1
|
Kuźniak E, Gajewska E. Lipids and Lipid-Mediated Signaling in Plant-Pathogen Interactions. Int J Mol Sci 2024; 25:7255. [PMID: 39000361 PMCID: PMC11241471 DOI: 10.3390/ijms25137255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Plant lipids are essential cell constituents with many structural, storage, signaling, and defensive functions. During plant-pathogen interactions, lipids play parts in both the preexisting passive defense mechanisms and the pathogen-induced immune responses at the local and systemic levels. They interact with various components of the plant immune network and can modulate plant defense both positively and negatively. Under biotic stress, lipid signaling is mostly associated with oxygenated natural products derived from unsaturated fatty acids, known as oxylipins; among these, jasmonic acid has been of great interest as a specific mediator of plant defense against necrotrophic pathogens. Although numerous studies have documented the contribution of oxylipins and other lipid-derived species in plant immunity, their specific roles in plant-pathogen interactions and their involvement in the signaling network require further elucidation. This review presents the most relevant and recent studies on lipids and lipid-derived signaling molecules involved in plant-pathogen interactions, with the aim of providing a deeper insight into the mechanisms underpinning lipid-mediated regulation of the plant immune system.
Collapse
Affiliation(s)
- Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, University of Lodz, 90-237 Łódź, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, University of Lodz, 90-237 Łódź, Poland
| |
Collapse
|
2
|
Robuschi L, Mariani O, Perk EA, Cerrudo I, Villarreal F, Laxalt AM. Arabidopsis thaliana phosphoinositide-specific phospholipase C 2 is required for Botrytis cinerea proliferation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111971. [PMID: 38160760 DOI: 10.1016/j.plantsci.2023.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Phospholipase C (PLC) plays a key role in lipid signaling during plant development and stress responses. PLC activation is one of the earliest responses during pathogen perception. Arabidopsis thaliana contains seven PLC encoding genes (AtPLC1 to AtPLC7) and two pseudogenes (AtPLC8 and AtPLC9), being AtPLC2 the most abundant isoform with constitutive expression in all plant organs. PLC has been linked to plant defense signaling, in particular to the production of reactive oxygen species (ROS). Previously, we demonstrated that AtPLC2 is involved in ROS production via the NADPH oxidase isoforms RBOHD activation during stomata plant immunity. Here we studied the role of AtPLC2 on plant resistance against the necrotrophic fungus Botrytis cinerea, a broad host-range and serious agricultural pathogen. We show that the AtPLC2-silenced (amiR PLC2) or null mutant (plc2-1) plants developed smaller B. cinerea lesions. Moreover, plc2-1 showed less ROS production and an intensified SA-dependent signaling upon infection, indicating that B. cinerea uses AtPLC2-triggered responses for a successful proliferation. Therefore, AtPLC2 is a susceptibility (S) gene that facilitates B. cinerea infection and proliferation.
Collapse
Affiliation(s)
- Luciana Robuschi
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Oriana Mariani
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Enzo A Perk
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Ignacio Cerrudo
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Fernando Villarreal
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina.
| |
Collapse
|
3
|
Kong L, Ma X, Zhang C, Kim SI, Li B, Xie Y, Yeo IC, Thapa H, Chen S, Devarenne TP, Munnik T, He P, Shan L. Dual phosphorylation of DGK5-mediated PA burst regulates ROS in plant immunity. Cell 2024; 187:609-623.e21. [PMID: 38244548 PMCID: PMC10872252 DOI: 10.1016/j.cell.2023.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.
Collapse
Affiliation(s)
- Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xiyu Ma
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - Chao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Yingpeng Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - In-Cheol Yeo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Hem Thapa
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Timothy P Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, the Netherlands
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Lin J, Zhao J, Du L, Wang P, Sun B, Zhang C, Shi Y, Li H, Sun H. Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses. PLANT COMMUNICATIONS 2024; 5:100659. [PMID: 37434356 PMCID: PMC10811337 DOI: 10.1016/j.xplc.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/31/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.
Collapse
Affiliation(s)
- Jiayu Lin
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jinpeng Zhao
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Linlin Du
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengkun Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yan Shi
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hangjun Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
5
|
Perk EA, Arruebarrena Di Palma A, Colman S, Mariani O, Cerrudo I, D'Ambrosio JM, Robuschi L, Pombo MA, Rosli HG, Villareal F, Laxalt AM. CRISPR/Cas9-mediated phospholipase C 2 knock-out tomato plants are more resistant to Botrytis cinerea. PLANTA 2023; 257:117. [PMID: 37173533 DOI: 10.1007/s00425-023-04147-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSION CRISPR/Cas9-mediated Phospholipase C2 knock-out tomato plants are more resistant to Botrytis cinerea than wild-type plants, with less ROS and an increase and reduction of (JA) and (SA)-response marker genes, respectively. Genome-editing technologies allow non-transgenic site-specific mutagenesis of crops, offering a viable alternative to traditional breeding methods. In this study we used CRISPR/Cas9 to inactivate the tomato Phospholipase C2 gene (SlPLC2). Plant PLC activation is one of the earliest responses triggered by different pathogens regulating plant responses that, depending on the plant-pathogen interaction, result in plant resistance or susceptibility. The tomato (Solanum lycopersicum) PLC gene family has six members, named from SlPLC1 to SlPLC6. We previously showed that SlPLC2 transcript levels increased upon xylanase infiltration (fungal elicitor) and that SlPLC2 participates in plant susceptibility to Botrytis cinerea. An efficient strategy to control diseases caused by pathogens is to disable susceptibility genes that facilitate infection. We obtained tomato SlPLC2-knock-out lines with decreased ROS production upon B. cinerea challenge. Since this fungus requires ROS-induced cell death to proliferate, SlPLC2-knock-out plants showed an enhanced resistance with smaller necrotic areas and reduced pathogen proliferation. Thus, we obtained SlPLC2 loss-of-function tomato lines more resistant to B. cinerea by means of CRISPR/Cas9 genome editing technology.
Collapse
Affiliation(s)
- Enzo A Perk
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Andrés Arruebarrena Di Palma
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Programa de Tecnología, Valorización e Innovación de Productos Pequeros, Instituto de Investigación y Desarrollo Pesquero-CONICET, Mar del Plata, Argentina
| | - Silvana Colman
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Laboratorio de Genética, Depto. de Biología, FCEyN, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Oriana Mariani
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Plant Nutrition Pflanzenernährung, Martin Luther University, Betty-Heimann-Strasse, 306120, Halle, Germany
| | - Ignacio Cerrudo
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Juan Martín D'Ambrosio
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Section for Plant and Soil Science, Department of Plant and Environmental SciencesCopenhagen Plant Science Center (CPSC)Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Luciana Robuschi
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Marina A Pombo
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Hernán G Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Fernando Villareal
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
6
|
Niaz M, Zhang B, Zhang Y, Yan X, Yuan M, Cheng Y, Lv G, Fadlalla T, Zhao L, Sun C, Chen F. Genetic and molecular basis of carotenoid metabolism in cereals. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:63. [PMID: 36939900 DOI: 10.1007/s00122-023-04336-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Carotenoids are vital pigments for higher plants and play a crucial function in photosynthesis and photoprotection. Carotenoids are precursors of vitamin A synthesis and contribute to human nutrition and health. However, cereal grain endosperm contains a minor carotenoid measure and a scarce supply of provitamin A content. Therefore, improving the carotenoids in cereal grain is of major importance. Carotenoid content is governed by multiple candidate genes with their additive effects. Studies on genes related to carotenoid metabolism in cereals would increase the knowledge of potential metabolic steps of carotenoids and enhance the quality of crop plants. Recognizing the metabolism and carotenoid accumulation in various staple cereal crops over the last few decades has broadened our perspective on the interdisciplinary regulation of carotenogenesis. Meanwhile, the amelioration in metabolic engineering approaches has been exploited to step up the level of carotenoid and valuable industrial metabolites in many crops, but wheat is still considerable in this matter. In this study, we present a comprehensive overview of the consequences of biosynthetic and catabolic genes on carotenoid biosynthesis, current improvements in regulatory disciplines of carotenogenesis, and metabolic engineering of carotenoids. A panoptic and deeper understanding of the regulatory mechanisms of carotenoid metabolism and genetic manipulation (genome selection and gene editing) will be useful in improving the carotenoid content of cereals.
Collapse
Affiliation(s)
- Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Bingyang Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Minjie Yuan
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - YongZhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Faculty of Agriculture, Nile valley University, Atbara, 346, Sudan
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Kalachova T, Škrabálková E, Pateyron S, Soubigou-Taconnat L, Djafi N, Collin S, Sekereš J, Burketová L, Potocký M, Pejchar P, Ruelland E. DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1978-1996. [PMID: 35900211 PMCID: PMC9614507 DOI: 10.1093/plphys/kiac354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/18/2022] [Indexed: 05/04/2023]
Abstract
Flagellin perception is a keystone of pattern-triggered immunity in plants. The recognition of this protein by a plasma membrane (PM) receptor complex is the beginning of a signaling cascade that includes protein phosphorylation and the production of reactive oxygen species (ROS). In both Arabidopsis (Arabidopsis thaliana) seedlings and suspension cells, we found that treatment with flg22, a peptide corresponding to the most conserved domain of bacterial flagellin, caused a rapid and transient decrease in the level of phosphatidylinositol (PI) 4,5-bisphosphate along with a parallel increase in phosphatidic acid (PA). In suspension cells, inhibitors of either phosphoinositide-dependent phospholipases C (PLC) or diacylglycerol kinases (DGKs) inhibited flg22-triggered PA production and the oxidative burst. In response to flg22, receptor-like kinase-deficient fls2, bak1, and bik1 mutants (FLAGELLIN SENSITIVE 2, BRASSINOSTEROID INSENSITIVE 1-associated kinase 1, and BOTRYTIS-INDUCED KINASE 1, respectively) produced less PA than wild-type (WT) plants, whereas this response did not differ in NADPH oxidase-deficient rbohD (RESPIRATORY BURST OXIDASE HOMOLOG D) plants. Among the DGK-deficient lines tested, the dgk5.1 mutant produced less PA and less ROS after flg22 treatment compared with WT seedlings. In response to flg22, dgk5.1 plants showed lower callose accumulation and impaired resistance to Pseudomonas syringae pv. tomato DC3000 hrcC-. Transcriptomics revealed that the basal expression of defense-related genes was altered in dgk5.1 seedlings compared with the WT. A GFP-DGK5 fusion protein localized to the PM, where RBOHD and PLC2 (proteins involved in plant immunity) are also located. The role of DGK5 and its enzymatic activity in flagellin signaling and fine-tuning of early immune responses in plant-microbe interactions is discussed.
