1
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
2
|
Bouard W, Ouellet F, Houde M. Modulation of the wheat transcriptome by TaZFP13D under well-watered and drought conditions. PLANT MOLECULAR BIOLOGY 2024; 114:16. [PMID: 38332456 PMCID: PMC10853348 DOI: 10.1007/s11103-023-01403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 02/10/2024]
Abstract
Maintaining global food security in the context of climate changes will be an important challenge in the next century. Improving abiotic stress tolerance of major crops such as wheat can contribute to this goal. This can be achieved by the identification of the genes involved and their use to develop tools for breeding programs aiming to generate better adapted cultivars. Recently, we identified the wheat TaZFP13D gene encoding Zinc Finger Protein 13D as a new gene improving water-stress tolerance. The current work analyzes the TaZFP13D-dependent transcriptome modifications that occur in well-watered and dehydration conditions to better understand its function during normal growth and during drought. Plants that overexpress TaZFP13D have a higher biomass under well-watered conditions, indicating a positive effect of the protein on growth. Survival rate and stress recovery after a severe drought stress are improved compared to wild-type plants. The latter is likely due the higher activity of key antioxidant enzymes and concomitant reduction of drought-induced oxidative damage. Conversely, down-regulation of TaZFP13D decreases drought tolerance and protection against drought-induced oxidative damage. RNA-Seq transcriptome analysis identified many genes regulated by TaZFP13D that are known to improve drought tolerance. The analysis also revealed several genes involved in the photosynthetic electron transfer chain known to improve photosynthetic efficiency and chloroplast protection against drought-induced ROS damage. This study highlights the important role of TaZFP13D in wheat drought tolerance, contributes to unravel the complex regulation governed by TaZFPs, and suggests that it could be a promising marker to select wheat cultivars with higher drought tolerance.
Collapse
Affiliation(s)
- William Bouard
- Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - François Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
3
|
Yang B, Xu C, Cheng Y, Jia T, Hu X. Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid. PLANT CELL REPORTS 2023:10.1007/s00299-023-03024-7. [PMID: 37160773 DOI: 10.1007/s00299-023-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient protein cofactors ubiquitously exist in organisms. They are involved in many important life processes. Plastids are semi-autonomous organelles with a double membrane and it is believed to originate from a cyanobacterial endosymbiont. By learning form the research in cyanobacteria, a Fe-S cluster biosynthesis and delivery pathway has been proposed and partly demonstrated in plastids, including iron uptake, sulfur mobilization, Fe-S cluster assembly and delivery. Fe-S clusters are essential for the downstream Fe-S proteins to perform their normal biological functions. Because of the importance of Fe-S proteins in plastid, researchers have made a lot of research progress on this pathway in recent years. This review summarizes the detail research progress made in recent years. In addition, the scientific problems remained in this pathway are also discussed.
Collapse
Affiliation(s)
- Bing Yang
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chenyun Xu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Cheng
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Parmagnani AS, Betterle N, Mannino G, D’Alessandro S, Nocito FF, Ljumovic K, Vigani G, Ballottari M, Maffei ME. The Geomagnetic Field (GMF) Is Required for Lima Bean Photosynthesis and Reactive Oxygen Species Production. Int J Mol Sci 2023; 24:ijms24032896. [PMID: 36769217 PMCID: PMC9917513 DOI: 10.3390/ijms24032896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Plants evolved in the presence of the Earth's magnetic field (or geomagnetic field, GMF). Variations in MF intensity and inclination are perceived by plants as an abiotic stress condition with responses at the genomic and metabolic level, with changes in growth and developmental processes. The reduction of GMF to near null magnetic field (NNMF) values by the use of a triaxial Helmholtz coils system was used to evaluate the requirement of the GMF for Lima bean (Phaseolus lunatus L.) photosynthesis and reactive oxygen species (ROS) production. The leaf area, stomatal density, chloroplast ultrastructure and some biochemical parameters including leaf carbohydrate, total carbon, protein content and δ13C were affected by NNMF conditions, as were the chlorophyll and carotenoid levels. RubisCO activity and content were also reduced in NNMF. The GMF was required for the reaction center's efficiency and for the reduction of quinones. NNMF conditions downregulated the expression of the MagR homologs PlIScA2 and PlcpIScA, implying a connection between magnetoreception and photosynthetic efficiency. Finally, we showed that the GMF induced a higher expression of genes involved in ROS production, with increased contents of both H2O2 and other peroxides. Our results show that, in Lima bean, the GMF is required for photosynthesis and that PlIScA2 and PlcpIScA may play a role in the modulation of MF-dependent responses of photosynthesis and plant oxidative stress.
Collapse
Affiliation(s)
- Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Nico Betterle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Stefano D’Alessandro
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Fabio F. Nocito
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Kristina Ljumovic
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
- Correspondence: ; Tel.: +39-011-6705967
| |
Collapse
|
5
|
Przybyla-Toscano J, Maclean AE, Franceschetti M, Liebsch D, Vignols F, Keech O, Rouhier N, Balk J. Protein lipoylation in mitochondria requires Fe-S cluster assembly factors NFU4 and NFU5. PLANT PHYSIOLOGY 2022; 188:997-1013. [PMID: 34718778 PMCID: PMC8825329 DOI: 10.1093/plphys/kiab501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. "Plastid-type" NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.
Collapse
Affiliation(s)
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Daniela Liebsch
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, F-34060 Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | | | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
6
|
A Review of Multiple Mitochondrial Dysfunction Syndromes, Syndromes Associated with Defective Fe-S Protein Maturation. Biomedicines 2021; 9:biomedicines9080989. [PMID: 34440194 PMCID: PMC8393393 DOI: 10.3390/biomedicines9080989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial proteins carrying iron-sulfur (Fe-S) clusters are involved in essential cellular pathways such as oxidative phosphorylation, lipoic acid synthesis, and iron metabolism. NFU1, BOLA3, IBA57, ISCA2, and ISCA1 are involved in the last steps of the maturation of mitochondrial [4Fe-4S]-containing proteins. Since 2011, mutations in their genes leading to five multiple mitochondrial dysfunction syndromes (MMDS types 1 to 5) were reported. The aim of this systematic review is to describe all reported MMDS-patients. Their clinical, biological, and radiological data and associated genotype will be compared to each other. Despite certain specific clinical elements such as pulmonary hypertension or dilated cardiomyopathy in MMDS type 1 or 2, respectively, nearly all of the patients with MMDS presented with severe and early onset leukoencephalopathy. Diagnosis could be suggested by high lactate, pyruvate, and glycine levels in body fluids. Genetic analysis including large gene panels (Next Generation Sequencing) or whole exome sequencing is needed to confirm diagnosis.
Collapse
|
7
|
Satyanarayan MB, Zhao J, Zhang J, Yu F, Lu Y. Functional relationships of three NFU proteins in the biogenesis of chloroplastic iron-sulfur clusters. PLANT DIRECT 2021; 5:e00303. [PMID: 33553997 PMCID: PMC7851846 DOI: 10.1002/pld3.303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 05/14/2023]
Abstract
Iron-sulfur clusters are required in a variety of biological processes. Biogenesis of iron-sulfur clusters includes assembly of iron-sulfur clusters on scaffold complexes and transfer of iron-sulfur clusters to recipient apoproteins by iron-sulfur carriers, such as nitrogen-fixation-subunit-U (NFU)-type proteins. Arabidopsis thaliana has three plastid-targeted NFUs: NFU1, NFU2, and NFU3. We previously discovered that nfu2 -/- nfu3 -/- mutants are embryo lethal. The lack of viable nfu2 -/- nfu3 -/- mutants posed a serious challenge. To overcome this problem, we characterized nfu2-1 -/- nfu3-2+/- and nfu2-1+/- nfu3-2 -/- sesquimutants. Simultaneous loss-of-function mutations in NFU2 and NFU3 have an additive effect on the declines of 4Fe-4S-containing PSI core subunits. Consequently, the sesquimutants had much lower PSI and PSII activities, much less chlorophyll, and much smaller plant sizes, than nfu2-1 and nfu3-2 single mutants. These observations are consistent with proposed roles of NFU3 and NFU2 in the biogenesis of chloroplastic 4Fe-4S. By performing spectroscopic and in vitro reconstitution experiments, we found that NFU1 may act as a carrier for chloroplastic 4Fe-4S and 3Fe-4S clusters. In line with this hypothesis, loss-of-function mutations in NFU1 resulted in significant declines in 4Fe-4S- and 3Fe-4S-containing chloroplastic proteins. The declines of PSI activity and 4Fe-4S-containing PSI core subunits in nfu1 mutants indicate that PSI is the main target of NFU1 action. The reductions in 4Fe-4S-containing PSI core proteins and PSI activity in nfu3-2, nfu2-1, and nfu1 single mutants suggest that all three plastid-targeted NFU proteins contribute to the biogenesis of chloroplastic 4Fe-4S clusters. Although different insertion sites of T-DNA lines may cause variations in phenotypic results, mutation severity could be an indicator of the relative importance of the gene product. Our results are consistent with the hypothesis that NFU3 contributes more than NFU2 and NFU2 contributes more than NFU1 to the production of 4Fe-4S-containing PSI core subunits.
