1
|
Zhao S, Gou B, Wang Y, Yang N, Duan P, Wei M, Zhang G, Wei B. Identification and relative expression analysis of CaFRK gene family in pepper. 3 Biotech 2022; 12:137. [PMID: 35646505 PMCID: PMC9130412 DOI: 10.1007/s13205-022-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/29/2022] [Indexed: 02/02/2023] Open
Abstract
Fructokinase is the main catalytic enzyme for fructose phosphorylation and can also act as a glucose receptor and signal molecule to regulate the metabolism of plants, which plays an important role in plant growth and development. In this study, the CaFRK gene family and their molecular characteristics are systematically identified and analyzed, and the specific expression of CaFRKs under different tissues, abiotic stresses and hormone treatments were explored. Nine FRK genes were authenticated in pepper genome database, which were dispersedly distributed on eight reference chromosomes and predicted to localize in the cytoplasm. Many cis-acting elements that respond to light, different stresses, hormones and tissue-specific expression were found in the promoters of CaFRKs. FRK proteins of four species including Capsicum annuum, Arabidopsis thaliana, Solanum lycopersicum and Oryza sativa were divided into four groups via phylogenetic analysis. The collinearity analysis showed that there were two collinear gene pairs between CaFRKs and AtFRKs. In addition, it was significantly found that CaFRK9 expressed far higher in flower than other tissues, and the relative expression of CaFRK9 was gradually enhanced with the development of flower buds in fertile accessions, 8B, R1 and F1. Nevertheless, CaFRK9 hardly expressed in all stages of cytoplasmic male sterile lines. Based on the quantitative real-time PCR, most of CaFRK genes showed significant up-regulation under low-temperature, NaCl and PEG6000 treatments. On the contrary, the expression levels of most CaFRKs revealed a various trend in response to hormone treatments (IAA, ABA, GA3, SA and MeJA). This study systematically analyzed CaFRK gene family and studied its expression pattern, which lay the foundation of CaFRK genes cloning and functional verification response to abiotic stresses, and provides new insights into exploring the CaFRK genes on the pollen development in pepper. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03196-1.
Collapse
Affiliation(s)
- Shufang Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Bingdiao Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Yongfu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Nan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Panpan Duan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Min Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
2
|
Zhang M, Du T, Yin Y, Cao H, Song Z, Ye M, Liu Y, Shen Y, Zhang L, Yang Q, Meng D, Wu J. Synergistic Effects of Plant Hormones on Spontaneous Late-ripening Mutant of ‘Jinghong’ Peach Detected by Transcriptome Analysis. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Peach (Prunus persica L.) is an ancient fruit tree that originated from China. It is the climacteric fruit which belongs to genus Prunus in family Rosaceae. Ethylene, which is produced during ripening, accelerates fruit softening, and therefore peaches cannot be stored for a long time.
Materials and Methods
To study the mechanism of fruit late ripening, transcriptome analysis of the fruit of a late-ripening mutant of ‘Jinghong’ peach was performed to identify genes and pathways involved in fruit late ripening.
Results
A total of 1,805, 1,511, and 2,309 genes were found to be differentially expressed in W2_vs_M1, W3_vs_M2, and W3_vs_M3, respectively. Functional enrichment analysis of the differentially expressed genes showed they were related to carotenoid biosynthesis, starch and sucrose metabolism plant hormone signal transduction, flavonoid biosynthesis, and photosynthesis. The expression trends of ripening-related genes that encode transcription factors and plant hormone signal transduction-related genes that encode enzymes were similar.
Conclusions
It will help to elucidate the transcriptional regulatory network of fruit development in the spontaneous late-ripening mutant of ‘Jinghong’ peach and provide a theoretical basis for understanding the molecular regulatory mechanism of fruit ripening.
Collapse
Affiliation(s)
- Man Zhang
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Tingting Du
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yarui Yin
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Hongyan Cao
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Zhihua Song
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Mao Ye
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Yating Liu
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Yanhong Shen
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Libin Zhang
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| | - Qing Yang
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Dong Meng
- The College of Forestry, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Junkai Wu
- Hebei Normal University of Science and Technology, Qinhuangdao Hebei
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization
| |
Collapse
|
3
|
Cai Y, Yin L, Tu W, Deng Z, Yan J, Dong W, Gao H, Xu J, Zhang N, Wang J, Zhu L, Meng Q, Zhang Y. Ectopic Expression of VvSUC27 Induces Stenospermocarpy and Sugar Accumulation in Tomato Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:759047. [PMID: 34868153 PMCID: PMC8637806 DOI: 10.3389/fpls.2021.759047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Seedless fruits are favorable in the market because of their ease of manipulation. Sucrose transporters (SUTs or SUCs) are essential for carbohydrate metabolism in plants. Whether SUTs participate directly in causing stenospermocarpy, thereby increasing fruit quality, remains unclear. Three SUTs, namely, VvSUC11, VvSUC12, and VvSUC27 from Vitis vinifera, were characterized and ectopic expression in tomatoes. VvSUC11- and VvSUC12-overexpressing lines had similar flower and fruit phenotypes compared with those of the wild type. VvSUC27-overexpressing lines produced longer petals and pistils, an abnormal stigma, much less and shrunken pollen, and firmer seedless fruits. Moreover, produced fruits from all VvSUC-overexpressing lines had a higher soluble solid content and sugar concentration. Transcriptomic analysis revealed more genes associated with carbohydrate metabolism and sugar transport and showed downregulation of auxin- and ethylene-related signaling pathways during early fruit development in VvSUC27-overexpressing lines relative to that of the wild type. Our findings demonstrated that stenospermocarpy can be induced by overexpression of VvSUC27 through a consequential reduction in nutrient delivery to pollen at anthesis, with a subsequent downregulation of the genes involved in carbohydrate metabolism and hormone signaling. These commercially desirable results provide a new strategy for bioengineering stenospermocarpy in tomatoes and in other fruit plants.
Collapse
Affiliation(s)
- Yumeng Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Key Laboratory, Academy of Agricultural Sciences, Nanning, China
| | - Wenrui Tu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhefang Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenjie Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Han Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinxu Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Zhu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qingyong Meng
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Upadhyay RK, Tucker ML, Mattoo AK. Ethylene and RIPENING INHIBITOR Modulate Expression of SlHSP17.7A, B Class I Small Heat Shock Protein Genes During Tomato Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:975. [PMID: 32714357 PMCID: PMC7344320 DOI: 10.3389/fpls.2020.00975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 06/02/2023]
Abstract
Heat shock proteins (HSPs) are ubiquitous and highly conserved in nature. Heat stress upregulates their gene expression and now it is known that they are also developmentally regulated. We have studied regulation of small HSP genes during ripening of tomato fruit. In this study, we identify two small HSP genes, SlHSP17.7A and SlHSP17.7B, localized on tomato Chr.6 and Chr.9, respectively. Each gene encodes proteins constituting 154 amino acids and has characteristic domains as in other sHSP genes. We found that SlHSP17.7A and SlHSP17.7B gene expression is low in the vegetative tissues as compared to that in the fruit. These sHSP genes are characteristically expressed in a fruit-ripening fashion, being upregulated during the ripening transition of mature green to breaker stage. Their expression patterns mirror that of the rate-limiting ethylene biosynthesis gene ACC (1-aminocyclopropane-1-carboxylic acid) synthase, SlACS2, and its regulator SlMADS-RIN. Exogenous application of ethylene to either mature green tomato fruit or tomato leaves suppressed the expression of both the SlHSP17.7A, B genes. Notably and characteristically, a transgenic tomato line silenced for SlACS2 gene and whose fruits produce ~50% less ethylene in vivo, had higher expression of both the sHSP genes at the fruit ripening transition stages [breaker (BR) and BR+3] than the control fruit. Moreover, differential gene expression of SlHSP17.7A versus SlHSP17.7B gene was apparent in the tomato ripening mutants-rin/rin, nor/nor, and Nr/Nr, with the expression of SlHSP17.7A being significantly reduced but that of SlHSP17.7B significantly upregulated as compared to the wild type (WT). These data indicate that ethylene negatively regulates transcriptional abundance of both these sHSPs. Transient overexpression of the ripening regulator SlMADS-RIN in WT and ACS2-AS mature green tomato fruits suppressed the expression of SlHSP17.7A but not that of SlHSP17.7B. Thus, ethylene directly or in tune with SlMADS-RIN regulates the transcript abundance of both these sHSP genes.
Collapse
Affiliation(s)
- Rakesh K. Upadhyay
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-ARS, Beltsville, MD, United States
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-ARS, Beltsville, MD, United States
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture-ARS, Beltsville, MD, United States
| |
Collapse
|
5
|
Maheepala DC, Emerling CA, Rajewski A, Macon J, Strahl M, Pabón-Mora N, Litt A. Evolution and Diversification of FRUITFULL Genes in Solanaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:43. [PMID: 30846991 PMCID: PMC6394111 DOI: 10.3389/fpls.2019.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 05/12/2023]
Abstract
Ecologically and economically important fleshy edible fruits have evolved from dry fruit numerous times during angiosperm diversification. However, the molecular mechanisms that underlie these shifts are unknown. In the Solanaceae there has been a major shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Solanaceae. However, studies have shown that FUL orthologs have taken on new functions in fleshy fruit development, including regulating elements of tomato ripening such as pigment accumulation. FUL belongs to the core eudicot euFUL clade of the angiosperm AP1/FUL gene lineage. The euFUL genes fall into two paralogous clades, euFULI and euFULII. While most core eudicots have one gene in each clade, Solanaceae have two: FUL1 and FUL2 in the former, and MBP10 and MBP20 in the latter. We characterized the evolution of the euFUL genes to identify changes that might be correlated with the origin of fleshy fruit in Solanaceae. Our analyses revealed that the Solanaceae FUL1 and FUL2 clades probably originated through an early whole genome multiplication event. By contrast, the data suggest that the MBP10 and MBP20 clades are the result of a later tandem duplication event. MBP10 is expressed at weak to moderate levels, and its atypical short first intron lacks putative transcription factor binding sites, indicating possible pseudogenization. Consistent with this, our analyses show that MBP10 is evolving at a faster rate compared to MBP20. Our analyses found that Solanaceae euFUL gene duplications, evolutionary rates, and changes in protein residues and expression patterns are not correlated with the shift in fruit type. This suggests deeper analyses are needed to identify the mechanism underlying the change in FUL ortholog function.