Collapse
Affiliation(s)
- Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
- Department of Experimental Plant Biology, Charles University, Viničná 5, Prague 12844, Czech Republic
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Nabila Djafi
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Sorbonne Université, F-75005 Paris, France
| | - Sylvie Collin
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Sorbonne Université, F-75005 Paris, France
| | - Juraj Sekereš
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Lenka Burketová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | | | | |
Collapse
|
8
|
Cao L, Wang W, Zhang W, Staiger CJ. Lipid Signaling Requires ROS Production to Elicit Actin Cytoskeleton Remodeling during Plant Innate Immunity. Int J Mol Sci 2022; 23:ijms23052447. [PMID: 35269589 PMCID: PMC8910749 DOI: 10.3390/ijms23052447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
In terrestrial plants a basal innate immune system, pattern-triggered immunity (PTI), has evolved to limit infection by diverse microbes. The remodeling of actin cytoskeletal arrays is now recognized as a key hallmark event during the rapid host cellular responses to pathogen attack. Several actin binding proteins have been demonstrated to fine tune the dynamics of actin filaments during this process. However, the upstream signals that stimulate actin remodeling during PTI signaling remain poorly characterized. Two second messengers, reactive oxygen species (ROS) and phosphatidic acid (PA), are elevated following pathogen perception or microbe-associated molecular pattern (MAMP) treatment, and the timing of signaling fluxes roughly correlates with actin cytoskeletal rearrangements. Here, we combined genetic analysis, chemical complementation experiments, and quantitative live-cell imaging experiments to test the role of these second messengers in actin remodeling and to order the signaling events during plant immunity. We demonstrated that PHOSPHOLIPASE Dβ (PLDβ) isoforms are necessary to elicit actin accumulation in response to flg22-associated PTI. Further, bacterial growth experiments and MAMP-induced apoplastic ROS production measurements revealed that PLDβ-generated PA acts upstream of ROS signaling to trigger actin remodeling through inhibition of CAPPING PROTEIN (CP) activity. Collectively, our results provide compelling evidence that PLDβ/PA functions upstream of RBOHD-mediated ROS production to elicit actin rearrangements during the innate immune response in Arabidopsis.
Collapse
Affiliation(s)
- Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (L.C.); (C.J.S.)
| | - Wenyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (L.C.); (C.J.S.)
| |
Collapse
|
9
|
Kruse CPS, Wyatt SE. Nitric oxide, gravity response, and a unified schematic of plant signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111105. [PMID: 34895542 DOI: 10.1016/j.plantsci.2021.111105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Plant signaling components are often involved in numerous processes. Calcium, reactive oxygen species, and other signaling molecules are essential to normal biotic and abiotic responses. Yet, the summation of these components is integrated to produce a specific response despite their involvement in a myriad of response cascades. In the response to gravity, the role of many of these individual components has been studied, but a specific sequence of signals has not yet been assembled into a cohesive schematic of gravity response signaling. Herein, we provide a review of existing knowledge of gravity response and differential protein and gene regulation induced by the absence of gravity stimulus aboard the International Space Station and propose an integrated theoretical schematic of gravity response incorporating that information. Recent developments in the role of nitric oxide in gravity signaling provided some of the final contextual pillars for the assembly of the model, where nitric oxide and the role of cysteine S-nitrosation may be central to the gravity response. The proposed schematic accounts for the known responses to reorientation with respect to gravity in roots-the most well studied gravitropic plant tissue-and is supported by the extensive evolutionary conservation of regulatory amino acids within protein components of the signaling schematic. The identification of a role of nitric oxide in regulating the TIR1 auxin receptor is indicative of the broader relevance of the schematic in studying a multitude of environmental and stress responses. Finally, there are several experimental approaches that are highlighted as essential to the further study and validation of this schematic.
Collapse
Affiliation(s)
- Colin P S Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, United States; Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, United States(1)
| | - Sarah E Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
10
|
Jia X, Si X, Jia Y, Zhang H, Tian S, Li W, Zhang K, Pan Y. Genomic profiling and expression analysis of the diacylglycerol kinase gene family in heterologous hexaploid wheat. PeerJ 2021; 9:e12480. [PMID: 34993014 PMCID: PMC8679913 DOI: 10.7717/peerj.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
The inositol phospholipid signaling system mediates plant growth, development, and responses to adverse conditions. Diacylglycerol kinase (DGK) is one of the key enzymes in the phosphoinositide-cycle (PI-cycle), which catalyzes the phosphorylation of diacylglycerol (DAG) to form phosphatidic acid (PA). To date, comprehensive genomic and functional analyses of DGKs have not been reported in wheat. In this study, 24 DGK gene family members from the wheat genome (TaDGKs) were identified and analyzed. Each putative protein was found to consist of a DGK catalytic domain and an accessory domain. The analyses of phylogenetic and gene structure analyses revealed that each TaDGK gene could be grouped into clusters I, II, or III. In each phylogenetic subgroup, the TaDGKs demonstrated high conservation of functional domains, for example, of gene structure and amino acid sequences. Four coding sequences were then cloned from Chinese Spring wheat. Expression analysis of these four genes revealed that each had a unique spatial and developmental expression pattern, indicating their functional diversification across wheat growth and development processes. Additionally, TaDGKs were also prominently up-regulated under salt and drought stresses, suggesting their possible roles in dealing with adverse environmental conditions. Further cis-regulatory elements analysis elucidated transcriptional regulation and potential biological functions. These results provide valuable information for understanding the putative functions of DGKs in wheat and support deeper functional analysis of this pivotal gene family. The 24 TaDGKs identified and analyzed in this study provide a strong foundation for further exploration of the biological function and regulatory mechanisms of TaDGKs in response to environmental stimuli.
Collapse
Affiliation(s)
- Xiaowei Jia
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Xuyang Si
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Yangyang Jia
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Hongyan Zhang
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Shijun Tian
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Wenjing Li
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| | - Ke Zhang
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei, China
| | - Yanyun Pan
- College of Life Science, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, Hebei, China
| |
Collapse
|
11
|
Tagami S, Ohnishi K, Hikichi Y, Kiba A. Trigalactosyldiacylglycerol 3 protein orthologs are required for basal disease resistance in Nicotiana benthamiana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:373-378. [PMID: 34782825 PMCID: PMC8562578 DOI: 10.5511/plantbiotechnology.21.0624a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Phosphatidic acid plays an important role in Nicotiana benthamiana immune responses against phytopathogenic bacteria. We analyzed the contributions of endoplasmic reticulum-derived chloroplast phospholipids, including phosphatidic acid, to the resistance of N. benthamiana against Ralstonia solanacearum. Here, we focused on trigalactosyldiacylglycerol 3 (TGD3) protein as a candidate required for phosphatidic acid signaling. On the basis of Arabidopsis thaliana TGD3 sequences, we identified two putative TGD3 orthologs in the N. benthamiana genome, NbTGD3-1 and NbTGD3-2. To address the role of TGD3s in plant defense responses, we created double NbTGD3-silenced plants using virus-induced gene silencing. The NbTGD3-silenced plants showed a moderately reduced growth phenotype. Bacterial growth and the appearance of bacterial wilt disease were accelerated in NbTGD3-silenced plants, compared with control plants, challenged with R. solanacearum. The NbTGD3-silenced plants showed reduced both expression of allene oxide synthase that encoded jasmonic acid biosynthetic enzyme and NbPR-4, a marker gene for jasmonic acid signaling, after inoculation with R. solanacearum. Thus, NbTGD3-mediated endoplasmic reticulum-chloroplast lipid transport might be required for jasmonic acid signaling-mediated basal disease resistance in N. benthamiana.
Collapse
Affiliation(s)
- Shuhei Tagami
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
12
|
Mehta S, Chakraborty A, Roy A, Singh IK, Singh A. Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant-Pathogen Interaction. PLANTS (BASEL, SWITZERLAND) 2021; 10:1098. [PMID: 34070722 PMCID: PMC8228701 DOI: 10.3390/plants10061098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Plant diseases pose a substantial threat to food availability, accessibility, and security as they account for economic losses of nearly $300 billion on a global scale. Although various strategies exist to reduce the impact of diseases, they can introduce harmful chemicals to the food chain and have an impact on the environment. Therefore, it is necessary to understand and exploit the plants' immune systems to control the spread of pathogens and enable sustainable agriculture. Recently, growing pieces of evidence suggest a functional myriad of lipids to be involved in providing structural integrity, intracellular and extracellular signal transduction mediators to substantial cross-kingdom cell signaling at the host-pathogen interface. Furthermore, some pathogens recognize or exchange plant lipid-derived signals to identify an appropriate host or development, whereas others activate defense-related gene expression. Typically, the membrane serves as a reservoir of lipids. The set of lipids involved in plant-pathogen interaction includes fatty acids, oxylipins, phospholipids, glycolipids, glycerolipids, sphingolipids, and sterols. Overall, lipid signals influence plant-pathogen interactions at various levels ranging from the communication of virulence factors to the activation and implementation of host plant immune defenses. The current review aims to summarize the progress made in recent years regarding the involvement of lipids in plant-pathogen interaction and their crucial role in signal transduction.