Collapse
Affiliation(s)
- Manasa B. Satyanarayan
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
- Present address:
Charles River LaboratoriesMattawanMIUSA
| | - Jun Zhao
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
- Present address:
State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jessica Zhang
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yan Lu
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| |
Collapse
|
8
|
Kroh GE, Pilon M. Iron deficiency and the loss of chloroplast iron-sulfur cluster assembly trigger distinct transcriptome changes in Arabidopsis rosettes. Metallomics 2020; 12:1748-1764. [PMID: 33047775 DOI: 10.1039/d0mt00175a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Regulation of mRNA abundance revealed a genetic program for plant leaf acclimation to iron (Fe) limitation. The transcript for SUFB, a key component of the plastid iron-sulfur (Fe-S) assembly pathway is down-regulated early after Fe deficiency, and prior to down-regulation of mRNAs encoding abundant chloroplast Fe containing proteins, which should economize the use of Fe. What controls this system is unclear. We utilized RNA-seq. aimed to identify differentially expressed transcripts that are co-regulated with SUFB after Fe deficiency in leaves. To distinguish if lack of Fe or lack of Fe-S cofactors and associated loss of enzymatic and photosynthetic activity trigger transcriptome reprogramming, WT plants on low Fe were compared with an inducible sufb-RNAi knockdown. Fe deficiency targeted a limited set of genes and predominantly affected transcripts for chloroplast localized proteins. A set of glutaredoxin transcripts was concertedly down-regulated early after Fe deficiency, however when these same genes were down-regulated by RNAi the effect on known chloroplast Fe deficiency marker proteins was minimal. In promoters of differentially expressed genes, binding motifs for AP2/ERF transcription factors were most abundant and three AP2/ERF transcription factors were also differentially expressed early after low Fe treatment. Surprisingly, Fe deficiency in a WT on low Fe and a sufb-RNAi knockdown presented very little overlap in differentially expressed genes. sufb-RNAi produced expression patterns expected for Fe excess and up-regulation of a transcript for another Fe-S assembly component not affected by low Fe. These findings indicate that Fe scarcity, not Fe utilization, triggers reprogramming of the transcriptome in leaves.
Collapse
Affiliation(s)
- Gretchen Elizabeth Kroh
- Biology Department, Colorado State University, 2515 W. Pitkin Street, Fort Collins, CO 80523-1878, USA.
| | | |
Collapse
|
9
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
10
|
Robe K, Gao F, Bonillo P, Tissot N, Gaymard F, Fourcroy P, Izquierdo E, Dubos C. Sulphur availability modulates Arabidopsis thaliana responses to iron deficiency. PLoS One 2020; 15:e0237998. [PMID: 32817691 PMCID: PMC7440645 DOI: 10.1371/journal.pone.0237998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/06/2020] [Indexed: 11/23/2022] Open
Abstract
Among the mineral nutrients that are required for plant metabolism, iron (Fe) and sulphur (S) play a central role as both elements are needed for the activity of several proteins involved in essential cellular processes. A combination of physiological, biochemical and molecular approaches was employed to investigate how S availability influences plant response to Fe deficiency, using the model plant Arabidopsis thaliana. We first observed that chlorosis symptom induced by Fe deficiency was less pronounced when S availability was scarce. We thus found that S deficiency inhibited the Fe deficiency induced expression of several genes associated with the maintenance of Fe homeostasis. This includes structural genes involved in Fe uptake (i.e. IRT1, FRO2, PDR9, NRAMP1) and transport (i.e. FRD3, NAS4) as well as a subset of their upstream regulators, namely BTS, PYE and the four clade Ib bHLH. Last, we found that the over accumulation of manganese (Mn) in response to Fe shortage was reduced under combined Fe and S deficiencies. These data suggest that S deficiency inhibits the Fe deficiency dependent induction of the Fe uptake machinery. This in turn limits the transport into the root and the plant body of potentially toxic divalent cations such as Mn and Zn, thus limiting the deleterious effect of Fe deprivation.
Collapse
Affiliation(s)
- Kevin Robe
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Fei Gao
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Pauline Bonillo
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Nicolas Tissot
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Frédéric Gaymard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Pierre Fourcroy
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Esther Izquierdo
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- * E-mail:
| |
Collapse
|
11
|
Berger N, Vignols F, Przybyla-Toscano J, Roland M, Rofidal V, Touraine B, Zienkiewicz K, Couturier J, Feussner I, Santoni V, Rouhier N, Gaymard F, Dubos C. Identification of client iron-sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4171-4187. [PMID: 32240305 DOI: 10.1093/jxb/eraa166] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 05/25/2023]
Abstract
Iron-sulfur (Fe-S) proteins have critical functions in plastids, notably participating in photosynthetic electron transfer, sulfur and nitrogen assimilation, chlorophyll metabolism, and vitamin or amino acid biosynthesis. Their maturation relies on the so-called SUF (sulfur mobilization) assembly machinery. Fe-S clusters are synthesized de novo on a scaffold protein complex and then delivered to client proteins via several transfer proteins. However, the maturation pathways of most client proteins and their specificities for transfer proteins are mostly unknown. In order to decipher the proteins interacting with the Fe-S cluster transfer protein NFU2, one of the three plastidial representatives found in Arabidopsis thaliana, we performed a quantitative proteomic analysis of shoots, roots, and seedlings of nfu2 plants, combined with NFU2 co-immunoprecipitation and binary yeast two-hybrid experiments. We identified 14 new targets, among which nine were validated in planta using a binary bimolecular fluorescence complementation assay. These analyses also revealed a possible role for NFU2 in the plant response to desiccation. Altogether, this study better delineates the maturation pathways of many chloroplast Fe-S proteins, considerably extending the number of NFU2 clients. It also helps to clarify the respective roles of the three NFU paralogs NFU1, NFU2, and NFU3.
Collapse
Affiliation(s)
- Nathalie Berger
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | | | - Valérie Rofidal
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Brigitte Touraine
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Véronique Santoni
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | - Frédéric Gaymard
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Christian Dubos
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| |
Collapse
|
12
|
Abstract
Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany;
- SYNMIKRO Zentrum für synthetische Mikrobiologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany;
| |
Collapse
|
13
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
14
|
Roland M, Przybyla-Toscano J, Vignols F, Berger N, Azam T, Christ L, Santoni V, Wu HC, Dhalleine T, Johnson MK, Dubos C, Couturier J, Rouhier N. The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins. J Biol Chem 2020; 295:1727-1742. [PMID: 31911438 PMCID: PMC7008376 DOI: 10.1074/jbc.ra119.011034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/03/2020] [Indexed: 11/06/2022] Open
Abstract
Proteins incorporating iron-sulfur (Fe-S) co-factors are required for a plethora of metabolic processes. Their maturation depends on three Fe-S cluster assembly machineries in plants, located in the cytosol, mitochondria, and chloroplasts. After de novo formation on scaffold proteins, transfer proteins load Fe-S clusters onto client proteins. Among the plastidial representatives of these transfer proteins, NFU2 and NFU3 are required for the maturation of the [4Fe-4S] clusters present in photosystem I subunits, acting upstream of the high-chlorophyll fluorescence 101 (HCF101) protein. NFU2 is also required for the maturation of the [2Fe-2S]-containing dihydroxyacid dehydratase, important for branched-chain amino acid synthesis. Here, we report that recombinant Arabidopsis thaliana NFU1 assembles one [4Fe-4S] cluster per homodimer. Performing co-immunoprecipitation experiments and assessing physical interactions of NFU1 with many [4Fe-4S]-containing plastidial proteins in binary yeast two-hybrid assays, we also gained insights into the specificity of NFU1 for the maturation of chloroplastic Fe-S proteins. Using bimolecular fluorescence complementation and in vitro Fe-S cluster transfer experiments, we confirmed interactions with two proteins involved in isoprenoid and thiamine biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase and 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase, respectively. An additional interaction detected with the scaffold protein SUFD enabled us to build a model in which NFU1 receives its Fe-S cluster from the SUFBC2D scaffold complex and serves in the maturation of specific [4Fe-4S] client proteins. The identification of the NFU1 partner proteins reported here more clearly defines the role of NFU1 in Fe-S client protein maturation in Arabidopsis chloroplasts among other SUF components.