Collapse
Affiliation(s)
- Dinusha C. Maheepala
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Christopher A. Emerling
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, École Pratique des Hautes Études, Montpellier, France
| | - Alex Rajewski
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jenna Macon
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Maya Strahl
- The New York Botanical Garden, Bronx, NY, United States
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Amy Litt,
| |
Collapse
|
6
|
Zhang L, Zhu M, Ren L, Li A, Chen G, Hu Z. The SlFSR gene controls fruit shelf-life in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2897-2909. [PMID: 29635354 PMCID: PMC5972576 DOI: 10.1093/jxb/ery116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/23/2018] [Indexed: 05/29/2023]
Abstract
Fruit ripening represents a process that changes flavor and appearance and also a process that dramatically increases fruit softening. Fruit softening and textural variations mainly result from disruptions to the cell walls of the fruit throughout ripening, but the exact mechanisms and specific modifications of the cell wall remain unclear. Plant-specific GRAS proteins play a critical role in development and growth. To date, few GRAS genes have been functionally categorized in tomato. The expression of a novel GRAS gene described in this study and designated as SlFSR (fruit shelf-life regulator) specifically increased during fruit ripening, but was significantly decreased in the tomato mutant rin (ripening inhibitor). RNAi repression of SlFSR resulted in reduced expression of multiple cell wall modification-related genes, decreased the activities of PG (polygalacturonase), TBG (tomato β-galactosidase), CEL (cellulase), and XYL (β-D-xylosidase), and significantly prolonged fruit shelf-life. Furthermore, overexpression of SlFSR in mutant rin gave rise to up-regulated expression of multiple cell wall modification-related genes, such as PG, TBG4, CEL2, XYL1, PL, PE, MAN1, EXP1, and XTH5, and significantly shortened the fruit shelf-life. These findings reveal some of the genetic mechanisms underlying fruit cell wall metabolism and suggest that the SlFSR gene is another potential biotechnological target for the control of tomato fruit shelf-life.
Collapse
Affiliation(s)
- Lincheng Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Mingku Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Lijun Ren
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Anzhou Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Tandem Duplication Events in the Expansion of the Small Heat Shock Protein Gene Family in Solanum lycopersicum (cv. Heinz 1706). G3-GENES GENOMES GENETICS 2016; 6:3027-3034. [PMID: 27565886 PMCID: PMC5068928 DOI: 10.1534/g3.116.032045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP) synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq) and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706) genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues.
Collapse
|
8
|
Jia H, Jiu S, Zhang C, Wang C, Tariq P, Liu Z, Wang B, Cui L, Fang J. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2045-65. [PMID: 27005823 PMCID: PMC5043491 DOI: 10.1111/pbi.12563] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/16/2016] [Accepted: 03/12/2016] [Indexed: 05/18/2023]
Abstract
Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.
Collapse
Affiliation(s)
- Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Songtao Jiu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zhang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Chen Wang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Pervaiz Tariq
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Baoju Wang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Liwen Cui
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
9
|
|
10
|
Leida C, Dal Rì A, Dalla Costa L, Gómez MD, Pompili V, Sonego P, Engelen K, Masuero D, Ríos G, Moser C. Insights into the Role of the Berry-Specific Ethylene Responsive Factor VviERF045. FRONTIERS IN PLANT SCIENCE 2016; 7:1793. [PMID: 28018369 PMCID: PMC5146979 DOI: 10.3389/fpls.2016.01793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/15/2016] [Indexed: 05/03/2023]
Abstract
During grape ripening, numerous transcriptional and metabolic changes are required in order to obtain colored, sweet, and flavored berries. There is evidence that ethylene, together with other signals, plays an important role in triggering the onset of ripening. Here, we report the functional characterization of a berry-specific Ethylene Responsive Factor (ERF), VviERF045, which is induced just before véraison and peaks at ripening. Phylogenetic analysis revealed it is close to the SHINE clade of ERFs, factors involved in the regulation of wax biosynthesis and cuticle morphology. Transgenic grapevines lines overexpressing VviERF045 were obtained, in vitro propagated, phenotypically characterized, and analyzed for the content of specific classes of metabolites. The effect of VviERF045 was correlated with the level of transgene expression, with high-expressing lines showing stunted growth, discolored and smaller leaves, and a lower level of chlorophylls and carotenoids. One line with intermediate expression, L15, was characterized at the transcriptomic level and showed 573 differentially expressed genes compared to wild type plants. Microscopy and gene expression analyses point toward a major role of VviERF045 in epidermis patterning by acting on waxes and cuticle. They also indicate that VviERF045 affects phenolic secondary metabolism and induces a reaction resembling a plant immune response with modulation of receptor like-kinases and pathogen related genes. These results suggest also a possible role of this transcription factor in berry ripening, likely related to changes in epidermis and cuticle of the berry, cell expansion, a decrease in photosynthetic capacity, and the activation of several defense related genes as well as from the phenylpropanoid metabolism. All these processes occur in the berry during ripening.
Collapse
Affiliation(s)
- Carmen Leida
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
- *Correspondence: Carmen Leida,
| | - Antonio Dal Rì
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Lorenza Dalla Costa
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Maria D. Gómez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Valerio Pompili
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Paolo Sonego
- Computational Biology Department, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Kristof Engelen
- Computational Biology Department, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Domenico Masuero
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund MachTrento, Italy
| | - Gabino Ríos
- Fruit Tree Breeding Department, Instituto Valenciano de Investigaciones AgrariasMoncada, Spain
| | - Claudio Moser
- Genomics and Biology of Fruit Crops Department, Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| |
Collapse
|
11
|
Nham NT, de Freitas ST, Macnish AJ, Carr KM, Kietikul T, Guilatco AJ, Jiang CZ, Zakharov F, Mitcham EJ. A transcriptome approach towards understanding the development of ripening capacity in 'Bartlett' pears (Pyrus communis L.). BMC Genomics 2015; 16:762. [PMID: 26452470 PMCID: PMC4600301 DOI: 10.1186/s12864-015-1939-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/19/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in 'Bartlett' pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity. RESULTS The softening response of pear fruit held for 14 days at 20 °C after harvest depended on their maturity. We identified four maturity stages: S1-failed to soften and S2- displayed partial softening (with or without ET-ethylene treatment); S3 - able to soften following ET; and S4 - able to soften without ET. Illumina sequencing and Trinity assembly generated 68,010 unigenes (mean length of 911 bp), of which 32.8 % were annotated to the RefSeq plant database. Higher numbers of differentially expressed transcripts were recorded in the S3-S4 and S1-S2 transitions (2805 and 2505 unigenes, respectively) than in the S2-S3 transition (2037 unigenes). High expression of genes putatively encoding pectin degradation enzymes in the S1-S2 transition suggests pectic oligomers may be involved as early signals triggering the transition to responsiveness to ethylene in pear fruit. Moreover, the co-expression of these genes with Exps (Expansins) suggests their collaboration in modifying cell wall polysaccharide networks that are required for fruit growth. K-means cluster analysis revealed that auxin signaling associated transcripts were enriched in cluster K6 that showed the highest gene expression at S3. AP2/EREBP (APETALA 2/ethylene response element binding protein) and bHLH (basic helix-loop-helix) transcripts were enriched in all three transition S1-S2, S2-S3, and S3-S4. Several members of Aux/IAA (Auxin/indole-3-acetic acid), ARF (Auxin response factors), and WRKY appeared to play an important role in orchestrating the S2-S3 transition. CONCLUSIONS We identified maturity stages associated with the development of ripening capacity in 'Bartlett' pear, and described the transcription profile of fruit at these stages. Our findings suggest that auxin is essential in regulating the transition of pear fruit from being ethylene-unresponsive (S2) to ethylene-responsive (S3), resulting in fruit softening. The transcriptome will be helpful for future studies about specific developmental pathways regulating the transition to ripening.
Collapse
Affiliation(s)
- Ngoc T Nham
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Sergio Tonetto de Freitas
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Present address: Embrapa Tropical Semi-Arid, Petrolina, PE, 56302-970, Brazil.
| | - Andrew J Macnish
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Present address: Horticulture and Forestry Science, Queensland Department of Agriculture, Fisheries and Forestry, Maroochy Research Facility, Nambour, QLD, 4560, Australia.
| | - Kevin M Carr
- Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA.
| | - Trisha Kietikul
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Angelo J Guilatco
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Cai-Zhong Jiang
- Agriculture Research Service, United States Department of Agriculture, Davis, CA, 95616, USA.
| | - Florence Zakharov
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Elizabeth J Mitcham
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Miguel A, de Vega-Bartol J, Marum L, Chaves I, Santo T, Leitão J, Varela MC, Miguel CM. Characterization of the cork oak transcriptome dynamics during acorn development. BMC PLANT BIOLOGY 2015; 15:158. [PMID: 26109289 PMCID: PMC4479327 DOI: 10.1186/s12870-015-0534-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/26/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water. RESULTS A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability. CONCLUSIONS To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.
Collapse
Affiliation(s)
- Andreia Miguel
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José de Vega-Bartol
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Liliana Marum
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- KLÓN, Innovative Technologies from Cloning, Biocant Park, Núcleo 4, Lote 4A, 3060-197, Cantanhede, Portugal.
| | - Inês Chaves
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Tatiana Santo
- Laboratory of Genomics and Genetic Improvement, BioFIG, FCT, Universidade do Algarve, E.8, Campus de Gambelas, Faro, 8300, Portugal.
| | - José Leitão
- Laboratory of Genomics and Genetic Improvement, BioFIG, FCT, Universidade do Algarve, E.8, Campus de Gambelas, Faro, 8300, Portugal.
| | - Maria Carolina Varela
- INIAV- Instituto Nacional de Investigação Agrária e Veterinária, IP, Quinta do, Marquês, Oeiras, 2780-159, Portugal.