Collapse
Affiliation(s)
- Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Amrita Chakraborty
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic; (A.C.); (A.R.)
| | - Amit Roy
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic; (A.C.); (A.R.)
- Excelentní Tým pro Mitigaci (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic
| | - Indrakant K. Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| |
Collapse
|
13
|
Phospholipases C and D and Their Role in Biotic and Abiotic Stresses. PLANTS 2021; 10:plants10050921. [PMID: 34064485 PMCID: PMC8148002 DOI: 10.3390/plants10050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/03/2023]
Abstract
Plants, as sessile organisms, have adapted a fine sensing system to monitor environmental changes, therefore allowing the regulation of their responses. As the interaction between plants and environmental changes begins at the surface, these changes are detected by components in the plasma membrane, where a molecule receptor generates a lipid signaling cascade via enzymes, such as phospholipases (PLs). Phospholipids are the key structural components of plasma membranes and signaling cascades. They exist in a wide range of species and in different proportions, with conversion processes that involve hydrophilic enzymes, such as phospholipase-C (PLC), phospholipase-D (PLD), and phospholipase-A (PLA). Hence, it is suggested that PLC and PLD are highly conserved, compared to their homologous genes, and have formed clusters during their adaptive history. Additionally, they generate responses to different functions in accordance with their protein structure, which should be reflected in specific signal transduction responses to environmental stress conditions, including innate immune responses. This review summarizes the phospholipid systems associated with signaling pathways and the innate immune response.
Collapse
|
14
|
Zhang X, Gao Y, Zhuang L, Hu Q, Huang B. Phosphatidic acid and hydrogen peroxide coordinately enhance heat tolerance in tall fescue. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:142-151. [PMID: 33188719 DOI: 10.1111/plb.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Phosphatidic acid (PA) and hydrogen peroxide (H2 O2 ) play roles in regulating plant responses to abiotic stress. The objective of this study was to determine effects of H2 O2 or PA, individually and interactively, with a H2 O2 scavenging molecule, N,N'-dimethylthoiurea (DMTU), on plant tolerance to heat stress in tall fescue (Festuca arundinacea). Plants were treated with PA (25 µm), H2 O2 (5 mm) and PA (25 µm) + DMTU (5 mm) by foliar application and then exposed to heat stress (38/33 °C) or optimal temperature (23/18 °C, day/night) for 28 days. Foliar application of PA and H2 O2 alone resulted in increases in leaf fresh weight, chlorophyll content, photochemical efficiency and cellular membrane stability in plants exposed to heat stress, whereas addition of DMTU suppressed the positive effects of PA. Expression levels of genes encoding the PA synthesizing enzyme, FaPLDδ, were significantly up-regulated by H2 O2 . Phosphatidic acid- or H2 O2 -enhanced heat tolerance was associated with the activation of stress signalling components (FaCDPK3, FaMPK6, FaMPK3), transcription factors (FaMBF1 and FaHsfA2c) and heat shock proteins (FaHSP18, FaHSP70 and FaHSP90). Phosphatidic acid and H2 O2 may work in coordination to further improve heat tolerance, involving up-regulation of transcription factors in stress signalling cascades and heat protection systems.
Collapse
Affiliation(s)
- X Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Y Gao
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - L Zhuang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Q Hu
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - B Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Plant Acyl-CoA-Binding Proteins-Their Lipid and Protein Interactors in Abiotic and Biotic Stresses. Cells 2021; 10:cells10051064. [PMID: 33946260 PMCID: PMC8146436 DOI: 10.3390/cells10051064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plants are constantly exposed to environmental stresses during their growth and development. Owing to their immobility, plants possess stress-sensing abilities and adaptive responses to cope with the abiotic and biotic stresses caused by extreme temperatures, drought, flooding, salinity, heavy metals and pathogens. Acyl-CoA-binding proteins (ACBPs), a family of conserved proteins among prokaryotes and eukaryotes, bind to a variety of acyl-CoA esters with different affinities and play a role in the transport and maintenance of subcellular acyl-CoA pools. In plants, studies have revealed ACBP functions in development and stress responses through their interactions with lipids and protein partners. This review summarises the roles of plant ACBPs and their lipid and protein interactors in abiotic and biotic stress responses.
Collapse
|
16
|
Zhang G, Yang J, Chen X, Zhao D, Zhou X, Zhang Y, Wang X, Zhao J. Phospholipase D- and phosphatidic acid-mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (Glycine max). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:142-158. [PMID: 33377234 DOI: 10.1111/tpj.15152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Symbiotic rhizobium-legume interactions, such as root hair curling, rhizobial invasion, infection thread expansion, cell division and proliferation of nitrogen-fixing bacteroids, and nodule formation, involve extensive membrane synthesis, lipid remodeling and cytoskeleton dynamics. However, little is known about these membrane-cytoskeleton interfaces and related genes. Here, we report the roles of a major root phospholipase D (PLD), PLDα1, and its enzymatic product, phosphatidic acid (PA), in rhizobium-root interaction and nodulation. PLDα1 was activated and the PA content transiently increased in roots after rhizobial infection. Levels of PLDα1 transcript and PA, as well as actin and tubulin cytoskeleton-related gene expression, changed markedly during root-rhizobium interactions and nodule development. Pre-treatment of the roots of soybean seedlings with n-butanol suppressed the generation of PLD-derived PA, the expression of early nodulation genes and nodule numbers. Overexpression or knockdown of GmPLDα1 resulted in changes in PA levels, glycerolipid profiles, nodule numbers, actin cytoskeleton dynamics, early nodulation gene expression and hormone levels upon rhizobial infection compared with GUS roots. The transcript levels of cytoskeleton-related genes, such as GmACTIN, GmTUBULIN, actin capping protein 1 (GmCP1) and microtubule-associating protein (GmMAP1), were modified in GmPLDα1-altered hairy roots compared with those of GUS roots. Phosphatidic acid physically bound to GmCP1 and GmMAP1, which could be related to cytoskeletal changes in rhizobium-infected GmPLDα1 mutant roots. These data suggest that PLDα1 and PA play important roles in soybean-rhizobium interaction and nodulation. The possible underlying mechanisms, including PLDα1- and PA-mediated lipid signaling, membrane remodeling, cytoskeleton dynamics and related hormone signaling, are discussed herein.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangli Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dandan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St Louis, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
17
|
Sánchez-Sandoval ME, Racagni Di-Palma GE, González-Mendoza VM, Cab-Guillén YA, Muñoz-Sanchez JA, Ramos-Díaz A, Hernández-Sotomayor SMT. Phospholipid signaling pathway in Capsicum chinense suspension cells as a key response to consortium infection. BMC PLANT BIOLOGY 2021; 21:62. [PMID: 33494714 PMCID: PMC7836502 DOI: 10.1186/s12870-021-02830-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/07/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Mexico is considered the diversification center for chili species, but these crops are susceptible to infection by pathogens such as Colletotrichum spp., which causes anthracnose disease and postharvest decay in general. Studies have been carried out with isolated strains of Colletotrichum in Capsicum plants; however, under growing conditions, microorganisms generally interact with others, resulting in an increase or decrease of their ability to infect the roots of C. chinense seedlings and thus, cause disease. RESULTS Morphological changes were evident 24 h after inoculation (hai) with the microbial consortium, which consisted primarily of C. ignotum. High levels of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA) were found around 6 hai. These metabolic changes could be correlated with high transcription levels of diacylglycerol-kinase (CchDGK1 and CchDG31) at 3, 6 and 12 hai and also to pathogen gene markers, such as CchPR1 and CchPR5. CONCLUSIONS Our data constitute the first evidence for the phospholipids signalling events, specifically DGPP and PA participation in the phospholipase C/DGK (PI-PLC/DGK) pathway, in the response of Capsicum to the consortium, offering new insights on chilis' defense responses to damping-off diseases.
Collapse
Affiliation(s)
- María E Sánchez-Sandoval
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | | | - Victor M González-Mendoza
- CONA CYT- Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación y Desarrollo, A.C. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Yahaira A Cab-Guillén
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - José A Muñoz-Sanchez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Ana Ramos-Díaz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Subsede Sureste, Yucatán, Mexico
| | - S M Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico.
