characteristics. This review argues for a need to move towards more physiologically based approaches by targeting specific cellular mechanisms underling key components of waterlogging tolerance in plants. Also, while the main focus of researchers was predominantly on plant anoxia tolerance, less attention was given to plant tolerance to phytotoxins under waterlogged conditions. This paper reviews the production of major elemental and organic phytotoxins in waterlogged soils and describes their adverse effects on plant performance. The critical role of plasma membrane transporters in plant tolerance to secondary metabolite toxicity is highlighted, and ionic mechanisms mediating the this tolerance are discussed. A causal link between the secondary metabolite-induced disturbances to cell ionic homeostasis and programmed cell death is discussed, and a new ethylene-independent pathway for aerenchyma formation is put forward. It is concluded that plant breeding for waterlogging tolerance may significantly benefit from targeting mechanisms of tolerance to phytotoxins.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Tas. 7001, Australia.
| |
Collapse
|
47
|
Colmer TD, Greenway H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:39-57. [PMID: 20847100 DOI: 10.1093/jxb/erq271] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
O(2) deficiency during soil waterlogging inhibits respiration in roots, resulting in severe energy deficits. Decreased root-to-shoot ratio and suboptimal functioning of the roots, result in nutrient deficiencies in the shoots. In N(2)-flushed nutrient solutions, wheat seminal roots cease growth, while newly formed adventitious roots develop aerenchyma, and grow, albeit to a restricted length. When reliant on an internal O(2) supply from the shoot, nutrient uptake by adventitious roots was inhibited less than in seminal roots. Epidermal and cortical cells are likely to receive sufficient O(2) for oxidative phosphorylation and ion transport. By contrast, stelar hypoxia-anoxia can develop so that H(+)-ATPases in the xylem parenchyma would be inhibited; the diminished H(+) gradients and depolarized membranes inhibit secondary energy-dependent ion transport and channel conductances. Thus, the presence of two transport steps, one in the epidermis and cortex to accumulate ions from the solution and another in the stele to load ions into the xylem, is important for understanding the inhibitory effects of root zone hypoxia on nutrient acquisition and xylem transport, as well as the regulation of delivery to the shoots of unwanted ions, such as Na(+). Improvement of waterlogging tolerance in wheat will require an increased capacity for root growth, and more efficient root functioning, when in anaerobic media.
Collapse
Affiliation(s)
- Timothy David Colmer
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | |
Collapse
|
48
|
Shabala S, Babourina O, Rengel Z, Nemchinov LG. Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants. PLANTA 2010; 232:807-15. [PMID: 20623138 DOI: 10.1007/s00425-010-1213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 06/20/2010] [Indexed: 05/18/2023]
Abstract
Diseases caused by plant viruses are widespread, resulting in severe economic losses worldwide. Understanding the cellular basis of defense responses and developing efficient diagnostic tools for early recognition of host specificity to viral infection is, therefore, of great importance. In this work, non-invasive ion selective microelectrodes (the MIFE technique) were used to measure net ion fluxes in mesophyll tissue of host (potato, tomato, tobacco) and non-host (sugar beet and periwinkle) plants in response to infection with Potato virus X (PVX). These results were complemented by FLIM (Fluorescence Lifetime Imaging) measurements of PVX-induced changes in intracellular Ca(2+) concentrations. Our results demonstrate that, unlike in other plant-pathogen interactions, Ca(2+) signaling appears to be non-essential in recognition of the early stages of viral infection. Instead, we observed significant changes in K(+) fluxes as early as 10 min after inoculation. Results of pharmacological experiments and membrane potential measurements pointed out that a significant part of these fluxes may be mediated by depolarization-activated outward-rectifying K(+) channels. This may suggest that viral infections trigger a different mechanism of plant defense signaling as compared to signals derived from other microbial pathogens; hence, altered Ca(2+) fluxes across the plasma membrane may not be a prerequisite for all elicitor-activated defense reactions. Clearly pronounced host specificity in K(+) flux responses suggests that the MIFE technique can be effectively used as a screening tool for the early diagnostics of virus-host compatibility.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | |
Collapse
|
49
|
Xue DW, Zhou MX, Zhang XQ, Chen S, Wei K, Zeng FR, Mao Y, Wu FB, Zhang GP. Identification of QTLs for yield and yield components of barley under different growth conditions. J Zhejiang Univ Sci B 2010; 11:169-76. [PMID: 20205303 PMCID: PMC2833401 DOI: 10.1631/jzus.b0900332] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/21/2009] [Indexed: 11/11/2022]
Abstract
Waterlogging is a major abiotic stress limiting barley (Hordeum vulgare L.) yield and its stability in areas with excessive rainfall. Identification of genomic regions influencing the response of yield and its components to waterlogging stress will enhance our understanding of the genetics of waterlogging tolerance and the development of more tolerant barley cultivars. Quantitative trait loci (QTLs) for grain yield and its components were identified using 156 doubled haploid (DH) lines derived from a cross between the cultivars Yerong (waterlogging-tolerant) and Franklin (waterlogging-sensitive) grown under different conditions (waterlogged and well drained). A total of 31 QTLs were identified for the measured characters from two experiments with two growth environments. The phenotypic variation explained by individual QTLs ranged from 4.74% to 55.34%. Several major QTLs determining kernel weight (KW), grains per spike (GS), spikes per plant (SP), spike length (SL) and grain yield (GY) were detected on the same region of chromosome 2H, indicating close linkage or pleiotropy of the gene(s) controlling these traits. Some different QTLs were identified under waterlogging conditions, and thus different markers may have to be used in selecting cultivars suitable for high rainfall areas.
Collapse
Affiliation(s)
- Da-wei Xue
- College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Mei-xue Zhou
- Tasmanian Institute of Agricultural Research, University of Tasmania, Kings Meadows, TAS 7249, Australia
| | - Xiao-qin Zhang
- College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Song Chen
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Kang Wei
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Fan-rong Zeng
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Ying Mao
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Fei-bo Wu
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Guo-ping Zhang
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
50
|
|