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
13
|
Moyle RL, Koia JH, Vrebalov J, Giovannoni J, Botella JR. The pineapple AcMADS1 promoter confers high level expression in tomato and Arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant. PLANT MOLECULAR BIOLOGY 2014; 86:395-407. [PMID: 25139231 DOI: 10.1007/s11103-014-0236-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of ethylene in climacteric tomato. LeMADS-RIN has been proposed to be a global ripening regulator shared among climacteric and non-climacteric species, although few functional homologs of LeMADS-RIN have been identified in non-climacteric species. AcMADS1 shares 67 % protein sequence similarity and a similar expression pattern in ripening fruits as LeMADS-RIN. However, in this study AcMADS1 was not able to complement the tomato rin mutant phenotype, indicating AcMADS1 may not be a functionally conserved homolog of LeMADS-RIN or has sufficiently diverged to be unable to act in the context of the tomato network of interacting proteins. The AcMADS1 promoter directed strong expression of the GUS reporter gene to fruits and developing floral organs in tomato and Arabidopsis thaliana, suggesting AcMADS1 may play a role in flower development as well as fruitlet ripening. The AcMADS1 promoter provides a useful molecular tool for directing transgene expression, particularly where up-regulation in developing flowers and fruits is desirable.
Collapse
Affiliation(s)
- Richard L Moyle
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, 4072, Australia,
| | | | | | | | | |
Collapse
|
14
|
RNA-seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var. italic). PLoS One 2014; 9:e88804. [PMID: 24586398 PMCID: PMC3937326 DOI: 10.1371/journal.pone.0088804] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/15/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10-100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts' functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. RESULTS A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04-89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20-130 times higher. These results along with the previous reports about these genes' studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. CONCLUSION Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide new insight into the genomic research of this species and its relatives.
Collapse
|
15
|
Pesaresi P, Mizzotti C, Colombo M, Masiero S. Genetic regulation and structural changes during tomato fruit development and ripening. FRONTIERS IN PLANT SCIENCE 2014; 5:124. [PMID: 24795731 PMCID: PMC4006027 DOI: 10.3389/fpls.2014.00124] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/14/2014] [Indexed: 05/18/2023]
Abstract
Fruits are an important evolutionary acquisition of angiosperms, which afford protection for seeds and ensure their optimal dispersal in the environment. Fruits can be divided into dry or fleshy. Dry fruits are the more ancient and provide for mechanical seed dispersal. In contrast, fleshy fruits develop soft tissues in which flavor compounds and pigments accumulate during the ripening process. These serve to attract animals that eat them and disseminate the indigestible seeds. Fruit maturation is accompanied by several striking cytological modifications. In particular, plastids undergo significant structural alterations, including the dedifferentiation of chloroplasts into chromoplasts. Chloroplast biogenesis, their remodeling in response to environmental constraints and their conversion into alternative plastid types are known to require communication between plastids and the nucleus in order to coordinate the expression of their respective genomes. In this review, we discuss the role of plastid modifications in the context of fruit maturation and ripening, and consider the possible involvement of organelle-nucleus crosstalk via retrograde (plastid to nucleus) and anterograde (nucleus to plastid) signaling in the process.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| | - Monica Colombo
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all’Adige (Trento), Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
- *Correspondence: Simona Masiero, Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy e-mail:
| |
Collapse
|
16
|
Manaa A, Faurobert M, Valot B, Bouchet JP, Grasselly D, Causse M, Ahmed HB. Effect of salinity and calcium on tomato fruit proteome. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:338-52. [PMID: 23692365 DOI: 10.1089/omi.2012.0108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Salinity is a major abiotic stress that adversely affects plant growth and productivity. The physiology of the tomato in salty and nonsalty conditions has been extensively studied, providing an invaluable base to understand the responses of the plants to cultural practices. However few data are yet available at the proteomic level looking for the physiological basis of fruit development, under salt stress. Here, we report the effects of salinity and calcium on fruit proteome variations of two tomato genotypes (Cervil and Levovil). Tomato plants were irrigated with a control solution (3 dSm(-1)) or with saline solutions (Na or Ca+Na at 7.6 dSm(-1)). Tomato fruits were harvested at two ripening stages: green (14 days post-anthesis) and red ripe. Total proteins were extracted from pericarp tissue and separated by two-dimensional gel electrophoresis. Among the 600 protein spots reproducibly detected, 53 spots exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. Most of the identified proteins were involved in carbon and energy metabolism, salt stress, oxidative stress, and proteins associated with ripening process. Overall, there was a large variation on proteins abundance between the two genotypes that can be correlated to salt treatment or/and fruit ripening stage. The results showed a protective effect of calcium that limited the impact of salinization on metabolism, ripening process, and induced plant salt tolerance. Collectively, this work has improved our knowledge about salt and calcium effect on tomato fruit proteome.
Collapse
Affiliation(s)
- Arafet Manaa
- Unité d'Ecophysiologie et Nutrition des Plantes, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisie.
| | | | | | | | | | | | | |
Collapse
|
17
|
Holton TA, Vijayakumar V, Khaldi N. Bioinformatics: Current perspectives and future directions for food and nutritional research facilitated by a Food-Wiki database. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Mellway RD, Lund ST. Interaction analysis of grapevine MIKC(c)-type MADS transcription factors and heterologous expression of putative véraison regulators in tomato. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1424-33. [PMID: 23787144 DOI: 10.1016/j.jplph.2013.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 05/06/2023]
Abstract
MIKC(c)-type MADS-domain transcription factors include important regulators of floral development that interact in protein complexes to control the development of floral organs, as described by the ABC model. Members of the SEPALLATA (SEP) and AGAMOUS (AG) MADS clades include proteins involved in stamen and carpel specification and certain members of these families, such as tomato (Solanum lycopersicon) SlRIN and SlTAGL1, have been shown to regulate fruit development and ripening initiation. A number of expression studies have shown that several floral homeotic MADS genes are expressed during grapevine (Vitis vinifera) berry development, including potential homologues of these characterized ripening regulators. To gain insight into the regulation of berry development and ripening in grapevine, we studied the interactions and functions of grapevine floral homeotic MADS genes. Using the yeast 2- and 3-hybrid systems, we determined that the complexes formed during fruit development and ripening may involve several classes of floral homeotic MADS proteins. We found that a heterologously expressed grapevine SEP gene, VviSEP4, is capable of partially complementing the non-ripening phenotype of the tomato rin mutant, indicating that a role for this gene in ripening regulation may be conserved in fleshy fruit ripening. We also found that ectopic expression of a grapevine AG clade gene, VviAG1, in tomato results in the development of fleshy sepals with the chemical characteristics of tomato fruit pericarp. Additionally, we performed 2-hybrid screens on a library prepared from Pinot noir véraison-stage berry and identified proteins that may interact with the MADS factors that are expressed during berry development and that may represent regulatory functions in grape berry development.
Collapse
Affiliation(s)
- Robin D Mellway
- Wine Research Centre, Faculty of Land and Food Systems, 230-2205 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | | |
Collapse
|
19
|
Pedreschi R, Lurie S, Hertog M, Nicolaï B, Mes J, Woltering E. Post-harvest proteomics and food security. Proteomics 2013; 13:1772-83. [PMID: 23483703 DOI: 10.1002/pmic.201200387] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/27/2012] [Accepted: 11/11/2012] [Indexed: 12/12/2022]
Abstract
To guarantee sufficient food supply for a growing world population, efforts towards improving crop yield and plant resistance should be complemented with efforts to reduce post-harvest losses. Post-harvest losses are substantial and occur at different stages of the food chain in developed and developing countries. In recent years, a substantially increasing interest can be seen in the application of proteomics to understand post-harvest events. In the near future post-harvest proteomics will be poised to move from fundamental research to aiding the reduction of food losses. Proteomics research can help in reducing food losses through (i) identification and validation of gene products associated to specific quality traits supporting marker-assisted crop improvement programmes, (ii) delivering markers of initial quality that allow optimisation of distribution conditions and prediction of remaining shelf-life for decision support systems and (iii) delivering early detection tools of physiological or pathogen-related post-harvest problems. In this manuscript, recent proteomics studies on post-harvest and stress physiology are reviewed and discussed. Perspectives on future directions of post-harvest proteomics studies aiming to reduce food losses are presented.
Collapse
Affiliation(s)
- Romina Pedreschi
- Food & Biobased Research Centre, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
David-Schwartz R, Weintraub L, Vidavski R, Zemach H, Murakhovsky L, Swartzberg D, Granot D. The SlFRK4 promoter is active only during late stages of pollen and anther development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:61-70. [PMID: 23265319 DOI: 10.1016/j.plantsci.2012.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/07/2012] [Accepted: 09/24/2012] [Indexed: 05/20/2023]
Abstract
Carbohydrates are essential for male gametophyte development. However, our understanding of the mechanism by which the sugar supply is controlled in the stamen is still in its infancy. We previously reported on the stamen-specific expression of the tomato (Solanum lycopersicum) sugar metabolic gene, fructokinase 4 (SlFRK4). Here, we present the cloning and the characterization of the SlFRK4 promoter and show its differential activation during anther development. We also show that the tissue-specific expression of SlFRK4 promoter is maintained in Arabidopsis thaliana. By histochemical analyses of the GUS reporter gene and DTA toxin driven by the SlFRK4 promoter, we show that the SlFRK4 promoter is gradually activated in pollen grains throughout the later stages of anther development and upon pollen germination. In addition, we analyzed the expression profile of SlFRK4 and other sugar metabolic genes and found that SlFRK4 and the invertase LIN7 are co-expressed in mature and germinated pollen. These findings point to the existence of a specialized mechanism in which carbohydrates are provided to the male gametophyte during the later stages of its development and suggest a valuable tool for manipulating the development of male gametophytes in crop species.