| |
Collapse
|
18
|
Kiba A, Fukui K, Mitani M, Galis I, Hojo Y, Shinya T, Ohnishi K, Hikichi Y. Silencing of phosphoinositide dependent protein kinase orthologs reduces hypersensitive cell death in Nicotiana benthamiana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:363-367. [PMID: 33088202 PMCID: PMC7557664 DOI: 10.5511/plantbiotechnology.20.0511b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Phosphatidic acid plays an important role in plant immune responses against phytopathogenic bacteria in Nicotiana benthamiana. Here we focused on phosphoinositide dependent protein kinases (PDKs) as a candidate required for phosphatidic acid signaling. Based on Arabidopsis PDK sequences, we identified four putative PDK orthologs in N. benthamiana genome. To address the role of PDKs in plant defense responses, we created all four NbPDKs-silenced plants by virus-induced gene silencing. the NbPDKs-silenced plants showed a moderately reduced growth phenotype. Induction of hypersensitive cell death was compromised in the NbPDKs-silenced plants challenged with Ralstonia solanacearum. The hypersensitive cell death induced by bacterial effectors was also reduced in the NbPDKs-silenced plants. the NbPDKs-silenced plants showed decreased production of salicylic acid, jasmonic acid and jasmonoyl-L-isoleucine, as well as hydrogen peroxide after inoculation with R. solanacearum. These results suggest that NbPDKs might have an important role in the regulation of the hypersensitive cell death via plant hormone signaling and oxidative burst.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kotoko Fukui
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Maki Mitani
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
19
|
Kiba A, Nakano M, Hosokawa M, Galis I, Nakatani H, Shinya T, Ohnishi K, Hikichi Y. Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5027-5038. [PMID: 32412590 PMCID: PMC7410187 DOI: 10.1093/jxb/eraa233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Phospholipid signaling plays an important role in plant immune responses against phytopathogenic bacteria in Nicotiana benthamiana. Here, we isolated two phospholipase C2 (PLC2) orthologs in the N. benthamiana genome, designated as PLC2-1 and 2-2. Both NbPLC2-1 and NbPLC2-2 were expressed in most tissues and were induced by infiltration with bacteria and flg22. NbPLC2-1 and NbPLC2-2 (NbPLC2s) double-silenced plants showed a moderately reduced growth phenotype. The induction of the hypersensitive response was not affected, but bacterial growth and the appearance of bacterial wilt were accelerated in NbPLC2s-silenced plants when they were challenged with a virulent strain of Ralstonia solanacearum that was compatible with N. benthamiana. NbPLC2s-silenced plants showed reduced expression levels of NbPR-4, a marker gene for jasmonic acid signaling, and decreased jasmonic acid and jasmonoyl-L-isoleucine contents after inoculation with R. solanacearum. The induction of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes was reduced in NbPLC2s-silenced plants after infiltration with R. solanacearum or Pseudomonas fluorescens. Accordingly, the resistance induced by flg22 was compromised in NbPLC2s-silenced plants. In addition, the expression of flg22-induced PTI marker genes, the oxidative burst, stomatal closure, and callose deposition were all reduced in the silenced plants. Thus, NbPLC2s might have important roles in pre- and post-invasive defenses, namely in the induction of PTI.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Masahito Nakano
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, 7549–1 Kibichuo-cho, Kaga-gun, Okayama, Japan
| | - Miki Hosokawa
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Hiroko Nakatani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant–Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
20
|
Blanco E, Fortunato S, Viggiano L, de Pinto MC. Cyclic AMP: A Polyhedral Signalling Molecule in Plants. Int J Mol Sci 2020; 21:E4862. [PMID: 32660128 PMCID: PMC7402341 DOI: 10.3390/ijms21144862] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclic nucleotide cAMP (3',5'-cyclic adenosine monophosphate) is nowadays recognised as an important signalling molecule in plants, involved in many molecular processes, including sensing and response to biotic and abiotic environmental stresses. The validation of a functional cAMP-dependent signalling system in higher plants has spurred a great scientific interest on the polyhedral role of cAMP, as it actively participates in plant adaptation to external stimuli, in addition to the regulation of physiological processes. The complex architecture of cAMP-dependent pathways is far from being fully understood, because the actors of these pathways and their downstream target proteins remain largely unidentified. Recently, a genetic strategy was effectively used to lower cAMP cytosolic levels and hence shed light on the consequences of cAMP deficiency in plant cells. This review aims to provide an integrated overview of the current state of knowledge on cAMP's role in plant growth and response to environmental stress. Current knowledge of the molecular components and the mechanisms of cAMP signalling events is summarised.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Stefania Fortunato
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| | - Luigi Viggiano
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| | - Maria Concetta de Pinto
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| |
Collapse
|
21
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|
22
|
Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1541-1568. [PMID: 31900498 DOI: 10.1007/s00122-019-03525-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB), or scab, for its devastating nature to wheat production and food security, has stimulated worldwide attention. Multidisciplinary efforts have been made to fight against FHB for a long time, but the great progress has been achieved only in the genomics era of the past 20 years, particularly in the areas of resistance gene/QTL discovery, resistance mechanism elucidation and molecular breeding for better resistance. This review includes the following nine main sections, (1) FHB incidence, epidemic and impact, (2) causal Fusarium species, distribution and virulence, (3) types of host resistance to FHB, (4) germplasm exploitation for FHB resistance, (5) genetic control of FHB resistance, (6) fine mapping of Fhb1, Fhb2, Fhb4 and Fhb5, (7) cloning of Fhb1, (8) omics-based gene discovery and resistance mechanism study and (9) breeding for better FHB resistance. The advancements that have been made are outstanding and exciting; however, judged by the complicated nature of resistance to hemi-biotrophic pathogens like Fusarium species and lack of immune germplasm, it is still a long way to go to overcome FHB.
Collapse
Affiliation(s)
- Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Quan Xie
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiyang Zhou
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongxin Kong
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Na Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yang Yuan
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Arruebarrena Di Palma A, Di Fino LM, Salvatore SR, D'Ambrosio JM, García-Mata C, Schopfer FJ, Laxalt AM. Nitro-oleic acid triggers ROS production via NADPH oxidase activation in plants: A pharmacological approach. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153128. [PMID: 32065921 PMCID: PMC7153499 DOI: 10.1016/j.jplph.2020.153128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/27/2019] [Accepted: 01/21/2020] [Indexed: 05/05/2023]
Abstract
Nitrated fatty acids (NO2-FAs) are important signaling molecules in mammals. NO2-FAs are formed by the addition reaction of nitric oxide- and nitrite-derived nitrogen dioxide with unsaturated fatty acid double bonds. The study of NO2-FAs in plant systems constitutes an interesting and emerging area. The presence of NO2-FA has been reported in olives, peas, rice and Arabidopsis. To gain a better understanding of the role of NO2-FA on plant physiology, we analyzed the effects of exogenous application of nitro-oleic acid (NO2-OA). In tomato cell suspensions we found that NO2-OA induced reactive oxygen species (ROS) production in a dose-dependent manner via activation of NADPH oxidases, a mechanism that requires calcium entry from the extracellular compartment and protein kinase activation. In tomato and Arabidopsis leaves, NO2-OA treatments induced two waves of ROS production, resembling plant defense responses. Arabidopsis NADPH oxidase mutants showed that NADPH isoform D (RBOHD) was required for NO2-OA-induced ROS production. In addition, on Arabidopsis isolated epidermis, NO2-OA induced stomatal closure via RBOHD and F. Altogether, these results indicate that NO2-OA triggers NADPH oxidase activation revealing a new signaling role in plants.
Collapse
Affiliation(s)
- Andrés Arruebarrena Di Palma
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Luciano M Di Fino
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Sonia R Salvatore
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Martín D'Ambrosio
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Francisco J Schopfer
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
24
|
Hassing B, Eaton CJ, Winter D, Green KA, Brandt U, Savoian MS, Mesarich CH, Fleissner A, Scott B. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis. Mol Microbiol 2020; 113:1101-1121. [PMID: 32022309 DOI: 10.1111/mmi.14480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Although lipid signaling has been shown to serve crucial roles in mammals and plants, little is known about this process in filamentous fungi. Here we analyze the contribution of phospholipase D (PLD) and its product phosphatidic acid (PA) in hyphal morphogenesis and growth of Epichloë festucae and Neurospora crassa, and in the establishment of a symbiotic interaction between E. festucae and Lolium perenne. Growth of E. festucae and N. crassa PLD deletion strains in axenic culture, and for E. festucae in association with L. perenne, were analyzed by light-, confocal- and electron microscopy. Changes in PA distribution were analyzed in E. festucae using a PA biosensor and the impact of these changes on the endocytic recycling and superoxide production investigated. We found that E. festucae PldB, and the N. crassa ortholog, PLA-7, are required for polarized growth and cell fusion and contribute to ascospore development, whereas PldA/PLA-8 are dispensable for these functions. Exogenous addition of PA rescues the cell-fusion phenotype in E. festucae. PldB is also crucial for E. festucae to establish a symbiotic association with L. perenne. This study identifies a new component of the cell-cell communication and cell fusion signaling network for hyphal morphogenesis and growth of filamentous fungi.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Ulrike Brandt
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, Lincoln, New Zealand.,School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
25
|
Sabetta W, Vandelle E, Locato V, Costa A, Cimini S, Bittencourt Moura A, Luoni L, Graf A, Viggiano L, De Gara L, Bellin D, Blanco E, de Pinto MC. Genetic buffering of cyclic AMP in Arabidopsis thaliana compromises the plant immune response triggered by an avirulent strain of Pseudomonas syringae pv. tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:590-606. [PMID: 30735606 DOI: 10.1111/tpj.14275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/23/2018] [Accepted: 01/24/2019] [Indexed: 05/21/2023]
Abstract
Cyclic AMP plays important roles in different physiological processes, including plant defence responses. However, as little information is known on plant enzymes responsible for cAMP production/degradation, studies of cAMP functions have relied, to date, on non-specific pharmacological approaches. We therefore developed a more reliable approach, producing transgenic Arabidopsis thaliana lines overexpressing the 'cAMP-sponge' (cAS), a genetic tool that specifically buffers cAMP levels. In response to an avirulent strain of Pseudomonas syringae pv. tomato (PstAvrB), cAS plants showed a higher bacterial growth and a reduced hypersensitive cell death in comparison with wild-type (WT) plants. The low cAMP availability after pathogen infection delayed cytosolic calcium elevation, as well as hydrogen peroxide increase and induction of redox systems. The proteomic analysis, performed 24 h post-infection, indicated that a core of 49 proteins was modulated in both genotypes, while 16 and 42 proteins were uniquely modulated in WT and cAS lines, respectively. The involvement of these proteins in the impairment of defence response in cAS plants is discussed in this paper. Moreover, in silico analysis revealed that the promoter regions of the genes coding for proteins uniquely accumulating in WT plants shared the CGCG motif, a target of the calcium-calmodulin-binding transcription factor AtSR1 (Arabidopsis thaliana signal responsive1). Therefore, following pathogen perception, the low free cAMP content, altering timing and levels of defence signals, and likely acting in part through the mis-regulation of AtSR1 activity, affected the speed and strength of the immune response.