Collapse
Affiliation(s)
- Mélanie Roland
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Nathalie Berger
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Tamanna Azam
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Loick Christ
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Véronique Santoni
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Hui-Chen Wu
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602
| | - Christian Dubos
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | | |
Collapse
|
15
|
Bai Y, Chen T, Happe T, Lu Y, Sawyer A. Iron-sulphur cluster biogenesis via the SUF pathway. Metallomics 2019; 10:1038-1052. [PMID: 30019043 DOI: 10.1039/c8mt00150b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron-sulphur (Fe-S) clusters are versatile cofactors, which are essential for key metabolic processes in cells, such as respiration and photosynthesis, and which may have also played a crucial role in establishing life on Earth. They can be found in almost all living organisms, from unicellular prokaryotes and archaea to multicellular animals and plants, and exist in diverse forms. This review focuses on the most ancient Fe-S cluster assembly system, the sulphur utilization factor (SUF) mechanism, which is crucial in bacteria for cell survival under stress conditions such as oxidation and iron starvation, and which is also present in the chloroplasts of green microalgae and plants, where it is responsible for plastidial Fe-S protein maturation. We explain the SUF Fe-S cluster assembly process, the proteins involved, their regulation and provide evolutionary insights. We specifically focus on examples from Fe-S cluster synthesis in the model organisms Escherichia coli and Arabidopsis thaliana and discuss in an in vivo context the assembly of the [FeFe]-hydrogenase H-cluster from Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Y Bai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
16
|
St-Pierre A, Blondeau D, Boivin M, Beaupré V, Boucher N, Desgagné-Penix I. Study of antioxidant properties of thylakoids and application in UV protection and repair of UV-induced damage. J Cosmet Dermatol 2019; 18:1980-1991. [PMID: 30933421 DOI: 10.1111/jocd.12936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Skin is affected by environmental stress such as ultraviolet exposure. Topically applied antioxidants confer protection against this stress. Spinach thylakoid extracts are plant samples known as photosynthetic membranes containing antioxidant molecules able to dissipate excess of energy and oxidative stress. METHODS Antioxidant contents and activities were tested in thylakoid extracts stored for different periods at 4°C to compare their efficacities. Cytotoxicity of thylakoids was tested on human THP-1 cells along with the capacity to protect from oxidative stress using flow cytometry. Protection of thylakoids against ultraviolet was tested on engineered human skin using two formulations and evaluated by electronic microscopy. RESULTS Results indicate that thylakoid extracts possess antioxidant molecules that were not significantly affected by storage at 4°C whereas photosynthetic activity was storage-dependent. Thylakoid extracts were not cytotoxic to human THP-1 cells, and three extracts protected cells against reactive oxygen species. Moreover, formulation comprising 0.1% or 0.01% of thylakoids and sunscreen provided a synergetic protection against UV exposure. Thylakoid extracts mixed with a neutral cream were also able to repair UV damages on engineered human skin. CONCLUSIONS Thylakoid extracts contained various antioxidant molecules, and their properties were maintained in over storage at 4°C for more than 72 months. Molecules and enzymes present in thylakoid extracts are involved in protecting and restoring the harmful effects of UV exposure. The involvement of antioxidant molecules such as carotenoids, SOD, and Fe-S clusters in cellular and regulatory metabolic reactions may explain the observed protective effects.
Collapse
Affiliation(s)
- Annabelle St-Pierre
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Dorian Blondeau
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Michelle Boivin
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Vickie Beaupré
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
17
|
Valassakis C, Dervisi I, Agalou A, Papandreou N, Kapetsis G, Podia V, Haralampidis K, Iconomidou VA, Spaink HP, Roussis A. Novel interactions of Selenium Binding Protein family with the PICOT containing proteins AtGRXS14 and AtGRXS16 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:102-112. [PMID: 30824043 DOI: 10.1016/j.plantsci.2019.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
During abiotic stress the primary symptom of phytotoxicity can be ROS production which is strictly regulated by ROS scavenging pathways involving enzymatic and non-enzymatic antioxidants. Furthermore, ROS are well-described secondary messengers of cellular processes, while during the course of evolution, plants have accomplished high degree of control over ROS and used them as signalling molecules. Glutaredoxins (GRXs) are small and ubiquitous glutathione (GSH) -or thioredoxin reductase (TR)-dependent oxidoreductases belonging to the thioredoxin (TRX) superfamily which are conserved in most eukaryotes and prokaryotes. In Arabidopsis thaliana GRXs are subdivided into four classes playing a central role in oxidative stress responses and physiological functions. In this work, we describe a novel interaction of AtGRXS14 with the Selenium Binding Protein 1 (AtSBP1), a protein proposed to be integrated in a regulatory network that senses alterations in cellular redox state and acts towards its restoration. We further show that SBP protein family interacts with AtGRXS16 that also contains a PICOT domain, like AtGRXS14.
Collapse
Affiliation(s)
- Chrysanthi Valassakis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Adamantia Agalou
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Nikolaos Papandreou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University, 15784, Athens, Greece
| | - Georgios Kapetsis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Varvara Podia
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Kosmas Haralampidis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University, 15784, Athens, Greece
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece.
| |
Collapse
|
18
|
Touraine B, Vignols F, Przybyla-Toscano J, Ischebeck T, Dhalleine T, Wu HC, Magno C, Berger N, Couturier J, Dubos C, Feussner I, Caffarri S, Havaux M, Rouhier N, Gaymard F. Iron-sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1875-1889. [PMID: 30785184 DOI: 10.1093/jxb/erz050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/25/2019] [Indexed: 05/23/2023]
Abstract
Numerous proteins require a metallic co-factor for their function. In plastids, the maturation of iron-sulfur (Fe-S) proteins necessitates a complex assembly machinery. In this study, we focused on Arabidopsis thaliana NFU1, NFU2, and NFU3, which participate in the final steps of the maturation process. According to the strong photosynthetic defects observed in high chlorophyll fluorescence 101 (hcf101), nfu2, and nfu3 plants, we determined that NFU2 and NFU3, but not NFU1, act immediately upstream of HCF101 for the maturation of [Fe4S4]-containing photosystem I subunits. An additional function of NFU2 in the maturation of the [Fe2S2] cluster of a dihydroxyacid dehydratase was obvious from the accumulation of precursors of the branched-chain amino acid synthesis pathway in roots of nfu2 plants and from the rescue of the primary root growth defect by supplying branched-chain amino acids. The absence of NFU3 in roots precluded any compensation. Overall, unlike their eukaryotic and prokaryotic counterparts, which are specific to [Fe4S4] proteins, NFU2 and NFU3 contribute to the maturation of both [Fe2S2] and [Fe4S4] proteins, either as a relay in conjunction with other proteins such as HCF101 or by directly delivering Fe-S clusters to client proteins. Considering the low number of Fe-S cluster transfer proteins relative to final acceptors, additional targets probably await identification.
Collapse
Affiliation(s)
- Brigitte Touraine
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Florence Vignols
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany
| | | | - Hui-Chen Wu
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Cyril Magno
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Nathalie Berger
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Christian Dubos
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany
| | - Stefano Caffarri
- Aix-Marseille Université, CEA Cadarache, CNRS UMR 7265, Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France
| | - Michel Havaux
- CEA Cadarache, CNRS UMR 7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| | | | - Frédéric Gaymard
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Benoit SL, Holland AA, Johnson MK, Maier RJ. Iron-sulfur protein maturation in Helicobacter pylori: identifying a Nfu-type cluster carrier protein and its iron-sulfur protein targets. Mol Microbiol 2018; 108:379-396. [PMID: 29498770 DOI: 10.1111/mmi.13942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 01/03/2023]
Abstract
Helicobacter pylori is anomalous among non nitrogen-fixing bacteria in containing an incomplete NIF system for Fe-S cluster assembly comprising two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein). Although nifU deletion strains cannot be obtained via the conventional gene replacement, a NifU-depleted strain was constructed and shown to be more sensitive to oxidative stress compared to wild-type (WT) strains. The hp1492 gene, encoding a putative Nfu-type Fe-S cluster carrier protein, was disrupted in three different H. pylori strains, indicating that it is not essential. However, Δnfu strains have growth deficiency, are more sensitive to oxidative stress and are unable to colonize mouse stomachs. Moreover, Δnfu strains have lower aconitase activity but higher hydrogenase activity than the WT. Recombinant Nfu was found to bind either one [2Fe-2S] or [4Fe-4S] cluster/dimer, based on analytical, UV-visible absorption/CD and resonance Raman studies. A bacterial two-hybrid system was used to ascertain interactions between Nfu, NifS, NifU and each of 36 putative Fe-S-containing target proteins. Nfu, NifS and NifU were found to interact with 15, 6 and 29 putative Fe-S proteins respectively. The results indicate that Nfu, NifS and NifU play a major role in the biosynthesis and/or delivery of Fe-S clusters in H. pylori.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Ashley A Holland
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | - Robert J Maier
- Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Gao H, Azam T, Randeniya S, Couturier J, Rouhier N, Johnson MK. Function and maturation of the Fe-S center in dihydroxyacid dehydratase from Arabidopsis. J Biol Chem 2018; 293:4422-4433. [PMID: 29425096 DOI: 10.1074/jbc.ra117.001592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/02/2018] [Indexed: 12/26/2022] Open
Abstract
Dihydroxyacid dehydratase (DHAD) is the third enzyme required for branched-chain amino acid biosynthesis in bacteria, fungi, and plants. DHAD enzymes contain two distinct types of active-site Fe-S clusters. The best characterized examples are Escherichia coli DHAD, which contains an oxygen-labile [Fe4S4] cluster, and spinach DHAD, which contains an oxygen-resistant [Fe2S2] cluster. Although the Fe-S cluster is crucial for DHAD function, little is known about the cluster-coordination environment or the mechanism of catalysis and cluster biogenesis. Here, using the combination of UV-visible absorption and circular dichroism and resonance Raman and electron paramagnetic resonance, we spectroscopically characterized the Fe-S center in DHAD from Arabidopsis thaliana (At). Our results indicated that AtDHAD can accommodate [Fe2S2] and [Fe4S4] clusters. However, only the [Fe2S2] cluster-bound form is catalytically active. We found that the [Fe2S2] cluster is coordinated by at least one non-cysteinyl ligand, which can be replaced by the thiol group(s) of dithiothreitol. In vitro cluster transfer and reconstitution reactions revealed that [Fe2S2] cluster-containing NFU2 protein is likely the physiological cluster donor for in vivo maturation of AtDHAD. In summary, AtDHAD binds either one [Fe4S4] or one [Fe2S2] cluster, with only the latter being catalytically competent and capable of substrate and product binding, and NFU2 appears to be the physiological [Fe2S2] cluster donor for DHAD maturation. This work represents the first in vitro characterization of recombinant AtDHAD, providing new insights into the properties, biogenesis, and catalytic role of the active-site Fe-S center in a plant DHAD.