Collapse
Affiliation(s)
- Rakefet David-Schwartz
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | |
Collapse
|
21
|
Lange BM, Turner GW. Terpenoid biosynthesis in trichomes--current status and future opportunities. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:2-22. [PMID: 22979959 DOI: 10.1111/j.1467-7652.2012.00737.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/24/2012] [Accepted: 07/31/2012] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are anatomical structures specialized for the synthesis of secreted natural products. In this review we focus on the description of glands that accumulate terpenoid essential oils and oleoresins. We also provide an in-depth account of the current knowledge about the biosynthesis of terpenoids and secretion mechanisms in the highly specialized secretory cells of glandular trichomes, and highlight the implications for metabolic engineering efforts.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry, M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
22
|
Nagpure NS, Rashid I, Pathak AK, Singh M, Singh SP, Sarkar UK. Computational analysis of transcriptome of Indian major carp, Labeo rohita (Hamilton-Buchanan, 1822) for functional annotation. Bioinformation 2012; 8:1005-11. [PMID: 23275698 PMCID: PMC3524890 DOI: 10.6026/97320630081005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/01/2012] [Indexed: 01/10/2023] Open
Abstract
A total of 1671 ESTs of Labeo rohita were retrieved from dbEST database and analysed for functional annotation using various computational approaches. The result indicated 1387 non-redundant (184 contigs and 1203 singletons) putative transcripts with an average length of 542 bp. These 1387 transcript sequences were matched with Refseq_RNA, UniGene and Swiss-Prot on high threshold cut-off for functional annotation along with help of gene ontology and SSRs markers. We developed extensive Perl programming based modules for processing all alignment files, comparing and extracting common hits from all files on a threshold, evaluating statistics for alignment results and assigning gene ontology terms. In this study, 92 putative transcripts predicted as orthologous genes and among those, 44 putative transcripts were annotated with gene ontology terms. The annotated orthologous gene of our result associated with some very important proteins of L. rohita involved in biotic and abiotic stresses and glucose metabolism of spermatogenic cells etc. The unidentified transcripts, if found important in expression profiling can be vital resource after re-sequencing. The predicted genes can further be used for enhancing productivity and controlling disease of L. rohita.
Collapse
Affiliation(s)
- Naresh Sahebrao Nagpure
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O.- Dilkusha, Lucknow-226002, India
| | - Iliyas Rashid
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O.- Dilkusha, Lucknow-226002, India
| | - Ajey Kumar Pathak
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O.- Dilkusha, Lucknow-226002, India
| | - Mahender Singh
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O.- Dilkusha, Lucknow-226002, India
| | - Shri Prakash Singh
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O.- Dilkusha, Lucknow-226002, India
| | - Uttam Kumar Sarkar
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O.- Dilkusha, Lucknow-226002, India
| |
Collapse
|
23
|
Zhang X, Ye N, Liang C, Mou S, Fan X, Xu J, Xu D, Zhuang Z. De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems. BMC Genomics 2012; 13:565. [PMID: 23098051 PMCID: PMC3532339 DOI: 10.1186/1471-2164-13-565] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 10/20/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The green algal genus Ulva Linnaeus (Ulvaceae, Ulvales, Chlorophyta) is well known for its wide distribution in marine, freshwater, and brackish environments throughout the world. The Ulva species are also highly tolerant of variations in salinity, temperature, and irradiance and are the main cause of green tides, which can have deleterious ecological effects. However, limited genomic information is currently available in this non-model and ecologically important species. Ulva linza is a species that inhabits bedrock in the mid to low intertidal zone, and it is a major contributor to biofouling. Here, we presented the global characterization of the U. linza transcriptome using the Roche GS FLX Titanium platform, with the aim of uncovering the genomic mechanisms underlying rapid and successful colonization of the coastal ecosystems. RESULTS De novo assembly of 382,884 reads generated 13,426 contigs with an average length of 1,000 bases. Contiguous sequences were further assembled into 10,784 isotigs with an average length of 1,515 bases. A total of 304,101 reads were nominally identified by BLAST; 4,368 isotigs were functionally annotated with 13,550 GO terms, and 2,404 isotigs having enzyme commission (EC) numbers were assigned to 262 KEGG pathways. When compared with four other full sequenced green algae, 3,457 unique isotigs were found in U. linza and 18 conserved in land plants. In addition, a specific photoprotective mechanism based on both LhcSR and PsbS proteins and a C4-like carbon-concentrating mechanism were found, which may help U. linza survive stress conditions. At least 19 transporters for essential inorganic nutrients (i.e., nitrogen, phosphorus, and sulphur) were responsible for its ability to take up inorganic nutrients, and at least 25 eukaryotic cytochrome P450s, which is a higher number than that found in other algae, may be related to their strong allelopathy. Multi-origination of the stress related proteins, such as glutamate dehydrogenase, superoxide dismutases, ascorbate peroxidase, catalase and heat-shock proteins, may also contribute to colonization of U. linza under stress conditions. CONCLUSIONS The transcriptome of U. linza uncovers some potential genomic mechanisms that might explain its ability to rapidly and successfully colonize coastal ecosystems, including the land-specific genes; special photoprotective mechanism based on both LhcSR and PsbS; development of C4-like carbon-concentrating mechanisms; muti-origin transporters for essential inorganic nutrients; multiple and complex P450s; and glutamate dehydrogenase, superoxide dismutases, ascorbate peroxidase, catalase, and heat-shock proteins that are related to stress resistance.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chengwei Liang
- Qingdao University of Science > Technology, Qingdao, 266042, China
| | - Shanli Mou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jianfang Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic administration (SOA), Qingdao, 266061, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| |
Collapse
|
24
|
Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Maucourt M, Yano K, Deborde C, Aoki K, Bergès H, Granell A, Fernie AR, Bellini C, Rothan C, Lemaire-Chamley M. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4901-17. [PMID: 22844095 PMCID: PMC3427993 DOI: 10.1093/jxb/ers167] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The PIN-FORMED (PIN) auxin efflux transport protein family has been well characterized in the model plant Arabidopsis thaliana, where these proteins are crucial for auxin regulation of various aspects of plant development. Recent evidence indicates that PIN proteins may play a role in fruit set and early fruit development in tomato (Solanum lycopersicum), but functional analyses of PIN-silenced plants failed to corroborate this hypothesis. Here it is demonstrated that silencing specifically the tomato SlPIN4 gene, which is predominantly expressed in tomato flower bud and young developing fruit, leads to parthenocarpic fruits due to precocious fruit development before fertilization. This phenotype was associated with only slight modifications of auxin homeostasis at early stages of flower bud development and with minor alterations of ARF and Aux/IAA gene expression. However, microarray transcriptome analysis and large-scale quantitative RT-PCR profiling of transcription factors in developing flower bud and fruit highlighted differentially expressed regulatory genes, which are potential targets for auxin control of fruit set and development in tomato. In conclusion, this work provides clear evidence that the tomato PIN protein SlPIN4 plays a major role in auxin regulation of tomato fruit set, possibly by preventing precocious fruit development in the absence of pollination, and further gives new insights into the target genes involved in fruit set.
Collapse
Affiliation(s)
- Fabien Mounet
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Present address: UMR 5546, Laboratoire de Recherche en Sciences VégétalesF-31326 Castanet TolosanFrance
| | - Annick Moing
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Mariusz Kowalczyk
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå UniversitySE-90187 UmeåSweden
- Present address: Institute of Soil Science and Plant Cultivation, Department of Biochemistry and Crop Quality24100 PulawyPoland
| | - Johannes Rohrmann
- Max-Planck Institute for Molecular Plant PhysiologyAm Mühlenberg 1, D-14476 Potsdam-GolmGermany
| | - Johann Petit
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Virginie Garcia
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Mickaël Maucourt
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Kentaro Yano
- Meiji University1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, 214-8571Japan
| | - Catherine Deborde
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA de BordeauxF-33140Villenave d’OrnonFrance
| | - Koh Aoki
- Kazusa DNA Research Institute2-6-7 Kazusa-Kamatari, KisarazuJapan
- Present address: Osaka Prefecture University, Environmental and Life Sciences, 1-1 Gakuen-cho, Naka-ku, SakaiOsaka 599-8531Japan
| | - Hélène Bergès
- INRA-Centre National de Ressources Génomiques VégétalesF-31326 Castanet TolosanFrance
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC46022 ValenciaSpain
| | - Alisdair R. Fernie
- Max-Planck Institute for Molecular Plant PhysiologyAm Mühlenberg 1, D-14476 Potsdam-GolmGermany
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå UniversitySE-90187 UmeåSweden
- Institut Jean-Pierre Bourgin, UMR1318-INRA-AgroParisTech, INRA Centre of Versailles-GrignonF-78026 Versailles cedexFrance
| | - Christophe Rothan
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
| | - Martine Lemaire-Chamley
- INRA, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- Université de Bordeaux, UMR 1332 de Biologie du fruit et PathologieF-33140 Villenave d’OrnonFrance
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Pegoraro C, Santos RSD, Krüger MM, Tiecher A, Maia LCD, Rombaldi CV, Oliveira ACD. Effects of hypoxia storage on gene transcript accumulation during tomato fruit ripening. ACTA ACUST UNITED AC 2012. [DOI: 10.1590/s1677-04202012000200007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, Ito Y. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. PLANTA 2012; 235:1107-22. [PMID: 22160566 DOI: 10.1007/s00425-011-1561-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/22/2011] [Indexed: 05/18/2023]
Abstract
The physiological and biochemical changes in fruit ripening produce key attributes of fruit quality including color, taste, aroma and texture. These changes are driven by the highly regulated and synchronized activation of a huge number of ripening-associated genes. In tomato (Solanum lycopersicum), a typical climacteric fruit, the MADS-box transcription factor RIN is one of the earliest-acting ripening regulators, required for both ethylene-dependent and ethylene-independent pathways. Although we previously identified several direct RIN targets, many additional targets remain unidentified, likely including key ripening-associated genes. Here, we report the identification of novel RIN targets by transcriptome and chromatin immunoprecipitation (ChIP) analyses. Transcriptome comparisons by microarray of wild-type and rin mutant tomatoes identified 342 positively regulated genes and 473 negatively regulated genes by RIN during ripening. Most of the positively regulated genes contained possible RIN-binding (CArG-box) sequences in their promoters. Subsequently, we selected six genes from the positively regulated genes and a ripening regulator gene, CNR, and assayed their promoters by quantitative ChIP-PCR to examine RIN binding. All of the seven genes, which are involved in cell wall modification, aroma and flavor development, pathogen defense and transcriptional regulation during ripening, are targets of RIN, suggesting that RIN may control multiple diverse ripening processes. In particular, RIN directly regulates the expression of the ripening-associated transcription factors, CNR, TDR4 and a GRAS family gene, providing an important clue to elucidate the complicated transcriptional cascade for fruit ripening.