Collapse
Affiliation(s)
- Wilma Sabetta
- Institute of Biosciences and Bioresources, CNR, Research Division Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milano, Italy
| | - Sara Cimini
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | | | - Laura Luoni
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milano, Italy
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Luigi Viggiano
- Department of Biology, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Emanuela Blanco
- Institute of Biosciences and Bioresources, CNR, Research Division Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Maria C de Pinto
- Department of Biology, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
26
|
Lee HJ, Park OK. Lipases associated with plant defense against pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:51-58. [PMID: 30709493 DOI: 10.1016/j.plantsci.2018.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/07/2018] [Accepted: 07/06/2018] [Indexed: 06/09/2023]
Abstract
When facing microbe invaders, plants activate genetic and metabolic defense mechanisms and undergo extracellular and intracellular changes to obtain a certain level of host resistance. Dynamic adjustment and adaptation occur in structures containing lipophilic compounds and cellular metabolites. Lipids encompassing fatty acids, fatty acid-based polymers, and fatty acid derivatives are part of the fundamental architecture of cells and tissues and are essential compounds in numerous biological processes. Lipid-associated plant defense responses are mostly facilitated by the activation of lipases (lipid hydrolyzing proteins), which cleave or transform lipid substrates in various subcellular compartments. In this review, several types of plant defense-associated lipases are described, including their molecular aspects, enzymatic actions, cellular functions, and possible functional relevance in plant defense. Defensive roles are discussed considering enzyme properties, lipid metabolism, downstream regulation, and phenotypic traits in loss-of-function mutants.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Ohkmae K Park
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
27
|
Deppe JP, Rabbat R, Hörtensteiner S, Keller B, Martinoia E, Lopéz-Marqués RL. The wheat ABC transporter Lr34 modifies the lipid environment at the plasma membrane. J Biol Chem 2018; 293:18667-18679. [PMID: 30327425 PMCID: PMC6290163 DOI: 10.1074/jbc.ra118.002532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
Phospholipids (PLs) are emerging as important factors that initiate signal transduction cascades at the plasma membrane. Their distribution within biological membranes is tightly regulated, e.g. by ATP-binding cassette (ABC) transporters, which preferably translocate PLs from the cytoplasmic to the exoplasmic membrane leaflet and are therefore called PL-floppases. Here, we demonstrate that a plant ABC transporter, Lr34 from wheat (Triticum aestivum), is involved in plasma membrane remodeling characterized by an intracellular accumulation of phosphatidic acid and enhanced outward translocation of phosphatidylserine. In addition, the content of phosphatidylinositol 4,5-bisphosphate in the cytoplasmic leaflet of the plasma membrane was reduced in the presence of the ABC transporter. When heterologously expressed in Saccharomyces cerevisiae, Lr34 promoted oil body formation in a mutant defective in PL-transfer in the secretory pathway. Our results suggest that PL redistribution by Lr34 potentially affects the membrane-bound proteome and contributes to the previously reported stimuli-independent activation of biotic and abiotic stress responses and neutral lipid accumulation in transgenic Lr34-expressing barley plants.
Collapse
Affiliation(s)
- Johannes P Deppe
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Ritta Rabbat
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Stefan Hörtensteiner
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Beat Keller
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Enrico Martinoia
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Rosa L Lopéz-Marqués
- the Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
28
|
Kim SW, Gupta R, Min CW, Lee SH, Cheon YE, Meng QF, Jang JW, Hong CE, Lee JY, Jo IH, Kim ST. Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress. J Ginseng Res 2018; 43:143-153. [PMID: 30662303 PMCID: PMC6323179 DOI: 10.1016/j.jgr.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/28/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022] Open
Abstract
Background Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above 25°C. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. Methods We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. Results The results showed a reduction in photosynthetic efficiency on heat treatment (35°C) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. Conclusion These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.
Collapse
Affiliation(s)
- So Wun Kim
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Seo Hyun Lee
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Ye Eun Cheon
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Qing Feng Meng
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Chi Eun Hong
- Department of Herbal Crop Research, Rural Development Administration, Eumseong, Republic of Korea
| | - Ji Yoon Lee
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Republic of Korea
| | - Ick Hyun Jo
- Department of Herbal Crop Research, Rural Development Administration, Eumseong, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
29
|
Zhang Q, van Wijk R, Zarza X, Shahbaz M, van Hooren M, Guardia A, Scuffi D, García-Mata C, Van den Ende W, Hoffmann-Benning S, Haring MA, Laxalt AM, Munnik T. Knock-Down of Arabidopsis PLC5 Reduces Primary Root Growth and Secondary Root Formation While Overexpression Improves Drought Tolerance and Causes Stunted Root Hair Growth. PLANT & CELL PHYSIOLOGY 2018; 59:2004-2019. [PMID: 30107538 DOI: 10.1093/pcp/pcy120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) is a well-known signaling enzyme in metazoans that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate and diacylglycerol as second messengers involved in mutiple processes. Plants contain PLC too, but relatively little is known about its function there. The model system Arabidopsis thaliana contains nine PLC genes. Reversed genetics have implicated several roles for PLCs in plant development and stress signaling. Here, PLC5 is functionally addressed. Promoter-β-glucuronidase (GUS) analyses revealed expression in roots, leaves and flowers, predominantly in vascular tissue, most probably phloem companion cells, but also in guard cells, trichomes and root apical meristem. Only one plc5-1 knock-down mutant was obtained, which developed normally but grew more slowly and exhibited reduced primary root growth and decreased lateral root numbers. These phenotypes could be complemented by expressing the wild-type gene behind its own promoter. Overexpression of PLC5 (PLC5-OE) using the UBQ10 promoter resulted in reduced primary and secondary root growth, stunted root hairs, decreased stomatal aperture and improved drought tolerance. PLC5-OE lines exhibited strongly reduced phosphatidylinositol 4-monophosphate (PIP) and PIP2 levels and increased amounts of phosphatidic acid, indicating enhanced PLC activity in vivo. Reduced PIP2 levels and stunted root hair growth of PLC5-OE seedlings could be recovered by inducible overexpression of a root hair-specific PIP 5-kinase, PIP5K3. Our results show that PLC5 is involved in primary and secondary root growth and that its overexpression improves drought tolerance. Independently, we provide new evidence that PIP2 is essential for the polar tip growth of root hairs.
Collapse
Affiliation(s)
- Qianqian Zhang
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ringo van Wijk
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Xavier Zarza
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Muhammad Shahbaz
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Max van Hooren
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, University of Leuven, Leuven, Belgium
| | - Susanne Hoffmann-Benning
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Michel A Haring
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| |
Collapse
|
30
|
Li J, Staiger CJ. Understanding Cytoskeletal Dynamics During the Plant Immune Response. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:513-533. [PMID: 29975609 DOI: 10.1146/annurev-phyto-080516-035632] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant cytoskeleton is a dynamic framework of cytoplasmic filaments that rearranges as the needs of the cell change during growth and development. Incessant turnover mechanisms allow these networks to be rapidly redeployed in defense of host cytoplasm against microbial invaders. Both chemical and mechanical stimuli are recognized as danger signals to the plant, and these are perceived and transduced into cytoskeletal dynamics and architecture changes through a collection of well-recognized, previously characterized players. Recent advances in quantitative cell biology approaches, along with the powerful molecular genetics techniques associated with Arabidopsis, have uncovered two actin-binding proteins as key intermediaries in the immune response to phytopathogens and defense signaling. Certain bacterial phytopathogens have adapted to the cytoskeletal-based defense mechanism during the basal immune response and have evolved effector proteins that target actin filaments and microtubules to subvert transcriptional reprogramming, secretion of defense-related proteins, and cell wall-based defenses. In this review, we describe current knowledge about host cytoskeletal dynamics operating at the crossroads of the molecular and cellular arms race between microbes and plants.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Christopher J Staiger
- Department of Biological Sciences and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
31
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|
32
|
D'Ambrosio JM, Gonorazky G, Sueldo DJ, Moraga J, Di Palma AA, Lamattina L, Collado IG, Laxalt AM. The sesquiterpene botrydial from Botrytis cinerea induces phosphatidic acid production in tomato cell suspensions. PLANTA 2018; 247:1001-1009. [PMID: 29340795 DOI: 10.1007/s00425-018-2843-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
The phytotoxin botrydial triggers PA production in tomato cell suspensions via PLD and PLC/DGK activation. PLC/DGK-derived PA is partially required for botrydial-induced ROS generation. Phosphatidic acid (PA) is a phospholipid second messenger involved in the induction of plant defense responses. It is generated via two distinct enzymatic pathways, either via phospholipase D (PLD) or by the sequential action of phospholipase C and diacylglycerol kinase (PLC/DGK). Botrydial is a phytotoxic sesquiterpene generated by the necrotrophic fungus Botrytis cinerea that induces diverse plant defense responses, such as the production of reactive oxygen species (ROS). Here, we analyzed PA and ROS production and their interplay upon botrydial treatments, employing tomato (Solanum lycopersicum) cell suspensions as a model system. Botrydial induces PA production within minutes via PLD and PLC/DGK. Either inhibition of PLC or DGK diminishes ROS generation triggered by botrydial. This indicates that PLC/DGK is upstream of ROS production. In tomato, PLC is encoded by a multigene family constituted by SlPLC1-SlPLC6 and the pseudogene SlPLC7. We have shown that SlPLC2-silenced plants have reduced susceptibility to B. cinerea. In this work, we studied the role of SlPLC2 on botrydial-induced PA production by silencing the expression of SlPLC2 via a specific artificial microRNA. Upon botrydial treatments, SlPLC2-silenced-cell suspensions produce PA levels similar to wild-type cells. It can be concluded that PA is a novel component of the plant responses triggered by botrydial.