Collapse
Affiliation(s)
- Huanyao Gao
- From the Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602 and
| | - Tamanna Azam
- From the Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602 and
| | - Sajini Randeniya
- From the Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602 and
| | - Jérémy Couturier
- the UMR1136 Interactions Arbres-Microorganismes, Université de Lorraine/INRA, Faculté des Sciences et Technologies, 54500 Vandoeuvre-lès-Nancy, France
| | - Nicolas Rouhier
- the UMR1136 Interactions Arbres-Microorganismes, Université de Lorraine/INRA, Faculté des Sciences et Technologies, 54500 Vandoeuvre-lès-Nancy, France
| | - Michael K Johnson
- From the Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
21
|
Przybyla-Toscano J, Roland M, Gaymard F, Couturier J, Rouhier N. Roles and maturation of iron-sulfur proteins in plastids. J Biol Inorg Chem 2018; 23:545-566. [PMID: 29349662 PMCID: PMC6006212 DOI: 10.1007/s00775-018-1532-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022]
Abstract
One reason why iron is an essential element for most organisms is its presence in prosthetic groups such as hemes or iron–sulfur (Fe–S) clusters, which are notably required for electron transfer reactions. As an organelle with an intense metabolism in plants, chloroplast relies on many Fe–S proteins. This includes those present in the electron transfer chain which will be, in fact, essential for most other metabolic processes occurring in chloroplasts, e.g., carbon fixation, nitrogen and sulfur assimilation, pigment, amino acid, and vitamin biosynthetic pathways to cite only a few examples. The maturation of these Fe–S proteins requires a complex and specific machinery named SUF (sulfur mobilisation). The assembly process can be split in two major steps, (1) the de novo assembly on scaffold proteins which requires ATP, iron and sulfur atoms, electrons, and thus the concerted action of several proteins forming early acting assembly complexes, and (2) the transfer of the preformed Fe–S cluster to client proteins using a set of late-acting maturation factors. Similar machineries, having in common these basic principles, are present in the cytosol and in mitochondria. This review focuses on the currently known molecular details concerning the assembly and roles of Fe–S proteins in plastids.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Mélanie Roland
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université Montpellier 2, SupAgro Campus, 34060, Montpellier, France
| | - Jérémy Couturier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Nicolas Rouhier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
22
|
Zhang H, Krämer U. Differential Diel Translation of Transcripts With Roles in the Transfer and Utilization of Iron-Sulfur Clusters in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1641. [PMID: 30483293 PMCID: PMC6243122 DOI: 10.3389/fpls.2018.01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/22/2018] [Indexed: 05/07/2023]
Abstract
Iron-sulfur (Fe-S) clusters are evolutionarily ancient ubiquitous protein cofactors which have mostly catalytic functions but can also have structural roles. In Arabidopsis thaliana, we presently know a total of 124 Fe-S metalloproteins that are encoded in the genome. Fe-S clusters are highly sensitive to oxidation. Therefore, we hypothesized that Fe-S cluster protein biogenesis is adjusted following the daily rhythms in metabolism driven by photosynthesis at the whole-plant, organ, cellular and sub-cellular levels. It had been concluded previously that little such regulation occurs at the transcript level among the genes functioning in Fe-S cluster assembly. As an initial step toward testing our hypothesis, we thus addressed the diel time course of the translation state of relevant transcripts based on publicly available genome-wide microarray data. This analysis can answer whether the translation of the pool of transcripts of a given gene is temporarily either enhanced or suppressed, and when during the day. Thirty-three percent of the transcripts with functions in Fe-S cluster assembly exhibited significant changes in translation state over a diurnal time course, compared to 26% of all detected transcripts. These transcripts comprised functions in all three steps of cluster assembly including persulfide formation, Fe-S cluster formation and Fe-S cluster transfer to target apoproteins. The number of Fe-S cluster carrier/transfer functions contributed more than half of these transcripts, which reached maxima in translation state either during the night or the end of the night. Similarly, translation state of mitochondrial frataxin and ferredoxin, which are thought to contribute Fe and electrons during cluster formation, peaked during the night. By contrast, translation state of chloroplast SUFE2 in persulfide formation and cytosolic Fe-S cluster formation scaffold protein NBP35 reached maxima in translation state during the day. Among the transcripts encoding target Fe-S cluster-utilizing proteins, 19% exhibited diurnal variation in translation state. Day-time maxima of translation state were most common among these transcripts, with none of the maxima during the night (ZT18). We conclude that diurnal regulation of translation state is important in metalloprotein biogenesis. Future models of Fe-S protein biogenesis require more comprehensive data and will have to accommodate diurnal dynamics.
Collapse
|
23
|
Lu Y. Assembly and Transfer of Iron-Sulfur Clusters in the Plastid. FRONTIERS IN PLANT SCIENCE 2018; 9:336. [PMID: 29662496 PMCID: PMC5890173 DOI: 10.3389/fpls.2018.00336] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/28/2018] [Indexed: 05/09/2023]
Abstract
Iron-Sulfur (Fe-S) clusters and proteins are essential to many growth and developmental processes. In plants, they exist in the plastids, mitochondria, cytosol, and nucleus. Six types of Fe-S clusters are found in the plastid: classic 2Fe-2S, NEET-type 2Fe-2S, Rieske-type 2Fe-2S, 3Fe-4S, 4Fe-4S, and siroheme 4Fe-4S. Classic, NEET-type, and Rieske-type 2Fe-2S clusters have the same 2Fe-2S core; similarly, common and siroheme 4Fe-4S clusters have the same 4Fe-4S core. Plastidial Fe-S clusters are assembled by the sulfur mobilization (SUF) pathway, which contains cysteine desulfurase (EC 2.8.1.7), sulfur transferase (EC 2.8.1.3), Fe-S scaffold complex, and Fe-S carrier proteins. The plastidial cysteine desulfurase-sulfur transferase-Fe-S-scaffold complex system is responsible for de novo assembly of all plastidial Fe-S clusters. However, different types of Fe-S clusters are transferred to recipient proteins via respective Fe-S carrier proteins. This review focuses on recent discoveries on the molecular functions of different assembly and transfer factors involved in the plastidial SUF pathway. It also discusses potential points for regulation of the SUF pathway, relationships among the plastidial, mitochondrial, and cytosolic Fe-S assembly and transfer pathways, as well as several open questions about the carrier proteins for Rieske-type 2Fe-2S, NEET-type 2Fe-2S, and 3F-4S clusters.
Collapse
|
24
|
Georg J, Kostova G, Vuorijoki L, Schön V, Kadowaki T, Huokko T, Baumgartner D, Müller M, Klähn S, Allahverdiyeva Y, Hihara Y, Futschik ME, Aro EM, Hess WR. Acclimation of Oxygenic Photosynthesis to Iron Starvation Is Controlled by the sRNA IsaR1. Curr Biol 2017; 27:1425-1436.e7. [PMID: 28479323 DOI: 10.1016/j.cub.2017.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023]
Abstract
Oxygenic photosynthesis crucially depends on proteins that possess Fe2+ or Fe/S complexes as co-factors or prosthetic groups. Here, we show that the small regulatory RNA (sRNA) IsaR1 (Iron-Stress-Activated RNA 1) plays a pivotal role in acclimation to low-iron conditions. The IsaR1 regulon consists of more than 15 direct targets, including Fe2+-containing proteins involved in photosynthetic electron transfer, detoxification of anion radicals, citrate cycle, and tetrapyrrole biogenesis. IsaR1 is essential for maintaining physiological levels of Fe/S cluster biogenesis proteins during iron deprivation. Consequently, IsaR1 affects the acclimation of the photosynthetic apparatus to iron starvation at three levels: (1) directly, via posttranscriptional repression of gene expression; (2) indirectly, via suppression of pigment; and (3) Fe/S cluster biosynthesis. Homologs of IsaR1 are widely conserved throughout the cyanobacterial phylum. We conclude that IsaR1 is a critically important riboregulator. These findings provide a new perspective for understanding the regulation of iron homeostasis in photosynthetic organisms.