Collapse
Affiliation(s)
- Masaki Fujisawa
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Guillet C, Aboul-Soud MAM, Le Menn A, Viron N, Pribat A, Germain V, Just D, Baldet P, Rousselle P, Lemaire-Chamley M, Rothan C. Regulation of the fruit-specific PEP carboxylase SlPPC2 promoter at early stages of tomato fruit development. PLoS One 2012; 7:e36795. [PMID: 22615815 PMCID: PMC3355170 DOI: 10.1371/journal.pone.0036795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/06/2012] [Indexed: 12/17/2022] Open
Abstract
The SlPPC2 phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) gene from tomato (Solanum lycopersicum) is differentially and specifically expressed in expanding tissues of developing tomato fruit. We recently showed that a 1966 bp DNA fragment located upstream of the ATG codon of the SlPPC2 gene (GenBank AJ313434) confers appropriate fruit-specificity in transgenic tomato. In this study, we further investigated the regulation of the SlPPC2 promoter gene by analysing the SlPPC2 cis-regulating region fused to either the firefly luciferase (LUC) or the β-glucuronidase (GUS) reporter gene, using stable genetic transformation and biolistic transient expression assays in the fruit. Biolistic analyses of 5' SlPPC2 promoter deletions fused to LUC in fruits at the 8(th) day after anthesis revealed that positive regulatory regions are mostly located in the distal region of the promoter. In addition, a 5' UTR leader intron present in the 1966 bp fragment contributes to the proper temporal regulation of LUC activity during fruit development. Interestingly, the SlPPC2 promoter responds to hormones (ethylene) and metabolites (sugars) regulating fruit growth and metabolism. When tested by transient expression assays, the chimeric promoter:LUC fusion constructs allowed gene expression in both fruit and leaf, suggesting that integration into the chromatin is required for fruit-specificity. These results clearly demonstrate that SlPPC2 gene is under tight transcriptional regulation in the developing fruit and that its promoter can be employed to drive transgene expression specifically during the cell expansion stage of tomato fruit. Taken together, the SlPPC2 promoter offers great potential as a candidate for driving transgene expression specifically in developing tomato fruit from various tomato cultivars.
Collapse
Affiliation(s)
- Carine Guillet
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Mourad A. M. Aboul-Soud
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Aline Le Menn
- Unité de Génétique et d’Amélioration des Fruits et Légumes, Institut National de la Recherche Agronomique, Montfavet, France
| | - Nicolas Viron
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Anne Pribat
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Véronique Germain
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Daniel Just
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Pierre Baldet
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Patrick Rousselle
- Unité de Génétique et d’Amélioration des Fruits et Légumes, Institut National de la Recherche Agronomique, Montfavet, France
| | - Martine Lemaire-Chamley
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Christophe Rothan
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
28
|
Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:191-204. [PMID: 22111515 DOI: 10.1111/j.1365-313x.2011.04863.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Solanum lycopersicum (tomato) and its wild relatives harbor genetic diversity that yields heritable variation in fruit chemistry that could be exploited to identify genes regulating their synthesis and accumulation. Carotenoids, for example, are essential in plant and animal nutrition, and are the visual indicators of ripening for many fruits, including tomato. Whereas carotenoid synthesis is well characterized, factors regulating flux through the pathway are poorly understood at the molecular level. To exploit the impact of tomato genetic diversity on carotenoids, Solanum pennellii introgression lines were used as a source of defined natural variation and as a resource for the identification of candidate regulatory genes. Ripe fruits were analyzed for numerous fruit metabolites and transcriptome profiles generated using a 12,000 unigene oligoarray. Correlation analysis between carotenoid content and gene expression profiles revealed 953 carotenoid-correlated genes. To narrow the pool, subnetwork analysis of carotenoid-correlated transcription revealed 38 candidates. One candidate for impact on trans-lycopene and β-carotene accumulation was functionally charaterized, SlERF6, revealing that it indeed influences carotenoid biosynthesis and additional ripening phenotypes. Reduced expression of SlERF6 by RNAi enhanced both carotenoid and ethylene levels during fruit ripening, demonstrating an important role for SlERF6 in ripening, integrating the ethylene and carotenoid synthesis pathways.
Collapse
Affiliation(s)
- Je Min Lee
- Boyce Thompson Institute for Plant Research, Tower Rd., Cornell University campus, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tissier A. Glandular trichomes: what comes after expressed sequence tags? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:51-68. [PMID: 22449043 DOI: 10.1111/j.1365-313x.2012.04913.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glandular trichomes cover the surface of many plant species. They exhibit tremendous diversity, be it in their shape or the compounds they secrete. This diversity is expressed between species but also within species or even individual plants. The industrial uses of some trichome secretions and their potential as a defense barrier, for example against arthropod pests, has spurred research into the biosynthesis pathways that lead to these specialized metabolites. Because complete biosynthesis pathways take place in the secretory cells, the establishment of trichome-specific expressed sequence tag libraries has greatly accelerated their elucidation. Glandular trichomes also have an important metabolic capacity and may be considered as true cell factories. To fully exploit the potential of glandular trichomes as breeding or engineering objects, several research areas will have to be further investigated, such as development, patterning, metabolic fluxes and transcription regulation. The purpose of this review is to provide an update on the methods and technologies which have been used to investigate glandular trichomes and to propose new avenues of research to deepen our understanding of these specialized structures.
Collapse
Affiliation(s)
- Alain Tissier
- Department of Metabolic and Cell Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany.
| |
Collapse
|
30
|
Yu K, Xu Q, Da X, Guo F, Ding Y, Deng X. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics 2012; 13:10. [PMID: 22230690 PMCID: PMC3267696 DOI: 10.1186/1471-2164-13-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 01/10/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The transcriptome of the fruit pulp of the sweet orange variety Anliu (WT) and that of its red fleshed mutant Hong Anliu (MT) were compared to understand the dynamics and differential expression of genes expressed during fruit development and ripening. RESULTS The transcriptomes of WT and MT were sampled at four developmental stages using an Illumina sequencing platform. A total of 19,440 and 18,829 genes were detected in MT and WT, respectively. Hierarchical clustering analysis revealed 24 expression patterns for the set of all genes detected, of which 20 were in common between MT and WT. Over 89% of the genes showed differential expression during fruit development and ripening in the WT. Functional categorization of the differentially expressed genes revealed that cell wall biosynthesis, carbohydrate and citric acid metabolism, carotenoid metabolism, and the response to stress were the most differentially regulated processes occurring during fruit development and ripening. CONCLUSION A description of the transcriptomic changes occurring during fruit development and ripening was obtained in sweet orange, along with a dynamic view of the gene expression differences between the wild type and a red fleshed mutant.
Collapse
Affiliation(s)
- Keqin Yu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinlei Da
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuduan Ding
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Nieuwenhuizen NJ, Maddumage R, Tsang GK, Fraser LG, Cooney JM, De Silva HN, Green S, Richardson KA, Atkinson RG. Mapping, complementation, and targets of the cysteine protease actinidin in kiwifruit. PLANT PHYSIOLOGY 2012; 158:376-88. [PMID: 22039217 PMCID: PMC3252086 DOI: 10.1104/pp.111.187989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/26/2011] [Indexed: 05/27/2023]
Abstract
Cysteine proteases (CPs) accumulate to high concentration in many fruit, where they are believed to play a role in fungal and insect defense. The fruit of Actinidia species (kiwifruit) exhibit a range of CP activities (e.g. the Actinidia chinensis variety YellowA shows less than 2% of the activity of Actinidia deliciosa variety Hayward). A major quantitative trait locus for CP activity was mapped to linkage group 16 in a segregating population of A. chinensis. This quantitative trait locus colocated with the gene encoding actinidin, the major acidic CP in ripe Hayward fruit encoded by the ACT1A-1 allele. Sequence analysis indicated that the ACT1A locus in the segregating A. chinensis population contained one functional allele (A-2) and three nonfunctional alleles (a-3, a-4, and a-5) each containing a unique frameshift mutation. YellowA kiwifruit contained two further alleles: a-6, which was nonfunctional because of a large insertion, and a-7, which produced an inactive enzyme. Site-directed mutagenesis of the act1a-7 protein revealed a residue that restored CP activity. Expression of the functional ACT1A-1 cDNA in transgenic plants complemented the natural YellowA mutations and partially restored CP activity in fruit. Two consequences of the increase in CP activity were enhanced degradation of gelatin-based jellies in vitro and an increase in the processing of a class IV chitinase in planta. These results provide new insight into key residues required for CP activity and the in vivo protein targets of actinidin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ross G. Atkinson
- New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (N.J.N., R.M., G.K.T., L.G.F., H.N.D.S., S.G., K.A.R., R.G.A.); New Zealand Institute for Plant and Food Research Limited, Ruakura, Hamilton 3240, New Zealand (J.M.C.)
| |
Collapse
|
32
|
iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. BMC Bioinformatics 2011; 12:453. [PMID: 22111509 PMCID: PMC3233632 DOI: 10.1186/1471-2105-12-453] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expressed Sequence Tags (ESTs) have played significant roles in gene discovery and gene functional analysis, especially for non-model organisms. For organisms with no full genome sequences available, ESTs are normally assembled into longer consensus sequences for further downstream analysis. However current de novo EST assembly programs often generate large number of assembly errors that will negatively affect the downstream analysis. In order to generate more accurate consensus sequences from ESTs, tools are needed to reduce or eliminate errors from de novo assemblies. RESULTS We present iAssembler, a pipeline that can assemble large-scale ESTs into consensus sequences with significantly higher accuracy than current existing assemblers. iAssembler employs MIRA and CAP3 assemblers to generate initial assemblies, followed by identifying and correcting two common types of transcriptome assembly errors: 1) ESTs from different transcripts (mainly alternatively spliced transcripts or paralogs) are incorrectly assembled into same contigs; and 2) ESTs from same transcripts fail to be assembled together. iAssembler can be used to assemble ESTs generated using the traditional Sanger method and/or the Roche-454 massive parallel pyrosequencing technology. CONCLUSION We compared performances of iAssembler and several other de novo EST assembly programs using both Roche-454 and Sanger EST datasets. It demonstrated that iAssembler generated significantly more accurate consensus sequences than other assembly programs.