Collapse
Affiliation(s)
- Juan Martin D'Ambrosio
- Instituto de Investigaciones Biológicas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC. 1245, 7600, Mar del Plata, Argentina
| | - Gabriela Gonorazky
- Instituto de Investigaciones Biológicas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC. 1245, 7600, Mar del Plata, Argentina
| | | | - Javier Moraga
- Departamento de Química Orgánica, Universidad de Cádiz, Cadiz, Spain
| | - Andrés Arruebarrena Di Palma
- Instituto de Investigaciones Biológicas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC. 1245, 7600, Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC. 1245, 7600, Mar del Plata, Argentina
| | | | - Ana Maria Laxalt
- Instituto de Investigaciones Biológicas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC. 1245, 7600, Mar del Plata, Argentina.
| |
Collapse
|
33
|
Zhang Q, van Wijk R, Shahbaz M, Roels W, Schooten BV, Vermeer JEM, Zarza X, Guardia A, Scuffi D, García-Mata C, Laha D, Williams P, Willems LAJ, Ligterink W, Hoffmann-Benning S, Gillaspy G, Schaaf G, Haring MA, Laxalt AM, Munnik T. Arabidopsis Phospholipase C3 is Involved in Lateral Root Initiation and ABA Responses in Seed Germination and Stomatal Closure. PLANT & CELL PHYSIOLOGY 2018; 59:469-486. [PMID: 29309666 DOI: 10.1093/pcp/pcx194] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/01/2017] [Indexed: 05/10/2023]
Abstract
Phospholipase C (PLC) is well known for its role in animal signaling, where it generates the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), by hydrolyzing the minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), upon receptor stimulation. In plants, PLC's role is still unclear, especially because the primary targets of both second messengers are lacking, i.e. the ligand-gated Ca2+ channel and protein kinase C, and because PIP2 levels are extremely low. Nonetheless, the Arabidopsis genome encodes nine PLCs. We used a reversed-genetic approach to explore PLC's function in Arabidopsis, and report here that PLC3 is required for proper root development, seed germination and stomatal opening. Two independent knock-down mutants, plc3-2 and plc3-3, were found to exhibit reduced lateral root densities by 10-20%. Mutant seeds germinated more slowly but were less sensitive to ABA to prevent germination. Guard cells of plc3 were also compromised in ABA-dependent stomatal closure. Promoter-β-glucuronidase (GUS) analyses confirmed PLC3 expression in guard cells and germinating seeds, and revealed that the majority is expressed in vascular tissue, most probably phloem companion cells, in roots, leaves and flowers. In vivo 32Pi labeling revealed that ABA stimulated the formation of PIP2 in germinating seeds and guard cell-enriched leaf peels, which was significantly reduced in plc3 mutants. Overexpression of PLC3 had no effect on root system architecture or seed germination, but increased the plant's tolerance to drought. Our results provide genetic evidence for PLC's involvement in plant development and ABA signaling, and confirm earlier observations that overexpression increases drought tolerance. Potential molecular mechanisms for the above observations are discussed.
Collapse
Affiliation(s)
- Qianqian Zhang
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Ringo van Wijk
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Muhammad Shahbaz
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Wendy Roels
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Bas van Schooten
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Joop E M Vermeer
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Xavier Zarza
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Debabrata Laha
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Phoebe Williams
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Leo A J Willems
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Susanne Hoffmann-Benning
- Departement of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Glenda Gillaspy
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Gabriel Schaaf
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Michel A Haring
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, section Plant Physiology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
- Swammerdam Institute for Life Sciences, section Plant Cell Biology, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
34
|
La Mantia J, Unda F, Douglas CJ, Mansfield SD, Hamelin R. Overexpression of AtGolS3 and CsRFS in poplar enhances ROS tolerance and represses defense response to leaf rust disease. TREE PHYSIOLOGY 2018; 38:457-470. [PMID: 28981890 DOI: 10.1093/treephys/tpx100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Plants respond to pathogens through an orchestration of signaling events that coordinate modifications to transcriptional profiles and physiological processes. Resistance to necrotrophic pathogens often requires jasmonic acid, which antagonizes the salicylic acid dependent biotrophic defense response. Recently, myo-inositol has been shown to negatively impact salicylic acid (SA) levels and signaling, while galactinol enhances jasmonic acid (JA)-dependent induced systemic resistance to necrotrophic pathogens. To investigate the function of these compounds in biotrophic pathogen defense, we characterized the defense response of Populus alba × grandidentata overexpressing Arabidopsis GALACTINOL SYNTHASE3 (AtGolS) and Cucumber sativus RAFFINOSE SYNTHASE (CsRFS) challenged with Melampsora aecidiodes, a causative agent of poplar leaf rust disease. Relative to wild-type leaves, the overexpression of AtGolS3 and CsRFS increased accumulation of galactinol and raffinose and led to increased leaf rust infection. During the resistance response, inoculated wild-type leaves displayed reduced levels of galactinol and repressed transcript abundance of two endogenous GolS genes compared to un-inoculated wild-type leaves prior to the up-regulation of NON-EXPRESSOR OF PR1 and PATHOGENESIS-RELATED1. Transcriptome analysis and qRT-PCR validation also revealed the repression of genes participating in calcium influx, phosphatidic acid biosynthesis and signaling, and salicylic acid signaling in the transgenic lines. In contrast, enhanced tolerance to H2O2 and up-regulation of antioxidant biosynthesis genes were exhibited in the overexpression lines. Thus, we conclude that overexpression of AtGolS and CsRFS antagonizes the defense response to poplar leaf rust disease through repressing reactive oxygen species and attenuating calcium and phosphatidic acid signaling events that lead to SA defense.
Collapse
Affiliation(s)
- Jonathan La Mantia
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- United States Department of Agriculture, Wooster, OH 44691, USA
| | - Faride Unda
- Department of Wood Science, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Richard Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- Natural Resources Canada, Laurentian Forestry Center 1055 rue du P.E.P.S., Québec G1V 4C7, Canada
| |
Collapse
|
35
|
Gao M, Yin X, Yang W, Lam SM, Tong X, Liu J, Wang X, Li Q, Shui G, He Z. GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog 2017; 13:e1006724. [PMID: 29131851 PMCID: PMC5703576 DOI: 10.1371/journal.ppat.1006724] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/27/2017] [Accepted: 10/31/2017] [Indexed: 12/04/2022] Open
Abstract
Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. Lipases are a large family of enzymes conferring lipid metabolism. Lipids and their metabolites play diverse roles in plant growth as well as response to environmental stimuli. Accumulating evidence implicates lipids as signaling molecules mediating plant immunity. Therefore, lipases are presumed to be actively involved in plant defense responses. Based on gene expression profiling, we have identified two functional GDSL lipases, encoded by OsGLIP1 and OsGLIP2, whose expression was suppressed by pathogen infection in the model cereal rice. Both OsGLIP1 and OsGLIP2 proteins localize to lipid droplets and the endoplasmic reticulum (ER) membrane, and they likely coordinate lipid metabolism with differential but complementary expression patterns in tissues and developmental stages. Consequently, alteration of OsGLIP gene expression was associated with substantial changes of lipid abundance and plant disease resistance. Our work identifies and characterizes two lipases that function as negative regulators of plant immune responses, strengthening the understanding of lipid metabolism in plant-microbe interactions.
Collapse
Affiliation(s)
- Mingjun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Tong
- China National Rice Research Institute, Hangzhou, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
36
|
Cacas JL, Gerbeau-Pissot P, Fromentin J, Cantrel C, Thomas D, Jeannette E, Kalachova T, Mongrand S, Simon-Plas F, Ruelland E. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. PLANT, CELL & ENVIRONMENT 2017; 40:585-598. [PMID: 27272019 DOI: 10.1111/pce.12771] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 05/20/2023]
Abstract
Cryptogein is a 10 kDa protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial-associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG isoform D (RBOHD). Using radioactive [33 P]-orthophosphate labelling of tobacco Bright Yellow-2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein because of the coordinated onset of phosphoinositide-dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD-mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH-oxidase activity. Amongst cluster III DGKs, the expression of DGK5-like was up-regulated in response to cryptogein. Besides DGK5-like is likely to be the main cluster III DGK isoform silenced in one of our mutant lines, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid-mediated events in plant immunity.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Jérôme Fromentin
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Catherine Cantrel
- UPMC UnivParis06, UR5, Physiologie Cellulaire et Moléculaire des Plantes, 4 place Jussieu, 75252, Paris cedex 05, France
| | - Dominique Thomas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Emmanuelle Jeannette
- UPMC UnivParis06, UR5, Physiologie Cellulaire et Moléculaire des Plantes, 4 place Jussieu, 75252, Paris cedex 05, France
| | - Tetiana Kalachova
- UPE, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 61 avenue du général de Gaulle, 94010, Créteil, France
- CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 61 avenue du général de Gaulle, 94010, Créteil, France
| | - Sébastien Mongrand
- CNRS, UMR 5200 Laboratoire de Biogenèse Membranaire, INRA Bordeaux Aquitaine, BP81, F-33883, Villenave d'Ornon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Eric Ruelland
- UPMC UnivParis06, UR5, Physiologie Cellulaire et Moléculaire des Plantes, 4 place Jussieu, 75252, Paris cedex 05, France
- UPE, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 61 avenue du général de Gaulle, 94010, Créteil, France
- CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 61 avenue du général de Gaulle, 94010, Créteil, France
| |
Collapse
|
37
|
Abd-El-Haliem AM, Joosten MHAJ. Plant phosphatidylinositol-specific phospholipase C at the center of plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:164-179. [PMID: 28097830 DOI: 10.1111/jipb.12520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Understanding plant resistance to pathogenic microbes requires detailed information on the molecular mechanisms controlling the execution of plant innate immune responses. A growing body of evidence places phosphoinositide-specific phospholipase C (PI-PLC) enzymes immediately downstream of activated immune receptors, well upstream of the initiation of early defense responses. An increase of the cytoplasmic levels of free Ca2+ , lowering of the intercellular pH and the oxidative burst are a few examples of such responses and these are regulated by PI-PLCs. Consequently, PI-PLC activation represents an early primary signaling switch between elicitation and response involving the controlled hydrolysis of essential signaling phospholipids, thereby simultaneously generating lipid and non-lipid second messenger molecules required for a swift cellular defense response. Here, we elaborate on the signals generated by PI-PLCs and their respective downstream effects, while providing an inventory of different types of evidence describing the involvement of PI-PLCs in various aspects of plant immunity. We project the discussed information into a model describing the cellular events occurring after the activation of plant immune receptors. With this review we aim to provide new insights supporting future research on plant PI-PLCs and the development of plants with improved resistance.