Collapse
Affiliation(s)
- Jens Georg
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Gergana Kostova
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Linda Vuorijoki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Verena Schön
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Taro Kadowaki
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Tuomas Huokko
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Desirée Baumgartner
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Maximilian Müller
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Stephan Klähn
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Matthias E Futschik
- CCMAR - Center of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
25
|
Hu X, Kato Y, Sumida A, Tanaka A, Tanaka R. The SUFBC 2 D complex is required for the biogenesis of all major classes of plastid Fe-S proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:235-248. [PMID: 28103400 DOI: 10.1111/tpj.13483] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 05/15/2023]
Abstract
Iron-sulfur (Fe-S) proteins play crucial roles in plastids, participating in photosynthesis and other metabolic pathways. Fe-S clusters are thought to be assembled on a scaffold complex composed of SUFB, SUFC and SUFD proteins. However, several additional proteins provide putative scaffold functions in plastids, and, therefore, the contribution of SUFB, C and D proteins to overall Fe-S assembly still remains unclear. In order to gain insights regarding Fe-S cluster biosynthesis in plastids, we analyzed the complex composed of SUFB, C and D in Arabidopsis by blue native-polyacrylamide gel electrophoresis. Using this approach, a major complex of 170 kDa containing all subunits was detected, indicating that these proteins constitute a SUFBC2 D complex similar to their well characterized bacterial counterparts. The functional effects of SUFB, SUFC or SUFD depletion were analyzed using an inducible RNAi silencing system to specifically target the aforementioned components; resulting in a decrease of various plastidic Fe-S proteins including the PsaA/B and PsaC subunits of photosystem I, ferredoxin and glutamine oxoglutarate aminotransferase. In contrast, the knockout of potential Fe-S scaffold proteins, NFU2 and HCF101, resulted in a specific decrease in the PsaA/B and PsaC levels. These results indicate that the functions of SUFB, SUFC and SUFD for Fe-S cluster biosynthesis cannot be replaced by other scaffold proteins and that SUFBC2 D, NFU2 and HCF101 are involved in the same pathway for the biogenesis of PSI. Taken together, our results provide in vivo evidence supporting the hypothesis that SUFBC2 D is the major, and possibly sole scaffold in plastids.
Collapse
Affiliation(s)
- Xueyun Hu
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang City, Sichuan, 621010, China
| | - Yukako Kato
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Akihiro Sumida
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| |
Collapse
|
26
|
Hu X, Page MT, Sumida A, Tanaka A, Terry MJ, Tanaka R. The iron-sulfur cluster biosynthesis protein SUFB is required for chlorophyll synthesis, but not phytochrome signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1184-1194. [PMID: 28004871 PMCID: PMC5347852 DOI: 10.1111/tpj.13455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 05/08/2023]
Abstract
Proteins that contain iron-sulfur (Fe-S) clusters play pivotal roles in various metabolic processes such as photosynthesis and redox metabolism. Among the proteins involved in the biosynthesis of Fe-S clusters in plants, the SUFB subunit of the SUFBCD complex appears to be unique because SUFB has been reported to be involved in chlorophyll metabolism and phytochrome-mediated signaling. To gain insights into the function of the SUFB protein, we analyzed the phenotypes of two SUFB mutants, laf6 and hmc1, and RNA interference (RNAi) lines with reduced SUFB expression. When grown in the light, the laf6 and hmc1 mutants and the SUFB RNAi lines accumulated higher levels of the chlorophyll biosynthesis intermediate Mg-protoporphyrin IX monomethylester (Mg-proto MME), consistent with the impairment of Mg-proto MME cyclase activity. Both SUFC- and SUFD-deficient RNAi lines accumulated the same intermediate, suggesting that inhibition of Fe-S cluster synthesis is the primary cause of this impairment. Dark-grown laf6 seedlings also showed an increase in protoporphyrin IX (Proto IX), Mg-proto, Mg-proto MME and 3,8-divinyl protochlorophyllide a (DV-Pchlide) levels, but this was not observed in hmc1 or the SUFB RNAi lines, nor was it complemented by SUFB overexpression. In addition, the long hypocotyl in far-red light phenotype of the laf6 mutant could not be rescued by SUFB overexpression and segregated from the pale-green SUFB-deficient phenotype, indicating it is not caused by mutation at the SUFB locus. These results demonstrate that biosynthesis of Fe-S clusters is important for chlorophyll biosynthesis, but that the laf6 phenotype is not due to a SUFB mutation.
Collapse
Affiliation(s)
- Xueyun Hu
- Institute of Low Temperature ScienceHokkaido UniversitySapporo060‐0819Japan
- School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyang621010China
| | - Mike T. Page
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Akihiro Sumida
- Institute of Low Temperature ScienceHokkaido UniversitySapporo060‐0819Japan
| | - Ayumi Tanaka
- Institute of Low Temperature ScienceHokkaido UniversitySapporo060‐0819Japan
| | - Matthew J. Terry
- Biological SciencesUniversity of SouthamptonSouthamptonUK
- Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Ryouichi Tanaka
- Institute of Low Temperature ScienceHokkaido UniversitySapporo060‐0819Japan
| |
Collapse
|
27
|
Nath K, O'Donnell JP, Lu Y. Chloroplastic iron-sulfur scaffold protein NFU3 is essential to overall plant fitness. PLANT SIGNALING & BEHAVIOR 2017; 12:e1282023. [PMID: 28102753 PMCID: PMC5351725 DOI: 10.1080/15592324.2017.1282023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A previous study showed that Nitrogen-Fixing-subunit-U-type protein NFU3 may act an iron-sulfur scaffold protein in the assembly and transfer of 4Fe-4S and 3Fe-4S clusters in the chloroplast. Examples of 4Fe-4S and 3Fe-4S-requiring proteins and complexes include Photosystem I (PSI), NAD(P)H dehydrogenase, and ferredoxin-dependent glutamine oxoglutarate aminotransferases. In this paper, the authors provided additional evidence for the role of NFU3 in 4Fe-4S and 3Fe-4S cluster assembly and transfer, as well as its role in overall plant fitness. Confocal microscopic analysis of the fluorescently-tagged NFU3 protein confirmed the chloroplast localization of the NFU3 protein. Detailed analysis of chlorophyll fluorescence data revealed that a substantial increase in minimal fluorescence is the primary contributor to the decrease in PSII maximum photochemical efficiency observed in the nfu3 mutants. The substantial increase in minimal fluorescence in the nfu3 mutants is probably the result of an impaired PSI function, blockage of electron flow from PSII to PSI, and over-accumulation of reduced plastoquinone at the acceptor side of PSII. Analyses of seed morphology and germination showed that NFU3 is essential to seed development and germination, in addition to plant growth, development, and flowering. In summary, NFU3 has wide-ranging effects on many biologic processes and is therefore important to overall plant fitness. NFU3 may exert these effects by modulating the availability of 4Fe-4S and 3Fe-4S clusters to 4Fe-4S and 3Fe-4S-requiring proteins and complexes involved in various biologic processes.
Collapse
Affiliation(s)
- Krishna Nath
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - James P. O'Donnell
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
- CONTACT Yan Lu Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|
28
|
Wachnowsky C, Wesley NA, Fidai I, Cowan JA. Understanding the Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1)-Impact of a Disease-Causing Gly208Cys Substitution on Structure and Activity of NFU1 in the Fe/S Cluster Biosynthetic Pathway. J Mol Biol 2017; 429:790-807. [PMID: 28161430 DOI: 10.1016/j.jmb.2017.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S)-cluster-containing proteins constitute one of the largest protein classes, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, and radical generation. Consequently, the biosynthetic machinery for Fe/S clusters is evolutionarily conserved, and mutations in a variety of putative intermediate Fe/S cluster scaffold proteins can cause disease states, including multiple mitochondrial dysfunctions syndrome (MMDS), sideroblastic anemia, and mitochondrial encephalomyopathy. Herein, we have characterized the impact of defects occurring in the MMDS1 disease state that result from a point mutation (Gly208Cys) near the active site of NFU1, an Fe/S scaffold protein, via an in vitro investigation into the structural and functional consequences. Analysis of protein stability and oligomeric state demonstrates that the mutant increases the propensity to dimerize and perturbs the secondary structure composition. These changes appear to underlie the severely decreased ability of mutant NFU1 to accept an Fe/S cluster from physiologically relevant sources. Therefore, the point mutation on NFU1 impairs downstream cluster trafficking and results in the disease phenotype, because there does not appear to be an alternative in vivo reconstitution path, most likely due to greater protein oligomerization from a minor structural change.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| | - Nathaniel A Wesley
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Biophysics Graduate Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA; The Biophysics Graduate Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
29
|
Zhu Y, Liberton M, Pakrasi HB. A Novel Redoxin in the Thylakoid Membrane Regulates the Titer of Photosystem I. J Biol Chem 2016; 291:18689-99. [PMID: 27382055 DOI: 10.1074/jbc.m116.721175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 11/06/2022] Open
Abstract
In photosynthetic organisms like cyanobacteria and plants, the main engines of oxygenic photosynthesis are the pigment-protein complexes photosystem I (PSI) and photosystem II (PSII) located in the thylakoid membrane. In the cyanobacterium Synechocystis sp. PCC 6803, the slr1796 gene encodes a single cysteine thioredoxin-like protein, orthologs of which are found in multiple cyanobacterial strains as well as chloroplasts of higher plants. Targeted inactivation of slr1796 in Synechocystis 6803 resulted in compromised photoautotrophic growth. The mutant displayed decreased chlorophyll a content. These changes correlated with a decrease in the PSI titer of the mutant cells, whereas the PSII content was unaffected. In the mutant, the transcript levels of genes for PSI structural and accessory proteins remained unaffected, whereas the levels of PSI structural proteins were severely diminished, indicating that Slr1796 acts at a posttranscriptional level. Biochemical analysis indicated that Slr1796 is an integral thylakoid membrane protein. We conclude that Slr1796 is a novel regulatory factor that modulates PSI titer.