Collapse
|
33
|
Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, He H, Ren Y, Zhong S, Fei Z, Xu Y. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics 2011; 12:454. [PMID: 21936920 PMCID: PMC3197533 DOI: 10.1186/1471-2164-12-454] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/21/2011] [Indexed: 11/23/2022] Open
Abstract
Background Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. Results We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development. Conclusion We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology.
Collapse
Affiliation(s)
- Shaogui Guo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Molecular characterization of a strawberry FaASR gene in relation to fruit ripening. PLoS One 2011; 6:e24649. [PMID: 21915355 PMCID: PMC3167850 DOI: 10.1371/journal.pone.0024649] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/16/2011] [Indexed: 01/10/2023] Open
Abstract
Background ABA-, stress- and ripening-induced (ASR) proteins have been reported to act as a downstream component involved in ABA signal transduction. Although much attention has been paid to the roles of ASR in plant development and stress responses, the mechanisms by which ABA regulate fruit ripening at the molecular level are not fully understood. In the present work, a strawberry ASR gene was isolated and characterized (FaASR), and a polyclonal antibody against FaASR protein was prepared. Furthermore, the effects of ABA, applied to two different developmental stages of strawberry, on fruit ripening and the expression of FaASR at transcriptional and translational levels were investigated. Methodology/Principal Findings FaASR, localized in the cytoplasm and nucleus, contained 193 amino acids and shared common features with other plant ASRs. It also functioned as a transcriptional activator in yeast with trans-activation activity in the N-terminus. During strawberry fruit development, endogenous ABA content, levels of FaASR mRNA and protein increased significantly at the initiation of ripening at a white (W) fruit developmental stage. More importantly, application of exogenous ABA to large green (LG) fruit and W fruit markedly increased endogenous ABA content, accelerated fruit ripening, and greatly enhanced the expression of FaASR transcripts and the accumulation of FaASR protein simultaneously. Conclusions These results indicate that FaASR may be involved in strawberry fruit ripening. The observed increase in endogenous ABA content, and enhanced FaASR expression at transcriptional and translational levels in response to ABA treatment might partially contribute to the acceleration of strawberry fruit ripening.
Collapse
|
35
|
Fierro AC, Vandenbussche F, Engelen K, Van de Peer Y, Marchal K. Meta Analysis of Gene Expression Data within and Across Species. Curr Genomics 2011; 9:525-34. [PMID: 19516959 PMCID: PMC2694560 DOI: 10.2174/138920208786847935] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 07/07/2008] [Accepted: 07/18/2008] [Indexed: 01/15/2023] Open
Abstract
Since the second half of the 1990s, a large number of genome-wide analyses have been described that study gene expression at the transcript level. To this end, two major strategies have been adopted, a first one relying on hybridization techniques such as microarrays, and a second one based on sequencing techniques such as serial analysis of gene expression (SAGE), cDNA-AFLP, and analysis based on expressed sequence tags (ESTs). Despite both types of profiling experiments becoming routine techniques in many research groups, their application remains costly and laborious. As a result, the number of conditions profiled in individual studies is still relatively small and usually varies from only two to few hundreds of samples for the largest experiments. More and more, scientific journals require the deposit of these high throughput experiments in public databases upon publication. Mining the information present in these databases offers molecular biologists the possibility to view their own small-scale analysis in the light of what is already available. However, so far, the richness of the public information remains largely unexploited. Several obstacles such as the correct association between ESTs and microarray probes with the corresponding gene transcript, the incompleteness and inconsistency in the annotation of experimental conditions, and the lack of standardized experimental protocols to generate gene expression data, all impede the successful mining of these data. Here, we review the potential and difficulties of combining publicly available expression data from respectively EST analyses and microarray experiments. With examples from literature, we show how meta-analysis of expression profiling experiments can be used to study expression behavior in a single organism or between organisms, across a wide range of experimental conditions. We also provide an overview of the methods and tools that can aid molecular biologists in exploiting these public data.
Collapse
Affiliation(s)
- Ana C Fierro
- Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
36
|
Bioinformatic analysis of fruit-specific expressed sequence tag libraries of Diospyros kaki Thunb.: view at the transcriptome at different developmental stages. 3 Biotech 2011; 1:35-45. [PMID: 22558534 PMCID: PMC3339603 DOI: 10.1007/s13205-011-0005-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 03/21/2011] [Indexed: 11/06/2022] Open
Abstract
We present here a systematic analysis of the Diospyros kaki expressed sequence tags (ESTs) generated from development stage-specific libraries. A total of 2,529 putative tentative unigenes were identified in the MF library whereas the OYF library displayed 3,775 tentative unigenes. Among the two cDNA libraries, 325 EST-Simple sequence repeats (SSRs) in 296 putative unigenes were detected in the MF library showing an occurrence of 11.7% with a frequency of 1 SSR/3.16 kb whereas the OYF library had an EST-SSRs occurrence of 10.8% with 407 EST-SSRs in the 352 putative unigenes with a frequency of 1 SSR/2.92 kb. We observed a higher frequency of SNPs and indels in the OYF library (20.94 SNPs/indels per 100 bp) in comparison to MF library showed a relatively lower frequency (0.74 SNPs/indels per 100 bp). A combined homology and secondary structure analysis approach identified a potential miRNA precursor, an ortholog of miR159, and potential miR159 targets, in the development-specific ESTs of D. kaki.
Collapse
|
37
|
Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics 2011. [PMID: 21658273 DOI: 10.1186/1471‐2164‐12‐302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current breeding approaches in potato rely almost entirely on phenotypic evaluations; molecular markers, with the exception of a few linked to disease resistance traits, are not widely used. Large-scale sequence datasets generated primarily through Sanger Expressed Sequence Tag projects are available from a limited number of potato cultivars and access to next generation sequencing technologies permits rapid generation of sequence data for additional cultivars. When coupled with the advent of high throughput genotyping methods, an opportunity now exists for potato breeders to incorporate considerably more genotypic data into their decision-making. RESULTS To identify a large number of Single Nucleotide Polymorphisms (SNPs) in elite potato germplasm, we sequenced normalized cDNA prepared from three commercial potato cultivars: 'Atlantic', 'Premier Russet' and 'Snowden'. For each cultivar, we generated 2 Gb of sequence which was assembled into a representative transcriptome of ~28-29 Mb for each cultivar. Using the Maq SNP filter that filters read depth, density, and quality, 575,340 SNPs were identified within these three cultivars. In parallel, 2,358 SNPs were identified within existing Sanger sequences for three additional cultivars, 'Bintje', 'Kennebec', and 'Shepody'. Using a stringent set of filters in conjunction with the potato reference genome, we identified 69,011 high confidence SNPs from these six cultivars for use in genotyping with the Infinium platform. Ninety-six of these SNPs were used with a BeadXpress assay to assess allelic diversity in a germplasm panel of 248 lines; 82 of the SNPs proved sufficiently informative for subsequent analyses. Within diverse North American germplasm, the chip processing market class was most distinct, clearly separated from all other market classes. The round white and russet market classes both include fresh market and processing cultivars. Nevertheless, the russet and round white market classes are more distant from each other than processing are from fresh market types within these two groups. CONCLUSIONS The genotype data generated in this study, albeit limited in number, has revealed distinct relationships among the market classes of potato. The SNPs identified in this study will enable high-throughput genotyping of germplasm and populations, which in turn will enable more efficient marker-assisted breeding efforts in potato.
Collapse
|
38
|
Hamilton JP, Hansey CN, Whitty BR, Stoffel K, Massa AN, Van Deynze A, De Jong WS, Douches DS, Buell CR. Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics 2011; 12:302. [PMID: 21658273 PMCID: PMC3128068 DOI: 10.1186/1471-2164-12-302] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022] Open
Abstract
Background Current breeding approaches in potato rely almost entirely on phenotypic evaluations; molecular markers, with the exception of a few linked to disease resistance traits, are not widely used. Large-scale sequence datasets generated primarily through Sanger Expressed Sequence Tag projects are available from a limited number of potato cultivars and access to next generation sequencing technologies permits rapid generation of sequence data for additional cultivars. When coupled with the advent of high throughput genotyping methods, an opportunity now exists for potato breeders to incorporate considerably more genotypic data into their decision-making. Results To identify a large number of Single Nucleotide Polymorphisms (SNPs) in elite potato germplasm, we sequenced normalized cDNA prepared from three commercial potato cultivars: 'Atlantic', 'Premier Russet' and 'Snowden'. For each cultivar, we generated 2 Gb of sequence which was assembled into a representative transcriptome of ~28-29 Mb for each cultivar. Using the Maq SNP filter that filters read depth, density, and quality, 575,340 SNPs were identified within these three cultivars. In parallel, 2,358 SNPs were identified within existing Sanger sequences for three additional cultivars, 'Bintje', 'Kennebec', and 'Shepody'. Using a stringent set of filters in conjunction with the potato reference genome, we identified 69,011 high confidence SNPs from these six cultivars for use in genotyping with the Infinium platform. Ninety-six of these SNPs were used with a BeadXpress assay to assess allelic diversity in a germplasm panel of 248 lines; 82 of the SNPs proved sufficiently informative for subsequent analyses. Within diverse North American germplasm, the chip processing market class was most distinct, clearly separated from all other market classes. The round white and russet market classes both include fresh market and processing cultivars. Nevertheless, the russet and round white market classes are more distant from each other than processing are from fresh market types within these two groups. Conclusions The genotype data generated in this study, albeit limited in number, has revealed distinct relationships among the market classes of potato. The SNPs identified in this study will enable high-throughput genotyping of germplasm and populations, which in turn will enable more efficient marker-assisted breeding efforts in potato.