Collapse
Affiliation(s)
- Ahmed M Abd-El-Haliem
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
38
|
Kage U, Yogendra KN, Kushalappa AC. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike. Sci Rep 2017; 7:42596. [PMID: 28198421 PMCID: PMC5309853 DOI: 10.1038/srep42596] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 12/15/2022] Open
Abstract
A semi-comprehensive metabolomics was used to identify the candidate metabolites and genes to decipher mechanisms of resistance in wheat near-isogenic lines (NILs) containing QTL-2DL against Fusarium graminearum (Fg). Metabolites, with high fold-change in abundance, belonging to hydroxycinnamic acid amides (HCAAs): such as coumaroylagmatine, coumaroylputrescine and Fatty acids: phosphatidic acids (PAs) were identified as resistance related induced (RRI) metabolites in rachis of resistant NIL (NIL-R), inoculated with Fg. A WRKY like transcription factor (TF) was identified within the QTL-2DL region, along with three resistance genes that biosynthesized RRI metabolites. Sequencing and in-silico analysis of WRKY confirmed it to be wheat TaWRKY70. Quantitative real time-PCR studies showed a higher expression of TaWRKY70 in NIL-R as compared to NIL-S after Fg inoculation. Further, the functional validation of TaWRKY70 based on virus induced gene silencing (VIGS) in NIL-R, not only confirmed an increased fungal biomass but also decreased expressions of downstream resistance genes: TaACT, TaDGK and TaGLI1, along with decreased abundances of RRI metabolites biosynthesized by them. Among more than 200 FHB resistance QTL identified in wheat, this is the first QTL from which a TF was identified, and its downstream target genes as well as the FHB resistance functions were deciphered.
Collapse
Affiliation(s)
- Udaykumar Kage
- Plant Science Department, McGill University, 2111 Lakeshore road, Sainte Anne De Bellevue, Quebec, Canada H9X3V9
| | - Kalenahalli N. Yogendra
- Plant Science Department, McGill University, 2111 Lakeshore road, Sainte Anne De Bellevue, Quebec, Canada H9X3V9
| | - Ajjamada C. Kushalappa
- Plant Science Department, McGill University, 2111 Lakeshore road, Sainte Anne De Bellevue, Quebec, Canada H9X3V9
| |
Collapse
|
39
|
Gonorazky G, Guzzo MC, Abd‐El‐Haliem AM, Joosten MH, Laxalt AM. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2016; 17:1354-1363. [PMID: 26868615 PMCID: PMC6638316 DOI: 10.1111/mpp.12365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 05/20/2023]
Abstract
The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5 transcripts and that SlPLC2, but not SlPLC5, is required for xylanase-induced expression of defense-related genes. In this work we studied the role of SlPLC2 in the interaction between tomato and the necrotrophic fungus Botrytis cinerea. Inoculation of tomato leaves with B. cinerea increases SlPLC2 transcript levels. We knocked-down the expression of SlPLC2 by virus-induced gene silencing and plant defense responses were analyzed upon B. cinerea inoculation. SlPLC2 silenced plants developed smaller necrotic lesions concomitantly with less proliferation of the fungus. Silencing of SlPLC2 resulted as well in a reduced production of reactive oxygen species. Upon B. cinerea inoculation, transcript levels of the salicylic acid (SA)-defense pathway marker gene SlPR1a were diminished in SlPLC2 silenced plants compared to non-silenced infected plants, while transcripts of the jasmonic acid (JA)-defense gene markers Proteinase Inhibitor I and II (SlPI-I and SlPI-II) were increased. This implies that SlPLC2 participates in plant susceptibility to B. cinerea.
Collapse
Affiliation(s)
- Gabriela Gonorazky
- Instituto de Investigaciones Biológicas, CONICET‐Universidad Nacional de Mar del PlataCC. 12457600Mar del PlataArgentina
| | - María Carla Guzzo
- Instituto de Fisiología y Recursos Genéticos VegetalesCIAP, INTA, CórdobaArgentina
| | - Ahmed M. Abd‐El‐Haliem
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB WageningenThe Netherlands
- Present address:
Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH AmsterdamThe Netherlands
| | - Matthieu H.A.J. Joosten
- Laboratory of Phytopathology, Wageningen UniversityDroevendaalsesteeg 1, 6708 PB WageningenThe Netherlands
| | - Ana María Laxalt
- Instituto de Investigaciones Biológicas, CONICET‐Universidad Nacional de Mar del PlataCC. 12457600Mar del PlataArgentina
| |
Collapse
|
40
|
de Wit PJGM. Cladosporium fulvum Effectors: Weapons in the Arms Race with Tomato. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:1-23. [PMID: 27215970 DOI: 10.1146/annurev-phyto-011516-040249] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In this review, I recount my personal history. My drive to study host-pathogen interactions was to find alternatives for agrochemicals, which was triggered after reading the book "Silent Spring" by Rachel Carson. I reflect on my research at the Laboratory of Phytopathology at Wageningen University, where I have worked for my entire career on the interaction between Cladosporium fulvum and tomato, and related gene-for-gene pathosystems. I describe different methods used to identify and sequence avirulence (Avr) genes from the pathogen and resistance (R) genes from the host. The major genes involved in classical gene-for-gene interactions have now been identified, and breeders can produce plants with multiple R genes providing durable and environmentally safe protection against pathogens. In some cases, this might require the use of genetically modified plants when R genes cannot be introduced by classical breeding.
Collapse
Affiliation(s)
- Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, 6700 AA, Wageningen, The Netherlands; ,
| |
Collapse
|
41
|
Tayeh C, Randoux B, Laruelle F, Bourdon N, Reignault P. Phosphatidic acid synthesis, octadecanoic pathway and fatty acids content as lipid markers of exogeneous salicylic acid-induced elicitation in wheat. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:512-522. [PMID: 32480481 DOI: 10.1071/fp15347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/22/2016] [Indexed: 06/11/2023]
Abstract
Activators of plant defence responses against pathogens are a potential alternative to fungicides, and the well-known resistance inducer salicylic acid (SA) protects wheat (Triticum aestivum L.) against powdery mildew. The aim of our work was to investigate through biochemical and molecular approaches whether lipid metabolism alteration could be considered as a characteristic feature of induced resistance in wheat upon SA infiltration. Expression levels of lox, PI-PLC2 and ltp genes encoding for a lipoxygenase (LOX), a phospholipase C2 and a lipid-transfer protein, respectively, were investigated. Increase of phosphatidic acid (PA) content 48h after SA infiltration in wheat leaves, upregulation of PI-PLC2 gene expression and increased diacylglycerol content were recorded, indicating the involvement of the PLC pathway in the PA synthesis. The wheat octadecanoid pathway was shown to be highly responsive to SA infiltration through simultaneous increases in lox gene expression and LOX activity, as well as a reduction in the content of linolenic acid. Changes in several FA contents and increases of the ltp gene expression were also recorded during the latest hours after SA infiltration. The status of lipid metabolism, as well as the connections between its components as markers of SA-induced resistance in wheat, are discussed.
Collapse
Affiliation(s)
- Christine Tayeh
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), GIS PhyNoPi, Université du Littoral Côte d'Opale, Université Lille-Nord de France, 50 Rue Ferdinand Buisson, CS 80699, F-62228, Calais cedex, France
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), GIS PhyNoPi, Université du Littoral Côte d'Opale, Université Lille-Nord de France, 50 Rue Ferdinand Buisson, CS 80699, F-62228, Calais cedex, France
| | - Frédéric Laruelle
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), GIS PhyNoPi, Université du Littoral Côte d'Opale, Université Lille-Nord de France, 50 Rue Ferdinand Buisson, CS 80699, F-62228, Calais cedex, France
| | - Natacha Bourdon
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), GIS PhyNoPi, Université du Littoral Côte d'Opale, Université Lille-Nord de France, 50 Rue Ferdinand Buisson, CS 80699, F-62228, Calais cedex, France
| | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), GIS PhyNoPi, Université du Littoral Côte d'Opale, Université Lille-Nord de France, 50 Rue Ferdinand Buisson, CS 80699, F-62228, Calais cedex, France
| |
Collapse
|
42
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
43
|
Nie S, Xu H. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana. PLoS One 2016; 11:e0153175. [PMID: 27054585 PMCID: PMC4824526 DOI: 10.1371/journal.pone.0153175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses.
Collapse
Affiliation(s)
- Shengjun Nie
- International Nature Farming Research Center, Hata 5632, Matsumoto-city, Nagano 390–1401, Japan
| | - Huilian Xu
- International Nature Farming Research Center, Hata 5632, Matsumoto-city, Nagano 390–1401, Japan
- * E-mail:
| |
Collapse
|
44
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
45
|
Lipids in plant-microbe interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1379-1395. [PMID: 26928590 DOI: 10.1016/j.bbalip.2016.02.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/24/2022]
Abstract
Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid-derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled "Plant Lipid Biology," guest editors Kent Chapman and Ivo Feussner.