Collapse
Affiliation(s)
- Yuehui Zhu
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Michelle Liberton
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Himadri B Pakrasi
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
30
|
Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:214-23. [PMID: 26682761 DOI: 10.1016/j.bbabio.2015.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany.
| | - Doris Kreuzer Dekovic
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany
| | - Sabrina Burschel
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany
| |
Collapse
|
31
|
Turowski VR, Aknin C, Maliandi MV, Buchensky C, Leaden L, Peralta DA, Busi MV, Araya A, Gomez-Casati DF. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis. PLoS One 2015; 10:e0141443. [PMID: 26517126 PMCID: PMC4636843 DOI: 10.1371/journal.pone.0141443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/07/2015] [Indexed: 11/19/2022] Open
Abstract
Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S) cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR) and ferredoxin (Fd), two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle.
Collapse
Affiliation(s)
- Valeria R. Turowski
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Cindy Aknin
- UMR5234 Microbiologie Fondamentale et Pathogénicité, Centre National de la Recherche Scientifique and Université Bordeaux-Segalen, 146 rue Léo Saignat, 33076, Bordeaux cedex, France
| | - Maria V. Maliandi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM, Camino de Circunvaación Km 6, 7130, Chascomús, Argentina
| | - Celeste Buchensky
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Laura Leaden
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Diego A. Peralta
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Maria V. Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Alejandro Araya
- Centre National de la Recherche Scientifique & UMR 1332 –Biologie du Fruit et Pathologie, Institute National de la Recherche Agronomique (INRA) Bordeaux Aquitaine, 71 avenue Edouard Bourlaux, 33882, Villenave D’Ornon, France
| | - Diego F. Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- * E-mail:
| |
Collapse
|
32
|
Belcher S, Williams-Carrier R, Stiffler N, Barkan A. Large-scale genetic analysis of chloroplast biogenesis in maize. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1004-16. [PMID: 25725436 DOI: 10.1016/j.bbabio.2015.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chloroplast biogenesis involves a collaboration between several thousand nuclear genes and ~100 genes in the chloroplast. Many of the nuclear genes are of cyanobacterial ancestry and continue to perform their ancestral function. However, many others evolved subsequently and comprise a diverse set of proteins found specifically in photosynthetic eucaryotes. Genetic approaches have been key to the discovery of nuclear genes that participate in chloroplast biogenesis, especially those lacking close homologs outside the plant kingdom. SCOPE OF REVIEW This article summarizes contributions from a genetic resource in maize, the Photosynthetic Mutant Library (PML). The PML collection consists of ~2000 non-photosynthetic mutants induced by Mu transposons. We include a summary of mutant phenotypes for 20 previously unstudied maize genes, including genes encoding chloroplast ribosomal proteins, a PPR protein, tRNA synthetases, proteins involved in plastid transcription, a putative ribosome assembly factor, a chaperonin 60 isoform, and a NifU-domain protein required for Photosystem I biogenesis. MAJOR CONCLUSIONS Insertions in 94 maize genes have been linked thus far to visible and molecular phenotypes with the PML collection. The spectrum of chloroplast biogenesis genes that have been genetically characterized in maize is discussed in the context of related efforts in other organisms. This comparison shows how distinct organismal attributes facilitate the discovery of different gene classes, and reveals examples of functional divergence between monocot and dicot plants. GENERAL SIGNIFICANCE These findings elucidate the biology of an organelle whose activities are fundamental to agriculture and the biosphere. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Nicholas Stiffler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
33
|
Yang H, Liu J, Wen X, Lu C. Molecular mechanism of photosystem I assembly in oxygenic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:838-48. [PMID: 25582571 DOI: 10.1016/j.bbabio.2014.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 11/26/2022]
Abstract
Photosystem I, an integral membrane and multi-subunit complex, catalyzes the oxidation of plastocyanin and the reduction of ferredoxin by absorbed light energy. Photosystem I participates in photosynthetic acclimation processes by being involved in cyclic electron transfer and state transitions for sustaining efficient photosynthesis. The photosystem I complex is highly conserved from cyanobacteria to higher plants and contains the light-harvesting complex and the reaction center complex. The assembly of the photosystem I complex is highly complicated and involves the concerted assembly of multiple subunits and hundreds of cofactors. A suite of regulatory factors for the assembly of photosystem I subunits and cofactors have been identified that constitute an integrative network regulating PSI accumulation. This review aims to discuss recent findings in the field relating to how the photosystem I complex is assembled in oxygenic organisms. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
34
|
Raes K, Knockaert D, Struijs K, Van Camp J. Role of processing on bioaccessibility of minerals: Influence of localization of minerals and anti-nutritional factors in the plant. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.02.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Liu D, Wang L, Liu C, Song X, He S, Zhai H, Liu Q. An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance. PLoS One 2014; 9:e93935. [PMID: 24695556 PMCID: PMC3973627 DOI: 10.1371/journal.pone.0093935] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/08/2014] [Indexed: 12/18/2022] Open
Abstract
Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our previous study, but its role in sweetpotato stress tolerance was not investigated. In the present study, the IbNFU1 gene was introduced into a salt-sensitive sweetpotato cv. Lizixiang to characterize its function in salt tolerance. The IbNFU1-overexpressing sweetpotato plants exhibited significantly higher salt tolerance compared with the wild-type. Proline and reduced ascorbate content were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbNFU1 up-regulated pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that IbNFU1gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system.
Collapse
Affiliation(s)
- Degao Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Lianjun Wang
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chenglong Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Xuejin Song
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Shaozhen He
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Hong Zhai
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Abstract
Iron is an essential element for all photosynthetic organisms. The biological use of this transition metal is as an enzyme cofactor, predominantly in electron transfer and catalysis. The main forms of iron cofactor are, in order of decreasing abundance, iron-sulfur clusters, heme, and di-iron or mononuclear iron, with a wide functional range. In plants and algae, iron-sulfur cluster assembly pathways of bacterial origin are localized in the mitochondria and plastids, where there is a high demand for these cofactors. A third iron-sulfur cluster assembly pathway is present in the cytosol that depends on the mitochondria but not on plastid assembly proteins. The biosynthesis of heme takes place mainly in the plastids. The importance of iron-sulfur cofactors beyond photosynthesis and respiration has become evident with recent discoveries of novel iron-sulfur proteins involved in epigenetics and DNA metabolism. In addition, increased understanding of intracellular iron trafficking is opening up research into how iron is distributed between iron cofactor assembly pathways and how this distribution is regulated.
Collapse
Affiliation(s)
- Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| | | |
Collapse
|
37
|
Gao H, Subramanian S, Couturier J, Naik SG, Kim SK, Leustek T, Knaff DB, Wu HC, Vignols F, Huynh BH, Rouhier N, Johnson MK. Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins. Biochemistry 2013; 52:6633-45. [PMID: 24032747 DOI: 10.1021/bi4007622] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nfu-type proteins are essential in the biogenesis of iron-sulfur (Fe-S) clusters in numerous organisms. A number of phenotypes including low levels of Fe-S cluster incorporation are associated with the deletion of the gene encoding a chloroplast-specific Nfu-type protein, Nfu2 from Arabidopsis thaliana (AtNfu2). Here, we report that recombinant AtNfu2 is able to assemble both [2Fe-2S] and [4Fe-4S] clusters. Analytical data and gel filtration studies support cluster/protein stoichiometries of one [2Fe-2S] cluster/homotetramer and one [4Fe-4S] cluster/homodimer. The combination of UV-visible absorption and circular dichroism and resonance Raman and Mössbauer spectroscopies has been employed to investigate the nature, properties, and transfer of the clusters assembled on Nfu2. The results are consistent with subunit-bridging [2Fe-2S](2+) and [4Fe-4S](2+) clusters coordinated by the cysteines in the conserved CXXC motif. The results also provided insight into the specificity of Nfu2 for the maturation of chloroplastic Fe-S proteins via intact, rapid, and quantitative cluster transfer. [2Fe-2S] cluster-bound Nfu2 is shown to be an effective [2Fe-2S](2+) cluster donor for glutaredoxin S16 but not glutaredoxin S14. Moreover, [4Fe-4S] cluster-bound Nfu2 is shown to be a very rapid and efficient [4Fe-4S](2+) cluster donor for adenosine 5'-phosphosulfate reductase (APR1), and yeast two-hybrid studies indicate that APR1 forms a complex with Nfu2 but not with Nfu1 and Nfu3, the two other chloroplastic Nfu proteins. This cluster transfer is likely to be physiologically relevant and is particularly significant for plant metabolism as APR1 catalyzes the second step in reductive sulfur assimilation, which ultimately results in the biosynthesis of cysteine, methionine, glutathione, and Fe-S clusters.
Collapse
Affiliation(s)
- Huanyao Gao
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia, 30602, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bernard DG, Netz DJA, Lagny TJ, Pierik AJ, Balk J. Requirements of the cytosolic iron-sulfur cluster assembly pathway in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120259. [PMID: 23754812 DOI: 10.1098/rstb.2012.0259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The assembly of iron-sulfur (Fe-S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe-S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe-4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe-S cluster assembly pathway, dre2, with the Arabidopsis homologue AtDRE2, but only when expressed together with the diflavin reductase AtTAH18. Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe-S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe-S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids.