Collapse
Affiliation(s)
- John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Palma JM, Corpas FJ, del Río LA. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J Proteomics 2011; 74:1230-43. [PMID: 21524723 DOI: 10.1016/j.jprot.2011.04.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 11/24/2022]
Abstract
Fruit ripening is a developmental complex process which occurs in higher plants and involves a number of stages displayed from immature to mature fruits that depend on the plant species and the environmental conditions. Nowadays, the importance of fruit ripening comes mainly from the link between this physiological process in plants and the economic repercussions as a result of one of the human activities, the agricultural industry. In most cases, fruit ripening is accompanied by colour changes due to different pigment content and increases in sugar levels, among others. Major physiological modifications that affect colour, texture, flavour, and aroma are under the control of both external (light and temperature) and internal (developmental gene regulation and hormonal control) factors. Due to the huge amount of metabolic changes that take place during ripening in fruits from higher plants, the accomplishment of new throughput methods which can provide a global evaluation of this process would be desirable. Differential proteomics of immature and mature fruits would be a useful tool to gain information on the molecular changes which occur during ripening, but also the investigation of fruits at different ripening stages will provide a dynamic picture of the whole transformation of fruits. This subject is furthermore of great interest as many fruits are essential for human nutrition. Thus far different maturation profiles have been reported specific for each crop species. In this work, a thorough review of the proteomic database from fruit development and maturation of important crop species will be updated to understand the molecular physiology of fruits at ripening stages.
Collapse
Affiliation(s)
- José M Palma
- Departmento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080 Granada, Spain.
| | | | | |
Collapse
|
40
|
Wang Y, Meng Y, Zhang M, Tong X, Wang Q, Sun Y, Quan J, Govers F, Shan W. Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in host specificity. MOLECULAR PLANT PATHOLOGY 2011; 12:187-201. [PMID: 21199568 PMCID: PMC6640465 DOI: 10.1111/j.1364-3703.2010.00659.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Oomycete pathogens cause severe damage to a wide range of agriculturally important crops and natural ecosystems. They represent a unique group of plant pathogens that are evolutionarily distant from true fungi. In this study, we established a new plant-oomycete pathosystem in which the broad host range pathogen Phytophthora parasitica was demonstrated to be capable of interacting compatibly with the model plant Arabidopsis thaliana. Water-soaked lesions developed on leaves within 3 days and numerous sporangia formed within 5 days post-inoculation of P. parasitica zoospores. Cytological characterization showed that P. parasitica developed appressoria-like swellings and penetrated epidermal cells directly and preferably at the junction between anticlinal host cell walls. Multiple haustoria-like structures formed in both epidermal cells and mesophyll cells 1 day post-inoculation of zoospores. Pathogenicity assays of 25 A. thaliana ecotypes with six P. parasitica strains indicated the presence of a natural variation in host specificity between A. thaliana and P. parasitica. Most ecotypes were highly susceptible to P. parasitica strains Pp014, Pp016 and Pp025, but resistant to strains Pp008 and Pp009, with the frequent appearance of cell wall deposition and active defence response-based cell necrosis. Gene expression and comparative transcriptomic analysis further confirmed the compatible interaction by the identification of up-regulated genes in A. thaliana which were characteristic of biotic stress. The established A. thaliana-P. parasitica pathosystem expands the model systems investigating oomycete-plant interactions, and will facilitate a full understanding of Phytophthora biology and pathology.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Seymour GB, Ryder CD, Cevik V, Hammond JP, Popovich A, King GJ, Vrebalov J, Giovannoni JJ, Manning K. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1179-88. [PMID: 21115665 PMCID: PMC3022409 DOI: 10.1093/jxb/erq360] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 05/18/2023]
Abstract
Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programmes of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and is induced and co-ordinated by ethylene, while in non-climacteric fruits, such as strawberry and grape, it is controlled by an ethylene-independent process with little change in respiration rate. The two contrasting mechanisms, however, both lead to texture, colour, and flavour changes that probably reflect some common programmes of regulatory control. It has been shown that a SEPALLATA(SEP)4-like gene is necessary for normal ripening in tomato. It has been demonstrated here that silencing a fruit-related SEP1/2-like (FaMADS9) gene in strawberry leads to the inhibition of normal development and ripening in the petal, achene, and receptacle tissues. In addition, analysis of transcriptome profiles reveals pleiotropic effects of FaMADS9 on fruit development and ripening-related gene expression. It is concluded that SEP genes play a central role in the developmental regulation of ripening in both climacteric and non-climacteric fruits. These findings provide important information to extend the molecular control of ripening in a non-climacteric fruit beyond the limited genetic and cultural options currently available.
Collapse
Affiliation(s)
- Graham B. Seymour
- University of Nottingham, School of Biosciences, Division of Plant and Crop Sciences, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, UK
| | - Carol D. Ryder
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Volkan Cevik
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - John P. Hammond
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | | | - Graham J. King
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Julia Vrebalov
- Boyce Thompson Institute for Plant Research and USDA-ARS, Tower Road, Cornell University Campus, Ithaca, NY 14853, USA
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research and USDA-ARS, Tower Road, Cornell University Campus, Ithaca, NY 14853, USA
| | - Kenneth Manning
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
42
|
Abstract
Carotenoids are one of the most widespread groups of pigments in nature and more than 600 of these have been identified. Beside provitamin A activity, carotenoids are important as antioxidants and protective agents against various diseases. They are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. Cyclization at one or both ends occurs in hydrocarbon carotene, while xanthophylls are formed by the introduction of oxygen. In addition, modifications involving chain elongation, isomerization, or degradation are also found. The composition of carotenoids in food may vary depending upon production practices, post-harvest handling, processing, and storage. In higher plants they are synthesized in the plastid. Both mevalonate dependent and independent pathway for the formation of isopentenyl diphosphate are known. Isopentenyl diphosphate undergoes a series of addition and condensation reactions to form phytoene, which gets converted to lycopene. Cyclization of lycopene either leads to the formation of β-carotene and its derivative xanthophylls, β-cryptoxanthin, zeaxanthin, antheraxanthin, and violaxanthin or α-carotene and lutein. Even though most of the carotenoid biosynthetic genes have been cloned and identified, some aspects of carotenoid formation and manipulation in higher plants especially remain poorly understood. In order to enhance the carotenoid content of crop plants to a level that will be required for the prevention of diseases, there is a need for research in both the basic and the applied aspects.
Collapse
Affiliation(s)
- K K Namitha
- Human Resource Development, Central Food Technological Research Institute (CSIR), Mysore, India
| | | |
Collapse
|
43
|
Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:936-47. [PMID: 21143675 DOI: 10.1111/j.1365-313x.2010.04384.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The transition of fleshy fruit maturation to ripening is regulated by exogenous and endogenous signals that coordinate the transition of the fruit to a final state of attractiveness to seed dispersing organisms. Tomato is a model for biology and genetics regulating specific ripening pathways including ethylene, carotenoids and cell wall metabolism in addition to upstream signaling and transcriptional regulators. Ripening-associated transcription factors described to date including the RIN-MADS, CLEAR NON-RIPENING, TAGL1 and LeHB-1 genes all encode positive regulators of ripening phenomena. Here we describe an APETALA2 transcription factor (SlAP2a) identified through transcriptional profiling of fruit maturation that is induced during, and which negatively regulates, tomato fruit ripening. RNAi repression of SlAP2a results in fruits that over-produce ethylene, ripen early and modify carotenoid accumulation profiles by altering carotenoid pathway flux. These results suggest that SlAP2a functions during normal tomato fruit ripening as a modulator of ripening activity and acts to balance the activities of positive ripening regulators.
Collapse
Affiliation(s)
- Mi-Young Chung
- Boyce Thompson Institute for Plant Research, Tower Road, Cornell University Campus, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Costa F, Alba R, Schouten H, Soglio V, Gianfranceschi L, Serra S, Musacchi S, Sansavini S, Costa G, Fei Z, Giovannoni J. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC PLANT BIOLOGY 2010; 10:229. [PMID: 20973957 PMCID: PMC3095317 DOI: 10.1186/1471-2229-10-229] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/25/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. RESULTS To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. CONCLUSION Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species.