Collapse
|
46
|
Abd-El-Haliem AM, Vossen JH, van Zeijl A, Dezhsetan S, Testerink C, Seidl MF, Beck M, Strutt J, Robatzek S, Joosten MHAJ. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1365-1378. [PMID: 26825689 DOI: 10.1016/j.bbalip.2016.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs belonging to one class, PLCζ. Here we determined whether all tomato homologs encode active enzymes and whether they can generate signals that are distinct from one another. We searched the recently completed tomato (Solanum lycopersicum) genome sequence and identified a total of seven PLCs. Recombinant proteins were produced for all tomato PLCs, except for SlPLC7. The purified proteins showed typical PLC activity, as different PLC substrates were hydrolysed to produce diacylglycerol. We studied SlPLC2, SlPLC4 and SlPLC5 enzymes in more detail and observed distinct requirements for Ca(2+) ions and pH, for both their optimum activity and substrate preference. This indicates that each enzyme could be differentially and specifically regulated in vivo, leading to the generation of PLC homolog-specific signals in response to different stimuli. PLC overexpression and specific inhibition of PLC activity revealed that PLC is required for both specific effector- and more general "pattern"-triggered immunity. For the latter, we found that both the flagellin-triggered response and the internalization of the corresponding receptor, Flagellin Sensing 2 (FLS2) of Arabidopsis thaliana, are suppressed by inhibition of PLC activity. Altogether, our data support an important role for PLC enzymes in plant defence signalling downstream of immune receptors. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Ahmed M Abd-El-Haliem
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jack H Vossen
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Arjan van Zeijl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sara Dezhsetan
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Martina Beck
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - James Strutt
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
47
|
Kim SH, Shin YS, Choi HK. NanoESI-MS-based lipidomics to discriminate between cultivars, cultivation ages, and parts of Panax ginseng. Anal Bioanal Chem 2016; 408:2109-21. [PMID: 26800980 DOI: 10.1007/s00216-016-9314-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 01/09/2023]
Abstract
Korean ginseng (Panax ginseng C.A. Meyer) is one of the most popular medicinal herbs used in Asia, including Korea and China. In the present study lipid profiling of two officially registered cultivars (P. ginseng 'Chunpoong' and P. ginseng 'Yunpoong') was performed at different cultivation ages (5 and 6 years) and on different parts (tap roots, lateral roots, and rhizomes) using nano-electrospray ionization-mass spectrometry (nanoESI-MS). In total, 30 compounds including galactolipids, phospholipids, triacylglycerols, and ginsenosides were identified. Among them, triacylglycerol 54:6 (18:2/18:2/18:2), phosphatidylglycerol 34:3 (16:0/18:3), monogalactosyldiacylglycerol 36:4 (18:2/18:2), phosphatidic acid species 36:4 (18:2/18:2), and 34:1 (16:0/18:1) were selected as biomarkers to discriminate cultivars, cultivation ages, and parts. In addition, an unknown P. ginseng sample was successfully predicted by applying validated partial least squares projection to latent structures regression models. This is the first study regarding the identification of intact lipid species from P. ginseng and to predict cultivars, cultivation ages, and parts of P. ginseng using nanoESI-MS-based lipidomic profiling with a multivariate statistical analysis.
Collapse
Affiliation(s)
- So-Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Yoo-Soo Shin
- Department of Medicinal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
48
|
Bi G, Liebrand TWH, Bye RR, Postma J, van der Burgh AM, Robatzek S, Xu X, Joosten MHAJ. SOBIR1 requires the GxxxG dimerization motif in its transmembrane domain to form constitutive complexes with receptor-like proteins. MOLECULAR PLANT PATHOLOGY 2016; 17:96-107. [PMID: 25891985 PMCID: PMC6638328 DOI: 10.1111/mpp.12266] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Receptor-like proteins (RLPs), forming an important group of transmembrane receptors in plants, play roles in development and immunity. RLPs contain extracellular leucine-rich repeats (LRRs) and, in contrast with receptor-like kinases (RLKs), lack a cytoplasmic kinase required for the initiation of downstream signalling. Recent studies have revealed that the RLK SOBIR1/EVR (SUPPRESSOR OF BIR1-1/EVERSHED) specifically interacts with RLPs. SOBIR1 stabilizes RLPs and is required for their function. However, the mechanism by which SOBIR1 associates with RLPs and regulates RLP function remains unknown. The Cf immune receptors of tomato (Solanum lycopersicum), mediating resistance to the fungus Cladosporium fulvum, are RLPs that also interact with SOBIR1. Here, we show that both the LRR and kinase domain of SOBIR1 are dispensable for association with the RLP Cf-4, whereas the highly conserved GxxxGxxxG motif present in the transmembrane domain of SOBIR1 is essential for its interaction with Cf-4 and additional RLPs. Complementation assays in Nicotiana benthamiana, in which endogenous SOBIR1 levels were knocked down by virus-induced gene silencing, showed that the LRR domain as well as the kinase activity of SOBIR1 are required for the Cf-4/Avr4-triggered hypersensitive response (HR). In contrast, the LRRs and kinase activity of SOBIR1 are not required for facilitation of Cf-4 accumulation. Together, these results suggest that, in addition to being a stabilizing scaffold for RLPs, SOBIR1 is also required for the initiation of downstream signalling through its kinase domain.
Collapse
Affiliation(s)
- Guozhi Bi
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Thomas W H Liebrand
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Ruby R Bye
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Jelle Postma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Aranka M van der Burgh
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
49
|
Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R. Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem. THE ARABIDOPSIS BOOK 2016; 14:e0184. [PMID: 27489521 PMCID: PMC4957506 DOI: 10.1199/tab.0184] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is generally accepted in plant-microbe interactions research that disease is the exception rather than a common outcome of pathogen attack. However, in nature, plants with symptoms that signify colonization by obligate biotrophic powdery mildew fungi are omnipresent. The pervasiveness of the disease and the fact that many economically important plants are prone to infection by powdery mildew fungi drives research on this interaction. The competence of powdery mildew fungi to establish and maintain true biotrophic relationships renders the interaction a paramount example of a pathogenic plant-microbe biotrophy. However, molecular details underlying the interaction are in many respects still a mystery. Since its introduction in 1990, the Arabidopsis-powdery mildew pathosystem has become a popular model to study molecular processes governing powdery mildew infection. Due to the many advantages that the host Arabidopsis offers in terms of molecular and genetic tools this pathosystem has great capacity to answer some of the questions of how biotrophic pathogens overcome plant defense and establish a persistent interaction that nourishes the invader while in parallel maintaining viability of the plant host.
Collapse
Affiliation(s)
- Hannah Kuhn
- RWTH Aachen University, Institute for Biology I, Unit of Plant
Molecular Cell Biology, Worringerweg 1, D-52056 Aachen, Germany
- Address correspondence to
| | | | | | | | | | | |
Collapse
|
50
|
Tayeh C, Randoux B, Tisserant B, Khong G, Jacques P, Reignault P. Are ineffective defence reactions potential target for induced resistance during the compatible wheat-powdery mildew interaction? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:9-19. [PMID: 26218548 DOI: 10.1016/j.plaphy.2015.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/02/2015] [Accepted: 07/17/2015] [Indexed: 05/25/2023]
Abstract
Powdery mildew caused by Blumeria graminis f.sp. tritici, an obligate aerial biotrophic fungus, would be one of the most damaging wheat (Triticum aestivum) diseases without the extensive use of conventional fungicides. In our study, the expression levels of some basal defence-related genes were investigated during a compatible interaction in order to evaluate wheat reactions to infection, along with the different stages of the infectious process in planta. As fungal conidia initiated their germination and developed appressorial germ tube (AGT), early defence reactions involved the expression of a lipoxygenase (LOX)- and an oxalate oxidase (OXO)-encoding genes, followed by activations of corresponding LOX (EC 1.13.11.12) and OXO (EC 1.2.3.4) activities, respectively. When penetration of AGT took place, up-regulation of chitinases (CHI) and PR1-encoding genes expression occurred along with an increase of CHI (EC 3.2.1.14) activity. Meanwhile, expression of a phenylalanine ammonia-lyase-encoding gene also took place. Up-regulation of a phospholipase C- and lipid transfer proteins-encoding genes expression occurred during the latest stages of infection. Neither the phi glutathione S-transferase (GST)-encoding gene expression nor the GST (EC 2.5.1.13) activity was modified upon wheat infection by powdery mildew. Whether these defence reactions during such a compatible interaction are markers of immunity or susceptibility, and whether they have the ability to contribute to protection upon modulation of their timing and their intensity by resistance inducers are discussed.
Collapse
Affiliation(s)
- Ch Tayeh
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA4492), Univ. Lille-Nord de France, GIS PhyNoPi, B.P.699, F-62229 Calais Cedex, France.
| | - B Randoux
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA4492), Univ. Lille-Nord de France, GIS PhyNoPi, B.P.699, F-62229 Calais Cedex, France
| | - B Tisserant
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA4492), Univ. Lille-Nord de France, GIS PhyNoPi, B.P.699, F-62229 Calais Cedex, France
| | - G Khong
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA4492), Univ. Lille-Nord de France, GIS PhyNoPi, B.P.699, F-62229 Calais Cedex, France
| | - Ph Jacques
- Université de Lille, Institut Régional de Recherche en Agroalimentaire et Biotechnologie Charles Viollette, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France
| | - Ph Reignault
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-EA4492), Univ. Lille-Nord de France, GIS PhyNoPi, B.P.699, F-62229 Calais Cedex, France.
| |
Collapse
|