Collapse
Affiliation(s)
- Delphine G Bernard
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | | | |
Collapse
|
39
|
Couturier J, Touraine B, Briat JF, Gaymard F, Rouhier N. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. FRONTIERS IN PLANT SCIENCE 2013; 4:259. [PMID: 23898337 PMCID: PMC3721309 DOI: 10.3389/fpls.2013.00259] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/25/2013] [Indexed: 05/18/2023]
Abstract
Many metabolic pathways and cellular processes occurring in most sub-cellular compartments depend on the functioning of iron-sulfur (Fe-S) proteins, whose cofactors are assembled through dedicated protein machineries. Recent advances have been made in the knowledge of the functions of individual components through a combination of genetic, biochemical and structural approaches, primarily in prokaryotes and non-plant eukaryotes. Whereas most of the components of these machineries are conserved between kingdoms, their complexity is likely increased in plants owing to the presence of additional assembly proteins and to the existence of expanded families for several assembly proteins. This review focuses on the new actors discovered in the past few years, such as glutaredoxin, BOLA and NEET proteins as well as MIP18, MMS19, TAH18, DRE2 for the cytosolic machinery, which are integrated into a model for the plant Fe-S cluster biogenesis systems. It also discusses a few issues currently subjected to an intense debate such as the role of the mitochondrial frataxin and of glutaredoxins, the functional separation between scaffold, carrier and iron-delivery proteins and the crosstalk existing between different organelles.
Collapse
Affiliation(s)
- Jérémy Couturier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
| | - Brigitte Touraine
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Jean-François Briat
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-INRA-Université Montpellier 2Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres/Micro-organismes, Faculté des Sciences, UMR1136 Université de Lorraine-INRAVandoeuvre, France
- *Correspondence: Nicolas Rouhier, Université de Lorraine, UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, Faculté des Sciences, Bd des aiguillettes, BP 239,54506 Vandoeuvre, France e-mail:
| |
Collapse
|
40
|
Py B, Gerez C, Angelini S, Planel R, Vinella D, Loiseau L, Talla E, Brochier-Armanet C, Garcia Serres R, Latour JM, Ollagnier-de Choudens S, Fontecave M, Barras F. Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe-S carrier. Mol Microbiol 2012; 86:155-71. [PMID: 22966982 DOI: 10.1111/j.1365-2958.2012.08181.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biosynthesis of iron-sulphur (Fe-S) proteins is catalysed by multi-protein systems, ISC and SUF. However, 'non-ISC, non-SUF' Fe-S biosynthesis factors have been described, both in prokaryotes and eukaryotes. Here we report in vitro and in vivo investigations of such a 'non-ISC, non SUF' component, the Nfu proteins. Phylogenomic analysis allowed us to define four subfamilies. Escherichia coli NfuA is within subfamily II. Most members of this subfamily have a Nfu domain fused to a 'degenerate' A-type carrier domain (ATC*) lacking Fe-S cluster co-ordinating Cys ligands. The Nfu domain binds a [4Fe-4S] cluster while the ATC* domain interacts with NuoG (a complex I subunit) and aconitase B (AcnB). In vitro, holo-NfuA promotes maturation of AcnB. In vivo, NfuA is necessary for full activity of complex I under aerobic growth conditions, and of AcnB in the presence of superoxide. NfuA receives Fe-S clusters from IscU/HscBA and SufBCD scaffolds and eventually transfers them to the ATCs IscA and SufA. This study provides significant information on one of the Fe-S biogenesis factors that has been often used as a building block by ISC and/or SUF synthesizing organisms, including bacteria, plants and animals.
Collapse
Affiliation(s)
- Béatrice Py
- Laboratoire de Chimie Bactérienne, UMR 7283 Aix-Marseille Université-CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Mühlenhoff U. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1491-508. [PMID: 22609301 DOI: 10.1016/j.bbamcr.2012.05.009] [Citation(s) in RCA: 369] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kesawat MS, Das BK, Bhaganagare GR, Manorama. Genome-wide identification, evolutionary and expression analyses of putative Fe-S biogenesis genes in rice (Oryza sativa). Genome 2012; 55:571-83. [PMID: 22856514 DOI: 10.1139/g2012-044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron-sulfur (Fe-S) proteins are ubiquitous in nature and carry Fe-S clusters (ISCs) as prosthetic groups that are essential in maintaining basic biological processes such as photosynthesis, respiration, nitrogen fixation, and DNA repair. In the present investigation, a comprehensive genome-wide analysis was carried out to find all the genes involved in the formation of ISCs in rice ( Oryza sativa L.) through a systematic EST and genomic DNA sequence data mining. This analysis profiled 44 rice ISC genes (OsISCs) that were identified using in silico analysis. Multiple sequence alignment and phylogenetic analysis revealed that these genes were highly conserved among bacteria, fungi, animals, and plants. EST analysis and RT-PCR assays demonstrated that all OsISCs were active and that the transcript abundance of some OsISCs was tissue specific. The results of this study will assist further investigations to identify and elucidate the structural components involved in the assembly, biogenesis, and regulation of OsISCs. Thus, the outcome of the present study provides basic genomic information for the OsISC and will pave the way for elucidating the precise role of OsISCs in plant growth and development in the future. Also, it may enable us in the future to enhance the crop yield, uptake of Fe, and protection against abiotic and biotic stress.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Krishak Nagar - 492 012 Raipur (CG), India.
| | | | | | | |
Collapse
|
43
|
Yadavalli V, Jolley CC, Malleda C, Thangaraj B, Fromme P, Subramanyam R. Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii. PLoS One 2012; 7:e35084. [PMID: 22514709 PMCID: PMC3325961 DOI: 10.1371/journal.pone.0035084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 03/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency.
Collapse
Affiliation(s)
- Venkateswarlu Yadavalli
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Craig C. Jolley
- Department of Chemistry and Biochemistry, Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona, United States of America
| | - Chandramouli Malleda
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Balakumar Thangaraj
- Department of Chemistry and Biochemistry, Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona, United States of America
| | - Petra Fromme
- Department of Chemistry and Biochemistry, Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona, United States of America
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
44
|
Navarro-Sastre A, Tort F, Stehling O, Uzarska MA, Arranz JA, Del Toro M, Labayru MT, Landa J, Font A, Garcia-Villoria J, Merinero B, Ugarte M, Gutierrez-Solana LG, Campistol J, Garcia-Cazorla A, Vaquerizo J, Riudor E, Briones P, Elpeleg O, Ribes A, Lill R. A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 2011; 89:656-67. [PMID: 22077971 DOI: 10.1016/j.ajhg.2011.10.005] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/07/2011] [Accepted: 10/13/2011] [Indexed: 01/20/2023] Open
Abstract
We report on ten individuals with a fatal infantile encephalopathy and/or pulmonary hypertension, leading to death before the age of 15 months. Hyperglycinemia and lactic acidosis were common findings. Glycine cleavage system and pyruvate dehydrogenase complex (PDHC) activities were low. Homozygosity mapping revealed a perfectly overlapping homozygous region of 1.24 Mb corresponding to chromosome 2 and led to the identification of a homozygous missense mutation (c.622G > T) in NFU1, which encodes a conserved protein suggested to participate in Fe-S cluster biogenesis. Nine individuals were homozygous for this mutation, whereas one was compound heterozygous for this and a splice-site (c.545 + 5G > A) mutation. The biochemical phenotype suggested an impaired activity of the Fe-S enzyme lipoic acid synthase (LAS). Direct measurement of protein-bound lipoic acid in individual tissues indeed showed marked decreases. Upon depletion of NFU1 by RNA interference in human cell culture, LAS and, in turn, PDHC activities were largely diminished. In addition, the amount of succinate dehydrogenase, but no other Fe-S proteins, was decreased. In contrast, depletion of the general Fe-S scaffold protein ISCU severely affected assembly of all tested Fe-S proteins, suggesting that NFU1 performs a specific function in mitochondrial Fe-S cluster maturation. Similar biochemical effects were observed in Saccharomyces cerevisiae upon deletion of NFU1, resulting in lower lipoylation and SDH activity. Importantly, yeast Nfu1 protein carrying the individuals' missense mutation was functionally impaired. We conclude that NFU1 functions as a late-acting maturation factor for a subset of mitochondrial Fe-S proteins.