Collapse
Affiliation(s)
- Fabrizio Costa
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
- IASMA Research and Innovation Centre, Foundation Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Rob Alba
- Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, New York, 14853, USA
| | - Henk Schouten
- Plant Breeding, Wageningen-UR, Droevendaalsesteeg 1,6700 AA Wageningen, The Netherlands
| | - Valeria Soglio
- Dept. of Biomolecular Sciences and Biotechnology, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Luca Gianfranceschi
- Dept. of Biomolecular Sciences and Biotechnology, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Sara Serra
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
| | - Stefano Musacchi
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
| | - Silviero Sansavini
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
| | - Guglielmo Costa
- Department of Fruit Tree and Woody Plant Science, University of Bologna, Viale Fanin 46, 40121 Bologna, Italy
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, New York, 14853, USA
- U.S. Department of Agriculture, Agricultural Research Service, Robert W. Holley Center, Ithaca, New York, 14853, USA
| | - James Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University Campus, Ithaca, New York, 14853, USA
- U.S. Department of Agriculture, Agricultural Research Service, Robert W. Holley Center, Ithaca, New York, 14853, USA
| |
Collapse
|
45
|
Ye JL, Zhu AD, Tao NG, Xu Q, Xu J, Deng XX. Comprehensive analysis of expressed sequence tags from the pulp of the red mutant 'Cara Cara' navel orange (Citrus sinensis Osbeck). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:856-867. [PMID: 20883438 DOI: 10.1111/j.1744-7909.2010.00952.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Expressed sequence tag (EST) analysis of the pulp of the red-fleshed mutant 'Cara Cara' navel orange provided a starting point for gene discovery and transcriptome survey during citrus fruit maturation. Interpretation of the EST datasets revealed that the mutant pulp transcriptome held a high section of stress responses related genes, such as the type III metallothionein-like gene (6.0%), heat shock protein (2.8%), Cu/Zn superoxide dismutase (0.8%), late embryogenesis abundant protein 5 (0.8%), etc. 133 transcripts were detected to be differentially expressed between the red mutant and its orange-color wild genotype 'Washington' via digital expression analysis. Among them, genes involved in metabolism, defense/stress and signal transduction were statistical overrepresented. Fifteen transcription factors, composed of NAM, ATAF, and CUC transcription factor (NAC); myeloblastosis (MYB); myelocytomatosis (MYC); basic helix-loop-helix (bHLH); basic leucine zipper (bZIP) domain members, were also included. The data reflected the distinct expression profile and the unique regulatory module associated with these two genotypes. Eight differently expressed genes analyzed in digital were validated by quantitative real-time polymerase chain reaction. For structural polymorphism, both simple sequence repeats and single nucleotide polymorphisms (SNP) loci were surveyed; dinucleotide presentation revealed a bias toward AG/GA/TC/CT repeats (52.5%), against GC/CG repeats (0%). SNPs analysis found that transitions (73%) outnumbered transversions (27%). Seventeen potential cultivar-specific and 387 heterozygous SNP loci were detected from 'Cara Cara' and 'Washington' EST pool.
Collapse
Affiliation(s)
- Jun-Li Ye
- National Center of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
46
|
How Kit A, Boureau L, Stammitti-Bert L, Rolin D, Teyssier E, Gallusci P. Functional analysis of SlEZ1 a tomato enhancer of zeste (E(z)) gene demonstrates a role in flower development. PLANT MOLECULAR BIOLOGY 2010; 74:201-13. [PMID: 20582715 DOI: 10.1007/s11103-010-9657-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 06/10/2010] [Indexed: 05/10/2023]
Abstract
The Enhancer of Zeste (E(z)) Polycomb group (PcG) proteins, which are encoded by a small gene family in Arabidopsis thaliana, have been shown to participate to the control of flowering and seed development. For the time being, little is known about the function of these proteins in other plants. In tomato E(z) proteins are encoded by at least two genes namely SlEZ1 and SlEZ2 while a third gene, SlEZ3, is likely to encode a truncated non-functional protein. The analysis of the corresponding mRNA demonstrates that these two genes are differentially regulated during plant and fruit development. We also show that SlEZ1 and SlEZ2 are targeted to the nuclei. These results together with protein sequence analysis makes it likely that both proteins are functional E(z) proteins. The characterisation of SlEZ1 RNAi lines suggests that although there might be some functional redundancy between SlEZ1 and SlEZ2 in most plant organs, the former protein is likely to play specific function in flower development.
Collapse
Affiliation(s)
- A How Kit
- UMR Biologie du Fruit, INRA, Universités Bordeaux 1 et Bordeaux 2, CR INRA de Bordeaux, 71 Avenue Edouard Bourleaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | | | | | | | | | | |
Collapse
|
47
|
Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, Medina-Escobar N, Blanco-Portales R, Botella MA, Muñoz-Blanco J, Sánchez-Sevilla JF, Valpuesta V. Generation and analysis of ESTs from strawberry (Fragaria xananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics 2010; 11:503. [PMID: 20849591 PMCID: PMC2996999 DOI: 10.1186/1471-2164-11-503] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/17/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cultivated strawberry is a hybrid octoploid species (Fragaria xananassa Duchesne ex. Rozier) whose fruit is highly appreciated due to its organoleptic properties and health benefits. Despite recent studies on the control of its growth and ripening processes, information about the role played by different hormones on these processes remains elusive. Further advancement of this knowledge is hampered by the limited sequence information on genes from this species, despite the abundant information available on genes from the wild diploid relative Fragaria vesca. However, the diploid species, or one ancestor, only partially contributes to the genome of the cultivated octoploid. We have produced a collection of expressed sequence tags (ESTs) from different cDNA libraries prepared from different fruit parts and developmental stages. The collection has been analysed and the sequence information used to explore the involvement of different hormones in fruit developmental processes, and for the comparison of transcripts in the receptacle of ripe fruits of diploid and octoploid species. The study is particularly important since the commercial fruit is indeed an enlarged flower receptacle with the true fruits, the achenes, on the surface and connected through a network of vascular vessels to the central pith. RESULTS We have sequenced over 4,500 ESTs from Fragaria xananassa, thus doubling the number of ESTs available in the GenBank of this species. We then assembled this information together with that available from F. xananassa resulting a total of 7,096 unigenes. The identification of SSRs and SNPs in many of the ESTs allowed their conversion into functional molecular markers. The availability of libraries prepared from green growing fruits has allowed the cloning of cDNAs encoding for genes of auxin, ethylene and brassinosteroid signalling processes, followed by expression studies in selected fruit parts and developmental stages. In addition, the sequence information generated in the project, jointly with previous information on sequences from both F. xananassa and F. vesca, has allowed designing an oligo-based microarray that has been used to compare the transcriptome of the ripe receptacle of the diploid and octoploid species. Comparison of the transcriptomes, grouping the genes by biological processes, points to differences being quantitative rather than qualitative. CONCLUSIONS The present study generates essential knowledge and molecular tools that will be useful in improving investigations at the molecular level in cultivated strawberry (F. xananassa). This knowledge is likely to provide useful resources in the ongoing breeding programs. The sequence information has already allowed the development of molecular markers that have been applied to germplasm characterization and could be eventually used in QTL analysis. Massive transcription analysis can be of utility to target specific genes to be further studied, by their involvement in the different plant developmental processes.
Collapse
Affiliation(s)
- Aureliano Bombarely
- Departamento de Biología Molecular y Bioquímica. Universidad de Málaga. Spain
| | - Catharina Merchante
- Departamento de Biología Molecular y Bioquímica. Universidad de Málaga. Spain
| | - Fabiana Csukasi
- Departamento de Biología Molecular y Bioquímica. Universidad de Málaga. Spain
| | - Eduardo Cruz-Rus
- Departamento de Biología Molecular y Bioquímica. Universidad de Málaga. Spain
| | | | | | | | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica. Universidad de Málaga. Spain
| | | | | | | |
Collapse
|
48
|
Böttcher C, Keyzers RA, Boss PK, Davies C. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3615-25. [PMID: 20581124 DOI: 10.1093/jxb/erq174] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.
Collapse
|
49
|
Piron F, Nicolaï M, Minoïa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 2010; 5:e11313. [PMID: 20593023 PMCID: PMC2892489 DOI: 10.1371/journal.pone.0011313] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study.
Collapse
Affiliation(s)
- Florence Piron
- Unité de Recherche en Génomique Végétale, UMR INRA-CNRS-Uni. EVRY, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z. Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics 2010; 11:384. [PMID: 20565788 PMCID: PMC2897810 DOI: 10.1186/1471-2164-11-384] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background Cucumber, Cucumis sativus L., is an economically and nutritionally important crop of the Cucurbitaceae family and has long served as a primary model system for sex determination studies. Recently, the sequencing of its whole genome has been completed. However, transcriptome information of this species is still scarce, with a total of around 8,000 Expressed Sequence Tag (EST) and mRNA sequences currently available in GenBank. In order to gain more insights into molecular mechanisms of plant sex determination and provide the community a functional genomics resource that will facilitate cucurbit research and breeding, we performed transcriptome sequencing of cucumber flower buds of two near-isogenic lines, WI1983G, a gynoecious plant which bears only pistillate flowers, and WI1983H, a hermaphroditic plant which bears only bisexual flowers. Result Using Roche-454 massive parallel pyrosequencing technology, we generated a total of 353,941 high quality EST sequences with an average length of 175bp, among which 188,255 were from gynoecious flowers and 165,686 from hermaphroditic flowers. These EST sequences, together with ~5,600 high quality cucumber EST and mRNA sequences available in GenBank, were clustered and assembled into 81,401 unigenes, of which 28,452 were contigs and 52,949 were singletons. The unigenes and ESTs were further mapped to the cucumber genome and more than 500 alternative splicing events were identified in 443 cucumber genes. The unigenes were further functionally annotated by comparing their sequences to different protein and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 343 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified ~200 differentially expressed genes between flowers of WI1983G and WI1983H and provided novel insights into molecular mechanisms of plant sex determination process. Furthermore, a set of SSR motifs and high confidence SNPs between WI1983G and WI1983H were identified from the ESTs, which provided the material basis for future genetic linkage and QTL analysis. Conclusion A large set of EST sequences were generated from cucumber flower buds of two different sex types. Differentially expressed genes between these two different sex-type flowers, as well as putative SSR and SNP markers, were identified. These EST sequences provide valuable information to further understand molecular mechanisms of plant sex determination process and forms a rich resource for future functional genomics analysis, marker development and cucumber breeding.
Collapse
Affiliation(s)
- Shaogui Guo
- 1National Engineering Research Center for Vegetables, Beijing 100097, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|