Collapse
Affiliation(s)
- Aleix Navarro-Sastre
- Division of Inborn Errors of Metabolism, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Instituto de Investigación Biomédica Pi Sunyer, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xu XM, Møller SG. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011; 15:271-307. [PMID: 20812788 DOI: 10.1089/ars.2010.3259] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron-sulfur clusters [Fe-S] are small, ubiquitous inorganic cofactors representing one of the earliest catalysts during biomolecule evolution and are involved in fundamental biological reactions, including regulation of enzyme activity, mitochondrial respiration, ribosome biogenesis, cofactor biogenesis, gene expression regulation, and nucleotide metabolism. Although simple in structure, [Fe-S] biogenesis requires complex protein machineries and pathways for assembly. [Fe-S] are assembled from cysteine-derived sulfur and iron onto scaffold proteins followed by transfer to recipient apoproteins. Several predominant iron-sulfur biogenesis systems have been identified, including nitrogen fixation (NIF), sulfur utilization factor (SUF), iron-sulfur cluster (ISC), and cytosolic iron-sulfur protein assembly (CIA), and many protein components have been identified and characterized. In eukaryotes ISC is mainly localized to mitochondria, cytosolic iron-sulfur protein assembly to the cytosol, whereas plant sulfur utilization factor is localized mainly to plastids. Because of this spatial separation, evidence suggests cross-talk mediated by organelle export machineries and dual targeting mechanisms. Although research efforts in understanding iron-sulfur biogenesis has been centered on bacteria, yeast, and plants, recent efforts have implicated inappropriate [Fe-S] biogenesis to underlie many human diseases. In this review we detail our current understanding of [Fe-S] biogenesis across species boundaries highlighting evolutionary conservation and divergence and assembling our knowledge into a cellular context.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research CORE, University of Stavanger, Norway
| | | |
Collapse
|
46
|
Nouet C, Motte P, Hanikenne M. Chloroplastic and mitochondrial metal homeostasis. TRENDS IN PLANT SCIENCE 2011; 16:395-404. [PMID: 21489854 DOI: 10.1016/j.tplants.2011.03.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/25/2011] [Accepted: 03/07/2011] [Indexed: 05/03/2023]
Abstract
Transition metal deficiency has a strong impact on the growth and survival of an organism. Indeed, transition metals, such as iron, copper, manganese and zinc, constitute essential cofactors for many key cellular functions. Both photosynthesis and respiration rely on metal cofactor-mediated electron transport chains. Chloroplasts and mitochondria are, therefore, organelles with high metal ion demand and represent essential components of the metal homeostasis network in photosynthetic cells. In this review, we describe the metal requirements of chloroplasts and mitochondria, the acclimation of their functions to metal deficiency and recent advances in our understanding of their contributions to cellular metal homeostasis, the control of the cellular redox status and the synthesis of metal cofactors.
Collapse
Affiliation(s)
- Cécile Nouet
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering, Department of Life Sciences (B22), University of Liège, Belgium
| | | | | |
Collapse
|
47
|
Balk J, Pilon M. Ancient and essential: the assembly of iron-sulfur clusters in plants. TRENDS IN PLANT SCIENCE 2011; 16:218-26. [PMID: 21257336 DOI: 10.1016/j.tplants.2010.12.006] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 05/18/2023]
Abstract
In plants iron-sulfur (Fe-S) proteins are found in the plastids, mitochondria, cytosol and nucleus, where they are essential for numerous physiological and developmental processes. Recent mutant studies, mostly in Arabidopsis thaliana, have identified three pathways for the assembly of Fe-S clusters. The plastids harbor the SUF (sulfur mobilization) pathway and operate independently, whereas cluster assembly in the cytosol depends on the emerging CIA (cytosolic iron-sulfur cluster assembly) pathway and mitochondria. The latter organelles use the ISC (iron-sulfur cluster) assembly pathway. In all three pathways the assembly process can be divided into a first stage where S and Fe are combined on a scaffold protein, and a second stage in which the Fe-S cluster is transferred to a target protein. The second stage might involve different carrier proteins with specialized functions.
Collapse
Affiliation(s)
- Janneke Balk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | |
Collapse
|
48
|
Varin S, Cliquet JB, Personeni E, Avice JC, Lemauviel-Lavenant S. How does sulphur availability modify N acquisition of white clover (Trifolium repens L.)? JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:225-34. [PMID: 19933318 PMCID: PMC2791126 DOI: 10.1093/jxb/erp303] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/14/2009] [Accepted: 09/09/2009] [Indexed: 05/08/2023]
Abstract
The role of S in legume growth, N uptake, and N2 fixation was investigated using white clover (Trifolium repens L.) as a model species. We examined whether the effect of sulphate addition on N fixation resulted from a stimulation of host plant growth, a specific effect of S on nodulation, or a specific effect of S on nodule metabolism. Clones of white clover, inoculated with Rhizobium leguminosarum, were grown for 140 d in a hydroponic system with three levels of sulphate concentration (0 mM, 0.095 mM, and 0.380 mM). Nodule morphological and biochemical traits, such as root length, nodule biomass and volume, nodule protein contents (nitrogenase and leghaemoglobin obtained by an immunological approach), and root amino acid concentrations, were used to analyse the effect of sulphate availability on N2 fixation. The application of sulphate increased whole plant dry mass, root length, and nodule biomass, expressed on a root-length basis. N uptake proved less sensitive than N2 fixation to the effects of S-deficiency, and decreased as a consequence of the lower root length observed in S-deficient plants. N2 fixation was drastically reduced in S-deficient plants as a consequence of a low nodule development, but also due to low nitrogenase and leghaemoglobin production. This effect is likely to be due to down-regulation by a N-feedback mechanism, as, under severe S-deficiency, the high concentration of whole plant N and the accumulation of N-rich amino acids (such as asparagine) indicated that the assimilation of N exceeded the amount required for plant growth.
Collapse
Affiliation(s)
- Sébastien Varin
- Université de Caen, UMR 950, Ecophysiologie Végétale Agronomie et Nutritions NCS, INRA/Université de Caen, Esplanade de la Paix, F-14032 Caen Cedex, France
| | - Jean-Bernard Cliquet
- INRA, UMR 950, Ecophysiologie Végétale Agronomie et Nutritions NCS, INRA/Université de Caen, Esplanade de la Paix, F-14032 Caen Cedex, France
| | - Emmanuelle Personeni
- INRA, UMR 950, Ecophysiologie Végétale Agronomie et Nutritions NCS, INRA/Université de Caen, Esplanade de la Paix, F-14032 Caen Cedex, France
| | - Jean-Christophe Avice
- INRA, UMR 950, Ecophysiologie Végétale Agronomie et Nutritions NCS, INRA/Université de Caen, Esplanade de la Paix, F-14032 Caen Cedex, France
| | - Servane Lemauviel-Lavenant
- INRA, UMR 950, Ecophysiologie Végétale Agronomie et Nutritions NCS, INRA/Université de Caen, Esplanade de la Paix, F-14032 Caen Cedex, France
| |
Collapse
|
49
|
Abstract
Oxygen-evolving chloroplasts possess their own iron-sulfur cluster assembly proteins including members of the SUF (sulfur mobilization) and the NFU family. Recently, the chloroplast protein HCF101 (high chlorophyll fluorescence 101) has been shown to be essential for the accumulation of the membrane complex Photosystem I and the soluble ferredoxin-thioredoxin reductases, both containing [4Fe-4S] clusters. The protein belongs to the FSC-NTPase ([4Fe-4S]-cluster-containing P-loop NTPase) superfamily, several members of which play a crucial role in Fe/S cluster biosynthesis. Although the C-terminal ISC-binding site, conserved in other members of the FSC-NTPase family, is not present in chloroplast HCF101 homologues using Mössbauer and EPR spectroscopy, we provide evidence that HCF101 binds a [4Fe-4S] cluster. 55Fe incorporation studies of mitochondrially targeted HCF101 in Saccharomyces cerevisiae confirmed the assembly of an Fe/S cluster in HCF101 in an Nfs1-dependent manner. Site-directed mutagenesis identified three HCF101-specific cysteine residues required for assembly and/or stability of the cluster. We further demonstrate that the reconstituted cluster is transiently bound and can be transferred from HCF101 to a [4Fe-4S] apoprotein. Together, our findings suggest that HCF101 may serve as a chloroplast scaffold protein that specifically assembles [4Fe-4S] clusters and transfers them to the chloroplast membrane and soluble target proteins.
Collapse
|
50
|
Xu XM, Lin H, Latijnhouwers M, Møller SG. Dual localized AtHscB involved in iron sulfur protein biogenesis in Arabidopsis. PLoS One 2009; 4:e7662. [PMID: 19865480 PMCID: PMC2764847 DOI: 10.1371/journal.pone.0007662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/09/2009] [Indexed: 11/21/2022] Open
Abstract
Background Iron-sulfur clusters are ubiquitous structures which act as prosthetic groups for numerous proteins involved in several fundamental biological processes including respiration and photosynthesis. Although simple in structure both the assembly and insertion of clusters into apoproteins requires complex biochemical pathways involving a diverse set of proteins. In yeast, the J-type chaperone Jac1 plays a key role in the biogenesis of iron sulfur clusters in mitochondria. Methodology/Principal Findings In this study we demonstrate that AtHscB from Arabidopsis can rescue the Jac1 yeast knockout mutant suggesting a role for AtHscB in iron sulfur protein biogenesis in plants. In contrast to mitochondrial Jac1, AtHscB localizes to both mitochondria and the cytosol. AtHscB interacts with AtIscU1, an Isu-like scaffold protein involved in iron-sulfur cluster biogenesis, and through this interaction AtIscU1 is most probably retained in the cytosol. The chaperone AtHscA can functionally complement the yeast Ssq1knockout mutant and its ATPase activity is enhanced by AtHscB and AtIscU1. Interestingly, AtHscA is also localized in both mitochondria and the cytosol. Furthermore, AtHscB is highly expressed in anthers and trichomes and an AtHscB T-DNA insertion mutant shows reduced seed set, a waxless phenotype and inappropriate trichome development as well as dramatically reduced activities of the iron-sulfur enzymes aconitase and succinate dehydrogenase. Conclusions Our data suggest that AtHscB together with AtHscA and AtIscU1 plays an important role in the biogenesis of iron-sulfur proteins in both mitochondria and the cytosol.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Center of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Hong Lin
- Center of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Maita Latijnhouwers
- Center of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Simon Geir Møller
- Center of Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
- * E-mail:
| |
Collapse
|